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RIGIDITY OF ACTIONS ON PRESYMPLECTIC MANIFOLDS

PHILIPPE MONNIER

Abstract. We prove the rigidity of Hamiltonian or presymplectic actions of a
compact semisimple Lie algebra on a presymplectic manifold of constant rank
in the local and global case. The proof uses an abstract normal form theorem
we had stated in a previous work, based on an iterative process of Nash-Moser
type. In order to use correctly this abstract theorem, we need to construct
a new smoothing operator for differential forms and multivector fields which
preserves the Hamiltonian formalism associated to the presymplectic structure.

1. Introduction

The symplectic manifolds (M,ω) represent a nice framework to study many
physical systems ; the manifold M corresponds to the phase space, ω is a closed
non degenerate 2-form onM , and the dynamics of the system is given by the vector
field X which satisfies iXω = dH where H , the energy, is a given smooth function
defined on M . This vector field is called the Hamiltonian vector field associated to
H . Because ω is nondegenerate, X always exists and is unique.

The constrained Hamiltonian systems (electrodynamics, gravitation) have been
studied initially by Dirac in [7]. These systems arise for instance from degener-
ate Lagrangian systems, i.e. the Legendre transform is not a diffeomorphism (for
instance for Maxwell system). It appeared in this case that the presymplectic for-
malism could be more relevant. More precisely, the constraints are described by
a submanifold of a symplectic manifold ; the restriction of the symplectic form to
this submanifold may be degenerate which gives a presymplectic manifold. In this
case, if the function H is given, the relation iXω = dH may not have solutions and,
if it has solutions they may not be unique.

The geometrical framework to describe the constrained systems has been studied
by several authors, see [3], [7], [11], [12], [17] and [27].

In this paper, we study the Hamiltonian actions and presymplectic actions of a
Lie group on a presymplectic manifold. We prove the rigidity of the Hamiltonian
and presymplectic actions of a compact semisimple Lie group on a presymplectic
manifold of constant rank. This result is proved in the local and global case. More
precisely we prove (see Theorems 4.2 and 4.3 ) :

Take two Hamiltonian actions or two presymplectic actions of a compact semisim-
ple Lie algebra on a presymplectic manifold of constant rank. If they are sufficiently
close, then they are equivalent.

Such a result already exists in symplectic geometry (see for instance [21]). In
this case, it is just an application of Moser’s path method and averaging. This
method does not work so much in the presymplectic case because the two form is
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degenerate. We had to face this difficulty in [21] where we proved a similar result
for Poisson manifolds. In order to prove this result, we had stated a theorem of
abstract normal form which was a generalization of a first tentative in [22]. This
abstract theorem can in particular be used in order to prove the smooth linearization
theorem of Conn ([5]), the smooth Levi decomposition ([22]) for smooth Poisson
structures and the rigidity of Hamiltonian actions of a Poisson-Lie group on a
Poisson manifold ([8]). Moreover, it has been recently used, in a slightly modified
version, in the context of generalized complex geometry, see [2]. The proof of this
abstract normal form theorem was an iterative process based on Newton’s method
and the use of Smoothing operators in order to correct the loss of differentiability.
This ”Nash-Moser type” method has been used in Poisson geometry for instance
in [5], [18] and [22].

In this present paper we prove the rigidity theorem of Hamiltonian actions and
presymplectic actions on presymplectic manifolds using again this abstract normal
form theorem. We recall in the Appendix the statement of this theorem and the
SCI-formalism (for the local case) and the CI-formalism (for the global case) in
which this theorem can be used. Roughly speaking, this formalism corresponds to
Fréchet spaces on which there is a smoothing operator. More precisely, a CI-space
is a sequence of Banach spaces (Hk, ‖ ‖k) (with k ∈ Z+) such that if k ≤ k′ then
Hk′ ⊂ Hk and ‖f‖k ≤ ‖f‖k′ for every f in Hk′ . Moreover, for all real number

t > 1, there exists a smoothing operator St : H0 −→ H∞ =
∞
⋂

k=0

Hk which satisfies

for every f ∈ H,

‖St(f)‖p+s ≤ Cp,st
s‖f‖p(1.1)

‖f − St(f)‖p ≤ Cp,st
−s‖f‖p+s(1.2)

where Cp,s is a positive constant which depends only on p and s. A classical example
of CI-space is given by the differentiable functions on a compact manifold or on a
compact domain of Rn. The usual definition of the smoothing operator can be
found in [5], [23], [24] or [25].

Grosso modo, the way we use the abstract normal form theorem and the SCI
and CI formalism follows more or less the same ideas as in the Poisson case in [21].
Nevertheless, there is a great technical difference. Indeed, in the presymplectic
case, if we take the ”classical” definition of the smoothing operator of vector fields,
and apply it to a Hamiltonian or presymplectic vector field, we don’t know if we
still obtain a Hamiltonian or presymplectic vector field. It is precisely the difficulty
of this work.

In fact, in the local case, it is not hard to prove that if the presymplectic form is
of constant rank then the smoothing operator defined for instance in [23] transforms
an Hamiltonian or presymplectic vector field to an Hamiltonian or presymplectic
vector field. The proof of the rigidity theorem of Hamiltonian actions in the local
case is then a direct application of the abstract normal form theorem, see Theorem
4.2.

But in the global case, on a compact manifold, it is not so easy. The main
difficulty of this present work is to construct a new smoothing operator which
transforms an Hamiltonian or presymplectic vector field to another Hamiltonian or
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presymplectic vector field. The construction we give here is inspired by the regular-
ization operator defined by de Rham ([6]) on differential forms. This regularization
operator is generally used in a different way related to Lp-topology (see [6], [9]
and [10]) and, to our knowledge, the properties (1.1) and (1.2) don’t appear in the
literature. Therefore, we prove these two properties for the de Rham regulariza-
tion operator in Section 6.2. The de Rham construction can be extended to the
multivector fields but unfortunately this operator does not preserve, a priori, the
Hamiltonian and presymplectic feature. We then adapt in Section 6.3 the defini-
tion of de Rham to our context of presymplectic manifold of constant rank and
construct a new global smoothing operator on the spaces of differential forms and
multivector fields. This smoothing operator satisfies the properties (1.1) and (1.2)
and transforms an Hamiltonian or presymplectic vector field to an Hamiltonian or
presymplectic vector field. We then have the good tool to use correctly the abstract
normal form theorem and prove the rigidity of Hamiltonian actions and presymplec-
tic actions on a compact presymplectic manifold of constant rank ; see Theorem 4.3.

Acknowledgements : I would like to thank my colleague Nguyen Tien Zung
for his comments and the discussions about this work.

2. presymplectic manifolds

In this section, we recall briefly the basic definitions about the presymplectic
manifolds.

A presymplectic structure on a smooth manifold M is a smooth closed two-form
ω onM . If we suppose, in addition, that ω is non-degenerate, then it is a symplectic
form.

We denote by X(M) the vector space of smooth vector fields on M . Recall that
the kernel of ω, is defined by

(2.1) ker(ω) = {X ∈ X(M) ; iXω = 0} ,

where iXω is the contraction of ω by X . The rank of ω at a point x of M is the
codimension of kerωx in TxM .

By the Stefan-Sussmann Theorem, it is easy to check that ker(ω) is a completely
integrable involutive singular distribution which gives the null singular foliation.
Of course, it the rank of ω is constant then we have a regular foliation.

A vector field X on a presymplectic manifold (M,ω) is said presymplectic if
LXω = 0 (the Lie derivative of ω by X), i.e. the 1-form iXω is closed. In this
case, the flow of X preserves the form ω. We denote by S(M,ω) the vector space
of presymplectic vector fields. Note that it is a Lie algebra with respect with the
classical bracket of vector fields : the bracket of two presymplectic vector fields is
still presymplectic (it is Hamiltonian, in fact).

Let us define the homomorphism of vector bundles ω♭ : TM −→ T ∗M by ω♭(v) =
ωx(v, .) (for x ∈ M and v ∈ TxM). The rank of ω at the point x is then the rank
of the linear map ω♭

x. As we do not require that ω is non-degenerate, ω♭ is not
an isomorphism. Therefore, the notion of Hamiltonian vector field is slightly more
delicate than in the symplectic case.
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The vector field X is called Hamiltonian if there exists a smooth function f onM
which satisfies iXω = −df . Of course, any Hamiltonian vector field is presymplectic.
It is easy to check that if X and Y are Hamiltonian, then [X,Y ] is Hamiltonian
too. We denote by H(M,ω) the set of Hamiltonian vector fields on (M,ω). It is
then a Lie subalgebra of X(M).

Remark 2.1. Some authors impose in the definition of a presymplectic structure
the additional condition that ω must have a constant rank. In this paper, we do not
require this condition in our definition even if our work concerns the presymplectic
structures of constant rank.

Remark 2.2. Note that if f is a smooth function, there may not exist a correspond-
ing Hamiltonian vector field Xf . Moreover, when Xf exists, it is defined up to
elements of the kernel of ω.

Therefore, the Poisson bracket, as the one defined in the symplectic case, is not
well defined here. Nevertheless, if we denote by C∞

h (M) the vector space of smooth
functions f such that there exists a vector field X satisfying iXω = −df , we can
define the Poisson bracket on C∞

h (M) in the following classical way. If the functions
f and g correspond to the Hamiltonian vector fields Xf and Xg then

{f, g} = ω(Xf , Xg) .

It is easy to check that it is a Poisson bracket.

Example 2.3. If (M,ω) is a symplectic manifold and N a submanifold of M then
(N, i∗Nω) is a presymplectic manifold where iN : N −→M is the injection. A priori,
i∗Nω is not nondegenerate any more.

For instance : M = R2q, ω =
∑q

i=1 dxi ∧ dxq+i and N = S2q−1.

If the rank of i∗Nω is constant onN one says that (N, i∗Nω) is a presymplectic sub-
manifold of constant rank (see [19]). Such submanifolds play an important role in
the reduction of symplectic manifolds (see for instance [16]). For instance, isotropic,
coisotropic, Lagrangian and symplectic submanifolds of a symplectic manifold are
of constant rank.

Conversely, it is easy to show that a presymplectic manifold (N,ωN ) can be
embedded in a symplectic manifold (M,ωM ) ; ωN = j∗ωM where j : N −→ M
is the embedding. Moreover, if ωN is of constant rank, M , ωM and j can be
constructed in such a way that N is a coistropic submanifold of M (see [13], [19]).

Finally, let us recall the Darboux Theorem for presymplectic forms of constant
rank (see for instance [16]).

Theorem 2.4. If (M,ω) is a n-dimensional presymplectic manifold of constant
rank 2q (with 2q ≤ n) then, for any point x of M , there exist local coordinates
(x1, . . . , xn) around x in which, ω is expressed by

(2.2) ω =

q
∑

i=1

dxi ∧ dxq+i .
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3. Hamiltonian and presymplectic actions on a presymplectic

manifold

Let (M,ω) be a presymplectic manifold and consider a smooth left action of a
connected Lie group G on M , Φ : G ×M −→ M , (g, x) 7−→ Φ(g, x) = Φg(x). We
suppose that this action preserves ω, i.e. for all g ∈ G,

(3.1) Φ∗
gω = ω .

Such an action is called a presymplectic action.

We denote by g the Lie algebra of G. For every ξ ∈ g we define the fundamental
vector field ξM by

(3.2) (ξM )x =
d

dt t=0
Φ(exp(−tξ), x) , for all x ∈M .

The map ρ : g −→ X(M) defined by ρ(ξ) = ξM is then a Lie algebras homomor-
phism. A fix point of the action is an element x of M such that ρ(ξ)x = 0 for all
ξ ∈ g.

The condition (3.1) can be written as

(3.3) LξMω = 0 , for all ξ ∈ g ,

i.e. all the vector fields ξM are presymplectic. A presymplectic action of g (or
G) on M is given by a Lie algebras homomorphism ρ : g −→ X(M) such that
ρ(ξ) is a presymplectic vector field for all ξ ∈ g, i.e. it is a Lie homomorphism
ρ : g −→ S(M,ω).

An Hamiltonian action of g (or G) on M is a Lie algebras homomorphism
ρ : g −→ X(M) such that ρ(ξ) is a Hamiltonian vector field for all ξ ∈ g, i.e. it is
a Lie homomorphism ρ : g −→ H(M,ω). In this case, there exists a smooth map
µ : M −→ g∗, called moment map of the action, which satisfies iρ(ξ)ω = −dµξ for

all ξ in g, where µξ is the smooth function fromM to R defined by µξ(x) = 〈µ(x), ξ〉
for all x in M .

If we assume in addition that the moment map µ is equivariant with respect to
the action of G on M and the coadjoint action of G on g∗, we say that the action
is strongly Hamiltonian and the moment map µ is strong (or equivariant).

Remark 3.1. It is not hard to check that the condition of equivariance is equivalent
to

(3.4) ω
(

ρ(ξ), ρ(ζ)
)

= µ[ξ,ζ] ,

for all ξ and ζ in g.

With the notation of Remark 2.2, it is equivalent to µ[ξ,ζ] = {µξ, µζ}.

Example 3.2. If a Lie group G acts on a manifold M and if α is a G-invariant
1-form on M then (M,dα) is clearly a presymplectic manifold and the action of G
on M is strongly Hamiltonian with moment map µ defined by

µξ = iξM θ for all ξ ∈ g .



6 PHILIPPE MONNIER

Example 3.3. If we consider a Hamiltonian action of the Lie groupG on a symplectic
manifold (M,ω), with equivariant moment map µ : M −→ g∗, and a G-invariant
submanifoldN ofM , then we get a strongly Hamiltonian action of G on the induced
presymplectic manifold (N,ωN ), with moment map µN which is the restriction of
µ to N .

A particular important case is when N = µ−1(ξ) where ξ is a regular value of
the moment map µ (see [20]).

Remark 3.4. As in the symplectic case (see for instance [16], chapter IV) if ρ is a
presymplectic action and g = [g; g] (the derived ideal) then ρ is in fact Hamiltonian.
It is a consequence of the fact that the bracket of two presymplectic vector fields is
Hamiltonian.

Remark 3.5. The moment map of an Hamiltonian action is not unique. If µ and µ′

are two moment maps for the same Hamiltonian action ρ, then µ−µ′ is constant on
each connected component. If the manifold M is connected, which is reasonable,
the moment map of an Hamiltonian action is defined up to a constant in g∗.

If we assume in addition that the action is strongly Hamiltonian, then this con-
stant is an element of [g, g]◦ ⊂ g∗. Therefore, if H1(g;R) = {0} (Chevalley coho-
mology group) then the equivariant moment map is unique. It is, in particular, the
case when g is semisimple.

On the other side, two Hamiltonian actions ρ1 and ρ2 have a same moment map
(modulo a constant) if and only if ρ1 − ρ2 takes values in kerω.

4. Rigidity of Hamiltonian and presymplectic actions

In this section, we state the main results of this paper :

Take two Hamiltonian (or presymplectic) actions of a compact semisimple Lie
group on a presymplectic manifold (M,ω) of constant rank. If they are sufficiently
close, then they are equivalent.

We will give two versions of this result.

The local case : We can assume that we work in a neighbourhood of the origin
0 in Rn. We assume that 0 is a fix point for one of the two actions and that the
rank of the presymplectic form ω is constant in a neighbourhood of 0.

The global case : We assume that the manifold M is compact and that the rank
of the presymplectic form ω is constant on M .

4.1. Equivalence of actions. Two Hamiltonian or presymplectic actions ρ1 and
ρ2 are equivalent if there exists a smooth diffeomorphism ϕ which preserves ω (i.e.
ϕ∗ω = ω) such that

(4.1) ϕ∗ρ1(ξ) = ρ2(ξ) for all ξ ∈ g .

In the Hamiltonian case, if µ1 is a moment map for ρ1, one can check that µ1◦ϕ−1

is a moment map for ρ2. Moreover, if we know that ρ1 is strongly Hamiltonian, i.e.
µ1 is equivariant, then µ1 ◦ϕ

−1 is also equivariant and ρ2 is strongly Hamiltonian.
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In this definition, ϕ is a diffeomorphism of M in the global case and a local
diffeomorphism in the neighbourhood of a chosen point of the manifold in the local
situation.

If the diffeomorphism is not smooth but only of class Ck, then we can talk about
Ck-equivalence.

4.2. Topology on the space of actions. In this section, we explain what we
mean by two close actions.

We first recall the classical definitions of the norms of differentiability, Cp-norms,
for sections of vector bundles in the local and global case. All these definitions can
be found, for instance, in [1].

If F : Rn −→ Rk, F (x) = (F 1(x), . . . , F k(x)), is a smooth map, z in Rn and K
a compact subset of Rn, then we can define for any integer p the Cp-norms

‖F (z)‖p = max
i = 1, . . . , k
|α| ≤ p

∣

∣

∣

∂|α|F i

∂xα
(z)

∣

∣

∣
and ‖F‖p,K = sup

x∈K
‖F (x)‖p

In the same way, one can define norms for differential forms, vector fields, multi-
vector fields and smooth sections of a vector bundle over an open subset of Rn.

Now, consider a paracompact n-dimensional smooth manifold M and a vector
bundle π : E −→ M over M of rank k. Take a trivializing atlas {(Vi , ϕi)}i∈I of
M . If θ is a smooth section of the vector bundle it is defined, via the trivialization,
by smooth applications θi : V

′
i −→ Rk where the V ′

i = ϕi(Vi) are open subsets of
Rn.

Take a locally finite trivializing open covering {Ui}i∈I such that Ui ⊂ Vi is
compact and a partition of unity {αi}i∈I subordinate to this covering.

If θ is a smooth section and x ∈M , we can define for any integer p,

‖θx‖p =
∑

i∈Ix

αi(x)‖θi(ϕi(x))‖p

where Ix = {i ∈ I ; x ∈ Ui}. Moreover, if K ⊂M is compact, then we define

‖θ‖p,K = sup
z∈K

‖θz‖p

In particular, if M is compact, we get well defined norms.

The following result will be used to pass from local to global estimates and can
be found, for instance, in [1].

Lemma 4.1. With the same notation as above, for every i ∈ I, there exist positive
real numbers Ai and Bi such that for every section θ and all x ∈ Ui, we have

Ai‖θi(ϕi(x))‖p ≤ ‖θx‖p ≤ Bi‖θi(ϕi(x))‖p .

Finally, we define the norms for actions.

In the global case, we suppose that the manifold M is compact. We can denote
by HomLie

(

g;X(M)
)

the vector space of homomorphisms of Lie algebras form g
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to X(M) and define on it a structure of Fréchet space. If ξ1, . . . , ξm is a basis of g
then, for any ρ ∈ HomLie

(

g;X(M)
)

and every integer k, we have

(4.2) ‖ρ‖k = max
i=1,...,m

‖ρ(ξi)‖k ,

where ‖ρ(ξi)‖k is the Ck-norm on X(M)

In the same way, in the local case, we denote byBr (for every positive real number
r > 0) the open ball in Rn of radius r and of center 0. If ρ is a homomorphisms of
Lie algebras form g to X(Br) then we put

(4.3) ‖ρ‖k,r = max
i=1,...,m

‖ρ(ξi)‖k,Br
.

4.3. The Rigidity Theorems. Now, we give the main theorems of this paper. In
the local situation, we state the following rigidity result.

Theorem 4.2. Take a presymplectic form ω on Rn and suppose that its rank is
constant in a neighbourhood U of 0 containing the open ball BR of radius R > 0.
Consider a Hamiltonian action (respectively, a presymplectic action) ρ : g −→ X(U)
of a compact type semisimple Lie algebra g on (U, ω) for which 0 is a fix point.

There exist a positive integer l and two positive real numbers α and β (with
β < 1 < α) such that :

if σ : g −→ X(U) is another Hamiltonian action of g on (U, ω) (respectively, a
presymplectic action) which satisfies

‖ρ− σ‖2l−1,R ≤ α and ‖ρ− σ‖l,R ≤ β

then there exists a diffeomorphism ϕ of class Ck (for k ∈ N ∪ {∞}, k ≥ l) on the
closed ball BR/2 such that ϕ∗σ = ρ and ϕ∗ω = ω.

Proof. The proof of this theorem uses the abstract normal form Theorem 7.1 given
in the Appendix. Let us explicit how it works.

Let us prove first the Hamiltonian case. The SCI-space T is defined by the vector
spaces Tk,r of Lie homomorphisms from g to the Lie algebra Xk(Br) of C

k-vector
fields on the closed ball of radius r and center 0 in Rn. It is indeed a SCI-space
when it is equipped with the norms defined by (4.3) and the smoothing operators
: for every σ ∈ T and ξ ∈ g we have

(

Stσ
)

(ξ) = St

(

σ(ξ)
)

where the smoothing
operator of a vector field is the one defined by in [5] or [23] (see Section 6.1).

The SCI-subset S of T consists on the Hamiltonian actions, i.e. Lie homomor-
phisms from g to Hk(Br, ω) of Ck-Hamiltonian vector fields on the closed ball
Br.

The origin fO is ρ and we put F = N = {0}, and π = 0 (the estimate (7.7) is
then obvious).

The SCI-group G is given by the local diffeomorphisms on (Rn, 0) and G0 is the
closed subgroup of G of local diffeomorphisms which preserve the closed form ω.
The SCI-group G acts on the SCI-space T by push-forward : if ϕ ∈ G and σ ∈ T
then ϕ∗σ is defined by

(

ϕ∗σ
)

(ξ) = ϕ∗

(

σ(ξ)
)

for any ξ in g (the push-forward of the
vector field σ(ξ) by the diffeomorphism ϕ). This action is a SCI-action (see Lemma
5.3).
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The SCI-space H is given by the spaces Hk(Br, ω) of local Hamiltonian vector
fields. The norms and the smoothing operators are the same as for T but we have
to check that the smoothing operators of an element of H is still in H. Since the
closed form ω has a constant rank around 0, this property is satisfied, according
to Proposition 6.3. Note that if we do not impose this condition on the rank of ω,
this property is not obvious and is maybe false.

The map Φ : H −→ G0 is defined for any X ∈ H by Φ(X) = φ1X , the time 1 flow
of X .

Finally, the map H : S −→ H is defined by H(σ) = h0(ρ − σ), where h0 is the
homotopy operator of the Chevalley-Eilenberg complex defined in Section 5.1 and
the estimate (7.8) is a direct consequence of Lemma 5.1.

The inequality (7.9) is a direct consequence of Lemma B.3 in [21] (p. 1172).
Moreover, the inequalities (7.10) is proved in Lemma 5.4 and (7.11) is given by
Lemma 5.5.

With the assumption of Theorem 4.2, the technical Theorem 7.1 says that there
exists a local diffeomorphism ψ which preserves the presymplectic form ω such that
ψ∗σ = ρ.

To prove the presymplectic case, we just replace the spaces Hk(Br, ω) by the
spaces Sk(Br, ω) of C

k presymplectic vector fields on Br. �

In the global case, we prove the following.

Theorem 4.3. Take a compact presymplectic manifold (M,ω) and suppose that
the rank of ω is constant on M . Consider a Hamiltonian action (respectively, a
presymplectic action) ρ : g −→ X(M) of a compact type semisimple Lie algebra g

on (M,ω).

There exist a positive integer l and two positive real numbers α and β (with
β < 1 < α) such that :

if σ : g −→ X(M) is another Hamiltonian action of g on (M,ω) (respectively, a
presymplectic action) which satisfies

‖ρ− σ‖2l−1 ≤ α and ‖ρ− σ‖l ≤ β

then there exists a diffeomorphism ϕ of class Ck (for k ∈ N ∪ {∞}, k ≥ l) on M
such that ϕ∗σ = ρ and ϕ∗ω = ω.

Proof. This theorem is a consequence of Theorem 7.4 given in the Appendix. The
definitions of all the objects T , G, H, H etc., are exactly the same as in the local
case, considering a compact manifold M instead of local closed ball Br.

It is clear that T is a CI-space. The smoothing operator taken for T can be the
one defined for instance in [14] or [24] or the one defined in Section 6.

In order to prove that the action of the group of diffeomorphisms of M on the
vector fields on M by push-forward is of CI-type at the identity, we just have
to reproduce the proof of Lemma 5.3 and use the definition of the global norms
(Section 4.2).

In comparison with the local case, the only difficulty concerns the CI-space H
given by the Hamiltonian or presymplectic vector fields on M . It is a subspace of
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the space of vector fields but if we take the classical smoothing operator defined in
[14] or [24] it is not clear that H is stable by this smoothing operator. A priori we
don’t know if the smoothing of a Hamiltonian or presymplectic vector field is still
Hamiltonian or presymplectic !

In Section 6.3, we define another smoothing operator on the spaces of differential
forms and on the space of vector fields and we prove that H equipped with this
new smoothing operator is indeed a CI-space (see Proposition 6.16).

The inequalities (7.21), (7.22) and (7.23) can be proved using the local case and
the definition of the global norms. �

5. Technical ingredients

In this section, we give some technical results which allow us to use the abstract
normal form theorems 7.1 and 7.4 in order to prove Theorem 4.2 and Theorem 4.3.

5.1. A Chevalley-Eilenberg complex associated to an Hamiltonian or

presymplectic action. Suppose that (M,ω) is a presymplectic manifold whereM
is either a compact manifold or a closed ball of radius r and center 0 in Rn. Recall
that H(M,ω) denotes the vector space of Hamiltonian vector fields and S(M,ω)
the vector space of presymplectic vector fields.

If ρ : g −→ H(M,ω) is an Hamiltonian action of the Lie algebra g on (M,ω)
then it is easy to check that we define a representation R of g on H(M,ω) by : if
ξ ∈ g and X is a Hamiltonian vector field,

Rξ(X) = [ρ(ξ), X ] .

Indeed, if iXω = −df where f is a smooth function onM , then an easy computation
shows that i[ρ(ξ),X]ω = −d

(

ρ(ξ).f
)

, where ρ(ξ).f is the smooth function defined by
ρ(ξ).f(z) = dfz(ρ(ξ)z) for any z in M .

In the same way, if ρ : g −→ S(M,ω) is presymplectic action of g on (M,ω) then
the same formula defines a representation R of g on S(M,ω) (if diXω = 0 then
di[ρ(ξ),X]ω = 0).

Now, we denote E = H(M,ω) or S(M,ω) and we consider an Hamiltonian or
presymplectic action ρ. The representation R of the Lie algebra g on E allows us
to define the corresponding Chevalley-Eilenberg complex (see [4]).

The p-cochains (p ∈ N) are the alternating p-linear maps from g to E and form
the vector space Cp

(

g, E
)

= Hom
(

∧p g, E
)

with the differential denoted by δp.

In this paper, we only need δ0 and δ1 :

E
δ0

// C1(g, E)
δ1

// C2(g, E)

δ0(X)(ξ1) = Rξ1(X), X ∈ E

δ1(σ)(ξ1 ∧ ξ2) = Rξ1(σ(ξ2))−Rξ2(σ(ξ1))− σ([ξ1, ξ2]), σ ∈ C1(g, E)

where ξ1, ξ2 ∈ g.

The same arguments as developed for instance in [5], [22] and [21] allow to prove
the following lemma.
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Lemma 5.1. If we suppose that the Lie algebra g is semisimple of compact type
then, in the Chevalley-Eilenberg complex associated to ρ:

E
δ0

// C1(g, E)
δ1

// C2(g, E)

there exists a chain of homotopy operators

E C1(g, E)
h0

oo C2(g, E)
h1

oo

such that

(5.1) δ0 ◦ h0 + h1 ◦ δ1 = idC1(g,E) .

Moreover, there exists an integer s such that for each k, there exists a real con-
stant Ck > 0 such that

(5.2) ‖hj(σ)‖k,M ≤ Ck‖σ‖k+s,M , j = 0, 1

for all σ ∈ Cj+1(g, E)

In the local case (M = Br), the constant Ck does not depend on the radius r.

5.2. Technical lemmas. We give here some technical properties in the local case
(in a neighbourhood of 0 in Rn) but they are still valid in the global case, on a
compact manifold M . We get the same estimates, deleting the radius parameters
in the norms.

Lemma 5.2. Let ϕ = Id + χ and ψ = Id + ζ (with χ(0) = ζ(0) = 0) be two local
diffeomorphisms of (Rn, 0). Take two real numbers r > 0 and 0 < η < 1. There
exists a real number α > 0 such that, if ‖χ‖1,r < αη then

‖ψ−1 − ϕ−1‖k,r(1−η) ≤ ‖ψ − ϕ‖k,r
(

1 + Pk(‖χ‖k+1,r, ‖ζ‖k+1,r)
)

,

where Pk is a polynomial function of two variables with vanishing constant term,
positive coefficients, and which is independent of ψ and ϕ.

Proof. We can write ψ−1 − ϕ−1 =
(

ψ−1 ◦ ϕ − ψ−1 ◦ ψ
)

◦ ϕ−1. Therefore, using
Lemmas 3.2 and 3.4 of [22] and Lemma 3.2 of [5], we can find a positive real number
α such that if ‖χ‖1,r < αη then

(5.3) ‖ψ−1−ϕ−1‖k,r(1−η) ≤ ‖ψ−1 ◦ϕ−ψ−1 ◦ψ‖k,r(1−η/2)

(

1+Qk(‖χ‖k,r(1−η/2))
)

,

where Qk is a polynomial function with positive coefficients independent of ϕ and
ψ.

Now, if we denote ξ = ϕ− ψ, if x is in the ball Br(1−η/2), we write

(5.4) ψ−1
(

ϕ(x)
)

− ψ−1
(

ψ(x)
)

=

∫ 1

0

d

dt
ψ−1

(

ψ(x) + t(ξ(x))
)

dt .

Once again, Lemma 3.2 of [22] gives

(5.5) ‖ψ−1 ◦ ϕ− ψ−1 ◦ ψ‖k,r(1−η/2) ≤ ‖ξ‖k,r(1−η/2)

+ ‖ξ‖k,r(1−η/2)‖ψ
−1 − Id‖k+1,r(1−η/2)

(

1 +Rk(‖χ‖k,r(1−η/2), ‖ξ‖k,r(1−η/2))
)

,

where Rk is a polynomial function with positive coefficients and vanishing constant
term. Finally, Lemma 3.4 of [22] gives the result. �
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Lemma 5.3. The left action of the SCI-group of local diffeomorphisms of (Rn, 0)
on the SCI-space of vector fields on (Rn, 0) by push-forward is an SCI-action. More
precisely, there is a positive constant c such that for any integer k ≥ 1, there are
polynomials Qk, Rk and Tk with positive coefficients, such that if ϕ = Id+ χ and
ψ = ϕ+ ζ are two local diffeomorphisms and X is a vector field then

‖ϕ∗X‖2k−1,r′ ≤ ‖X‖2k−1,r

(

1 + ‖χ‖k+1,rQk(‖χ‖k+1,r)
)

(5.6)

+‖χ‖2k,r‖X‖k,rRk(‖χ‖k+1,r)

where r′ = (1− c‖χ‖1,r)r ; and also

(5.7) ‖ψ∗X − ϕ∗X‖k,r′′ ≤ ‖X‖k+2,r‖ζ‖k+2,rTk(‖χ‖k+2,r, ‖ζ‖k+2,r) .

where r′′ = (1− c(‖χ‖1,r + ‖ζ‖1,r))r.

Proof. For every x, we have by definition
(

ϕ∗X
)

x
= dϕ(X)(ϕ−1(x)).

If ϕ = Id + χ, then using Lemmas 3.3 and 3.4 of [22] and the Leibniz rule of
derivation, we get easily the estimate (5.6).

Now, for every x in a neighbourhood of 0 in Rn, we have

(

ψ∗X
)

x
−
(

ϕ∗X
)

x
=

∫ 1

0

d

dt

(

dϕ(X)
(

ϕ−1(x) + t(ψ−1(x) − ϕ−1(x))
)

)

dt

+dζ(X)
(

ψ−1(x)
)

.(5.8)

Therefore, using Lemmas 3.2 and 3.4 of [22] and Lemma 5.2 above, we get the
estimate (5.7). �

Remark that a consequence of (5.6) is

(5.9) ‖(Id+ χ)∗X‖k,r′ ≤ ‖X‖k,r
(

1 + ‖χ‖k+1,rP (‖χ‖k+1,r)
)

,

where P is a polynomial with positive coefficients.

In the following lemma, for a vector field X we use the notation φtX to indicate
the flow of X and φX for φ1X , the time 1 flow of X .

Lemma 5.4. Take two real numbers r > 0 and 0 < η < 1. There exists a pos-
itive constant α such that if X1 and X2 are two vector fields on the closed ball
Br with ‖X1‖1,r < αη and ‖X2‖1,r < αη, if σ : g −→ X (Br) is a Lie algebras
homomorphism, then we have

∥

∥

(

φX1

)

∗
σ −

(

φX2

)

∗
σ
∥

∥

k,r(1−η)
≤ ‖X1 −X2‖k+1,r‖σ‖k+1,r × Pk

(

‖X1‖k,r, ‖X2‖k,r
)

+‖σ‖k+3,rRk

(

‖X1‖k+3,r, ‖X2‖k+3,r

)

(5.10)

where Pk and Rk are polynomials with positive coefficients (independent of X1, X2

and σ), and Rk is a polynomial of two variables which contains only terms of degree
greater or equal to 2.
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Proof. For any ξ ∈ g we have

φX1∗σ(ξ)− φX2∗σ(ξ) =

∫ 1

0

( d

dt

(

φtX1∗
σ(ξ)

)

−
d

dt

(

φtX2∗
σ(ξ)

)

)

dt(5.11)

=

∫ 1

0

(

φtX1∗
[σ(ξ), X1]− φtX2∗

[σ(ξ), X2]
)

dt(5.12)

=

∫ 1

0

(

φtX1∗
[σ(ξ), X1 −X2]

)

dt(5.13)

+

∫ 1

0

(

φtX1∗
[σ(ξ), X2]− φtX2∗

[σ(ξ), X2]
)

dt

According to (5.9) we can write
(5.14)
‖φtX1∗

[σ(ξ), X1 −X2]‖k,r(1−η) ≤ ‖[σ(ξ), X1 −X2]‖k,̺
(

1 + P (‖φtX1
− Id‖k+1,̺)

)

where P is a polynomial with vanishing constant term and r(1− η) < ̺ < r. Now,
Lemma B.3 of [21] gives

(5.15) ‖φtX1∗
[σ(ξ), X1−X2]‖k,r(1−η) ≤ ‖X1−X2‖k+1,r‖σ‖k+1,r

(

1+Q(‖X1‖k+1,r)
)

On the other hand, (5.7) gives

(5.16) ‖φtX1∗
[σ(ξ), X2]− φtX2∗

[σ(ξ), X2]‖k,r(1−η) ≤ ‖[σ(ξ), X2]‖k+2,̺

×‖φtX1
− φtX2

‖k+2,̺T
(

‖φtX1
− Id‖k+2,̺, ‖φ

t
X2

− Id‖k+2,̺

)

which gives, using Lemma B.3 of [21],
(5.17)

‖φtX1∗
[σ(ξ), X2]− φtX2∗

[σ(ξ), X2]‖k,r(1−η) ≤ ‖σ‖k+3,rR(‖X1‖k+2,r, ‖X2‖k+3,r)

where R is a polynomial of two variables which contains only terms of degree greater
or equal to 2. We then obtain the lemma.

�

In the following lemma, we consider a Hamiltonian action (respectively a presym-
plectic action) ρ : g −→ X(U) of the Lie algebra g on an open neighbourhood of 0
in R

n. We have the differentials δ0 and δ1 of the Chevalley-Eilenberg complex as-
sociated to ρ and the homotopy operators h0 and h1 (see Section 5.1). The integer
s below is the loss of differentiability which appears in Lemma 5.1.

Now, we take another Hamiltonian action (respectively a presymplectic action)
σ : g −→ X(U) and put X the Hamiltonian vector field (respectively the presym-
plectic vector field) X = h0(ρ − σ). Finally, we denote by φt the flow of X and
φ = φ1 the time 1 flow of X . We know that the flow of X preserves the presym-
plectic form ω.

Lemma 5.5. Consider two real numbers r > 0 and 0 < η < 1. There exists a
positive constant α such that, with the notations given above, if ‖σ − ρ‖s+1,r < αη
then, we have for any integer k,

(5.18) ‖φ∗σ − ρ‖k,r(1−η) ≤ ‖σ − ρ‖2k+s+1,rPk

(

‖σ − ρ‖k+s+1,r

)

,

where Pk is a polynomial function with positive coefficients, independent of σ and
ρ.
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Proof. If ξ ∈ g, we can write

(5.19) φ∗σ(ξ) − ρ(ξ) = φ∗σ(ξ)− φ∗ρ(ξ) + φ∗ρ(ξ)− ρ(ξ) .

We first notice that

(5.20) φ∗ρ(ξ)− ρ(ξ) =

∫ 1

0

d

dt
φt∗ρ(ξ)dt =

∫ 1

0

φt∗[ρ(ξ), X ]dt =

∫ 1

0

φt∗δ0(X)(ξ)dt .

Then, recalling that X = h0(ρ− σ), the relation (5.1) gives

(5.21) φ∗ρ(ξ) − ρ(ξ) =

∫ 1

0

φt∗
(

(ρ− σ)(ξ) − h1 ◦ δ1(ρ− σ)(ξ)
)

dt ,

which gives

φ∗σ(ξ)− ρ(ξ) =

∫ 1

0

(

φt∗(ρ− σ)(ξ)− φ∗(ρ− σ)(ξ)
)

dt(5.22)

−

∫ 1

0

φt∗h1 ◦ δ1(ρ− σ)(ξ)dt .

Now, we write
(5.23)

φt∗(ρ− σ)(ξ) − φ∗(ρ− σ)(ξ) =

∫ t

0

d

dτ
φτ∗

(

(ρ− σ)(ξ)
)

dτ =

∫ t

0

φτ∗ [(ρ− σ)(ξ), X ]dτ

and using (5.9) and Lemma B.3 of [21] we get

‖φ∗σ − ρ‖k,r(1−η) ≤ ‖σ − ρ‖k+1,r‖X‖k+1,rQ(‖X‖k+1,r)(5.24)

+‖h1 ◦ δ1(ρ− σ)‖k,rR(‖X‖k+1,r)

where Q and R are polynomial functions with positive coefficients.

By definition and Lemma 5.1 we have

(5.25) ‖X‖k+1,r = ‖h0(ρ− σ)‖k+1,r ≤ C‖ρ− σ‖k+s+1,r ,

where C is a positive constant. Moreover, an obvious computation shows that if ξ1
and ξ2 are in g then

(5.26) δ1(ρ− σ)(ξ1 ∧ ξ2) =
[

(ρ− σ)(ξ1), (ρ− σ)(ξ2)
]

,

It implies the following estimate

(5.27) ‖h1 ◦ δ1(ρ− σ)‖k,r ≤ C‖δ1(ρ− σ)‖k+s,r ≤ C̃‖ρ− σ‖2k+s+1,r ,

where C̃ > 0. The estimate of the lemma follows. �

6. Smoothing operators

In order to use the SCI and CI formalism, we need to construct a notion of
smoothing operator on the space of vector fields and differential forms on a closed
ball in Rn for the local case, or on a compact manifold for the global case.

Such operators have already been defined for instance in [5], [23], [24] and [25].
We will see that in the local case these operators can be used in our situation but,
for the global case, we will have to define another smoothing operator which will
have the properties adapted to our problem.
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6.1. Smoothing operator in the local case. We follow the construction of
smoothing operators given by Conn ([5]) and Moser ([23]). Recall that for all
positive real number r, we denote by Br (resp. Br) the open ball (resp. closed
ball) of radius r and of center 0 in Rn. For an integer l ≥ 1 we consider a smooth
function χl : R

n −→ R whose support is included in the unit closed ball B1 and
which satisfies

(6.1)

∫

Rn

χl(x)dx = 1 and

∫

Rn

xαχl(x)dx = 0 for 1 ≤ |α| ≤ l

If R and r are two radii with 0 < r < R ≤ 1, we fix t > 1/(R− r) and define the
smoothing operator

St : C
∞(BR) −→ C∞(Br)

by

(6.2) St(f)(x) =

∫

Rn

tnχl

(

t(x− y)
)

f(y)dy .

This operator depends on l and t which can be chosen in a convenient way. One
can check (see [23]) the two important properties.

Proposition 6.1. If p ≥ 0 and s ≥ 0 are integers, there exists a positive real
number Cs such that for all f is in C∞(BR) we have

‖St(f)‖p+s,Br
≤ Cst

s‖f‖p,BR
(6.3)

‖f − St(f)‖p,Br
≤ Cst

−s‖f‖p+s,BR
for s ≤ l(6.4)

Note that in this proposition, the constants Cs depend also on l.

In the same way, we can define the smoothing operator for the differential forms

St : Ωk(BR) −→ Ωk(Br). If θ =
∑

I

θIdxI (I = (i1, . . . , ik) with 1 ≤ i1 < . . . <

ik ≤ n) is a k-differential form, then St(θ) =
∑

I St(θI)dxI .

We also get the smoothing operator for vector fields St : X(BR) −→ X(Br). If

X =

n
∑

i=1

Xi
∂

∂xi
is a vector field then St(X) =

∑n
i=1 St(Xi)

∂
∂xi

. It can be easily

generalized to k-vector fields.

Using the definitions of norms for vector fields and differential forms, we can
show the same two estimates as in Proposition 6.1 for these smoothing operators.

Remark 6.2. By the definition of the smoothing operator, we get that for every
smooth function f ,

St

( ∂f

∂xk

)

=
∂St(f)

∂xk
.

Therefore, for every differential form θ, we can also write St(dθ) = d
(

Stθ
)

.

Now, we have the following property about the smoothing of Hamiltonian vector
fields which is very important in our situation.
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Proposition 6.3. Let (x1, . . . , xn) be coordinates on an open set U of Rn and
ω =

∑q
i=1 dxi ∧ dxq+i where q ≤ n/2. If X is a smooth vector field on U , then we

have

iSt(X)ω = St

(

iXω
)

.

In particular, if X is Hamiltonian or presymplectic, then St(X) is still Hamiltonian
or presymplectic.

Proof. We can write in coordinatesX =
∑n

i=1Xi
∂

∂xi
and St(X) =

∑n
i=1 St(Xi)

∂
∂xi

.
We then have

St

(

iXω
)

= St

(

−

q
∑

i=1

Xq+idxi +

q
∑

i=1

Xidxq+i

)

(6.5)

= −

q
∑

i=1

St(Xq+i)dxi +

q
∑

i=1

St(Xi)dxq+i(6.6)

= iSt(X)ω .(6.7)

The end of the proposition is then a consequence of Remark 6.2. �

6.2. Smoothing operator in the global case. There is a construction of a global
smoothing operator on a compact manifold described by J. Nash in [24] which con-
sists in embedding the compact manifold in an Euclidian vector space, using the
smoothing operator on this vector space and then restricting to the compact man-
ifold. This construction has two drawbacks. First, it is not clear if this smoothing
operator defined on the differential forms is compatible with the exterior derivation.
Secondly, and it is really a problem for the subject we are interested in, if we suppose
that M is equipped with a presymplectic structure, it is not clear if the smoothing
of an Hamiltonian or presymlectic vector fields is still Hamiltonian or presymplectic.

In this section, we define a smoothing operator on vector fields and differential
forms which is compatible with the exterior derivative of differential forms. In fact,
we follow the classical construction of the regularization operator on differential
forms of de Rham (see [6]). Some properties of this operator, expressed in terms of
Lp-norms or Sobolev norms, can be found for instance in [9] and [10]. Nevertheless,
the way we need to use this smoothing operator in this paper is slightly different
from the motivations of [6] and [10]. Indeed, we work with the norms of Ck dif-
ferentiability and we essentially need the two estimates of Proposition 6.1. To our
knowledge, these estimates don’t appear in the literature, that is why we prove
them in this paper, even if this smoothing operator is not exactly well adapted to
our situation (see Remark 6.10).

We first recall the construction of the regularization operator on an open set of
Rn. Let us define the radial smooth diffeomorphism h : B1 −→ Rn by

h(x) =
ρ(‖x‖)

‖x‖
x

where ρ : [0; 1[−→ [0; +∞[ is a smooth strictly increasing function defined by

ρ(τ) =

{

τ if τ < 1/3
exp

(

1
1−τ2

)

if τ ≥ 2/3
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and ρ(τ) ≥ τ for any τ ≥ 0. Note that for all y ∈ Rn, we have

h−1(y) =
ρ−1(‖y‖)

‖y‖
y .

If v ∈ Rn, the smooth diffeomorphism σv : Rn −→ Rn is defined by

σv(x) =

{

h−1
(

h(x) + v
)

if ‖x‖ < 1
x if ‖x‖ ≥ 1

We then get a smooth map σ : Rn × Rn −→ Rn, σ(v, x) = σv(x). Note that if
x ∈ B1 is fixed, then the map σx : Rn −→ B1 defined by σx(v) = σ(v, x) is a
diffeomorphism.

Now, take an integer l ≥ 1, a real number t > 1 and a function χl as in the
previous section 6.1.

If V is an open set of Rn with B1 ⊂ V , we define for each integer k the regular-
ization operator (see [6] and [10]) Rt : Ω

k(V ) −→ Ωk(V ) by

(6.8) Rtθ =

∫

Rn

(

σ∗
vθ
)

tn χl(tv)dv .

Remark 6.4. If θ is a smooth k-differential form on V , we clearly have Rtθ = θ on
V \B1.

Lemma 6.5. Take a real number r such that 0 < r < 1. If p ≥ 0 and s ≥ 0 are
integers, there exists a positive constant Cps such that for all θ ∈ Ωk(V ) and for all

x in Br, we have

‖(Rtθ)x‖p+s ≤ Cpst
s‖θ‖p,B1

(6.9)

‖(θ −Rtθ)x‖p ≤ Cpst
−s‖θ‖p+s,B1

for s ≤ l(6.10)

Proof. We follow more or less the same idea of proof as in [23].

We suppose that θ = f dxi1 ∧ . . .∧ dxik where f is a smooth function on V . We
introduce the set

J = {(j1, . . . , jk) ∈ N
k ; 1 ≤ j1 < j2 < . . . < jk ≤ n}

For x ∈ Br, we can write (Rtθ)x =
∑

J∈J

gJ(x)dxj1 ∧ . . . ∧ dxjk with

gJ(x) =

∫

Rn

f(σ(v, x))∆J (v, x)t
nχl(tv)dv

where ∆J(v, x) is a polynomial in the ∂σα

∂xβ
(v, x) (we denote σ = (σ1, . . . , σn)).

We give here the proof of the estimate (6.9) in the case s = 1 because it is more
convenient but the general case works in the same way. Recall that for any x fixed
in B1, σ

x is a diffeomorphism from Rn onto B1. By definition of σ, we have

w = σx(v) ⇐⇒ v = (σx)
−1

(w) = h(w) − h(x)

which allows us to write

gJ(x) =

∫

B1

f(w)∆J

(

(σx)
−1

(w), x
)

tnχl

(

t(σx)
−1

(w)
)
∣

∣Jac h(w)
∣

∣dw .
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where Jac h(w) is the Jacobian of h at w.

Let r′ = ρ−1
(

ρ(r) + 1/t
)

, we have 0 < r < r′ < 1. Note that the support

of the function w 7−→ χl

(

t(σx)−1(w)
)

is included in σx(B1/t). If v ∈ B1/t then
‖h(x) + v‖ ≤ ρ(r) + 1/t and

‖h−1
(

h(x) + v
)

‖ = ρ−1
(

‖h(x) + v‖
)

≤ r′ .

Therefore, σx(B1/t) is included is the closed ball Br′ (included in B1).

For i ∈ {1, . . . , n}, we then have

∣

∣

∂gJ
∂xi

(x)
∣

∣ ≤ ‖f‖0,B1

∫

Br′

∣

∣

∣

∂

∂xi

[

∆J

(

(σx)
−1

(w), x
)

tnχl

(

t(σx)
−1

(w)
)

]

Jac h(w)
∣

∣

∣
dw .

We first write

∂

∂xi
∆J

(

(σx)−1(w), x
)

= −
n
∑

α=1

∂∆J

∂vα
((σx)−1(w), x)

∂hα

∂xi
(x) +

∂∆J

∂xi
((σx)−1(w), x)

where h = (h1, . . . , hn).

On the other hand, we have

∂

∂xi
χl

(

t((σx)−1(w))
)

= −t
n
∑

α=1

∂χl

∂xα

(

t((σx)−1(w))
∂hα

∂xi
(x) .

Therefore, applying back the change of variable v = (σx)
−1

(w), we can write

∣

∣

∣

∂gJ
∂xi

(x)
∣

∣

∣
≤ ‖f‖0,B1

∫

K

∣

∣

∣

n
∑

α=1

∂∆J

∂vα
(v, x)

∂hα

∂xi
(x) +

∂∆J

∂xi
(v, x)

∣

∣

∣
tnχl(tv)dv

+t‖f‖0,B1

∫

K

tn
∣

∣

∣
∆J(v, x)

n
∑

α=1

∂χl

∂xα
(tv)

∂hα

∂xi
(x)

∣

∣

∣
dv .(6.11)

where K = (σx)
−1(

Br′
)

.

Note that the support of the function t 7−→ χl(tv) is included in B1/t which is
itself included in K. Therefore, the two integrals in the previous estimate can be
computed on B1/t.

Using the variable v′ = tv in the integrals, we get
∣

∣

∂gJ
∂xi

(x)
∣

∣ ≤ C1‖f‖0,B1
+ C2t‖f‖0,B1

where the constants C1 and C2 depend on ‖∆J‖1,B1×Br
(i.e. on ‖σ‖2,B1×Br

),

‖h‖1,Br
and χl. Since t > 1, we get the result (6.9) for s = 1. The case s ≥ 1 works

in the same way.

Now, we prove the estimate (6.10). In the same way as above, we have for
x ∈ Br,

(Rtθ)x =
∑

J∈J

(

∫

Rn

GJ (v, x)χl(v)dv
)

dxj1 ∧ . . . ∧ dxjk

with
GJ(v, x) = f

(

σ(v/t, x)
)

∆J (v/t, x) .
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Now, we write the Taylor expansion at the order s−1 (with s ≤ l) of the function
v 7→ GJ (v, x) at 0. We denote by TJ(v, x) the remainder term of this Taylor series.

Note that ∆J(0, x) equals 0 if J 6= (i1, . . . , ik) and equals 1 if J = (i1, . . . , ik).
According to the assumption (6.1), we get

(θ −Rtθ)x =

∫

Rn

TJ(v, x)χl(v)dv .

We have

TJ(v, x) =

∫ 1

0

(1 − τ)s−1

(s− 1)!
D(s)

v GJ (τv/t,x)(v/t, 0)
[s] dτ .

Therefore, noting that σ(B1 ×Br) ⊂ B1, we get

|(θ −Rtθ)x| ≤
A

ts
‖f‖s,B1

where A is a positive constant depending on ‖σ‖s+1,B1×Br
.

�

Now, let us define the smoothing operator in the global case. Suppose that
M is a smooth compact manifold. We can find (see for instance [15]) an atlas
{(Vi, ϕi)}i=1,...,m of M , a small real number ε > 0 and a covering {Ui}i=1,...,m of

M by open sets such that Ui ⊂ Vi and

ϕi(Ui) ⊂ B1−ε ⊂ B1 ⊂ ϕi(Vi) .

For each i ∈ {1, . . . ,m} we define the operator St,i : Ω
k(M) −→ Ωk(M) by

(6.12)
(

St,iθ
)

x
=

{

θx if x ∈M \ Vi
(

ϕ∗
i ◦Rt ◦ (ϕ

−1
i )∗θ|Vi

)

x
if x ∈ Vi

Note that, by Remark 6.4 and the definition of the atlas, St,iθ is well defined on
the manifold M .

Now, we consider a partition of the unity {αi}i=1,...,m subordinate to the cover-
ing {Ui}i=1,...,m and then define the norms ‖ ‖p as in Section 4.2.

Each operator St,i satisfies the following property.

Lemma 6.6. If p ≥ 0 and s ≥ 0 are integers, there exists a positive constant Cips

such that for all x in Ui and θ in Ωk(M), we have

‖(St,iθ)x‖p+s ≤ Cipst
s‖θ‖p,M(6.13)

‖(θ − St,iθ)x‖p ≤ Cipst
−s‖θ‖p+s,M for s ≤ l(6.14)

Proof. Let θ in Ωk(M) and x in Ui.
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We first check the estimate (6.13). We have

‖(St,iθ)x‖p+s = ‖
(

ϕ∗
i ◦Rt ◦ ϕ

−1
i

∗
θ|Vi

)

x
‖p+s(6.15)

=

m
∑

j=1

αj(x)‖ϕ
−1
j

∗(
ϕ∗
i ◦Rt ◦ ϕ

−1
i

∗
θ|Vi

)

ϕj(x)
‖p+s(6.16)

=

m
∑

j=1

αj(x)‖(ϕi ◦ ϕ
−1
j )∗

(

Rt ◦ ϕ
−1
i

∗
θ|Vi

)

ϕj(x)
‖p+s(6.17)

If x belongs to the support of αj we have x ∈ Ui ∩ Uj and ϕj(x) ∈ B1. Conse-
quently, we get

‖(ϕi ◦ ϕ
−1
j )∗

(

Rt ◦ ϕ
−1
i

∗
θ|Vi

)

ϕj(x)
‖p+s ≤Mi,j‖(Rt ◦ ϕ

−1
i

∗
θ|Vi

)

ϕi(x)
‖p+s

where Mi,j is a positive constant, which depends on ‖ϕi ◦ ϕ
−1
j ‖p+s+1,B1

.

Now, since x ∈ Ui we have ϕi(x) ∈ B1−ε. Lemma 6.5 gives then

(6.18) ‖(ϕi ◦ ϕ
−1
j )∗

(

Rt ◦ ϕ
−1
i

∗
θ|Vi

)

ϕj(x)
‖p+s ≤MijCpst

s‖ϕ−1
i

∗
θ|Vi

‖p,B1

Finally, we get the estimate (6.13) using Lemma 4.1.

In the same way, we can write

‖(θ − St,iθ)x‖p =

m
∑

j=1

αj(x)‖(ϕi ◦ ϕ
−1
j )∗

(

ϕ−1
i

∗
θ|Vi

−Rtϕ
−1
i

∗
θ|Vi

)

ϕj(x)
‖p(6.19)

≤
m
∑

j=1

αj(x)Mij‖
(

ϕ−1
i

∗
θ|Vi

−Rtϕ
−1
i

∗
θ|Vi

)

ϕi(x)
‖p(6.20)

≤
m
∑

j=1

αj(x)MijCpst
−s‖ϕ−1

i

∗
θ|Vi

‖p+s,B1
(6.21)

We then obtain the estimate (6.14) by Lemma 4.1. �

Remark 6.7. A direct consequence of this lemma, when s = 0, is the following.
There exists a positive constant Cip such that, for every k-form θ on M , we have

‖St,iθ‖p,M ≤ Cip‖θ‖p,M(6.22)

‖θ − St,iθ‖p ≤ Cip‖θ‖p+s,M for s ≤ l(6.23)

Indeed, if x ∈ Ui we have ‖(St,iθ)x‖p ≤ Cip0‖θ‖p,M and if x is not in Ui then
St,iθx = θx. Taking Cip = Max (1, Cip0), we get the first estimate. The second
estimate is obtained in the same way.

Finally, the global smoothing operator St : Ω
k(M) −→ Ωk(M) is defined by

(6.24) St = St,1 ◦ . . . ◦ St,m .

We prove now the equivalent of Lemma 6.1 in the global case.
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Proposition 6.8. If p ≥ 0 and s ≥ 0 are integers, there exists a positive constant
Cps such that for all θ in Ωk(M) we have

‖Stθ‖p+s,M ≤ Cpst
s‖θ‖p,M(6.25)

‖θ − Stθ‖p,M ≤ Cpst
−s‖θ‖p+s,M for s ≤ l(6.26)

Proof. Let θ in Ωk(M) and x ∈ M . We use the covering {Ui}i=1,...,m of M . We
can write x ∈ Ui1 ∩ . . . ∩ Uiq with i1 < i2 < . . . < iq.

By the definition of the St,i, we have

Stθx = (St,1 ◦ . . . ◦ St,mθ)x = St,i1

(

St,i1+1 ◦ . . . ◦ St,mθ
)

x

By Lemma 6.6 we get

‖Stθx‖p+s ≤ Ci1,p,st
s‖St,i1+1 ◦ . . . ◦ St,mθ‖p,M

Now, the remark 6.7 gives the estimate (6.46). The estimate (6.47) can be proven
in the same way. �

By the definition of the St,i and St, the following important property is obvious.

Proposition 6.9. If θ is a k-differential form onM then we have d
(

Stθ
)

= St

(

dθ
)

.

In the same way as for differential forms, we can define the regularization op-
erator for the vector fields on an open set V of Rn containing the closed ball B1,
Rt : X(V ) −→ X(V ) by

(6.27) RtX =

∫

Rn

(

σv
−1

∗X
)

tnχl(tv)dv .

Using the same kind of proof, we get the same estimates as in Lemma 6.5

The construction we made in (6.12) and (6.24) holds in this case with

(6.28)
(

St,iX
)

x
=

{

Xx if x ∈M \ Vi
(

(ϕ−1
i )∗ ◦Rt ◦ ϕi∗X|Vi

)

x
if x ∈ Vi

and it gives the definition of the smoothing operator for vector fields on the manifold
M , which satisfies the same properties as in Proposition 6.8. This construction can
be generalized, with the same properties, to the space of multivectors Xk(M).

Remark 6.10. This smoothing operator may be useful in some situations dealing
with differential forms and vector fields but, unfortunately, it presents an important
failure in our case. Indeed, if X is an Hamiltonian or presymplectic vector field with
respect to the presymplectic form ω, then the vector field St(X) is not necessarily
Hamiltonian or presymplectic.

Therefore, keeping the same idea of construction, we need to correct a bit the
definition (6.8) replacing σv by Hamiltonian diffeomorphisms.
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6.3. Smoothing operator associated to a presymplectic form. In this sec-
tion we give a construction of a global smoothing operator on a compact presym-
plectic manifold of constant rank, with the classical estimates like in Proposition
6.8, and which will satisfy the following property : the smoothing of an Hamiltonian
(or presymplectic) vector field is still Hamiltonian (or presymplectic).

In this section, for any real number ̺ > 0 we denote by D̺ the closed ball [̺; ̺]n

of Rn. In the same way as in the previous section, we first define the regular-
ization operator on an open set V of Rn which contains the closed ball D1. We
fix coordinates (x1, . . . , xn) on Rn and we consider the presymplectic form (with
2q ≤ n)

ω0 =

q
∑

i=1

dxi ∧ dxq+i .

We fix two real numbers r ∈]0 ; 1[ and ε > 0 such that r−ε > 0. Let h : R −→ R

be a smooth positive function such that h(τ) = 0 if |τ | ≥ r, h(τ) > 0 if |τ | < r
and h(τ) ≤ ε/2 for every τ ∈ R. Moreover, we suppose that h(τ) ≥ α > 0 if
|τ | < r − ε/2 (where α > 0).

Now we define the following vector fields, for i ∈ {1, . . . , q} and j ∈ {2q+1, . . . , n}

(6.29)











Zi = h(xq+i)
∂

∂xi

Zq+i = h(xi)
∂

∂xq+i

Zj = h(xj)
∂

∂xj

Note that these vector fields are Hamiltonian and then preserve the presymplectic
form (LZk

ω0 = 0). Moreover, they have a compact support and they pairwise
commute except Zi and Zq+i for 1 ≤ i ≤ q.

We denote by φ
(k)
τ the flows of the vector fields Zk. For i ∈ {1, . . . , q}, we have

φ(i)τ (x) = (x1, . . . , xi−1, xi + τh(xq+i), xi+1, . . . , xn)(6.30)

φ(q+i)
τ (x) = (x1, . . . , xq+i−1, xq+i + τh(xi), xq+i+1, . . . , xn)(6.31)

For j ∈ {2q + 1, . . . , n}, the flow of Zj is of the form

(6.32) φ(j)τ (x) = (x1, . . . , xj−1, F (τ, xj), xj+1, . . . , xn)

where F (τ, xj) = xj +
∫ τ

0
h
(

F (u, xj)
)

du.

Now, we define the smooth map Φ : Rn × Rn −→ Rn by

(6.33) Φ(v, x) = φ(n)vn ◦ . . . ◦ φ(1)v1 (x) .

If v ∈ Rn is fixed, we denote by Φv : Rn −→ Rn the smooth diffeomorphism
defined by Φv(x) = Φ(v, x).

Note that we have Φv(x) = x for every x ∈ V \Dr.

Take an integer l ≥ 1, a real number t > 1 and a function χl as in the previous
sections 6.1 and 6.2.
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Following the idea of Section 6.2, we define for each integer k the regularization

operator R
(ω0)
t : Ωk(V ) −→ Ωk(V ) by

(6.34) R
(ω0)
t θ =

∫

Rn

(

Φ∗
vθ
)

tn χl(tv)dv .

We have the equivalent of Lemma 6.5 for this regularization operator.

Lemma 6.11. If p ≥ 0 and s ≥ 0 are integers, there exists a positive constant Cps

such that for all θ ∈ Ωk(V ) and for all x in Dr−ε, we have

‖(R
(ω0)
t θ)x‖p+s ≤ Cpst

s‖θ‖p,Dr
(6.35)

‖(θ −R
(ω0)
t θ)x‖p ≤ Cpst

−s‖θ‖p+s,Dr
for s ≤ l(6.36)

Proof. The proof of this lemma (and in particular of the estimate (6.36) is the same
as for Lemma 6.5, replacing σ by Φ. For the estimate (6.35), we give here some
precisions.

We suppose that θ = f dxi1 ∧ . . .∧ dxik where f is a smooth function on V . For

x in Dr−ε, we write (with the notations of the proof of Lemma 6.5) (R
(ω0)
t θ)x =

∑

J∈J

gJ(x)dxj1 ∧ . . . ∧ dxjk with

(6.37) gJ(x) =

∫

Rn

f(Φ(v, x))∆J (v, x)t
nχl(tv)dv

where ∆J(v, x) is a polynomial in the terms
∂Φα

∂xβ
(v, x).

We check that for x ∈ Dr−ε, the map Φx defined by Φx(v) = Φ(v, x) is a
diffeomorphism from D1 onto its image. Indeed, we have (for i ∈ {1, . . . , q} and
j ∈ {2q + 1, . . . , n})

(6.38) w = Φx(v) ⇐⇒







wi = xi + vih(xq+i)
wq+i = xq+i + vq+ih(wi)
wj = F (vj , xj)

Since x ∈ Dr−ε, we have h(xq+i) ≥ α > 0. In the same way, since v ∈ D1, we
have |wi| < r − ε+ ε/2 = r − ε/2 so h(wi) ≥ α > 0. We deduce that

(6.39) vi =
wi − xi
h(xq+i)

and vq+i =
wq+i − xq+i

h(wi)
.

Now, if ‖x‖ ≤ r − ε and |τ | ≤ 1 then we have |F (τ, xj)| ≤ r − ε/2 which gives
h
(

F (τ, xj)
)

≥ α > 0 for all τ ∈ [0; 1].

Since ∂
∂τ F (τ, xj) = h

(

F (τ, xj)
)

, F (0, xj) = xj and wj = F (vj , xj), we have

(6.40) vj =

∫ wj

xj

du

h(u)

We deduce that Φx is a diffeomorphism from D1 onto its image and the relations

(6.39) and (6.40) give the expression of (Φx)
−1

.



24 PHILIPPE MONNIER

Note that the support of the function v 7−→ χl(tv) is included in D1/t ⊂ D1

therefore, the integral of (6.37) can be taken on D1/t.

Now, we apply the change of variable w = Φx(v). For every x ∈ Dr−ε we
have Φx(D1/t) ⊂ Dr−ε+ε/2t and moreover, the support of the function w 7−→

χl

(

t
(

Φx
)−1

(w)
)

is included in Φx(D1/t). We then get

(6.41)

gJ(x) =

∫

Dr−ε+ε/2t

f(w)∆J

((

Φx
)−1

(w), x
)

tnχl

(

t
(

Φx
)−1

(w)
)
∣

∣Jac
(

Φx
)−1

(w)
∣

∣dw ,

where Jac
(

Φx
)−1

(w) is the Jacobian of
(

Φx
)−1

at w, i.e.

(6.42) Jac
(

Φx
)−1

(w) =
1

h(xq+1)
. . .

1

h(x2q)

1

h(w1)
. . .

1

h(wq)

1

h(w2q+1)
. . .

1

h(wn)
.

In the same way as in the proof of Lemma 6.5 we then compute ∂gJ
∂xi

and apply

back the change of variable v = (Φx)
−1

(w) for the estimate of |∂gJ∂xi
(x)|.

We note that the support of the function χl(tv) is included in D1/t which is itself

included in (Φx)−1(Dr−ε+ε/2t).

We then get an estimate of type

(6.43)
∣

∣

∂gJ
∂xi

(x)
∣

∣ ≤ ‖f‖0,Dr

∫

D1/t

F1(v, x)dv + ‖f‖0,D1
t

∫

D1/t

F2(v, x)dv ,

where F1(v, x) and F2(v, x) depend on ∆J , (Φ
x)

−1
, Φx(v), χl and t.

Finally, as in Lemma 6.5, we use the variable v′ = tv and we get (6.35) where
the constant depends on ‖∆‖1,D1×Dr

, α, ε, supτ∈R
|h′(τ)| and χl.

The proof of (6.36) is exactly the same as in Lemma 6.5. �

By definition of R
(ω0)
t , the following proposition is clear.

Proposition 6.12. For all θ ∈ Ωk(V ), we have d
(

R
(ω0)
t θ

)

= R
(ω0)
t dθ.

Now, we construct the smoothing operator associated to a presymplectic form
on a manifold in the same way as in Section 6.2. More precisely, we consider a
compact manifold M with a presymplectic form ω of constant rank 2q. We can
find an atlas {(Vi, ϕi)}i=1,...,m of M , positive real numbers r and ε, and a covering
{Ui}i=1,...,m of M such that

(6.44) ϕi(Ui) ⊂ Dr−ε ⊂ Dr ⊂ ϕi(Vi) ,

and

(6.45)
(

ϕ−1
i

)∗
ω|Vi

= ω0 =

q
∑

i=1

dxi ∧ dxq+i .

The construction of the operators S
(ω)
t,i and S

(ω)
t is exactly the same as in Section

6.2 (see the definitions (6.12) and (6.24)) replacing Rt by R
(ω0)
t . The same proof

gives the following estimates.
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Proposition 6.13. If p ≥ 0 and s ≥ 0 are integers, there exists a positive constant
Cps such that for all θ in Ωk(M) we have

‖S
(ω)
t θ‖p+s,M ≤ Cpst

s‖θ‖p,M(6.46)

‖θ − S
(ω)
t θ‖p,M ≤ Cpst

−s‖θ‖p+s,M for s ≤ l(6.47)

By the definition we still have the property

Proposition 6.14. If θ is a k-differential form on M then we have for every

i ∈ {1, . . . ,m}, d
(

S
(ω)
t,i θ

)

= S
(ω)
t,i

(

dθ
)

and then d
(

S
(ω)
t θ

)

= S
(ω)
t

(

dθ
)

.

In the same way, we define the smoothing operator on the space of vector fields
(and multivector fields). The regularization operator for the vector fields on an

open set V of Rn containing the closed ball D1, R
(ω0)
t : X(V ) −→ X(V ) is defined

by

(6.48) R
(ω0)
t X =

∫

Rn

(

(

Φ−1
v

)

∗
X
)

tnχl(tv)dv .

We can then construct the smoothing operator S
(ω)
t on the space of vector fields

on a compact manifold in the same way as for differential forms and we can prove
in the same way the same estimates as in Lemma 6.13.

Finally, we have to prove that the smoothing operator S
(ω)
t transforms a presym-

plectic or Hamiltonian vector field to a presymplectic or Hamiltonian vector field.

Lemma 6.15. If X is a smooth vector field on an open set V of Rn containing the
closed ball D1, then we have

i
R

(ω0)
t X

ω0 = R
(ω0)
t

(

iXω0

)

.

In particular, if X is a presymplectic (or Hamiltonian) vector field, then R
(ω0)
t X is

presymplectic (or Hamiltonian) too.

Proof. We denote X̃ = Φ−1
v ∗X and Y = R

(ω0)
t X . We can write for any x ∈ V

(6.49) X =
n
∑

j=1

Xj(x)
∂

∂xj
, X̃ =

n
∑

j=1

X̃j(v, x)
∂

∂xj
and Y =

n
∑

j=1

Yj(x)
∂

∂xj

with

(6.50) Yj(x) =

∫

Rn

X̃j(v, x)t
nχl(tv)dv .
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We have

iY ω0 = −

q
∑

i=1

Yq+idxi +

q
∑

i=1

Yidxq+i(6.51)

=

∫

Rn

[

−

q
∑

i=1

X̃q+idxi +

q
∑

i=1

X̃idxq+i

]

tnχ(tv)dv(6.52)

=

∫

Rn

(

iX̃ω0

)

tnχ(tv)dv .(6.53)

On the other hand, we can write

R
(ω0)
t

(

iXω0

)

=

∫

Rn

Φ∗
v(iXω0)t

nχ(tv)dv(6.54)

=

∫

Rn

(

i(Φ−1
v )∗X

Φ∗
vω0)

)

tnχ(tv)dv(6.55)

=

∫

Rn

(iX̃ω0)t
nχ(tv)dv(6.56)

because the diffeomorphism Φv preserves ω0.

Now, since R
(ω0)
t commutes with the differential d, it transforms a presymplectic

(or Hamiltonian) vector field to a presymplectic (or Hamiltonian) vector field. �

Proposition 6.16. If X is a Hamiltonian vector field on the presymplectic manifold
(M,ω), then we have

i
S

(ω)
t (X)

ω = S
(ω)
t

(

iXω
)

.

In particular, if X is a presymplectic (or Hamiltonian) vector field, then S
(ω)

t X is
presymplectic (or Hamiltonian) too.

Proof. Recall that we have the atlas {(Vj , ϕj)}j=1,...,m of M given in (6.45). We
show that for each j ∈ {1, . . . ,m},

(6.57) i
S

(ω)
t,j X

ω = S
(ω)
t,j

(

iXω
)

,

which will give the result, by definition of S
(ω)
t .

By the definition of S
(ω)
t,j , we just have to show that this relation is true on Vj .

If we restrict on Vj , we have using Lemma 6.15,

i
S

(ω)
t,j X

ω = i
ϕ−1

j∗ R
(ω0)
t

(

ϕj∗X|Vj

) ϕ∗
jω0(6.58)

= ϕ∗
j

(

i
R

(ω0)
t ϕj∗

X|Vj

ω0

)

(6.59)

= ϕ∗
j

(

R
(ω0)
t

(

iϕj∗
X|Vj

ω0

)

)

(6.60)

= ϕ∗
jR

(ω0)
t

(

ϕ−1
j

∗
iXω

)

(6.61)

= S
(ω)
t

(

iXω
)

.(6.62)

The end of the proof is a consequence of the compatibility of S
(ω)
t,j with the differ-

ential d of differential forms. �
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7. Appendix : Abstract normal form theorem

In this section, we recall a normal form theorem we had proved in [21] as an
improvement of the work we had started in [22]. The motivation was to give
an abstract theorem which could be used in order to prove normal form results,
essentially in the local case but it works in the global case (it is even easier in this
case). The proof of this theorem is based on a fast converging iterative process
inspired by the Newton method and uses some techniques of the Nash-Moser type.
The initial applications of this theorem was the proof of a Levi decomposition for
smooth Poisson structures ([22]) and the rigidity of Hamiltonian actions on Poisson
manifolds ([21]). This theorem has been also used in a slightly different version in
[2] in order to study the local classification of generalized complex structures.

7.1. The local case. We just recall briefly the formalism about SCI-spaces. The
interested reader can find more details and examples in [21].

An SCI-space H is a collection of Banach spaces (Hk,r, ‖ ‖k,r) with 0 < r ≤ 1 and
k ∈ Z+ = {0, 1, 2, . . .} (r is called the radius parameter, k is called the smoothness
parameter) with some natural conditions about radius restriction and smoothness
restriction (see [21] for details). Moreover, we impose the existence of a smoothing
operator for each r, which depends continuously on r. More precisely, for each
0 < r ≤ 1 and each t > 1 there is a linear map, called the smoothing operator,

(7.1) Sr(t) : H0,r −→ H∞,r =

∞
⋂

k=0

Hk,r

which satisfies the following inequalities: for any p and s in Z+, we have

‖Sρ(t)f‖p+s,r ≤ Cr,p,st
s‖f‖p,r(7.2)

‖f − Sr(t)f‖p,r ≤ Cr,p,st
−s‖f‖p+s,r(7.3)

where Cr,p,s is a positive constant (which does not depend on f nor on t) and which
is continuous with respect to r.

Note that we can generalize the definition of the smoothing operator assuming
that S(t) : H0,r −→ H∞,r′ where r′ ≤ r. We can also accept a shift by r (which
is a fixed positive integer) : ts+r and t−s+r. All the results given below still work
in this situation. If the two conditions (7.2) and (7.3) are satisfied only for s ≤ l
where l is an integer which can be fixed as large as we want, the abstract normal
forms theorem still works in the same way.

A natural example of SCI-space (which is at the origin of this definition) is
given by the differentiable functions defined in a neighbourhood of 0 in Rn. The
smoothing operators are classics (see [23], [24] or [25]). More generally, the spaces
of differential forms, vector fields or multivector fields in a neighbourhood of 0 in
Rn are examples of SCI-spaces.

An important consequence of the smoothing operator estimates (7.2) and (7.3)
is the interpolation inequality : if l ≤ m ≤ n are positive integers and r > 0 a real
number, there exists a positive constant C such that

(‖f‖m,r)
n−l ≤ C(‖f‖l,r)

n−m(‖f‖n,r)
m−l ,

for all f in H.
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A subspace (respectively, a subset) of an SCI-space H is a collection V of sub-
spaces Vk,r (respectively, subsets) of Hk,r , which are invariant under the inclusion
and radius restriction maps of H. We do not impose that the subspaces or subsets
are invariant by the smoothing operator.

An SCI-group G consists of elements φ which are written as a (formal) sum

(7.4) φ = Id+ χ,

where χ belongs to an SCI-space W , together with scaled group laws, see [21]. The
neutral element of G is Id = Id + 0 and we impose estimates for the composition
of elements and the inversion.

A natural example of SCI-group is given by the local diffeomorphisms on (Rn, 0).
This definition has been motivated principally by this example.

We will say that a linear left action of an SCI-group G on an SCI-space H is SCI
if the usual axioms of a left group action modulo appropriate restrictions of radii (so
we have scaled action laws) are satisfied. Moreover, there is a positive integer γ and
a positive constant c such that for any integer k there exist polynomial functions
with positive coefficients Q, R and T such that, for each φ = Id+χ and ψ = Id+ ξ
in G and f ∈ H we have

‖φ · f‖2k−1,ρ′ ≤ ‖f‖2k−1,ρ

(

1 + ‖χ‖k+γ,ρQ(‖χ‖k+γ,ρ)
)

(7.5)

+‖χ‖2k−1+γ,ρ‖f‖k,ρR(‖χ‖k+γ,ρ)

where ρ′ = (1− c‖χ‖1,r)ρ ; and also

(7.6) ‖ψ · f − φ · f‖k,ρ′′ ≤ ‖ξ − χ‖k+γ,ρ‖f‖k+γ,ρT (‖χ‖k+γ,ρ, ‖ξ‖k+γ,ρ)

where ρ′′ = (1− c(‖χ‖1,r + ‖ξ − χ‖1,r))ρ.

Of course, we can define in the same way the notion of linear right SCI-action.

In [21], the SCI-action we worked with was the right-action of the SCI-group of
local diffeomorphisms of (Rn, 0) on differentiable functions on (Rn, 0) : φ ·f = f ◦φ.

In the following theorem, the notation Poly(‖f‖k,r) denotes a polynomial term
in ‖f‖k,r where the polynomial has positive coefficients and does not depend on f
(it may depend on k and on r continuously) ; the notation Poly(p)(‖f‖k,r) (where
p is a strictly positive integer) denotes a polynomial term in ‖f‖k,r where the
polynomial has positive coefficients and does not depend on f (it may depend on
k and on r continuously) and which contains terms of degree greater or equal to p.

The following theorem is an affine version of a general abstract normal form
theorem (see [21], pages 1158 and 1160).

Theorem 7.1. ([21]) Let T be a SCI-space, F a subspace of T , and S a subset of
T . Take an element fO in S that will be considered as the origin in T .

Denote N = F ∩ S. Assume that there is a projection π : T −→ F (compatible
with restriction and inclusion maps) such that for every f in Tk,r, the element
ζ(f) = f − π(f) satisfies

(7.7) ‖ζ(f)− fO‖k,r ≤ ‖f − fO‖k,rPoly(‖f − fO‖[(k+1)/2],r)

for all k ∈ N (or at least for all k sufficiently large), where [ ] is the integer part.
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Let G be an SCI-group acting on T by a linear left SCI-action and let G0 be a
closed subgroup of G formed by elements preserving S.

Let H be a SCI-space and assume that there exist maps H : S −→ H and Φ :
H −→ G0 and an integer s ∈ N such that for every 0 < r ≤ 1, every f in S and g
in H, and for all k in N (or at least for all k sufficiently large) we have the three
properties :

‖H(f)‖k,r ≤ ‖ζ(f)− fO‖k+s,rPoly(‖f − fO‖[(k+1)/2]+s,r)

+‖f − fO‖k+s,r‖ζ(f)− fO‖[(k+1)/2]+s,rPoly(‖f − fO‖[(k+1)/2]+s,r) ,(7.8)

(7.9) ‖Φ(g)− Id‖k,r′ ≤ ‖g‖k+s,rPoly(‖g‖[(k+1)/2]+s,r)

and

‖Φ(g1) .f − Φ(g2) .f‖k,r′ ≤ ‖g1 − g2‖k+s,r‖f‖k+s,rPoly(‖g1‖k+s,r, ‖g2‖k+s,r)

+‖f‖k+s,rPoly(2)(‖g1‖k+s,r, ‖g2‖k+s,r)(7.10)

if r′ ≤ r(1 − c‖g‖2,r) in (7.9) and r′ ≤ r(1 − c‖g1‖2,r) and r′ ≤ r(1 − c‖g2‖2,r) in
(7.10).

Finally, for every f in S denote φf = Id+χf = Φ
(

H(f)
)

∈ G0 and assume that
there is a positive real number δ such that we have the inequality
(7.11)

‖ζ(φf . f)−fO‖k,r′ ≤ ‖ζ(f)−fO‖
1+δ
k+s,rQ(‖f−fO‖k+s,r, ‖χf‖k+s,r, ‖ζ(f)−fO‖k+s,r, ‖f−fO‖k,r) .

(if r′ ≤ r(1−c‖χf‖1,r)) where Q is a polynomial of four variables and whose degree
in the first variable does not depend on k and with positive coefficients.

Then there exist l ∈ N and two positive constants α and β (β < 1 < α) with
the following property: for all p ∈ N ∪ {∞}, p ≥ l, and for all f ∈ S2p−1,R with
‖f − fO‖2l−1,R < α and ‖ζ(f) − fO‖l,R < β, there exists ψ ∈ G0

p,R/2 such that

ψ · f − fO ∈ Np,R/2.

Remark 7.2. Of course, this theorem still works if we have a linear right SCI-action.

Remark 7.3. In [21] we imposed that F is an SCI-subspace of T , i.e. it is invariant
by the smoothing operator. In fact, we don’t need this condition because in the
proof of the theorem we only apply the smoothing operator in H. To the elements
of T we only apply the interpolation inequality.

7.2. The global case. A similar normal forms theorem can be stated in order to
deal with normal forms problems in global situations. It is somehow easier than
the local case because we do not have to deal with the radius parameter which has
no sense in the global case. Note that in [21] we did not give so many details on
the global case, principally because it works more or less in the same way as in
the local case. In this present paper we give the formalism and the normal form
theorem which can be used to prove the global rigidity theorem stated in [21].

A CI-type space is a sequence of Banach spaces (Hk, ‖ ‖k) (with k ∈ Z+) such
that if k ≤ k′ then Hk′ ⊂ Hk and ‖f‖k ≤ ‖f‖k′ for every f in Hk′ . Moreover, we

impose that there exists a family of smoothing operators St : H0 −→ H∞ =

∞
⋂

k=0

Hk,
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(t ∈]1; +∞[), which satisfies for every f ∈ H,

‖St(f)‖p+s ≤ Cp,st
s‖f‖p(7.12)

‖f − St(f)‖p ≤ Cp,st
−s‖f‖p+s(7.13)

where Cp,s is a positive constant which depends only on p and s.

Note that the vector space H∞ with the increasing sequence of norms is a tame
Fréchet space (see [14]) or a L-object (see [26]).

A classical example of CI-type space is given by all the spaces Cp(M) of Cp-
functions on a compact manifold M . More generally, if E −→M is a vector bundle
over a compact manifold M , then the spaces of Cp-sections Γp(E) form a CI-type
space.

A topological group G is said of CI-type at the Identity if there is a neighbour-
hood U of the neutral element (called identity and denoted by Id) in G which is
homeomorphic to a CI-type space W (if φ ∈ U , we write φ = Id+ χ, with χ ∈ W)
in which we have the following property :

There exists a real number η > 0 such that for each integer k there exist polyno-
mial functions with positive coefficients P , Q1, Q2, R1 and R2 such that for every
φ = Id + χ and ψ = Id + ξ in U with ‖χ‖1 < η and ‖ξ‖1 < η, the elements φ−1

and φ ◦ ψ are in U and we have the estimates

(7.14) ‖φ−1 − Id‖k ≤ ‖χ‖kP (‖χ‖k) ,

(7.15) ‖φ ◦ ψ − φ‖k ≤ ‖ξ‖kQ1(‖ξ‖k) + ‖χ‖k+1‖ξ‖kQ2(‖ξ‖k) .

and

(7.16) ‖φ ◦ ψ − Id‖k ≤ ‖ξ‖kR1(‖ξ‖k) + ‖χ‖k
(

1 + ‖ξ‖kR2(‖ξ‖k)
)

.

An example is given by the group D(M) of diffeomorphisms of a compact man-
ifold M . The three inequalities can be obtained in the same way as for local
diffeomorphisms (see [5], [21] and [22]). This group is actually a tame Fréchet Lie
group and a description of the homeomorphism between a neighbourhood of the
identity and a CI-type space, using geodesics of a Riemannian metric, can be found
for instance in [14] and [26].

Finally, if G is a topological group of CI-type at the identity, we say that a
left-action of G on a CI-type space H is of CI-type at the identity if G admits a
neighbourhood U of the identity (for which G is of CI-type at the identity) which
satisfies the following property :

There exist a real number η > 0 such that for every integer k there exist polyno-
mial functions with positive coefficient Q, R and T such that for each φ = Id+ χ
and ψ = Id + ξ in G and f ∈ H with ‖χ‖1 < η and ‖ξ‖1 < η we have the two
inequalities

‖φ · f‖2k−1 ≤ ‖f‖2k−1

(

1 + ‖χ‖k+γQ(‖χ‖k+γ)
)

(7.17)

+‖χ‖2k−1+γ‖f‖kR(‖χ‖k+γ) ,

(7.18) ‖ψ · f − φ · f‖k ≤ ‖ξ − χ‖k+γ‖f‖k+γT (‖χ‖k+γ , ‖ξ‖k+γ) ,

where γ ≥ 0 is an integer independent of k, f , φ and ψ.
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An example of right-action of CI-type at the identity is given by the action of the
group of diffeomorphisms D(M) of a compact manifoldM on the CI-space C(M) of
differentiable functions on M . This is the action we considered in [21]. The proof
of the two inequalities above is the same as in the local case (see [5] and [22]) using
the definition of the norms in Section 4.2.

Now, we give the equivalent of Theorem 7.1 in the global case. The notations
are the same as in the local case. The proof is exactly the same (see [21]), we just
have to delete all the radius parameters.

Theorem 7.4. Let T be a CI-type space, F a subspace of T , and S a subset of T .
Take an element fO in S that will be considered as the origin in T .

Denote N = F ∩S. Assume that there is a projection π : T −→ F such that for
every f in Tk, the element ζ(f) = f − π(f) satisfies

(7.19) ‖ζ(f)− fO‖k ≤ ‖f − fO‖kPoly(‖f − fO‖[(k+1)/2])

for all k ∈ N (or at least for all k sufficiently large), where [ ] is the integer part.

Let G be a topological group of CI-type at the identity acting on T and suppose
that this action is of CI-type at the identity. Let G0 be a closed subgroup of G formed
by elements preserving S.

Let H be a CI-type space and assume that there exist maps H : S −→ H and
Φ : H −→ G0 with Φ(0) = Id, and an integer s ∈ N such that for every f in S and
g in H, and for all k in N (or at least for all k sufficiently large) we have the three
properties :

‖H(f)‖k ≤ ‖ζ(f)− fO‖k+sPoly(‖f − fO‖[(k+1)/2]+s)

+‖f − fO‖k+s‖ζ(f)− fO‖[(k+1)/2]+sPoly(‖f − fO‖[(k+1)/2]+s) ,(7.20)

(7.21) ‖Φ(g)− Id‖k ≤ ‖g‖k+sPoly(‖g‖[(k+1)/2]+s)

and

‖Φ(g1) .f − Φ(g2) .f‖k ≤ ‖g1 − g2‖k+s‖f‖k+sPoly(‖g1‖k+s, ‖g2‖k+s)

+‖f‖k+sPoly(2)(‖g1‖k+s, ‖g2‖k+s) .(7.22)

Finally, for every f in S denote φf = Id+χf = Φ
(

H(f)
)

∈ G0 and assume that
there is a positive real number δ such that we have the inequality
(7.23)

‖ζ(φf . f)−fO‖k ≤ ‖ζ(f)−fO‖
1+δ
k+sQ(‖f−fO‖k+s, ‖χf‖k+s, ‖ζ(f)−fO‖k+s, ‖f−fO‖k) .

where Q is a polynomial of four variables and whose degree in the first variable does
not depend on k and with positive coefficients.

Then there exist l ∈ N and two positive constants α and β (β < 1 < α) with the
following property:

for all p ∈ N ∪ {∞}, p ≥ l, and for all f ∈ S2p−1 with ‖f − fO‖2l−1 < α and
‖ζ(f)− fO‖l < β, there exists ψ ∈ G0

p such that ψ · f − fO ∈ Np.
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