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We describe a simple and scalable method for the transfer of CVD graphene for 

the fabrication of field effect transistors. This is a dry process that uses a modified RCA-

cleaning step to improve the surface quality.  In contrast to conventional fabrication 

routes where lithographic steps are performed after the transfer, here graphene is 

transferred to a pre-patterned substrate. The resulting FET devices display nearly zero 

Dirac voltage, and the contact resistance between the graphene and metal contacts is on 

the order of 910 ± 340 Ω µm. This approach enables formation of conducting graphene 

channel lengths up to one millimeter. The resist-free transfer process provides a clean 

graphene surface that is promising for use in high sensitivity graphene FET biosensors. 
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I. INTRODUCTION 

Graphene, a single planar sheet of carbon atoms has attracted great attention due 

to its remarkable electrical properties
1
. Large area graphene channel field effect 

transistors (FET) with pristine surfaces (as characterized by a Dirac voltage close to zero 

gate-bias), with low noise, and operated in liquid-gating mode, are attractive for 

biosensing applications
2-7

. Graphene grown through chemical vapor deposition (CVD)
 8, 9

 

can be employed for scaling up graphene channel devices to arbitrarily large dimensions. 

By scaling up the sensor size, the baseline noise level can be reduced
5, 10

 and the devices 

can be easily adapted for liquid-gated bio sensing applications. Methodologies currently 

used to transfer CVD graphene require wet chemical etching of the metal substrate on 

which the graphene is grown and involve the use of polymethylmethacrylate (PMMA) as 

a support layer to facilitate transfer to the target substrate. This process is problematic for 

two reasons: 1) The etching process can produce residues that become trapped at the 

graphene-substrate interface. 2) The use of PMMA introduces contaminates on the top-

side graphene surface, degrading the electrical performance of the transistors. Moreover, 

to fabricate devices in the conventional process, graphene is transferred first followed by 

the patterning of electrical contacts. Patterning exposes the graphene to polymers that 

necessitate additional cleaning steps to achieve desirable electrical properties such as a 

low gate voltage at which the minimum conductance (“Dirac peak”) is manifested. A 

high quality transfer of CVD graphene for FETs has been demonstrated using a modified-

Radio Corporation of America (RCA) cleaning method that removes contaminations 

from the conventional wet chemical etching transfer method
11

. Though this approach 

provides a clean graphene-substrate interface, it requires the use of a polymer layer to 
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achieve both the transfer of the graphene and the subsequent patterning of electrical 

contacts. Imperfect removal of the polymer from the top-side of the graphene often 

results in a residue that compromises the graphene surface quality and the electrical 

characteristics of the resulting transistor-device. Annealing at high temperature in a H2/Ar 

atmosphere can remove most of the polymer
12-14

, but the trace residues result in variable 

and often large values of the gate voltage at which the Dirac peak is observed. These 

characteristics limit the sensitivity of graphene-based sensors
2-7

. Thus it was seen to be 

desirable when devising high sensitivity graphene sensors to develop a „resist-free‟ 

approach for both the graphene transfer and post transfer processes.  

Dry transfer of graphene using polydimethylsiloxane (PDMS)
15-22

, thermal release 

tape
23-25

, electrostatic process
26

 and pressure sensitive adhesive
27 

have also
 
been reported. 

Although dry transfer printing of graphene can provide a nearly contamination-free 

surface, again these approaches require post-transfer patterning and exposure to resists. In 

this paper we report a reliable method for CVD graphene transfer, using a combination of 

dry transfer by PDMS, and a modified-RCA-cleaning approach. In contrast to the 

previous reports, we employ PDMS assisted graphene transfer to pre-patterned source-

drain electrodes on Si/SiO2 wafers, which circumvents contact between lithographic 

resists and graphene. This method is scalable and graphene channel FETs with channel 

lengths as large as one millimeter can be fabricated. Transistor transfer characteristics 

(source–drain conductance versus back gate voltage) exhibit a clear Dirac peak close to 

zero back gate voltage. Morphology analysis of graphene after transfer, using Atomic 

Force Microscopy (AFM), Raman spectroscopy and Scanning Electron microscopy 

(SEM), confirm the presence of a clean graphene monolayer transferred onto the 
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substrate. The contact resistance (Rc) between graphene and array of Ti/Au metal 

contacts is on the order of 910 ± 340 Ω µm. 

 

II. EXPERIMENTAL 

Our graphene transfer process is schematically depicted in Fig. 1. It begins with 

the growth of graphene films on Cu foils using CVD
8, 9 

and the films obtained were 

characterized by SEM and Raman spectroscopy. The carbon deposition on the back-side 

of copper foil was removed by etching using oxygen plasma. Self-prepared PDMS as 

well as commercially available PDMS (thickness ~50 m) material (Gelfilm from 

Gelpak) were used for the graphene transfer with equal success. The Cu/graphene stack 

was placed on a PDMS block, with the graphene face in contact with the PDMS. The 

copper foil was gently pressed using a Teflon roller to adhere the graphene face to the 

PDMS.   

 

Fig.1: Schematic illustration of CVD graphene transfer process: a) Adhesion of 

Cu/graphene to PDMS, b) Etching of the Cu, c) Attachment of graphene/PDMS to 

Si/SiO2, d) PDMS removal. After the copper is etched, a modified-RCA process was 

carried out to clean the graphene-Cu interface, and then graphene films were 

transferred onto a source-drain patterned Si/SiO2 wafer. 

 

After adhesion of the PDMS, the Cu/graphene/PDMS assembly was immersed in 

Cu etchant (HCl/FeCl3 solution in water) for an hour, to etch the copper foil, followed by 

a repeated rinsing with deionized (DI) water. The resulting graphene/PDMS assembly 
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was further subjected to a modified-RCA cleaning process to remove etch residues and 

metal particles
11

. First, the assembly was placed in HCl/H2O2/H2O solution (volume ratio 

1: 1: 20) for 15 min, followed by a thorough rinsing with DI-water. Then the 

graphene/PDMS was transferred to a NH4OH/H2O2/H2O solution (volume ratio 1:1:20) 

for 15 minutes, followed by a second rinse with DI-water. Finally, the graphene/PDMS 

assembly was attached to a target Si/SiO2 substrate with the graphene facing the pre-

patterned metal contacts. The whole assembly was heated to 140
o
C for 10 minutes. The 

PDMS layer was removed by immersing the PDMS/graphene/SiO2/Si assembly in 

methylene chloride. This step was followed by rinsing the graphene/SiO2/Si with DI- 

water, and a final blow-drying step to complete the transfer.  

The graphene-channel FETs were formed by depositing the graphene onto gold 

source and drain electrodes, pre-patterned on a p-doped Si wafer. The underlying Si 

serves as a universal back-gate, with 300nm of thermally grown SiO2 isolating it from the 

conduction and gate channels. Using standard photo-lithographic techniques, source and 

drain electrodes were patterned with the distance between source-drain electrodes varied 

from 50 m to a few millimeters. Titanium (10 nm) and gold (40 nm) were used for 

source-drain contact metallization. The device design and circuit diagram used for the 

electrical characterization are given in section 1 of the supplementary information. 

Electrical measurements were performed at room temperature under ambient conditions. 

Contact resistance values are generally measured using a transfer length 

measurement (TLM) method
28

. We fabricated a TLM structure with varying channel 

lengths (5 to 30 m in steps of 5 m) on a Si/SiO2 wafer using Ti/Au metal contacts. 

Graphene was stamped over the array after carrying out the cleaning by following our 
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modified-RCA method described earlier. Then the graphene was etched to obtain a 

rectangular sample of width (W) 50 m as follows: a thin layer of aluminum (20 nm) was 

deposited on graphene to avoid direct contact with photoresist material.  Then the 

photoresist was spin coated over the graphene-aluminum composite. Photolithography 

was used to define the channel region, exposing the resist and aluminum. The exposed 

resist and aluminum was removed by developer solution and the exposed graphene was 

etched using oxygen plasma. Finally, the aluminum and resist on top of the graphene 

layer were removed by flood exposure and subsequent treatment with developer solution. 

This method did not introduce additional contaminants in the graphene channel. 

 

RESULTS AND DISCUSSION 

The devices were electrically characterized by measuring source-drain current 

(ISD) as function of back gate bias (VG) for fixed source-drain voltage (VSD = 50 mV). 

The gating curve for a device transferred after the use of a conventional Cu etching 

method, without the modified-RCA cleaning step is shown in the inset of Fig. 2a. The 

absence of the Dirac peak is an indication that the graphene layer is highly contaminated. 

Devices fabricated with the commonly used wet transfer method, where the 

graphene/polymer stack is scooped up over pre-patterned electrodes after the modified-

RCA cleaning steps, also showed a similar response. In contrast, the dry transfer of 

graphene films to the patterned substrate (and subsequent modified-RCA cleaning) 

consistently produces devices with low Dirac voltages (Fig. 2a, 2b). This indicates that 

devices prepared in this fashion are much cleaner than those transferred without 

modified-RCA cleaning or by the conventional process. 
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Fig. 2: a) Current-gate voltage (ISD−VG) characteristic measurement of a device 

fabricated with graphene dry transfer and after modified-RCA cleaning. The source-drain 

spacing of the device used is 50 m. Inset shows ISD−VG for a device fabricated by 

conventional Cu etching method. b) Distribution of the voltage of Dirac points of devices 

fabricated from dry transferred graphene and by using modified-RCA cleaning steps. All 

devices exhibit their Dirac peak at less than 4.5 volts gate-bias. Inset shows Raman 

spectrum indicating the transfer of monolayer graphene films to Si/SiO2 substrate. 

 

The reproducibility of the low Dirac voltage was analyzed by measuring 50 

devices and the distribution of the observed Dirac voltages is shown in Fig 2b. Dirac 

voltages were confined to a window of 0.5 to 4.5 V, indicating a narrow distribution. The 

typical Raman spectrum of a device is shown in Fig. 2b inset. The location and intensity 

of the characteristic G and 2D peaks signifies the presence of monolayer graphene. The 

field effect mobility (μ) was extracted using the relationship μ = (L/WCGVSD) 

(ISD/VG), where L and W are the graphene channel length (50 m) and width (50 m) 

respectively and CG is the gate capacitance (11.6 nF/cm
2 

for 300 nm SiO2). Under 

ambient conditions, a mobility of 1240 cm
2
V

−1
s

−1
 was observed. Although the mobility is 

lower than the best reported mobility of CVD grown graphene
29

, it is comparable with 

the devices fabricated via the modified-RCA cleaning method
11

. 
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Fig. 3: a) Gating curves of graphene FET array with channel lengths 501000 m. b) 

AFM image of graphene film transferred on Si/SiO2 substrate. 

 

Though methods are well established for growing graphene over large length 

scale by CVD
8, 9

, most devices have been limited to micrometer lengths
5, 6

. In order to 

explore the possibility of large-area device fabrication for improved (bio) sensing, where 

a shift in Dirac peak gate voltage is monitored, FETs were made using the transfer 

method described above while scaling-up the graphene channel length from 50 m to 

several millimeters. Fig. 3a shows ISD-VG measured in a graphene FET device array for 

different channel lengths.  All the devices with a channel length up to 1000 m show a 

Dirac peak, and VDirac is observed at less than 4 V gate-biases across the array. The 

morphology of the graphene film on the Si/SiO2 substrate was analyzed using AFM and 

the image obtained (area: 10 m
2
) is shown in Fig. 3b.  From the image, the surface is 

found to be nearly flat with a surface roughness of about ± 3 nm. Rips and wrinkles in the 

transferred graphene are observed, but the graphene sheet is electrically continuous over 

lengths exceeding one millimeter. The rips and wrinkles may have occurred during 
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Cu/graphene/PDMS assembly preparation step. Surface analysis was done using SEM, 

and a similar morphology was observed (see section 2 of supplementary information).  

 

Fig. 4: a) Total resistance between source and drain electrodes in a graphene FET array 

as a function of back gate bias. Dirac voltage occurs at a gate bias of 3  0.5 V. b) Rtotal 

vs. channel length changing from 5  30 m, at VG = 3 V. Black circles indicate total 

resistance and red line represents the linear fit. Inset shows SEM image (false color) of 

a graphene FET array used for study. 

 

The methodology followed in the majority of reported works (that measure the 

electrical properties of graphene) involve the transfer of graphene followed by deposition 

of the metal contacts. In contrast, one of the novelties of our method lies in the transfer of 

graphene on to pre-patterned metal contacts. The benefit of this approach compared to the 

reported methods was evaluated by measuring the metal-graphene contact resistance.  

Fig. 4a represents the ISD-VG measurements with different channel lengths. The total 

resistance reaches the maximum value at Dirac point, and it is observed at a back gate 

bias of ~ 3 ± 0.5 volts across the array. A plot of source-drain resistance (Rtotal) at the 

Dirac point as a function of varying channel length is shown in Fig. 4b. It showed a linear 

behavior and the intercept at zero channel length = 2Rc (36.4 ± 13.6 Ω) is obtained. The 
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sheet resistance (Rs) can be extracted from the slope of a linear fit, and was found to be 

12.4 kΩ/.  

 There are various reports on contact resistance measurement in graphene channel 

field effect transistors
30-33

. Depending on many factors such as fabrication schemes, type 

of metal used, gate bias voltage and measurement conditions, the reported normalized 

contact resistance (RcW) values vary from 100 Ω m to few kΩ m. In comparison to the 

RcW values reported, our fabrication method, where graphene is transferred onto a pre-

patterned substrate yields a value for RcW = 910 ± 340 Ω m for a Ti/Au contact. This 

value is lower than most reported. Another advantage of the described method is that it 

does not require post fabrication steps like thermal and current annealing.  

 

III. CONCLUSION 

We have demonstrated a simple, scalable CVD graphene transfer method 

employing a combination of dry transfer and modified-RCA cleaning methods. In 

contrast with the conventional fabrication approach, graphene was transferred to a pre-

patterned substrate. FET devices exhibited Dirac voltage close to zero gate bias, and the 

contact resistance between the graphene and metal was measured as 910 ± 340 Ω µm. 

This approach enables the FET channel length to be scaled up to devices of length one 

millimeter. Also, the absence of any resist layers during fabrication steps guarantees a 

cleaner graphene surface as characterized by a low VG at which the Dirac peak occurs. 

Chemical and bio-sensors which rely on the shift of the VG associated with the Dirac peak 

would benefit from the device characteristics obtained by following our improved 

procedure.  
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