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ABSTRACT

We introduce an improvement to a periodicity metric we have introduced in a previous
paper. We improve on the Hoeffding-test periodicity metric, using the Blum-Kiefer-Rosenblatt
(BKR) test. Besides a consistent improvement over the Hoeffding-test approach, the BKR
approach turns out to perform superbly when applied to very short time series of sawtooth-
like shapes. The expected astronomical implications are much more detections of RR-Lyrae
stars and Cepheids in sparse photometric databases, and of eccentric Keplerian radial-velocity
(RV) curves, such as those of exoplanets in RV surveys.
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1 INTRODUCTION

In a recent paper (Zucker 2015, ; hereafterPaper I) we have intro-
duced a new non-parametric approach to the detection of period-
icities in sparse datasets. The new approach follows the logic of
string-length techniques (e.g.Lafler & Kinman 1965; Clarke 2002)
and quantifies the dependence between consecutive phase-folded
samples, for every trial period. InPaper Iwe have shown that usu-
ally the classical string-length techniques effectively test solely
for linear dependence between consecutive samples. On the other
hand, the Hoeffding-test approach we have presented there,tests
for general dependencies, not necessarily linear.Paper Ishowed
that for two kinds of periodic signals (sawtooth signal and eccen-
tric spectroscopic binary (SB) radial-velocity (RV) curve), our pro-
posed new approach performed better than the conventional tech-
niques.

Inspired by the successful simulations presented inPaper I,
we embarked on a wider study to come up with new and improved
periodicity metrics, similarly based on dependence measures. The
current Letter represents a first step in that direction, a step we have
already alluded to in the Discussion ofPaper I.

Section2 describes the details of the modification we propose
to the Hoeffding test, Section3 presents the simulations we have
performed in order to test its performance, and in Section4 we
show a test of our new metric on real-life data. In Section5 we
discuss our findings.

⋆ E-mail: shayz@post.tau.ac.il

2 BLUM-KIEFER-ROSENBLATT TEST

The best performing method inPaper Iwas based on the Hoeffd-
ing test. Wassily Hoeffding first proposed it in 1948 (Hoeffding
1948) as a test of independence between two random variables. Es-
sentially it estimates a measure of deviation of the joint empiri-
cal distribution function from a distribution that assumesindepen-
dence. The measure of deviation that Hoeffding used was the so-
called Cramér–von Mises criterion for distance between distribu-
tions (Cramér 1928; von Mises 1928).

Let us denote byG1 andG2 the cumulative distribution func-
tions of the two random variables, and byG12 their joint cumula-
tive distribution function. Then, independence of the two variables
would meanG12 = G1G2. Applying Cramér–von Mises criterion
for distance between distributions, Hoeffding defined his namesake
statisticD by:

D =

∫
(G12−G1G2)

2 dG12 . (1)

In estimatingD using the emprirical data, we use the empiri-
cal distribution functions, determined only by the observed values.
This is somewhat reminiscent of the Kolmogorov–Smirnov philos-
ophy, which is popular among astronomers (e.g.Babu & Feigelson
2006). The above definition eventually results in the formulae pre-
sented inPaper I.

Blum, Kiefer & Rosenblatt(1961) introduced a new version
of the Hoeffding test. They showed that the two tests were equiva-
lent in large samples, but the new test was easier to compute,and
also more naturally amenable to generalization to more thantwo
variables. The fundamental definition of their statistic is:

B =
∫
(G12−G1G2)

2dG1 dG2 . (2)

While the difference seems to be minute and maybe even insignifi-
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cant, the change in the resulting computing formula is not negligi-
ble.

Following Paper I, let us denote the phase-folded data by
xi (i = 1, ...,N) where the indexi reflects the order after the phase
folding. In order to make sure our calculations are not affected
by the arbitrary zero-phase choice, we also definexN+1 ≡ x1. Let
us further denote byRi the phase-folded rank values, such that
Ri = 1 means thatxi is the smallest value. Let us also define the
’bivariate rank’ ci, as the number of pairs(x j,x j+1) for which
both x j ≤ xi and x j+1 ≤ xi+1. Note that the existence of the pair
(xN ,xN+1) = (xN ,x1) accounts for the cyclic wraparound and ren-
ders the whole procedure independent of the arbitrary choice of
phase.

Now we can define our dependence measure by the formula:

B = N−4
N

∑
i=1

(Nci −RiRi+1)
2
, (3)

which can easily be derived from eq. (5.2) inBlum et al. (1961).
The above expression is clearly much simpler than the parallel ex-
pressions in eqs. 9–12 inPaper I.

3 PERFORMANCE TESTING

Following the same path as inPaper I, we performed simulations
in which we randomly drew a sparse set of sampling times, from
a total baseline spanning 1000 time units (’days’). Then we used
those times to sample some periodic function with a period oftwo
days, and added white Gaussian noise with a prescribed signal-to-
noise ratio (SNR). We tested the same set of six periodic functions
we tested inPaper I: sinusoidal, almost sinusoidal, sawtooth, pulse
wave, eclipsing-binary light curve and eccentric SB RV curve.

Unlike the approach we followed inPaper I, we have decided
this time to use a much simpler and intuitive performance mea-
sure: in each tested configuration of signal shape,N and SNR, we
simply counted the number of simulations in which the best score
was attained exactly in the correct known period, thus obtainaing
the ’detection fraction’. We calculated the periodicity metrics for
a frequency grid that spanned the range 10−4–1day−1, with steps
of 10−4 day−1. Thus, counting the fraction of cases with the cor-
rect period actualy meant a frequency error which was smaller than
10−4 day−1.

We compared the performance of this Blum-Kiefer-
Rosenblatt-test (BKR) periodicity metric to the Hoeffding-test
metric we had introduced inPaper I, and also to the two ’tra-
ditional’ techniques of Generalized Lomb-Scargle (Lomb 1976;
Scargle 1982; Zechmeister & Kürster 2009) and von-Neumann
ratio (von Neumann et al. 1941) as a representative of the
string-length techniques (Clarke 2002; Lafler & Kinman 1965).

Fig. 1 examines the dependence of the detection performance
on the number of samples in the time series, for low-SNR. We
held the SNR fixed at 3 while we varied the sample sizeN. The
main feature apparent from examining the Figure is that the new
BKR approach constitutes an improvement over the Hoeffding-test
approach we introduced inPaper I. In cases where the traditional
techniques performed better (e.g., pulse-wave signal shape), they
usually performed also better than BKR, and vice versa.

Fig. 2 presents the same test for the case of a high SNR. We
fixed the SNR at a value of 100 and repeated the same exercise. In
this situation the BKR was again improving over the Hoeffding-test
approach, which also meant it performed significantly better than
the traditional approaches in the cases of sawtooth-shapedsignal
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Figure 1.Detection fraction as a function of sample size for time series with
SNR of 3. The detection fraction is estimated based on 100 simulated light
curves. Legend: empty circles, dashed line – Generalized Lomb–Scargle
periodogram; empty squares, dashed line – von-Neumann Ratio; empty
upward-pointing triangles, dashed line – Hoeffding test; filled circles, solid
line – Blum-Kiefer-Rosenblatt test.
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Figure 2. Detection fraction as a function of sample size for time series
with SNR of 100. The detection fraction is estimated based on100 simu-
lated light curves. Legend: empty circles, dashed line – Generalized Lomb–
Scargle periodogram; empty squares, dashed line – von-Neumann Ratio;
empty upward-pointing triangles, dashed line – Hoeffding test; filled cir-
cles, solid line – Blum-Kiefer-Rosenblatt test.

and eccentric SB RV curve). However, specifically in those two
cases, another trend emerged: the BKR method seemed to have an
exceedingly better performance for datasets with very few samples
(N = 10).

In order to make sure this result was not spurious or even er-
roneous, we have decided to examine this regime more closely. We
repeated the simulations with SNR= 100 for a finer grid ofN,
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Figure 3. Detection fraction as a function of sample size for time series
with SNR of 100, focusing on smallN. The detection fraction is estimated
based on 100 simulated light curves. Legend: empty circles,dashed line –
Generalized Lomb–Scargle periodogram; empty squares, dashed line – von-
Neumann Ratio; empty upward-pointing triangles, dashed line – Hoeffding
test; filled circles, solid line – Blum-Kiefer-Rosenblatt test.

namely, for allN from 7 to 20. Fig.3 , which focuses on this range,
shows the very convincing result of a gradual increase of theper-
formance in most cases. Specifically in the cases of the sawtooth
signal and the eccentric SB RV curve, The pace of that increase for
the BKR method is much faster than that of the other techniques,
including the Hoeffding-test approach. It seemed that already when
there were 9 (!) samples, the BKR approach had very good chances
to detect the periodicity.

Figs.4,5 and6 show selected concrete examples of cases with
a sawtooth signal shape and only 9 samples, in which the perfor-
mance of BKR was definitely superior over the three other tech-
niques we tested. Those cases were indeed the majority of thesim-
ulated cases.

4 REAL-LIFE TEST

We set out to test our new technique in a real-life situation that
could potentially emphasize its advantages and allow them to ma-
terialize. To this end we chose to apply it to shortHipparcos
lightcurves. Our sample consisted ofHipparcos targets with at most
30 samples in theirHipparcos Epoch Photometry Annex entry. We
considered only samples which were fully accepted by at least one
of Hipparcos’ FAST and NDAC consortia (ESA 1997). In total
there were 51 lightcurves meeting those criteria.

We scanned the selected lightcurves for periodicity using the
BKR test, on a frequency grid ranging from 10−4 to 12d−1 (follow-
ing Koen & Eyer(2002)), with steps of 10−4 d−1. We searched for
targets whose peak in the BKR function was significantly promi-
nent. We therefore used the SDE (Signal Detection Efficiency)
statistic originally used byAlcock et al. (2000) and Kovács et al.
(2002). We chose to single out targets whose SDE statistic was
higher than 15. Only one target passed this hurdle – HIP 101453
(also known as CH Aql).

Fig.7 shows the lightcurve of HIP 101453, as well as its phase
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Figure 4. An example of the results of applying all the examined periodic-
ity detection methods to a sawtooth simulated time-series,with 9 samples,
and a SNR of 100. The upper two panels show the time series and its phase-
folded version, using the correct period. The other panels show the peri-
odicity metrics calculated for this time series, with self explanatory titles.
Note the poor performance of the first three periodicity metrics, compared
to the detection by the BKR technique.

folding using the resulting period, the BKR function and theGLS
periodogram we calculated for comparison. The prominence of the
BKR peak at a frequency of 2.5696d−1 is evident, and indeed
the corresponding SDE value is 17.5. The phase-folded lightcurve
demonstrates an obvious periodicity. On the other hand, TheGLS
periodogram shows no hint of a statistically significant periodicity
detection.

To complete the picture, this star is a known RR-Lyrae star,
with a period of 0.38918702 d (Samus et al. 2013), which is consis-
tent with our result – 0.3891656 d. TheHipparcos catalogue quotes
the known period as taken from literature, and adds a comment
about the scarcity of the data, which casts doubt about the nature of
the periodicity. Therefore, the main catalogue does not quote any
period. We show here that by using our new BKR approach, we can
assign a high degree of credibility to the periodicity, evenwith the
very scarceHipparcos data.

5 DISCUSSION

This Letter presents an improvement of the serial Hoeffding-test
periodicity metric we have presented inPaper I, based on the Blum-
Kiefer-Rosenblatt modification of the original Hoeffding test. This
new periodicity metric consistently outperforms the Hoeffding-
test metric. On top of it, it seems to perform superbly betterin
sawtooth-like signal shapes, when the number of samples is very
small and the SNR is high. This result is in line with the statement
of Blum et al.(1961), that their test is asymptotically equivalent to
the Hoeffding test for large samples.

This advantage might prove very important for radial-
velocity surveys searching for exoplanets. The detection of high-
eccentricity Keplerian RV curves is notoriously difficult when
based on a small number of samples (Cumming 2004). Another sit-
uation in which this feature will prove valuable is the detection of

MNRAS 000, 1–4 (0000)
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Figure 5. Another example of the results of applying all the examined peri-
odicity detection methods to a sawtooth simulated time-series, with 9 sam-
ples, and a SNR of 100. The upper two panels show the time series and
its phase-folded version, using the correct period. The other panels show
the periodicity metrics calculated for this time series, with self explanatory
titles. Note the poor performance of the first three periodicity metrics, com-
pared to the detection by the BKR technique.

RR-Lyrae stars and Cepheids (whose signal shapes are also essen-
tially sawtooth-like shapes) in sparse datasets such as those ofHip-
parcos andGaia (Eyer et al. 2012). We have provided in Section4
a demonstration of this potential usingHipparcos data, specifically
for the case of HIP 101453.

We continue our investigation of harnessing the power of non-
parametric independence measures for the purpose of detecting pe-
riodicity in extreme circumstances of either poor SNR, small sam-
ple sizes, or non-sinusoidal signal shapes. In the meanwhile we also
apply our newly developed approaches to existing datasets,both for
the sake of testing, but also for detecting previously missed periodic
variables. To promote further research and testing of this periodic-
ity metric by the community, we make it available online, in the
form of a MATLAB function1.
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Figure 7. Detecting the periodicity in theHipparcos lightcurve of
HIP 101453. Upper left: the original lightcurve. Upper right: The lightcurve
phase-folded using a period of 0.3891656 d. The empty circles represent
copies of the original dataset shifted backwards and forwards by one period
in order to better visualize the periodicity. Lower left: The BKR periodicity
metric. Note the sharp peak at the known frequency. Lower right: General-
ized Lomb-Scargle periodogram. Note the absence of any significant peak.
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