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The OAuth 2.0 protocol allows users to grant relying parsiesess to resources at identity providers.
In addition to being used for this kind of authorization, QRAis also often employed for authentication
in single sign-on (SSO) systems. OAuth 2.0 is, in fact, ond@imost widely used protocols in the web
for these purposes, with companies such as Google, Facebo®ayPal acting as identity providers
and millions of websites connecting to these services gBgeparties.

OAuth 2.0 is at the heart dfacebook Logirand many other implementations, and also serves as
the foundation for the upcoming SSO system OpenID Conneetsplie the popularity of OAuth, so
far analysis efforts were mostly targeted at finding bugspgcsgic implementations and were based on
formal models which abstract from many web features or didonovide a formal treatment at all.

In this paper, we carry out the first extensive formal analgéthe OAuth 2.0 standard in an expressive
web model. Our analysis aims at establishing strong awhitioin and authentication guarantees, for
which we provide formal definitions. In our formal analysadl, four OAuth grant types (authorization
code grant, implicit grant, resource owner password crégergrant, and the client credentials grant)
are covered. They may even run simultaneously in the sameéiffacent relying parties and identity
providers, where malicious relying parties and identityyiders are considered as well.

While proving security, we found two previously unknowreatts on OAuth, which both break autho-
rization and authentication in OAuth. The underlying vulislities are present also in the new OpenlD
Connect standard and can be exploited in practice.

We propose fixes for the identified vulnerabilities, and thiem the first time, actually prove the
security of OAuth in an expressive web model. In particules, show that the fixed version of OAuth
provides the authorization and authentication propeviespecify.
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1. Introduction

The OAuth 2.0 authorization framework3] defines a web-based protocol that allows a user to grant
web sites access to her resources (data or services) atwe#esites guthorizatio). The former
web sites are called relying parties (RP) and the latter altectidentity providers (IdP).In practice,
OAuth 2.0 is often used faauthenticationas well. That is, a user can log in at an RP using her identity
managed by an IdP (single sign-on, SSO).

Authorization and SSO solutions have found widespread tamojn the web over the last years,
with OAuth 2.0 being one of the most popular frameworks. @A20, in the following often simply
calledOAuth? is used by identity providers such as Facebook, Google,ddaft, Yahoo, GitHub, and
Dropbox. This enables billions of users to log in at milliasfsSRPs or share their data with thes]|
making OAuth one of the most used single sign-on systemsewét.

OAuth is also the foundation for the new single sign-on prot@penlID Connect, which is already
in use and actively supported by PayPal (“Log In with PayR#&bogle, and Microsoft, among others.
Considering the broad industry support for OpenlD Conneatidespread adoption of OpenlD Con-
nect in the next years seems likely. OpenlD Connect buildsyupAuth and provides clearly defined
interfaces for user authentication and additional (ogtipfeatures, such as dynamic identity provider
discovery and relying party registration, signing and gption of messages, and user logout.

OAuth defines a very complex protocol. The interactions betwthe user and her browser, the RP,
and the IdP can be performed in four different flows, or grgpes: authorization code grant, implicit
grant, resource owner password credentials grant, andiém credentials grant (we refer to these as
modesn the following). In addition, in most of these modes, degiag on the configuration and prior
setup of the RP and the IdP, further options within the difféimodes are provided.

Therefore, analyzing the security of OAuth is a complex t&&k far, most analysis efforts were tar-
geted towards finding errors in specific implementatiah§,[18, 26, 28], rather than the comprehensive
analysis of the standard itself: none of the existing amalgforts of OAuth account for multiple modes
of OAuth running simultaneously, which may potentiallyroduce new security risks. In fact, many
existing approaches analyze only the authorization codgenamd the implicit mode of OAuth. Also,
importantly, there are no analysis efforts that are basea comprehensive formal web model, which,
however, is essential to rule out security risks that aribgemwrunning the protocol in the context of
common web technologies.

Contributions of this Paper. We perform the first extensive formal analysis of the OAuthg2andard
for all four modes, which can even run simultaneously witthia same and different RPs and IdPs,
based on a comprehensive web model which covers large gdrtsvdbrowsers and servers interact in
real-world setups. Our analysis also covers the case otimadi IdPs and RPs.

Informal description of OAuthAs a basis for the model, we first provide a detailed desoriptif the
protocol flows in all four modes of OAuth.

Formal model of OAuthOur formal analysis of OAuth uses an expressive Dolev-Ygle shodel of the
web infrastructure§] proposed by Fett, Kiisters, and Schmitz. This model haadyrbeen used to ana-
lyze the security of the BrowserlD single sign-on syst&ui.(] as well as the security and privacy of the
SPRESSO single sign-on systefrd]. This web model is designed independently of a specific web a
plication and closely mimics published (de-facto) staddand specifications for the web, for instance,
the HTTP/1.1 and HTML5 standards and associated (propasaadflards. It is the most comprehensive
web model to date. Among others, HTTP(S) requests and resppincluding several headers, such

lFoIIowing the OAuth 2.0 terminology, IdPs are call@athorization serverandresource serverRPs are calledlients
and users are calladsource ownersHere, however, we stick to the more common terms mentiohedea
2Note that in this document, we consider only OAuth 2.0, whgchkery different to its predecessor, OAuth 1.0.



as cookie, location, strict transport security (STS), angim headers, are modeled. The model of web
browsers captures the concepts of windows, documentsframaeis, including the complex navigation
rules, as well as new technologies, such as web storage essldocument messaging (postMessages).
JavaScript is modeled in an abstract way by so-called sugiprocesses which can be sent around and,
among others, can create iframes and initiate XMLHTTPRsg3U&XHRS). Browsers may be corrupted
dynamically by the adversary.

Using this generic web model, we build a formal model of OAutlosely following the OAuth 2.0
standard 13]. Since this standard does not fix all aspects of the proteeeluse the current OAuth 2.0
security recommendations (RFC6819]) and current web best practices (e.g., regarding seshsion
dling) to obtain a model of OAuth 2.0 with state-of-the-agtusrity features in place, in order to avoid
known implementation attacks. (Note that the security moendations in RFC6819 cover many of the
bugs found in earlier analysis efforts on implementatioh®Auth.) As mentioned above, our model
includes RPs and IdPs that (simultaneously) support afl ieedes and can be dynamically corrupted
by the adversary. Also, we model all configuration option®8iuth (see Sectiof).

Formalization of security propertiesBased on this model of OAuth, we provide formal definitions
of the security properties of OAuth. In particular, we state separate properties: authorization and
authentication.

New attacks on OAuth 2.0 and fix&ghile trying to prove these properties, we discovered tvavipusly
unknown attacks on OAuth, which both break authorizatiowels as authentication. In the first attack,
IdPs inadvertently forward user credentials (i.e., usaand password) to the RP or the attacker. Inthe
second attack, a network attacker can impersonate anynvidthis severe attack is caused by a logical
flaw in the OAuth 2.0 protocol and depends on the presence lifimes IdP. In practice, OAuth setups
often allow for selected (and thus hopefully trustworthgfP$ only. In these setups the attack would not
apply. The attack, however, can be exploited in OpenID Cannehich, as mentioned, builds directly
on OAuth. We have verified the attacks on an implementatioDAudith and OpenlD Connect. We also
notified the respective working groups, who confirmed thackit and adopted the fixes we propose in
this paper. We present our attacks on OAuth in Sec3iam detail. In AppendixA we show how the
attacks can be exploited in OpenID Connect.

We show how both attacks can be fixed by changes that are easplEment in new and existing
deployments of OAuth and OpenID Connect.

Formal analysis of OAuth 2.0/Ne then prove that OAuth satisfies the authorization andeatidation
properties in a model of OAuth with the fixes in place. Thishs first proof which establishes the
security of OAuth in a comprehensive and expressive web mode

We note that while these results provide strong securityaguaes for OAuth they do not directly
imply security of OpenID Connect because OpenID Connecs$ agdcific details on top of OAuth. We
leave a formal analysis of OpenlD Connect to future work. fdseilts obtained here can serve as a good
foundation for such an analysis.

Structure of this Paper. In Section2, we provide a detailed description of the OAuth 2.0 protocol
In Section3 we present the attacks that we found during our analysis. vemview of the generic
web model we build upon in our analysis is provided in Sectipwith the formal analysis of OAuth
presented in Sectidh Related work is discussed in Secti@nWe conclude in Section. We show how
the attacks can be applied to OpenlD Connect in AppeAdikull details, in particular regarding our
modeling of OAuth 2.0 and the proof, can be found in the apjpeis@— G.



2. OAuth 2.0

In this section, we provide a detailed description of OAWMIe here describe in detail all four modes of
OAuth.

OAuth was first intended foauthorization i.e., the users authorize RPs to access user data (called
protected resourcésat IdPs. For example, a user can use OAuth to authorizecesrsuch as IFTTT
to access her (private) timeline on Facebook. In this c&SE[T is the RP and Facebook the I1dP.

Roughly speaking, in the most common modes, OAuth workslemv®. If a user wants to authorize
an RP to access some of the user’s data at an IdP, the RP tedireaiser (the user’s browser) to the
IdP where the user authenticates and agrees to grant thede&sao some of her user data at the IdP.
Then, along with some token (an authorization code or ansacidken) issued by the IdP, the user is
redirected back to the RP. The RP can then use the token adenties at the IdP to access the user’s
data at the IdP.

OAuth is also commonly used f@uthentication although it was not designed with authentication
in mind. A user can, for example, use her Facebook accoutit, Reicebook being the IdP, to log in at
the social network Pinterest, being the RP. Typically, ideorto log in, the user authorizes the RP to
access a unique user identifier at the IdP. The RP then resriéis identifier and considers this user to
be logged in.

We now first provide some preliminary information regard@guth and then present the details of
the four modes of OAuth.

2.1. Preliminaries

Endpoints. In OAuth, RPs and IdPs have to provide certain URIs to eachrotifhe parties and
services these URIs point to are callendpoints often the URIs themselves are called endpoints. An
IdP provides arauthorization endpoinat which the user can authenticate to the IdP and authorize an
RP to access her user data. The IdP also providekesm endpoinat which the RP can request access
tokens. An RP provides one or maedirection endpoint$o which the user's browser gets redirected
by an IdP after the user authenticated to the IdP. The URIoéhdpoints are not fixed by the standard,
but are communicated when RPs register at IdPs, as destréihad.

The OAuth standardlf3] and the accompanying security recommendatidi® guggest that all end-
points use HTTPS. We follow this recommendation in our agialgf OAuth.

Registration. Before an RP can interact with an IdP, the RP needs to beeegylsat the IdP. The details
of the registration process are out of the scope of the OAwgttopol. In practice, this process is usually
a manual task. During the registration process, the IdRj@s40 the RP a fixed OAuth client id and
client secref. The RP may later use the client secret to authenticate talfhdflthe RP cannot keep the
OAuth client secret confidential, e.g., if the RP is an inviser app or a native application, the secret
can be omitted. Note that the OAuth client id is public infation. It is, for example, revealed to users
in redirects issued by the RP.

Also, an RP registers one or more redirection endpoints ddRnAs we will see below, in some
OAuth modes, the IdP redirects the user’s browser to oneadetliedirect URIs. If more than one
redirect URI is registered, the RP must specify which redit¢RI is to be used in each run of the
OAuth protocol. For simplicity of presentation, we will asse that an RP always specifies its choice,
although this can be omitted if there exits only one (fixedlinexct URI. Note that (depending on the

SIFTTT (If This Then Thatis a web service which can be used to automate actions: IF§Triggered by user-defined
events (e.g., Twitter messages) and carries out user-deéieks (e.g., posting on the user’s Facebook wall).
4Recall that in the terminology of the OAuth standard the tétient” stands for RP.



implementation of an IdP) an RP may also register a pattearedirect URI and then specify the exact
redirect URI during the OAuth run. In this case, the IdP clseitihe specified redirect URI matches
this pattern.

During the registration process, the (fixed) endpointstmgty to an IdP are configured at an RP as
well.

Our analysis presented in Sectidigovers all the above mentioned options: absence and peesénc
client secrets, specified redirect URIs, and URI patterns.

Login Sessions.As mentioned before, in some OAuth modes, an RP redirectsidbes browser to
an IdP which later redirects the browser back to the RP. leroml prevent cross-site request forgery
(CSRF) attacks, the RP typically establishes a sessionthéttbrowser before the first redirect. The
OAuth standard recommends that an RP selects the so-ciflegparameter and binds this value to
the session, e.g., by choosing a fresh nonce and storingotieenn the session state. When the user
later gets redirected back to the RP, #tatevalue must be identical. The intention is that this value
should always be unknown to an attacker in order to preveRFC&tacks. In our analysis, we follow
the recommendation of using tstateparameter.

Further Recommendations and Options. The standard and the recommendations do not specify all
implementation details. For example, the precise userdation with an RP, formatting details of
messages, and the authentication of the user to an IdP (eay.,name and password or some other
mechanism) are not covered. In our security analysis of @At follow all OAuth security recommen-
dations as well as common best practices for state-of+thereb applications in order to avoid known
attacks.

OAuth allows RPs to specify whickcopeof the user’s data they are requesting access to at an IdP.
The scopes themselves are not defined in the standard andresidered an implementation detail of
IdPs. Therefore, in our description and analysis of OAuthomit the scope parameter and assume that
the user always grants full access to her data at the IdP.

2.2. OAuth Modes

OAuth can run in the following four major modes (callg@nt typesn the standard): authorization code
mode, implicit mode, resource owner password credentialdemand client credentials mode. While
the first two modes are very commonly used and similar to etiwr,ahe latter two modes are used less
often and are different to the other modes and to each other.

We now describe these modes in detail. Contrary to our aisaligs simplicity of presentation, we
only consider a specific set of options in the following dgsn. For example, we assume that an RP
always provides a redirect URI and shares an OAuth clienesedth the IdP.

Authorization Code Mode. When the user tries to authorize an RP to access her data dPaor Lo

log in at an RP, the RP redirects the user’s browser to thelluser authenticates to the IdP, e.g., by
providing user name and password, and is redirected badiet®P along with amuthorization code
generated by the IdP. The RP then contacts the IdP with tti®aration code (along with the client id
and client secret) and receives artess tokenThe RP can then use the access token as a credential to
access the user’s protected resources at the IdP.

Step-by-Step Protocol Flown what follows, we describe the protocol flow of the authatian code
mode step-by-step (see also Figje First, the user starts the OAuth flow, e.g., by clicking on a

5Note that the OAuth standard3] as well as the accompanying security recommendatib®sdp not specify the session
mechanism for RPs. In our analysis we assume the usual sessichanism with session cookies following common best
practices. For more details, see Sectoh
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Figure 1. OAuth 2.0 authorization code mode. Note that data depictdalbthe arrows is either transferred in
URL parameters, HTTP headers, or POST bodies. For detaild 8¢



button to select an IdP, resulting in requesbeing sent to the RP. The RP selects one of its redirect
URIsredirect uri (which will be used later ifi7]) and a valuestate(as described above). The RP then
redirects the browser to the authorization endpoint atdReith[2] and[3] with its client id, redirect uri,
andstateappended as parameters to the URhe IdP then prompts the user to provide her username
and password ift. The user’s browser sends this information to the IdRBJiff the user’s credentials
are correct, the IdP creates a nomoele (the authorization code) and redirects the user’s browser t
RP’s redirection endpoiredirect uri in [6] and[7] with codeand stateappended as parameters to the
redirection URI. Next, the RP contacts the IdPdhand providescode client id, client secret and
redirect _uri. Then the IdP checks whether this information is correet, it checks thatodewas issued

for the RP identified bylient id, thatclient_secretis the correct secret fatient id, thatredirect uri
coincides with the one in Stdpl, and thatcode has not been redeemed before. If these checks are
successful, the IdP issues an access ta@a@messtokenin [¢]. Now, the RP can usaccesstokento
access the user’s protected resources at the IdP (autiamjzar log in the user (authentication), as
described next.

When OAuth is used foauthorization the RP uses the access token to view or manipulate the pro-
tected resource at the IdP (illustrated in Stegand[11]).

For authentication the RP fetches a user id (which uniquely identifies the ustrealdP) using the
access token as illustrated in Stépsand[13]. Along with the user id, the RP also receives its OAuth
client id from the IdP. The RP checks if this client id is intftioe client id of the RP at the IdP. The RP
then issues a session cookie to the user’s browser as showh in

We note that the IdP may also issue a so-calftesh tokeralong with the access token in Step
The RP may use the refresh token along with its credentiadbti@in a fresh access token. The refresh
token can be considered as a long-living access token, Wiglaccess token itself is only valid for a
limited time.”

For brevity of presentation, in the remaining modes, exgdibelow, we only consider authorization.
The last steps for both authorization and authenticatieraaalogous to those presented here.

Implicit Mode. This mode is a simplified version of the authorization codeleadnstead of providing
an authorization code to an RP, an IdP directly delivers aassctoken to the RP (via the user’s browser).

Step-by-Step Protocol FlowVe now provide a step-by-step description of the protocal flsee also
Figure 2). As in the authorization code mode, the user starts the DAatv, e.g., by clicking on a
button to select an IdP, triggering the browser to send tdué¢o the RP. The RP selects the redirect
URI redirect uri (which will be used later in7]) and a valuestate The RP then redirects the browser
with its client _id, redirect uri, andstateto the authorization endpoint at the fii [2] and[3]. The IdP
prompts the user to enter her username and passwor rhe user’s browser sends this information
to the IdP in[s]. If the user’s credentials are correct, the IdP creates e@sadokeraccesstokenand
redirects the user's browser to the RP’s redirection emdpedirect uri in [6] and[7], where the IdP
appendsaccesstokenand stateto the fragment of the redirection URI. (Recall that a fragimis a
special part of a URI indicated by the ‘# symbol. When thedser opens a URI, the information in the
fragment is not transferred to the server.) Hence, in Stegcesstokenandstateare not transferred to
the RP. To retrieve these values, the RRJidelivers a document containing JavaScript code. It reggev
accesstokenandstatefrom the fragment and sends these to the RBlinThe RP then checks #tate

6Note that also a fixed string:bde” indicating to the IdP that authorization code mode is useshpended as a parameter
to the URI.

7In our analysis, we do not explicitly consider refresh takemmstead we overapproximate access tokens in that they do
not expire, and hence, we make these tokens long-living $btues. Note that refresh tokens are less powerful than such
access tokens in the sense that refresh tokens are only isefunbination with the credentials of the appropriate RP.

8Note that also a fixed stringcbken” indicating to the IdP that implicit mode is used is appendsch parameter to the
URI.
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Figure 2. OAuth 2.0 implicit mode
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POST /start
dp, usernamepassword

POST tokenEP
_—
usernamepassword client_id, client_secret

Response
B RESPONSE
accesstoken

B GET /resource
&l GET /resource,
accesstoken

Response
B Response
protected resource

/Browser [/RP] /ldP

Figure 3. OAuth 2.0 resource owner password credentials mode

is the same as above. Just as in the authorization code nfel&R can now usaccesstokenfor
authorization (illustrated in Steps] and[11]); authentication is analogous to Steps [13], and[14] of
Figurel.

For authentication, note that the response from the IdRides the RP’s OAuth client id, which is
also checked by the RP. This check prevents re-usage ofssitdens across RPs in the OAuth implicit
mode as explained ir2p)].

We note that in the implicit mode, an IdP cannot verify theniitg of the receiver of the access token,
as an RP does not authenticate itself to the IdP (udliegt _secre}. Hence, this mode is more suitable
for RPs that do not have access to a secure, long-lived stgfagaclient secre} such as in-browser
applications.

Resource Owner Password Credentials Moddn this mode, the user gives her credentials for an IdP
directly to an RP. The RP can then authenticate to the IdP ®mgsbkr's behalf and retrieve an access
token. The resource owner password credentials mode isdietefor highly-trusted RPs, such as the

operating system of the user’s device or highly-privileggglications, or if the previous two modes are

not possible to perform (e.g., for applications without déveowser). In the following, we assume that

the authorization/login process is started by the usegusiweb browser.

Step-by-Step Protocol Flowe now provide a step-by-step description of the resouraeeowassword
credentials mode (see also Fig@)e The user provides her username and password for the Idie RR
in[1]. Now, the RP sends the username, the passwordigt_id andclient_secre? to the IdP irfz]. The
IdP then issues an access tolatesstokento the RP in3].19 Just as in the authorization code mode,
the RP can now usaccesstokenfor authorization (illustrated in Stepg and[s]) and authentication (as
in Stepsi2], [13], and[14] of Figure1l).

Client Credentials Mode. In contrast to the modes shown above, this mode works wittheutiser’s
interaction. Instead, it is started by an RP in order to feitkaccess token to access RP’s own resources

9Note that in this mode, if an RP does not have an OAuth cliesreséor an IdP, thelient_secretandclient id parameters
arebothomitted in this request. This option is also covered by owlysis.
10As in the authorization code mode, an IdP may also issue estefoken to the RP here.

11
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Figure 4. OAuth 2.0 client credentials mode

at an IdP or to access resources at an IdP the RP is authooizmdather means. For example, Face-
book allows RPs to use the client credentials mode to obtaiacaess token to access reports of their
advertisements’ performance.

Step-by-Step Protocol Flowhe step-by-step description of the client credentialserisds follows (see
also Figured): First, the RP contacts the IdP with RR¥ent id andclient secretin [1]. The IdP now
issues araccesstokenin [2]. Just as in the authorization code mode, the RP can nowacssstoken

for authorization (illustrated in Steps and(4]). In contrast to the other modes presented above, the
access token is not bound to a specific user account, but @iie tRP.

3. Attacks on OAuth 2.0 and OpenlID Connect

As mentioned in the introduction, while trying to prove tleegrity of OAuth, we discovered two previ-
ously unknown attacks, which both apply to the authorizatiode mode as well as the implicit mode.
We call these attack307 redirect attackandldP mix-up attackrespectively. In this section, we provide
detailed descriptions of these attacks along with fixes whie easy to implement. Our formal analysis
of OAuth (see SectioB) then shows that these fixes are indeed sufficient to edtathles security of
OAuth. As mentioned in the introduction, the attacks on Q¥aiso apply to OpenID Connect. Since
in this paper the main focus is on OAuth, we only briefly pré€@penID Connect and the attacks on
this protocol in Sectio3.3and AppendixA. Figure5 provides an overview of where the attacks apply.
We have verified our attacks on an implementation of OAuth@pénID Connect and reported both
attacks to the respective working groups, who confirmed tiaeks and adopted our fixes.

3.1. Attack: 307 Redirect

In this attack, the attacker (running a malicious RP) leéineauser’s credentials when the user logs in at
an IdP that uses the wrong HTTP redirection status code.

Assumptions. We assume that (1) the user wants to log in at a malicious R&ufbiorize a malicious
RP to access protected resources). Besides providing $mmaléss) services, this RP collects all data
it receives. We further assume that (2) the IdP that is usethélogin chooses the wrong HTTP status
code (307) when redirecting the user’s browser in $&epf the authorization code mode (Figute
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OAuth OpenlD Connect

auth. code| implicit | auth. code| implicit | hybrid
mode mode mode mode | mode

307 Redirect Attack authorlz_athn broken yes yes yes yes yes
authentication broker yes yes yes yes yes

1 1 * * *%

IdP Mix-Up Attack authorlz_athn broken yes yes yes yes

authentication broker yes yes yes yes**

Figure 5. Attacks on OAuth 2.0 and OpenlD Connect: Overview. The &tace not applicable to resource owner
password credentials mode or client credentials modeif@Auth client credentials are not used. (**): if OAuth
client secrets are not used, and otherwise, if such credd@mé used, then either authorization or authentication is
broken, depending on implementation details, see Appehdix

or in Stepls] of the implicit mode (Figure?). Finally, we assume that (3) the IdP redirects the user
immediately after the user entered her credentials (hehe response to the HTTP POST request that
contains the form data sent by the user’s browser).

Assumption (1)This assumption is obviously reasonable. It cannot be asduihat all RPs where some
users log in behave honestly.

Assumption (2)This assumption is reasonable because neither the OAuttiesthafL 3] nor the OAuth
security considerationsl] (nor the OpenlID Connect standar23]) specify the exact method of how
to redirect. The OAuth standard rather explicitly permitg & TTP redirect:

While the examples in this specification show the use of th&HB02 status code, any
other method available via the user-agent to accomplighrédirection is allowed and is
considered to be an implementation detail.

Assumption (3)This assumption is reasonable as many examples for reglirantediately after enter-
ing the user credentials can be found in practice, for examtglithub. com. (GitHub is not vulnerable
to the attack presented here, as assumption (2) is not edtisfthis case.)

Attack. When the user uses OAuth (or OpenID Connect, see SegiBo log in at this RP, the user

is redirected to the IdP and prompted to enter her credentidie IdP then receives these credentials
from the user’'s browser in a POST request. It checks the otiede and redirects the user’'s browser
to the RP’s redirection endpoint in the response to the P@§iiest. Since the 307 status code is used
for this redirection, the user’s browser will send a POSTuest to RP that contains all form data from
the previous request, including the user credentials.etime RP is run by the attacker, it can use these
credentials to impersonate the user.

Fix. Contrary to the current wording in the OAuth standard, thacexnethod of the redirect is not
an implementation detail but essential for the security 8u®. In the HTTP standardlp], only
the 303 redirect is defined unambigiously to drop the bodyndfldTP POST requesll other HTTP
redirection status codes, including the most commonly @82 leave the browser the option to preserve
the POST request and the form data. In practice, browseisatiyprewrite to a GET request, thereby
dropping the form data, except for 307 redirects. Therefthre OAuth standard should require 303
redirects for the steps mentioned above in order to fix troblpm.

3.2. Attack: IdP Mix-Up

In this attack, the attacker confuses an RP about which léPuier chose at the beginning of the
login/authorization process in order to acquire an autbatibn code or access token which can be used
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Iﬂ POST /start
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Figure 6. Attack on OAuth 2.0 implicit mode
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to impersonate the user or access user data.

Just as the previous attack, the IdP mix-up attack appligbkecuthorization code mode and the
implicit mode of OAuth. To launch the attack, the attackenipalates the first request of the user such
that the RP thinks that the user wants to use an identity neghlag an IdP of the attacker while the user
instead wishes to use her identity managed by an honest &d@résult, the RP sends the authorization
code or the access token (depending on the OAuth mode) issused honest IdP to the attacker, who
then can use these values to login at the RP under the usenttyd(managed by the honest IdP) or
access the user’s protected resources at the honest IdP.

In what follows, we refer to the IdP run by the attacker by Akt the honest IdP by HIdP.

We present the attack in the implicit mode. The attack fortiorization code mode is very similar
and is presented briefly at the end of this section.

Assumptions. For the IdP mix-up attack to work, we need two assumptions fedow for further
discussion and explanation): (1) the presence of a netwitakkar who can manipulate the request in
which the user sends her identity to the RP as well as thesmoneling response to this request (see
Steps1] and[2] in Figure2),!! and (2) an RP which allows users to log in with identities jmted by
(some) HIdP and identities provided by AldP. We emphasiaevile do not assume that the user sends
any secret (such as passwords) over an unencrypted channel.

Assumption (1)It would be unrealistic to assume that a network attackemeaer manipulate Steps
and[2]in Figure2.

First, many RPs might not require this request to be HTTP&:sii0 sensitive user data is transferred
at this point of the protocol, and hence, an RP might not seedled for encrypted communication for
this request. Note that the user only selects an IdP at thiig; pwedentials are not sent. Moreover, the
use of HTTPS for this step is not suggested by the OAuth dga@tommendations.

Second, even if an RP intends to use HTTPS also for the firsestqas in our model), the attacker
can intercept the initial (often unencrypted) request fithim user to the RP and alter all links from
HTTPS to HTTP and remove any redirections to HTTPS URLs (artigme known as SSL stripping).
This interception would fail only if the user accesses thésite of the RP using HTTPS from the very
beginning (e.g., by entering the URL manually), if RP hasas8trict Transport Security (STS) header
in an earlier communication with the browser and this is mauenvented by the attacker (se25]), or
if the RP domain would be included in a browser preloaded $X$4]. It is, however, unrealistic to
assume that all RPs are always protected in one of these ways.

We emphasize that our formal analysis presented in Seétisimows that OAuth can be operated
securely even if no HTTPS is used for the initial requestdgithat our fix, presented below, is applied).

We also note that when intercepting the response in[Staep discussed here, the attacker could also
read the session identifier for the session that the usengder has established with the RP. Our attack,
however, is not based on this possibility and works evendafRIP later (at a point where the protocol is
protected by HTTPS) changes this session identifier as sothreauser is logged in (a best practice for
session management).

Assumption (2).This assumption also conforms with the OAuth standard asmR&suse different
IdPs. And hence, OAuth should provide security in this c&em the point of view of how OAuth is
typically deployed in practice, this assumption might saemealistic at first: OAuth RP deployments
typically consider only one or two selected (and hopefullysted) IdPs. OAuth forms, however, the
basis for OpenlID Connect. There, using the dynamic cliagistation extension, RPs can dynamically
establish an OAuth registration with any IdP. This enalllesad-hoc use of any IdP in OpenlID Connect,

1INote that to manipulate these two messages the networlkattaeeds to only be able to intercept the communication
between the user and the RP (e.g., using ARP spoofing in a wifbnie). Importantly, he does not need to intercept messages
exchanged between servers.

15



including malicious IdPs. See Secti8rBand AppendixA for details on how the IdP mix-up attack can
be carried out on OpenID Connect in practice.

Attack. We now describe the attack on the OAuth implicit mode in def&s mentioned, a very similar
attack also applies to the OAuth authorization code modebaridl attacks even work if IdP supports
just one of these two modes, rather than both or all four OAutidles. Note that these two modes are
the most common modes in practice.

Attack on Implicit Mode.The IdP mix-up attack for the implicit mode is depicted in d#ig6. Just as
in the implicit mode, the attack starts when the user setbatsshe wants to log in using HIdP (Step
in Figure6). Now, the attacker intercepts the request intended forRReand modifies the content
of this request by replacing HIdP by AldP. The response ofRR¢s3] (containing a redirect to AldP)
is then again intercepted and modified by the attacker suahitthedirects the user to HIdR. The
attacker also replaces the OAuth client id of the RP at AldiR thie client id of the RP at HId¥ (Note
that we assume that from this point on, in accordance withCiAath security recommendations, the
communication between the user’s browser and HIdP and the &®rypted by using HTTPS, and thus,
cannot be inspected or altered by the attacker.) The userathéhenticates to HIdP and is redirected
back to the RIPs]. The RP, however, still assumes that the access token nedtai this redirect is an
access token issued by AldP, rather than HIdP. The RP thierafoav uses this access token to retrieve
protected resources of the user (or the user id) at AldRather than HIdP. This leaks the access token
to the attacker who can now access protected resources o$éhat IdP. This breaks the authorization
property (see Sectioh.2 below). (We note that at this point, the attacker might evesvige false
information about the user or her protected resources tBEg

To break authentication and impersonate the honest ugeattiicker now starts a new login process
(using his own browser) at the RP.[In] he selects HIdP as the IdP for this login process. He receives
a redirect to HIdP, which he skig$.The attacker now sends the access takeresstokencaptured in
Step[12] to the RP imitating a real logins.. The RP now uses this access token to retrieve the user id
at HIdP[16] and receives the (honest) user’s id as well as its own OAlightcld [17]. Being convinced
that the attacker owns the honest user’s account, the REsissgession cookie for this account to the
attacker1s]. As a result, the attacker is logged in at the RP under thestarser’s id. This breaks the
authentication property of OAuth (see Sect®m below).

Attack on Authorization Code Mode\ similar attack can be applied to the authorization code enod
of OAuth. This attack is based on the same assumptions astéduoi an the implicit mode. First, the
attacker applies the same modifications to the request frenbtowser to the RP and its response to
initiate an OAuth flow. Recall that in the authorization cadede, RP receives an authorization code
instead of an access token. The RP then sends this autimrizatle to the token endpoint of AldP (in
order to request an access token). If the RP does not havent sticret registered at HIdP, the attacker
can redeem this authorization code at HIdP in order to reaaivaccess token to access the honest user’s
protected resources at HIdP. In this case, the authonzatioperty of OAuth (see Sectidn2 below) is
broken.

Alternatively, the attacker can break the authenticaticoperty for OAuth as follows: The attacker
starts a new OAuth flow with the RP using his own browser andctiely HIdP as the IdP. He then
receives a redirect from the RP to HIdP to authenticate Hftride omits the interaction with HIdP and
sends a request to the RP’s redirection endpoint contathmguthorization code. As this authorization
code has not been redeemed before at HIdP, the code is §tll \ence, when the RP requests an
access token with this authorization code at HIdP, HldPeissch an access token to the RP. The RP

12As mentioned above, OAuth client ids are public information
13Note that this redirect contains (besides a cookie for a ngmlsession) a fresh state parameter,staté. The attacker
will use this information in subsequent requests to the RP.
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retrieves user information with this access token at Hld€eives the user identifier for the user under
attack and considers the attacker to be logged in as this (isete that the attacker does not learn an
access token in this case.)

Fix. A fundamental problem in the implicit mode of the OAuth startti(and similarly for the autho-
rization code mode) is that the redirect in Stepand[7] in Figure2 does not contain information from
where the redirect was initiated. And hence, the RP canrettictvhether the information contained in
the redirect stems from the IdP that was indicated in Step

Our fix therefore is to include the identity of the IdP in thédirect in some form. More specifically,
we propose that RPs provide a unique redirection endpairggoh IdP. Hence, the information which
IdP redirected the browser to the RP is encoded in the reqnesthe RP can detect a mismatch. Note
that the communication at this point in the protocol is seduvith HTTPS (when following the OAuth
security recommendations) and cannot be manipulated bgttheker. We show in Sectidnthat this
fix is indeed sufficient. In addition, one could try to prevéme IdP mix-up directly at the beginning
of the protocol. (Nonetheless, in any case the RP should leet@lcheck consistency in Stép.) We
have not considered such additional countermeasures s®casiwe show, our fix is sufficient for the
security of OAuth (as far as authorization and authentoagjoes).

3.3. Implications to OpenlID Connect

Both, the 307 redirect attack and the IdP mix-up attack, eagdplied to OpenlD Connect as well.
OpenlID ConnectZ3] is a standard for authentication built on top of the OAuthtpcol. It was pub-
lished only recently. Among others, OpenID Connect is alyassed in practice by PayPal, Google, and
Microsoft. OpenID Connect uses the same concept for autiation as described above and supports

retrieval of a unique user identifier and further meta data.

We here give a brief overview of OpenID Connect and how thacks apply to this protocol. A
detailed description can be found in Appendix

OpenID Connect defines authorization code mogdean implicit mode and ahybrid mode The
former two are based on the corresponding OAuth modes antattiee is a combination of the two
modes.

OpenID Connect consists of a core protocol and (optionaBrestons, such adiscovery[24] and
dynamic client registratiorj22]. Both extensions are used to fully automate the registnagirocess
between the relying party and the identity provider. Thisngethat, using these extensions, any RP can
register dynamically at any IdP. This is triggered, for eptanwhen a user wishes to authenticate with
an IdP that the RP is not registered at.

In addition to an access token, OpenlID Connect uses a sdddltoken The id token is issued by
the IdP along with the access token and contains a uniquedes#ifier and additional meta data, such
as the intended receiver (the RP) of the id token and therisgdke id token (the 1dP). The id token is
(optionally) signed by the IdP.

307 Redirect Attack in OpenID Connethis attack applies to OpenlD Connect in exactly the same way
as described above. The vulnerable steps are identical urttOsnd OpenID Connect.

IdP Mix-Up Attack in OpenID Connecln OpenlD Connect, the mix-up attack applies to the autheriz
tion code mode and the hybrid mode. In the authorization codée, the attack is very similar to the
attack on the OAuth authorization code mode. In the hybridlenshe attack is more complicated as
additional security measures have to be circumvented bgttheker. In particular, it must be ensured
that the RP does not detect that the issuer of the id tokert thadonest IdP. Interestingly, in the hybrid
mode, depending on an implementation detail of the RP, redthihorization or authentication is broken
(or both if no client secret is used).
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For details on OpenlID Connect and how the attacks can be t&xkau OpenlD Connect see Ap-
pendixA.

3.4. Verification

We have verified both attacks enod_auth_openidcan implementation of an OpenID Connect (and
therefore also OAuth) RP.

We notified the developers afiod_auth_openidand reported both attacks to the OAuth and OpenID
Connect working groups, who confirmed that changes to timelatd (and recommendations) are needed
to mitigate the attacks.

4. Generic Web Model

Our formal security analysis of OAuth is based on the genedév-Yao style web model proposed
by Fett et al. in 8], with extensions presented i1]]. This web model is designed independently
of a specific web application and closely mimics publishegH@tto) standards and specifications for
the web. Based on a general communication model, the modeifigs web systems, which contain
browsers, DNS servers, and web servers as well as web andrketttackers.

Here, we only briefly recall this model (see the mentionecepafor a full description).

4.1. Communication Model

The main entities in the communication model atemic processeswvhich are used to model web
browsers, web servers, DNS servers as well as web and neattadkers. Each atomic process listens
to one or more (IP) addresses. A set of atomic processes fohatss called aystem Atomic processes
can communicate via events, which consist of a message hasvelreceiver and a sender address. In
every step of a run, one event is chosen non-deterministifraim the current “pool” of events and is
delivered to one of the atomic processes that listens toetbeiver address of that event. The atomic
process can then process the event and output new event$, avkiadded to the pool of events, and so
on. More specifically, messages, processes, etc. are defirfetows.

Terms, Messages and Event#\s usual in Dolev-Yao models (see, e.d])[ messages are expressed as
formal terms over a signature. The signatkir®r the terms and messages considered in the web model
contains, among others, constants (such as (IP) addrés3€4, strings, and nonces), sequence and pro-
jection symbols, and further function symbols, includihgge for (a)symmetric encryption/decryption
and digital signatures. Messages are defined to be groumd {gzrms without variables). For example,
pub(k) denotes the public key which belongs to the private likelo provide another example of a mes-
sage, in the web model, an HTTP request is represented asirgdgierm containing a nonce, a method
(e.g.,GET or POST), a domain name, a path, URL parameters, request headelsgstiookie), and a
message body. For instance, an HTGH? request for the URhttp://ex.com/show?p=1 is modeled
as the term

r := (HTTPReq, Ny, GET, ex.com, /show, ((p,1)), (), (),

where headers and body are empty. An HTTPS request ifoof the formenc, (({r,K'), pub(Kex.com) ),
wherek’ is a fresh symmetric key (a nonce) generated by the sendee oéguest (typically a browser);
the responder is supposed to use this key to encrypt thensspo

Eventsare terms of the forna, f,m) wherea and f are receiver/sender (IP) addresses, iarid a
message, for example, an HTTP(S) message as above or a DiNStegsponse.
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The equational theonyassociated with the signatukeis defined as usual in Dolev-Yao models. The
theory induces a congruence relatignon terms. It captures the meaning of the function symbols
in . For instance, the equation in the equational theory whaghtures asymmetric decryption is
deca(enc, (X, pub(y)),y) = x. With this, we have that, for example,

deca(enca(<r7k,>7 pUb("ex.com))*ex.com) = <r7k,>7
i.e., these two terms are equivalent w.r.t. the equatidrery.

Atomic Processes, Systems and Run&tomic Dolev-Yao processes, systems, and runs of systeens ar
defined as follows.
An atomic Dolev-Yao (DY) processa tuple

p = (I p7Zp7 Rp738)

wherel P is the set of addresses the process listengRas a set of states (formally, terms)'; e€ZPis

an initial state, andr® is a relation that takes an event and a state as input andd@termministically)
returns a new state and a sequence of events. This relatidelsn@ computation step of the process,
which upon receiving an event in a given state non-detestidailly moves to a new state and outputs
a set of events. It is required that the events and state® inutput can be computed (more formally,
derived in the usual Dolev-Yao style) from the current inpuént and state. An atomic process may
also create fresh nonces in a computation step.

The so-calledattacker processs an atomic DY process which records all messages it rexegind
outputs all events it can possibly derive from its recordezbsages. Hence, an attacker process is the
maximally powerful DY process. It carries out all attacky &Y process could possibly perform and is
parametrized by the set of sender addresses it may usekétsamay corrupt other DY processes (e.g.,
a browser).

A systenis a set of atomic processes.cAnfiguration(S, E,N) of this system consists of the current
states of all atomic processes in the syst&n the pool of waiting eventsH), and the mentioned
sequence of unused noncé§ (

A run of a system for an initial sequence of eveRfSis a sequence of configurations, where each
configuration (except for the initial one) is obtained byiekring one of the waiting events of the pre-
ceding configuration to an atomic procgséwhich listens to the receiver address of the event), which
in turn performs a computation step according to its retel®®. The initial configuration consists of the
initial states of the atomic processes, the sequ&icand an initial infinite sequence of unused nonces.

Scripting ProcessesThe web model also defines scripting processes, which mbedet-side scripting
technologies, such as JavaScript.

A scripting procesgor simply, ascript) is defined similarly to a DY process. Itis called by the brews
in which it runs. The browser provides it with state inforioats, and the script then, according to its
computation relation, outputs a tersy which represents the new internal state and some command
which is interpreted by the browser (see also below). Agaiig required that a script’s output is
derivable from its input.

Similarly to an attacker process, the so-caliéthcker script R may output everything that is deriv-
able from the input.

4.2. Web System

A web system formalizes the web infrastructure and web agfitins. Formally, aveb systerns a tuple

(W, S,script, E?)
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with the following components:

e The first component?/, denotes a system (a set of DY processes as defined above)raaihs
honest processes, web attacker, and network attackergsasceWhile a web attacker can listen
to and send messages from its own addresses only, a netwackeatmay listen to and spoof all
addresses (and therefore is the maximally powerful atthacRétackers may corrupt other parties.
In the analysis of a concrete web system, we typically hawe ratwork attacker only and no
web attackers (as they are subsumed by the network attackespe or more web attackers but
then no network attacker. In analysis of OAuth we considéwork attackers. Honest processes
can either be web browsers, web servers, or DNS servers. dbelimg of web servers heavily
depends on the specific application. The web browser modethvis independent of a specific
web application, is presented below.

e The second componert, is a finite set of scripts, including the attacker scRff. In a concrete
model, such as our OAuth model, the set {R*"} describes the set of honest scripts used in
the web application under consideration while maliciougp$s are modeled by the “worst-case”
malicious script R,

e The third componenstcript, is an injective mapping from a script iito its string representation
script(s) (a constant irk) so that it can be part of a messages, e.g., an HTTP response.

e Finally, E? is a sequence of events, which always contains an infinitdoruof events of the form
(a,a, TRIGGER) for every IP addresa in the web system.

A run of the web system is a run @# initiated byE®°.

4.3. Web Browsers

We now sketch the model of a web browser. A web browser is neddss$ a DY procesd?,ZP,RP, ).

An honest browser is thought to be used by one honest userisshodeled as part of the browser.
User actions are modeled as non-deterministic actionseofvitb browser. For example, the browser
itself non-deterministically follows the links in a web padJser data (i.e., passwords and identities) is
stored in the initial state of the browser and is given to a padpe when needed, similar to the AutoFill
feature in browsers.

Besides the user identities and passwords, the state of drmwelser (modeled as a term) contains
a tree of open windows and documents, lists of cookies, &ioehge and sessionStorage data, a DNS
server address, and other data.

In the browser state, th@indowssubterm is the most complex one. It contains a window subterm
for every open window (of which there may be many at a timej] mside each window, a list of
documents, which represent the history of documents that been opened in that window, with one
of these documents being active, i.e., this document isepted to the user and ready for interaction.
A document contains a script loaded from a web server angsepts one loaded HTML page. A
document also contains a list of windows itself, modelingrifies. Scripts may, for example, navigate
or create windows, send XHRs and postMessages, submit fegtishange cookies, localStorage, and
sessionStorage data, and create iframes. When activatedyrawser provides a script with all data
it has access to, such as a (limited) view on other documentsvindows, certain cookies as well as
localStorage and sessionStorage.

Figure7 shows a brief overview of the browser relatiBA which defines how browsers behave. For
example, when @RIGGER message is delivered to the browser, the browser non-deietitally choses
anaction If, for instance, this action is 1, then an active documsergdlected non-deterministically,
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PROCESSINGINPUT MESSAGEM

m = FULLCORRUPT: isCorrupted:= FULLCORRUPT
m = CLOSECORRUPT: isCorrupted:= CLOSECORRUPT
m = TRIGGER: non-deterministically choos&ctionfrom {1,2,3}

action= 1: Call script of some active document.
Outputs new state armbmmand
command= HREF: — Initiate request

command= IFRAME: Create subwindows~ Initiate request
command= FORM: — Initiate request
command= SETSCRIPT: Change script in given document.

command= SETSCRIPTSTATE: Change state of script
in given document.

command= XMLHTTPREQUEST: — Initiate request
command= BACK or FORWARD: Navigate given window.
command= CLOSE: Close given window.

command= POSTMESSAGE: Send postMessage to
specified document.
action= 2: — Initiate request to some URL in new window

action= 3: — Reload some document
m= DNS response: send corresponding HTTP request
m= HTTP(S) response: (decrypt,) find reference.
reference to windowcreate document in window

reference to documenédd response body to document’s
script input

Figure 7. The basic structure of the web browser relati®fhwith an extract of the most important processing
steps, in the case that the browser is not already corrupted.

and its script is triggered. The script (with inputs as ogttl above), can now output a command, for
example, to follow a hyperlinkHREF). In this case, the browser will follow this link by first ctésy a
new DNS request. Once a response to that DNS request atthieeactual HTTP request (for the URL
defined by the script) will be sent out. After a response toi¥ar P request arrives, the browser creates
a new document from the contents of the response. Complégai@n and security rules ensure that
scripts can only manipulate specific aspects of the bros/staite. Browsers can become corrupted, i.e.,
be taken over by web and network attackers. The browser noameprises two types of corruption:
close-corruption modeling that a browser is closed by the user, and hendajrtdata is removed (e.g.,
session cookies and opened windows), before it is takenlyvire attacker, anfillll corruption, where

no data is removed in advance. Once corrupted, the browbkarés like an attacker process.

5. Analysis of OAuth 2.0

We now present our security analysis of OAuth (with the fixestioned in SectioB applied). We first
present our model of OAuth. We then formalize the securigpprties for authorization and authenti-
cation and state the main theorem, namely the security oftlD#ur.t. these properties. We also sketch
the proof of this theorem, with full details provided in Apyix G.
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5.1. Model of OAuth 2.0

As mentioned above, our model for OAuth is based on the gemerb model outlined in Sectiof
We developed the OAuth model to adhere to RFC6749, the OAQtktandard, and follow the security
considerations described ihq].

OAuth Options and Implementation Details. For the options and implementation details that are left
open by the OAuth standard and the security consideratiomsnade the following design decisions:

OAuth Modes.As mentioned, the OAuth standard does not fix which subsetoofeas RPs and IdPs
use and support. We therefore model that every RP, IdP, awisbr may run any of the four
OAuth modes, even simultaneously.

CSRF Protection.Thestateparameter is used with a freshly chosen nonce that is bouthe taser’s
session in order to prevent Cross-Site Request Forgegkattan the RP. This is recommended by
the standard.

Redirection URLsIn a run of the protocol, the RP chooses a redirection URLiexgly or the IdP
selects a redirection URL that was registered before. Reiitin URLs can be defined using
patterns. This covers all cases specified in the OAuth stdnda

Client Secrets.Clients can, for a certain IdP, have a secret or not have &tsiacour model. And
hence, both options in the OAuth standard regarding cliecress are captured in our model

Scope.As described in Sectiof.1, we assume that RPs always get full access to the user's data a
the 1dP.

HTTPS EndpointsFollowing the security recommendations, all endpoint URks HTTPS. Obvi-
ously, IdPs or RPs do not register URLSs that point to servéitsrahan their own.

Session MechanismlThe OAuth standard and the OAuth security recommendatasspentioned,
do not prescribe a specific session mechanism to be used &.@&uRmodel therefore includes
a standard cookie-based session mechanism which follostspbactices. For example, cookies
are always set as session cookies (the cookie is discarded thik browser window is closed),
with the attributeHTTP only(the cookie value is not accessible by JavaScript), andTorPS
connectionssecure(the cookie value is only transmitted over HTTPS). Aftercassful login at
an RP, the RP starts a new session. In our model, this secesidsés modeled usingservice
tokenthat is sent to the browser (see below).

Authentication to the IdPUser authentication to the IdP, which is not part of the OAaiindard, is
performed using username and password. It is assumed ¢hagéh only ever sends her password
over an encrypted channel and only to the IdP this passwosdcivasen for (the user does not
re-use her password for different IdPs).

Authentication to the RPTo log a user in, an RP typically requests a unigue user iiil@nfiom an
IdP, as already mentioned above. We follow this common jpeetiso in our model.

General User InteractionUser interaction (entering the user identifier at the RR; cslentials at
the 1dP) is modeled as simple as possible (i.e., regular HTdntns) 4

140f course, this does not limit the possibilities for useemttion, as defined in the general web model. For examge, th
user can at any time navigate backwards or forward in her $goWistory, or navigate to any web page.
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Concepts Used in Our Model.In our model and the security properties, we use the follgveioncepts:

Protected Resource$Auth protected resources are an abstract concept for anynee an RP could
use at an IdP after successful authorization. For exanff@acebook gives access to the friends list of
a user to an RP, this would be considered a protected resdmroeir model, there is a mapping from
(IdP, RP, identity) to protected resources, where the igepart can bel, modeling a resource that is
acquired in the client credentials mode and thus not bouaduser.

Generic Model for Session Mechanismghen OAuth is used for authentication, we assume that after
successful login, the RP sendseaxvice tokero the browser. The intuition is that with this service token
a user can use the services of the RP. The service token tonbia nonce, the users identifier, and
the domain of the IdP which was used in the login process. €hdce token is a generic model for
any session mechanism the RP could use to track the useirsditagus (e.g., a cookie) since the actual
session mechanism used by thedtter a successful login is out of the scope of OAuth and our aralysi
In our model, the service token is not stored by the browser.

Trusted RPsIn our model, among others, a browser can choose to launalesbearce owner password
credentials mode with any RP, causing this RP to know thewmasdsof the user. RPs, however, can
become corrupted and thus leak the password to the attadkenefore, to define the security properties,
we define the concept tfusted RPsIntuitively, this is a set of RPs a user entrusts with hespasd.
(Formally, it is a mapping from passwords to sets of RPs, w/ilegery password belongs to a specific
user.) In particular, whether or not an RP is trusted depemdthe considered user. In our security
properties, when, for example, we state that an adversarcgiot be able to impersonate a ugén a
run, we would assume that all trusted RPsitiave not become corrupted in this run.

OAuth Web System (©n5). We model OAuth as a web system (in the sense of Sed)iokiVe call a
web systenon’s = (W, S, script, E?) anOAuth web systeiiit is of the form described in what follows.

Outline. The system? = Hon U Net consists of a network attacker (Met), a finite setB of web
browsers, a finite seRP of web servers for the RPs, a finite &P of web servers for the IdPs,
with Hon := BURPUIDP. Recall that since we have a network attacker, we do not reedrtsider
web attackers (as our network attacker subsumes all wetkatt). The sef consists of the scripts
script_rp_index script_rp_implicit, andscript_idp_form, with their respective string representations de-
fined inscript asscript_rp_index, script_rp_implicit, andscript_idp form. The setEC is
defined as described in Sectidr2. We now briefly sketch the models of RPs, IdPs, and the scrijitis
more details provided in the appendix and full details ptediin the appendix.

Relying Parties.Each relying party is a web server modeled as an atomic DYesséollowing the
description in Sectior?2 and the fixes discussed in Sectidn The RP can either (at any time) launch
a client credentials mode flow or wait for users to start anthefother flows. RP manages two kinds
of sessions: Théogin sessionswhich are used only during the login phase of a user, andehdce
sessiongmodeled by aervice tokeras described above).

When receiving the special messaRRUPT an RP can become corrupted. Similar to the definition
of corruption for the browser, the RP then starts sendingatiunessages that are derivable from its
state.

Identity ProvidersEach IdP is a web server modeled as an atomic DY process foticdive description

in Section2 and the fixes discussed in Secti@rin particular, users can authenticate to an IdP with their
credentials. Authenticated users can interact with thiaxiziation endpoint of the IdP (e.g., to acquire
an authorization code). Just as RPs, IdPs can become amirupt

Scripts.The scripts which run in a user’s browser (and their respestiring represenations) are defined
as follows:
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script_rp_index This script is loaded from an RP into a user's browser wheruter visits RPs web
site. It starts the authorization or login process.

script_rp_implicit. This script is loaded into the user’s browser from an RPrduan implicit mode
flow to retrieve the data from the URL fragment. It extracts #itcess token and state from the
fragment part of its own URL. The script then sends this imfation in the body of an HTTPS
POST request to the RP.

script_idp_form. This script is loaded from an IdP into the user’s browserrandels the form where
the user enters her credentials to authenticate to the IdP.

5.2. Authorization and Authentication Properties

Based on the formal OAuth model described above, we now fi@enaentral security properties of

OAuth, namely authorization and authentication (see Agpeh for full details). We note that these

properties do not capture the possibility that an attackerefully logs in a user under the attacker’s
account. This is indeed often possible in web applicatian$oag as cookies are used in the login
process (see, e.g3().

Authorization. Intuitively, authorization forOn/S means that an attacker should not be able to obtain a
protected resource available to some honest RP at an Id@rfoe gser unless certain parties involved
in the authorization process are corrupted.

More formally, we say thabn’s is secure w.r.t. authorizatioif the following holds true: if at any
point in a run ofOMS an attacker can derive a protected resource available te somest RR at an
IdPi for some useu, then the IdR is corrupt or, ifu # |, we have that the browser afor at least one
of the trusted RPs af must be corrupted. Recall thatuf= 1, then the resource was acquired in the
client credentials mode, and hence, is not bound to a user.

Authentication. Intuitively, authentication foO1S means that an attacker should not be able to login
at an (honest) RP under the identity of a user unless certatiep involved in the login process are
corrupted. As explained above, being logged in at an RP usodlee user identity means to have
obtained a service token for this identity from the RP.

More formally, we say thabns is secure w.r.t. authenticatioif the following holds true: if at any
point in a run ofOMS an attacker can derive the service token that was issued bgprast RP using
some |dP for a useru, then the IdH, the browser ofi, or at least one of the trusted RPsuwfust be
corrupted.

5.3. Main Theorem

We prove the following theorem:

Theorem 1. Let OMS be an OAuth web system, them/s is secure w.r.t. authorization and secure
w.r.t. authentication.

Proof Outline (see AppendixG for the full proof). We first show three lemmas that apply to honest
RPs and capture specific technical details. The first onetbaysoughly speaking, messages transferred
over HTTPS connections that were initiated by honest RPsatdre read or altered by other parties. In
particular, honest RPs do not leak the encryption keys tergihrties. In the second lemma, we show
that HTTP(S) messages which await DNS resolution in an hdRBS state are later sent out over the
network without being altered in between. In the third lemnva show that honest RPs never send
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HTTP messages to other RPs or themselves, and that theyemdyt$§T TPS messages that other RPs
cannot decrypt.

Authentication.We first prove the authentication property, which we do byti@adiction. To this end,
we show in three separate lemmas building on each otherlh#id attacker does not learn passwords
of the user, (2) the attacker does not learn authorizatialesdhat could be used to learn a relevant
access token, and (3) that the attacker in fact does notdeeancess token that could be used to retrieve
a service token as described in the authentication prap@reyfinally show that there is no other way
for an attacker to get hold of a service token (of the kind dbed in the authentication property), and
that therefore, the authentication property must hold. true

Authorization. As above, we assume that the authorization property doebatdtand lead this to a
contradication. The proof then builds upon lemmas showherauthentication proof. We show that the
attacker would need to know an access token to acquire acpedteesource. If the protected resource
is bound to a user (i.e., it was not issued in the client créglermode), then (3) from above applies and
shows that the attacker cannot learn such an access tokkthumncannot learn this protected resource.
If the protected resource was not assigned to a user (iwastissued in the client credentials mode),
then we can show that the attacker would need to know cliemeteto get the protected resource. We
show, however, that it is not possible for the attacker tondhe necessary client secrets (which are
always required in the client credentials mode). Therefotether it is a user-bound protected resource
or not, the attacker cannot learn it, leading our assumpti@acontradiction.

6. Related Work

As already mentioned in the introduction, security analydiOAuth has so far concentrated on finding
bugs in specific OAuth implementations, rather than on perifog a detailed security analysis of the
OAuth standard itself in a comprehensive web model.

In [4], Bansal, Bhargavan and Maffeis analyze the security of BAIsing the applied pi-calculus
and the WebSpi library. They model settings of OAuth 2.0 tteat be found in practice and assume
the presence of common web vulnerabilities such as CrdesRequest Forgery and open redirectors in
RPs and IdPs. Using this method, they identify previouslynemn attacks (mostly CSRF attacks) on
the OAuth implementations of Facebook, Yahoo, and Twiftee main goal of4] was to find concrete
vulnerabilities in implementations that can arise wherepthulnerabilities in RPs and IdPs are present.
Also, compared to our work, the WebSpi model usedding less expressive and comprehensive, and
the models of OAuth are more limited and aimed at specific @mgntations (for example, only one
mode is considered at any time and malicious IdPs are notdeyesl). While in f] an automated tool
is used to find the vulnerabilities, our work is based on mbhpraofs.

Wang et al. 9] present a systematic approach to find implicit assumptior&DKs (e.g., the Face-
book PHP SDK) used for authentication and authorizatioriuging SDKs that implement OAuth 2.0.

In [21], Pai et al. analyze the security of OAuth in a (limited) midtthat does not incorporate generic
web features. They show that using their approach, basdwkaHlpy finite-state model checker, known
weaknesses can be found. The same tool is used by Kubihin a formal analysis of the older
OAuth 1.0 protocol (which, as mentioned in the introductiisrvery different to OAuth 2.0).

Chari, Jutla, and Roy5] analyze the security of the authorization code mode in thieeusally com-
posability model, again without considering web featungshsas semantics of HTTP status codes, de-
tails of cookies, or window structures inside a browser.

Besides these formal approaches, empirical studies waducted on deployed OAuth implementa-
tions. In 28], Sun and Beznosov analyze the security of three IdPs andP36 IR [L8], Li and Mitchell
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study the security of 10 IdPs and 60 RPs based in China, B6] practical evaluations on the security
of OAuth implementaions of mobile apps are performed.

In [20], Mladenov et al. perform an informal analysis of the Opefbnnect extensions discovery
and dynamic client registration and present an attack wéslumes a CSRF vulnerability on the RP’s
side. On a high level, this attack resembles the IdP mix-tgzltvhen applied to OpenlD Connect. It ex-
ploits, however, a different flaw in the dynamic registratextension and is not applicable to OAuth 2.0.
Mladenov et al. do not perform formal analysis and they dacnasider OAuth itself, which is the focus
of our work.

Note that many of the works listed here led to improved séctecommendations for OAuth as listed
in RFC6749 13] and RFC681919] which are thus incorporated in our model of OAuth.

Altogether there have been only very few analysis effontsvieb applications and standards based on
formal web models. Besides those listed above, important wmeludes P, 3,8,10,11, 16].

7. Conclusion

In this paper, we carried out the first formal analysis of GAAt0 based on a comprehensive and
expressive web model. Our analysis, which aimed at the atdnitself, rather than specific OAuth
implementations and deployments, comprises all modest(types) of OAuth and available options
and also takes malicious RPs and IdPs as well as corruptegsérs/users into account. The generic
web model underlying our model of OAuth and its analysis & ittost comprehensive web model to
date.

Our in-depth analysis revealed two previously unknowncitan OAuth as well as OpenID connect,
which builds on OAuth. We have verified both attacks on anadtmplementation and reported both
attacks, along with propositions for fixes, to the respectivorking groups for OAuth and OpenID
Connect. The working groups confirmed the attacks and adaptefixes.

With the fixes applied, we were able to prove strong authticimaand authentication properties for
OAuth 2.0. This, in particular, shows that OAuth, when inmpéated correctly, can provide authoriza-
tion and authentication in practice even though it was niobarily designed for the latter. The fact that
OAuth is one of the most widely deployed authorization anthextication systems in the web makes
our analysis particularly relevant.

As for future work, our formal analysis of OAuth offers a gastdrting point for the formal analysis
of OpenID Connect, and hence, such an analysis is an obvexistep for our research.
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A. OpenID Connect and the Attacks on this Standard
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A.1. Modes and Protocol Flow

OpenlD Connect makes use of the OAuth authorization codesrand the implicit mode (both OAuth
modes constitute an OpenlD Connect mode), but also intesdamewhybrid mode, which combines
both modes.

Overview. From a high-level perspective, first, the RP retrieves mata dbout the IdP, such as the
URLSs of the IdP used in the protocol. This is the informatibattis “hard-wired” in the manual, out-of-
band registration in a classic OAuth setup. Next, the RPraatically registers itself as an OAuth client
at the IdP (using OpenID Connect dynamic client registrgtioThen, the OAuth protocol is started
(using one of the modes mentioned above). In addition to aasactoken this (extended) run delivers
a so-calledd tokento RP. The id token is issued by the IdP and contains a unigeridsntifier along
with several meta data, such as the intended receiver (theRRe id token and the issuer of the id
token (the I1dP). The id token is (optionally) signed by thB.I&inally, the RP can retrieve more meta
data about the user at theerinfoendpoint at the IdP using the access token and consider ¢néause
logged in.

Step-by-Step Protocol FlowlIn the step-by-step description below (see also Figlreve focus on the
hybrid mode only. First, the user starts the login processrigring her email addréSsn her browser
(at some web page of an RP), which sends the email address RPtin[1].

Now, the RP uses the OpenlID Connect Discovery proto24fl fo gain information about the IdP:
The RP uses the WebFingdrd mechanism to discover information about which IdP is resjiae for
this user. For this discovery, the RP contacts the servdreafiser's email domain (depicted as the same
party as the IdP in the figure) irl. The result of the WebFinger requestidhcontains the domain of
the server responsible for the OpenID Connect configurdtioa IdP). The configuration is requested
from the IdP in4] and returned ife]. The configuration contains meta data about the IdP, inotudll
endpoints at the IdP. This concludes the OpenlID Discovetlignlogin flow.

Next, if the RP is not registered at the IdP, the RP starts feen@® Connect dynamic client regis-
tration [22] protocol: the RP contacts the IdP[im providing its redirect URIs. Now, the IdP issues an
(OAuth) client id and (optionally) an (OAuth) client sectetthe RP in7]. This concludes the OpenID
Connect dynamic client registration.

Now, the core part of the OpenID Connect protocol (based omntAstarts: the RP redirects the
user’s browser to the IdP im]. This redirect contains information that the hybrid modeised and
which tokens are requested. In this description, we asshatean authorization code and an access
token are requestéd. Also, this redirect contains the (OAuth) client id of the RRgedirect URI and a
state value. As in the OAuth flows, this data is sent to the[dgifhe user authenticates to the [dP,

[11], and the IdP redirects the user’s browser back to the REJiand[13] (using the redirect URI from
the request ife]). This redirect contains an authorization code, an acad&nt and the state value in
the fragment part of the URE. Now, the RP iri14] sends a document containing JavaScript code which
sends the parameters contained in the fragment back to tl{gn RP). If the state value matches, the
RP contacts the IdP ins] with the received authorization code, its (OAuth) clientitd (OAuth) client
secret, and the redirect URI used to obtain the authorizatawle. The IdP sends a response with the
same or a fresh access token and an id token to the RR.itNow, the RP retrieves the key that was
used to sign the id token from the IdP[m] and[19] and verifies the id token’s signature. As the id
token typically contains only a unique user identifier, boitother meta data about the user, RP requests
this meta data (such as nickname, birthday, or address) tinentidP in[20] and[21] using one of the

15Note that OpenID Connect also allows other types of usettiiilens, such as a personal URL.
16The Hybrid Flow allows to request several different comboves of authorization code, access token, and id token.
17Note that depending on the parameters in Bteplso an id token may be contained in the fragment part of Re.U
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authorization tokens received before. Finally, the RP iclans the user to be logged in and may set a
session cookie at the user’s browserin

Note that the authorization code mode and the implicit modesimilar to the hybrid mode: Roughly
speaking, the Steps2H17] of the OpenID Connect hybrid mode are replaced by the casreipg
steps of the OAuth authorization code or implicit mode, eesipely. These OAuth modes are then
extended with the transfer of an id token. In the authorratiode mode, the id token is appended to the
responsé] of Figurel and in the implicit mode, the id token is appended to the fraginof the redirect
URI in [¢] of Figure2 (and later sent to the RP in Stef).

A.2. The 307 Redirect Attack

The 307 redirect attack presented in Sectihcan also be applied to OpenlD Connect. Note that
the critical part of OAuth, namely the redirect of the usdrswser from the IdP to the RP after the

authentication of the user to the IdP, is also present in Mp€&onnect. Hence, if the IdP uses an HTTP

status 307 redirect immediately after the user’s browssitfzasferred the user’s credentials to IdP in a
POST request, the RP receives these credentials.

A.3. The IdP Mix-Up Attack

When applying the attack presented in Sec8dto OpenID Connect, the attacker needs to circumvent
some additional security measures: In the implicit mode pé®@D Connect, aid_token(as described
above) is sent along withccesstokenin the redirect from HIdP to the RP. As this redirect might
use HTTPS, the attacker cannot inspect or modify the casreipg network messages. As mentioned
above, the id token contains the domain of the issuer of llagtaccess token and the id token. Therefore,
the RP can detect that the user did not use AldP (which the &Feoted to).

An attacker could try to use the authorization code mode @&nTp Connect to mount a similar attack
as described above. In this case, however, the attackemdbésarn a valid access token for the user’s
account at HIdP if a client secret is used.

In the hybrid mode, however, an attacker can learn an acokes and mount the attack as follows
(see also Figur):

As above, the user first visits the RP. When the user sendsniel address to the RP in order to
login[1], the attacker manipulates the domain part of the email addte be the domain of AldP|. The
RP then looks up the IdP to be used (which is now AldP) usingMekFinger protocol in Stepg and4].
The RP fetches the OpenID Connect configuration from thekata(s] and[¢]). In this document, the
attacker states that the authorization endpoint is locattétidP while all other endpoints are located at
the attacker. Using parameters not shown in the figures tthekar can also state that this IdP does not
support delivering an id token in the redirect and can staie o signatures are supported. Since no
signatures need to be checked, also the key retrieval ipatfi; the protocol.

After retrieving the OpenlID configuration, the RP registatAldP, as the attacker uses a domain
previously unknown to the RP. (If the domain was known to tife tRis step would be skipped.) The
attacker issues the sambent id with which the RP is registered at HIdR]@nd[s]). Now, the RP
redirects the user’s browser to HIdP in order to log in. Affee user authenticated to HIdP, HIdP
redirects the user’s browser back to the RP. The fragmentgbdhe URL contains an authorization
code and an access token. The RP then sends the authorization code to the attacket. in

If the RP does not have a client secret registered at HidRyttaeker can redeem this authorization
code at HIdP in order to receive an access token to accessottesthuser’s protected resources at
HIdP. This breaks the authorization of OpenlD Connect (camaphe OAuth authorization property in
Section5.2).
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Figure 9. Attack on OpenID Connect 1.0 hybrid mode with discovery aydeaanic client registration
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Alternatively, the attacker responds to the RP with a fal@ss token and a faked id toKesi (which
the attacker can create, because he controls all secuititygsefor this id token, see Stég).

Next, the RP retrieves other meta information about the fuser AldP. The RP is now in possession
of two access tokens. The OpenlID Connect standard explaitbws this situation, but fails to state
which access token has to be used in subsequent request®PTten now chose either of the access
tokens for the next steps, with different outcomes for thacier:

First Access Token is Selectedin this case the access token originating from HIdP is sedeby the
RP and sent to the attacKes]. (This behavior was observed by us in the real-world impletat@on
mod_auth_openidc.)

Now the attacker can use this access token to access otheetpbresources of the user at HIdP. This
breaks authorization for OpenlD Connect (compare our OAuthorization property in Sectidn?2).

Second Access Token is Selectebh this case the access token originating from AIdP is setecthis
means that the attacker does not learn a valid access tokEihdie. The attacker can, however, reuse the
authorization code for HIdP, which he learnedtimand which is still valid as it has not been redeemed at
HIdP, yet. Using this method, the attacker can impersomaaonest user at the RP. To accomplish this,
the attacker starts a new login flow at the RP with the userailesadress. In Steps| of Figure8, he
provides the authorization code he has learned along witlegmvalid) access token and the state from
his (new) login flow to the RP. The RP then requests an acc&ss &nd an id token from HIdP with
this (still valid) authorization code. The RP receives advatcess token and a valid id token (for the
honest user) from HIdP. As the RP uses this valid access takbis case, all subsequent requests from
the RP to HIdP are successful and the RP receives the usethé bbnest user, the RP considers the
attacker to be logged in as the honest user. This breaks thergigation of OpenlID Connect (compare
our OAuth authentication property in Sectibrd).

B. The Generic Web Model

In this section, we present the model of the web infrastnecs proposed ir8] and [9], along with the
following changes and additions:

e We introduce a new headdmthorization, as a model for HTTP Basic Authenticatiéh.

e Browsers now may have multiple passwords stored for a simiggn; before, there was only one
password for each origin.

B.1. Communication Model
We here present details and definitions on the basic conoéfite communication model.

Terms, Messages and EventsThe signature for the terms and messages considered in this work is
the union of the following pairwise disjoint sets of funetisymbols:

e constantC =IPsUSU{T, L, <o} where the three sets are pairwise disjofhis interpreted to
be the set of ASCII strings (including the empty strijgandIPs is interpreted to be a set of (IP)
addresses,

e function symbols for public keys, (a)symmetric encryptaecryption, and signaturegsub(-),
ency(-,-), deca(+,-), encs(+,-), decs(+, -), sig(+,-), checksig(,-), andextractmsg(-),

18Note that although the header is called “Authorization'lifieing REC2617), this is a mechanism for authentication.
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dec,(enca (X, pub(y)),y) =X (1)
decs(encs(X,Y),y) = X 2
checksig(sig(x,y), X, pub(y)) =T 3
mi((X1,..., %)) =% if1<i<n 4
Ti((X1,..., %)) =< if j&{1,....,n} (5)

Figure 10. Equational theory foE.

e n-ary sequence§,(-),(,),(,-,-), etc., and
e projection symbolsr(-) for all i € N.

For strings (elements iff), we use a specific font. For exampHLTPReq andHTTPResp are strings.
We denote byDoms C S the set of domains, e.gexample.com € Doms. We denote byMethods C S
the set of methods used in HTTP requests, @R[, POST € Methods.

The equational theory associated with the signaklisegiven in FigurelO.

Definition 1 (Nonces and Terms).By X = {xo,X1,... } we denote a set of variables and iy we de-
note an infinite set of constantsgnhce$ such thatz, X, and A’ are pairwise disjoint. FoN C A/, we
define the sefy(X) of termsover>UN U X inductively as usual: (1) Iif e NUX, thent is aterm. (2) If
f € Zis ann-ary function symbol irk for somen > 0 andty, ... ,t, are terms, therfi(ts, ... ,ty) is a term.

By = we denote the congruence relation @g(X) induced by the theory associated wEh For
example, we have that (dec,(enc,((a,b),pub(k)),k)) = a.

Definition 2 (Ground Terms, Messages, Placeholders, Protoessages)By 7y = “In(0), we denote
the set of all terms ovex U N without variables, calledround termsThe setM of messages (oveX))
is defined to be the set of ground termg.

We define the s8fyrocess= {v1, 2, . .. } of variables (called placeholders). The 3ét := 75 (Vprocesd
is called the set gbrotomessages.e., messages that can contain placeholders.

Example 1. For examplek € A’ and pub(k) are messages, wheketypically models a private key
and pub(k) the corresponding public key. For constaatsh, ¢ and the noncé&k € A/, the message
enc,((a,b,c), pub(k)) is interpreted to be the messageb,c) (the sequence of constardsh, c) en-
crypted by the public kepub(K).

Definition 3 (Normal Form). Lett be aterm. Tha@ormal formoft is acquired by reducing the function
symbols from left to right as far as possible using the equatitheory shown in Figurg&0. For a term
t, we denote its normal form as.

Definition 4 (Pattern Matching). Let patternc 7, ({*}) be a term containing the wildcard (variable
x). We say that a termmmatches patteriff t can be acquired fromatternby replacing each occurrence
of the wildcard with an arbitrary term (which may be differdor each instance of the wildcard). We
write t ~ pattern For a sequence of patterpatternswe write t~patternsto denote that matches at
least one pattern ipatterns

For a termt’ we writet’| patternto denote the term that is acquired fréhiby removing all immediate
subterms of’ that do not matclpattern
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Example 2. For example, for a patterp= (T, *) we have that T,42) ~ p, (L,42) £ p, and
(L, T),(T,23),(a,b), (T, L)) p=((T,23),(T, 1)) .

Definition 5 (Variable Replacement). LetN C A(, 7 € In({X1, ..., %n}), andty,... .ty € IN.
By 7[ti/X1,...,tn/Xn] we denote the (ground) term obtained frenby replacing all occurrences f
inT byt foralli e {1,...,n}.

Definition 6 (Events and Protoevents).An event (oveltPs and ) is a term of the form(a, f,m), for

a, f e IPsandme M, wherea is interpreted to be the receiver address &iiglthe sender address. We
denote byE the set of all events. Events oviéts and M” are calledprotoeventsand are denoted”.
By 2Z0 (or 22”0, respectively) we denote the set of all sequences of (@etny)s, including the empty
sequence (e.g(), ((a, f,m), (@, f’',m),...), etc.).

Atomic Processes, Systems and Runs.
An atomic process takes its current state and an event as anlithen (non-deterministically) out-
puts a new state and a set of events.

Definition 7 (Generic Atomic Processes and SystemspA (generic) atomic process a tuple
p=(1°,Z°R,)

wherel P C IPs, ZP € T is a set of stateRP C (£ x ZP) x (22”0 x Ty (Vprocesd) (input event and old
state map to sequence of output events and new state#,’@ﬂp is the initial state ofp. For any new
states and any sequence of nondeg, 7, ... ) we demand thad[n; /v1,12/v2,...] € ZP. A systemP is
a (possibly infinite) set of atomic processes.

Definition 8 (Configurations). A configuration of a syster®t is a tuple(S E,N) where the state of the
systemSmaps every atomic procepsc P to its current stat&(p) € ZP, the sequence of waiting events
E is an infinite sequenég (ey, e, . .. ) of events waiting to be delivered, ahtis an infinite sequence of
nonces(ng,ny,...).

Definition 9 (Concatenating sequences)For a terma = (ay,...,&) and a sequence= (by,by,...),
we define theoncatenatiorasa- b := (ay,...,a,b1,by,...).

Definition 10 (Subtracting from Sequences).For a sequencX and a set or sequendewe define
X\Y to be the sequence where for each element M, a non-deterministically chosen occurence of
that element irX is removed.

Definition 11 (Processing Steps)A processing step of the systahis of the form

(SE,N) 8 (S,E/,N)

P—Eout
where
1. (SE,N) and(S,E’,N’) are configurations aP,
2. en = (a,f,m) € Eis an event,

3. p€ Pis aprocess,

19Here: Not in the sense of terms as defined earlier.
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4. Eqyt is a sequence (term) of events
such that there exists
1. a sequence (terni,, C 22”0 of protoevents,
2. aterms” € T (Vprocess:
3. asequencén,Vy,...,V;) of all placeholders appearing K}, (ordered lexicographically),
4. asequencB” = (n1,72,...,n;) of the firsti elements iN
with
1. ((&n,S(P)). (E4ns)) € RPandac 17,
2. Eout=E§{mu/va,...,m/vi]
3. S(p) =s’[my/v1,...,m/vi] andS(p’) = S(p') forall p' # p
4. E' =Eout- (E\ {en})
5. N =N\N¥
We may omit the superscript and/or subscript of the arrow.

Intuitively, for a processing step, we select one of the psses inP, and call it with one of the events
in the list of waiting event&. In its output (new state and output events), we replace aoyrences of
placeholders, by “fresh” nonces fromN (which we then remove fromll). The output events are then
prepended to the list of waiting events, and the state of thegss is reflected in the new configuration.

Definition 12 (Runs). Let P be a systemE° be sequence of events, aNfl be a sequence of nonces. A
run p of a systen® initiated by E° with nonces Nis a finite sequence of configuratiofi§€®, E°,N°), ...,
(S, E",N")) or an infinite sequence of configuratiofss’, E%,N?),...) such thatS(p) = ) for all
pe P and(S,E' N') — (S+1,E*L NI*1) for all 0 < i < n (finite run) or for alli > 0 (infinite run).

We denote the sta®'(p) of a proces® at the end of a rup by p(p).

Usually, we will initiate runs with a sé&° containing infinite trigger events of the forfa, a, TRIGGER)|]
for eacha € IPs, interleaved by address.

Atomic Dolev-Yao ProcessesWe next define atomic Dolev-Yao processes, for which we redhiat
the messages and states that they output can be computed fignmally, derived) from the current
input event and state. For this purpose, we first define whae#ns to derive a message from given
messages.

Definition 13 (Deriving Terms). Let M be a set of ground terms. We say thaerm m can be derived
from M with placeholders \if there existn > 0, my,...,my, € M, andr € Tp({X, ..., %} UV) such that
m= 7[m/X1,...,M/%]. We denote byl, (M) the set of all messages that can be derived fkbmvith
variablesv.

For examplea € dy; ({enca((a,b,c),pub(Kk)),K}).

Definition 14 (Atomic Dolev-Yao Process).An atomic Dolev-Yao process (or simply, a DY procéss)
atuplep=(IP,ZP, Rp,sg) such that(IP, ZP, Rp,sg) is an atomic process and (Zy C 7, (and hence,
38 € Ty), and (2) for all event® € £, sequences of protoeverts s € Ty, S € Ty (Vprocesd, With
((es),(E,s)) € RPitholds true thak, s’ € dy,...{{€S}).
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Definition 15 (Atomic Attacker Process). An (atomic) attacker process for a set of sender addresses
A C IPs is an atomic DY procesp = (I,Z,R,s) such that for all events, ands € T, we have that
((e9),(E,s)) € Riff § = (e E,s) andE = ((ag, f1,m),...,(an, fn,my)) withne N, a,...,a, € IPs,
fo,..., fn € A my,... .My € Ayl {€S}).

B.2. Scripting Processes

We define scripting processes, which model client-sidg8og technologies, such as JavaScript. Script-
ing processes are defined similarly to DY processes.

Definition 16 (Placeholders for Scripting Processes)BY Vscript = {A1, ... } we denote an infinite set
of variables used in scripting processes.

Definition 17 (Scripting Processes).A scripting procesgor simply, ascrip) is a relationR C T, x
To (Vscript) such that for alb € T, S' € Ty (Vscript) With (s, ) € Rit follows thats' € Neeripe(S)-

A script is called by the browser which provides it with stamtformation (such as the script’s last state
and limited information about the browser’s stateYhe script then outputs a ters) which represents
the new internal state and some command which is interpistélde browser. The tersi may contain
variables\,... which the browser will replace by (otherwise unused) plat@dgrsy,... which will
be replaced by nonces once the browser DY process finisHestietly providing the script with a way
to get “fresh” nonces).

Similarly to an attacker process, we define #tiacker script R

Definition 18 (Attacker Script). The attacker scripR" outputs everything that is derivable from the
input, i.e.,R" = {(s,8) | s€ Ty, s € dy,,,(9)}-

B.3. Web System

The web infrastructure and web applications are formalizgdvhat is called a web system. A web
system contains, among others, a (possibly infinite) setYopidcesses, modeling web browsers, web
servers, DNS servers, and attackers (which may corrupt etitéies, such as browsers).

Definition 19. A web systeny/s = (W, S, script, E?) is a tuple with its components defined as follows:

The first componentp, denotes a system (a set of DY processes) and is partitiotethie set$lon,
Web, andNet of honest, web attacker, and network attacker processgmatively.

Every p € Web U Net is an attacker process for some set of sender addréssed’s. For a web
attackerp € Web, we require its set of addresssto be disjoint from the set of addresses of all other
web attackers and honest processes, lifen| P = 0 for all p € Hon UWeb. Hence, a web attacker
cannot listen to traffic intended for other processes. Alsorequire thaA =P, i.e., a web attacker can
only use sender addresses it owns. Conversely, a netwadkattmay listen to all addresses (i.e., no
restrictions orl P) and may spoof all addresses (i.e., thefsatay belPs).

Every p € Hon is a DY process which models eithemab serveraweb browseror aDNS server
as further described in the following subsections. Jusbasvéb attackers, we require thatdoes not
spoof sender addresses and that its set of addrésseslisjoint from those of other honest processes
and the web attackers.

The second componery, is a finite set of scripts such thRt" € 5. The third componentcript, is
an injective mapping frons to S, i.e., byscript everys € § is assigned its string representatianipt(s).

Finally, E® is an (infinite) sequence of events, containing an infiniteber of events of the form
(a,a, TRIGGER) for everya € Upeqp! P

A run of % is a run of %/ initiated byE°.
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C. Message and Data Formats

We now provide some more details about data and messagetfotha are needed for the formal
treatment of the web model and the analysis of Browser|Dgmtesl in the rest of the appendix.

C.1. Notations

Definition 20 (Sequence Notations)For a sequence= (t3,...,t,) and a seswe uset ! sto say that
t,...,tn €s. We definexet <= Ji: t=x. We writet +% y to denote the sequencg, ..., tn,Y).
For a finite seM with M = {my, ..., m,} we use(M) to denote the term of the forgmy,...,m,). (The
order of the elements does not matter; one is chosen ailyiyrar

Definition 21. A dictionary over X and ¥Ys a term of the form

<<klvvl>7- ) <kn7Vn>>

whereky,...,ky € X, vq,...,Va €Y, and the keyki,...,k, are unique, i.e.Yi # j : k # k;. We call
every term(ki,vi), i € {1,...,n}, anelemenif the dictionary with keyk; and valuev;. We often write
[Ki:va,....Ki:Vi,... Ko vp] instead of((ki,v1),..., (kn,Vn)). We denote the set of all dictionaries over
X andY by [X x Y].

We note that the empty dictionary is equivalent to the emptuence, i.e]] = (). Figurell shows the
short notation for dictionary operations that will be useldew describing the browser atomic process.
For a dictionaryz = [k : v1,ka : Va,... Ky 1 Vn] we writek € zto say that there exisissuch thak = k;.

We write z[Kj] := v; to extract elements. K ¢ z, we setzlk] := ().

Ke:vi,.. Kt Vi, kvl K] = v (6)
ke :va,.. kicy i Vicn, ki Viskips cViga .. ket v — ki =
ky:vi,... kio1:Vicg,KigriViga. .. koo v )

Figure 11. Dictionary operators with X i <n.

Given a ternt = (ty,...,t,), we can refer to any subterm using a sequence of integerssufiterm is
determined by repeated application of the projectipfor the integers in the sequence. We call such
a sequence pointer.

Definition 22. A pointeris a sequence of non-negative integers. We wrifefor the application of the
pointerp to the termr. This operator is applied from left to right. For pointerssisting of a single
integer, we may omit the sequence braces for brevity.

Example 3. For the termr = (a,b,(c,d, (e, f))) and the pointefp = (3,1), the subterm of- at the
positionpis ¢ = m1(m3(7)). Also, 7.3.(3,1) =7.3p=7.331=e

To improve readability, we try to avoid writing, e.@.2 or 72(0) in this document. Instead, we will
use the names of the components of a sequence that is of addfifine as pointers that point to the
corresponding subterms. E.g., if @rigin term is defined ashost protocol) ando is an Origin term,
then we can writ®@.protocol instead ofr,(0) or 0.2. See also Exampke
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C.2. URLs
Definition 23. A URL s a term of the form

(URL, protocol, host path parametersfragment

with protocol € {P, S} (for plain (HTTP) andsecure (HTTPS))hoste Doms, path€ S, parameterss
[S X ‘IN], andfragmente 7,,. The set of all valid URLs i&JRLs.

Thefragmentpart of a URL can be omitted when writing the URL. Its valuehiert defined to be .
Example 4. For the URLu = (URL,a,b,c,d), u.protocol = a. If, in the algorithm described later, we
sayu.path := ethenu = (URL,a,b,c,e) afterwards.

C.3. Origins

Definition 24. An origin is a term of the form{host protocol) with hoste Doms andprotocol € {P,S}.
We write Origins for the set of all origins.

Example 5. For example{F00, S) is the HTTPS origin for the domaifo0, while (BAR,P) is the HTTP
origin for the domairBAR.
C.4. Cookies

Definition 25. A cookieis a term of the form(nameconten} wherenamec 7., andcontentis a term

of the form(value securgsessionhttpOnly) wherevaluec 7., secure sessionhttpOnlyc {T, L}. We
write Cookies for the set of all cookies an@ookies” for the set of all cookies where names and values
are defined ovet, (V).

If the secureattribute of a cookie is set, the browser will not transfeés tookie over unencrypted
HTTP connections. If theessiorflag is set, this cookie will be deleted as soon as the browsdosed.
ThehttpOnlyattribute controls whether JavaScript has access to thideo

Note that cookies of the form described here are only coathin HTTP(S) requests. In responses,
only the componentsameandvalueare transferred as a pairing of the fofmamevalue).

C.5. HTTP Messages

Definition 26. An HTTP requests a term of the form shown ir8f. An HTTP responsés a term of the
form shown in 9).

(HTTPReq, nonce methodhost path parametersheadersbody) (8)
(HTTPResp, noncestatusheadersbody) 9)

The components are defined as follows:
e noncec A serves to map each response to the corresponding request
e methode Methods is one of the HTTP methods.
e hoste Doms is the host name in the HOST header of HTTP/1.1.

e pathe S is a string indicating the requested resource at the seider s
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e statusc S is the HTTP status code (i.e., a number between 100 and 50fiasd by the HTTP
standard)

e parameterss [S x 7] contains URL parameters

e headersec [S X ‘IN], containing request/response headers. The dictionanyegits are terms of
one of the following forms:

e (Origin,0) whereo is an origin,

(Set-Cookie,C) wherec is a sequence of cookies,

(Cookie,C) Wherec €, [S X 79\(] (note that in this header, only names and values of cookies
are transferred),

(Location,l) wherel € URLs,

e (Referer,r) wherer € URLs,

e (Strict-Transport-Security, T),
{

e (Authorization,(u,p)) whereu, p€ S,
e bodye 7, in requests and responses.

We write HT TPRequests/HT TPResponses for the set of all HTTP requests or responses, respectively.
Example 6 (HTTP Request and Response).

r :=(HTTPReq, N1,POST,example.com, /show, ((index, 1)),
[Origin: (example.com,S)|,(foo,bar)) (10)
S:=(HTTPResp, Ny, 200, ((Set-Cookie, ((SID, (N2, L, 1, T))))), (somescript,X)) (11)

An HTTP GET request for the URLhttp://example.com/show?index=1 is shown in (0), with an
Origin header and a body that contaitiso,bar). A possible response is shown itl§, which contains
an httpOnly cookie with nam&ID and valuen, as well as the string representatiosmescript of the
scripting processcript !(somescript) (which should be an element gj and its initial statex.

Encrypted HTTP Messages..For HTTPS, requests are encrypted using the public key oféinecr.
Such a request contains an (ephemeral) symmetric key clhysiie client that issued the request. The
server is supported to encrypt the response using the syiarkey.

Definition 27. An encrypted HTTP reques$ of the formenc,((m,k’),k), wherek, k' € AL andm €
HTTPRequests. The correspondingncrypted HTTP responseould be of the formencs(n', k'), where
m' € HTTPResponses. We call the sets of all encrypted HTTP requests and respttiE& PSRequests
or HTTPSResponses, respectively.

Example 7.

enc, ({r, k/>7 pUb(kexampIe.con)) (12)
encs(s,K) (13)

The term (2) shows an encrypted request (withas in (L0)). It is encrypted using the public key
pub(Kexample.con)- The term {3) is a response (withas in (L1)). Itis encrypted symmetrically using the
(symmetric) keyk' that was sent in the requedt?).
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C.6. DNS Messages

Definition 28. A DNS requests a term of the formDNSResolve,domainn) wheredomaine Doms,
n e A’. We call the set of all DNS requedisNSRequests.

Definition 29. A DNS responsés a term of the form{DNSResolved,domainresult n) with domain
€ Doms, resulte IPs, n € A’. We call the set of all DNS responsB8lSResponses.

DNS servers are supposed to include the nonce they recene®NS request in the DNS response
that they send back so that the party which issued the reqarsnatch it with the request.

C.7. DNS Servers

Here, we consider a flat DNS model in which DNS queries are arexjvdirectly by one DNS server
and always with the same address for a domain. A full (hibieat) DNS system with recursive DNS
resolution, DNS caches, etc. could also be modeled to cevein attacks on the DNS system itself.

Definition 30. A DNS server din a flat DNS model) is modeled in a straightforward way astami
DY process(19, {s3},RY,<9). It has a finite set of addressEsand its initial (and only) state] encodes
a mapping from domain names to addresses of the form

Sg = ((domainjg,a;), (domainy, ay),...) .

DNS queries are answered according to this table (otheigigged).

D. Detailed Description of the Browser Model

Following the informal description of the browser model iec8on4.3, we now present a formal model.
We start by introducing some notation and terminology.

D.1. Notation and Terminology (Web Browser State)
Before we can define the state of a web browser, we first havefitoedwindows and documents.

Definition 31. A window is a term of the formw = (noncedocumentsopenel with noncec A/,
documents={ Documents (defined below)openerc AU {L} whered.active = T for exactly one

d €0 documentsf documentss not empty (we then call theactive document of \wWe writeWindows

for the set of all windows. We writez.activedocument to denote the active document inside window
w if it exists and() else.

We will refer to the window nonce gsvindow) reference

The documents contained in a window term to the left of théveaocument are the previously
viewed documents (available to the user via the “back” m)temd the documents in the window term
to the right of the currently active document are documevadable via the “forward” button.

A window a may have opened a top-level winddwi.e., a window term which is not a subterm of a
document term). In this case, tbpenerpart of the ternb is the nonce o4, i.e.,b.opener = anonce.

Definition 32. A document ds a term of the form

(noncelocation referrer, script, scriptstatescriptinputs subwindowsactive)
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where noncee A/, location € URLs, referrer € URLs U { L}, script € T scriptstate e I
scriptinputse 7y, subwindows= ) Windows, activee {T, L}. A limited documenis a term of the form
(nonce subwindowswith nonce subwindowsas above. A window € subwindowss called asubwin-
dow(of d). We writeDocuments for the set of all documents. For a document ternme writed.origin
to denote the origin of the document, i.e., the teftiillocation.host,d.location.protocol) €
Origins.

We will refer to the document nonce @ocument) reference
We can now define the set of states of web browsers. Note thasevthe dictionary notation that we
introduced in Definitior21.

Definition 33. Theset of states Zof a web browser atomic processcpnsists of the terms of the form

(windowsids, secretscookieslocalStoragesessionStorag&eyMapping
sts DNSaddresgpendingDN$pendingRequestisCorrupted

where
e windowsc " Windows,
o idscl Ty,
e secretse [Origins X Tﬂ\[]’
e cookiesis a dictionary oveDoms and sequences @ookies,
¢ localStoragec [Origins X ‘IN],
e sessionStorage [ORx T,| for OR:= {(0,r)| 0 € Origins, r € A(},
e keyMappings [Doms x Ty,
e stsc! Doms,
e DNSaddress IPs,
e pendingDNSE [A( x Zy],
¢ pendingRequests 7,
e andisCorruptede { |, FULLCORRUPT, CLOSECORRUPT}.

Definition 34. For two window termsv andw’ we writew 9% v/ if

w €<> W .activedocument.subwindows .
We write <9, for the transitive closure.

In the following description of the web browser relatiBh we use the helper functioribwindows,
Docs, Clean, CookieMerge andAddCookie.

Given a browser stat Subwindows(s) denotes the set of all pointéP¢o windows in the window list
s.windows, their active documents, and (recursively) the subwindofithese documents. We exclude
subwindows of inactive documents and their subwindows h\Dics(s) we denote the set of pointers
to all active documents in the set of windows reference@diywindows(s).

20Recall the definition of a pointer in Definitid22.
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Definition 35. For a browser statewe denote bysubwindows(s) the minimal set of pointers that sat-
isfies the following conditions: (1) For all windows €% swindows there is ap € Subwindows(s)
such thas.p = w. (2) For allp € Subwindows(s), the active documertt of the windows.p and every
subwindoww of d there is a pointep’ € Subwindows(s) such thas.p’ = w.

Given a browser statg the setDocs(s) of pointers to active documents is the minimal set such that
for everyp € Subwindows(s), there is a pointep’ € Docs(S) with s.p’ = s.p.activedocument.

By Subwindows™ (s) andDocs* (s) we denote the respective sets that also include the inative-
ments and their subwindows.

The functionClean will be used to determine which information about windowsd a@locuments the
script running in the documendthas access to.

Definition 36. Letsbe a browser state amda document. By lean(s,d) we denote the term that equals
s.windows but with all inactive documents removed (including theibwindows etc.) and all subterms
that represent non-same-origin documents vdrteplaced by a limited document with the same
nonce and the same subwindow list. Note that non-sameaatigtuments on all levels are replaced by
their corresponding limited document.

The functionCookieMerge merges two sequences of cookies together: When used in dhesér;
oldcookieds the sequence of existing cookies for some origewcookiess a sequence of new cookies
that was output by some script. The sequences are merged s&tioof cookies using an algorithm that
is based on th&torage Mechanisralgorithm described in RFC6265.

Definition 37. For a sequence of cookies (with pairwise different nanoéddookiesand a sequence
of cookiesnewcookiesthe setCookieMerge(oldcookiesnewcookiey is defined by the following al-
gorithm: Fromnewcookiesemove all cookiex that havec.content.httpOnly = T. For anyc,
¢ ! newcookiesc.name = ¢’.name, remove the cookie that appears left of the othenémwcookies
Let m be the set of cookies that have a name that either appealddookiesor in newcookiesbut not
in both. For all pairs of cookie&Cyid, Cnew) With Coig €1 oldcookies Chew €' Newcookiescog.name =
Cnew-name, addCpey t0 Mif Coig.content.httpOnly = | and addcyy to m otherwise. The result of
CookieMerge(oldcookiesnewcookiegis m.

The functionAddCookie adds a cookie received in an HTTP response to the sequence of cookies
contained in the sequenaddcookies It is again based on the algorithm described in RFC6265 but
simplified for the use in the browser model.

Definition 38. For a sequence of cookies (with pairwise different namookiesand a cookie, the
sequencéddCookie(oldcookiesc) is defined by the following algorithm: Let:= oldcookies Remove
anyc from mthat hasc.name = ¢’.name. Appendc to mand returrm.

The functionNavigableWindows returns a set of windows that a document is allowed to na@igake
closely follow [14], Section 5.1.4 for this definition.

Definition 39. The setNavigableWindows(W,s) is the seWW C Subwindows(s') of pointers to windows
that the active document in is allowed to navigate. The s# is defined to be the minimal set such
that for everyw’ € Subwindows(s') the following is true:

e If S.W.activedocument.origin = §.W.activedocument.origin (i.e., the active documents
in wandw’ are same-origin), thew € W, and

o If SN ¢ W A BW € Subwindows(s) with . W <9 & W’ (W is a top-level window

andw is an ancestor window af’), thenw’ € W, and
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o If 3P e Subwindows(s) such that.w 19", ¢

A §.P.activedocument.origin =S .W.activedocument.origin (W is not a top-level window
but there is an ancestor windgwof w with an active document that has the same origin as the
active document i), thenw’ € W, and

e If 3p< Subwindows(s) such that'.w.opener = §.p.nonce AP € V_V_(W is a top-level window—
it has an opener—arid is allowed to navigate the opener windowvdf ), thenw’ € W.

D.2. Description of the Web Browser Atomic Process

We will now describe the relatioRP of a standard HTTP browsgr We defing(({(a, f,m)),s),(M,s))

to belong toRP iff the non-deterministic algorithm presented below, wigéren ((a, f,m),s) as input,
terminates wittstop M, s, i.e., with outputM ands’. Recall that(a, f,m) is an (input) event andis a
(browser) stateM is a sequence of (output) protoevents, drid a new (browser) state (potentially with
placeholders for nonces).

Notations.. The notationlet n < N is used to describe thatis chosen non-deterministically from the
setN. We writefor each s € M do to denote that the following commands (urgild for) are repeated

for every element itM, where the variablsis the current element. The order in which the elements are
processed is chosen non-deterministically. We will wiibe example,

let X,y such that (Constant,X,y) =t if possible; otherwisedoSomethingElse
for some variables,y, a stringConstant, and some term to express thak := m(t), andy := m3(t)
if Constant = m1(t) and if |(Constant,X,y)| = [t|, and that otherwisg andy are not set and doSome-
thingElse is executed.
Placeholders.ln several places throughout the algorithms presentedvwexise placeholders to gener-

ate “fresh” nonces as described in our communication meed Definitionl). Figurel12 shows a list
of all placeholders used.

| Placeholdet Usage \
n Algorithm 7, new window nonces
vy Algorithm 7, new HTTP request nonce
V3 Algorithm 7, lookup key for pending HTTP requests entry
Vg4 Algorithm 5, new HTTP request nonce (multiple lines)
Us Algorithm 5, new subwindow nonce
Vg Algorithm 6, new HTTP request nonce
vy Algorithm 6, new document nonce
Vg Algorithm 4, lookup key for pending DNS entry
Vg Algorithm 1, new window nonce
10 - - - Algorithm 5, replacement for placeholders in scripting process oytput

Figure 12. List of placeholders used in browser algorithms.

Before we describe the main browser algorithm, we first defomee functions.

Functions. In the description of the following functions we uagef, m, ands as read-only global input
variables. All other variables are local variables or arguots.

The following function, GETNAVIGABLEWINDOW, is called by the browser to determine the win-
dow that isactually navigated when a script in the winda\Ww provides a window reference for nav-
igation (e.g., for opening a link). When it is given a windogfarence (nonceyindow; this function
returns a pointer to a selected window terng'in
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o If windowis the string BLANK, a new window is created and a pointer to that window is retdirn

e If windowis a nonce (reference) and there is a window term with a neferef that value in the
windows ing, a pointew’ to that window term is returned, as long as the window is ralig by
the current window’s document (as definedNyvigableWindows above).

In all other casesy is returned instead (the script navigates its own window).

Algorithm 1 Determine window for navigation.

1: function GETNAVIGABLEWINDOW (W, window noreferrer, ')

2 if window= _BLANK then > Open a new window wherBLANK is used
3 if noreferrer= L then

4 letw := (vg,(),s .W.nonce)
5:
6
7
8

else
letw := (v, (), L)
end if
let S .windows := §.windows +{ W
< and letW be a pointer to this new elementsh
9: return W
10: end if
11: let W < NavigableWindows(W,s') such thats.W.nonce = window
< if possible; otherwise returnw

12:  return w
13: end function

The following function takes a window reference as input egtdrns a pointer to a window as above,
but it checks only that the active documents in both windowsame-origin. It creates no new windows.

Algorithm 2 Determine same-origin window.

1: function GETWINDOW (W, window; S)
2: let W + Subwindows(s') such thats.W .nonce = window
< if possible; otherwise returnw

3 if §.W.activedocument.origin=S.W.activedocument.origin then
4 return W

5: end if

6 return w

7: end function

The next function is used to stop any pending requests foraifspwindow. From the pending
requests and pending DNS requests it removes any requébttheigiven window referenae

Algorithm 3 Cancel pending requests for given window.

1: function CANCELNAV(n, S)

2: remove all (n,req,key,f) from S.pendingRequests for any req, key; f

3 remove all (x, (n,messaggurl)) from S.pendingDNS

<~ for any x, messageurl
4: return §
5: end function
The following function takes an HTTP requesessageas input, adds cookie and origin headers to

the message, creates a DNS request for the hosthame givha neduest and stores the request in
S.pendingDNS until the DNS resolution finishes. For normal HTTP requestferenceis a window
reference. For XHRseferences a value of the forrjdocumentnonce wheredocuments a document
reference andionceis some nonce that was chosen by the script that initiatedetipgest.url contains
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the full URL of the request (this is mainly used to retrieve grotocol that should be used for this
message, and to store the fragment identifier for use atetdbument was loadedrigin is the origin
header value that is to be added to the HTTP request.

Algorithm 4 Prepare headers, do DNS resolution, save message.

1: function SEND(referencemessageurl, origin, referrer, s)
2:  if messag@ost € §.sts then
3: let url.protocol :=8
4: end if
5: let cookies= ({(C.name, C.content.value)|c €V §.cookies|[messaghost]
< A(C.content.secure = (Url.protocol =8))})
6: let messag@eaders|[Cookie] := cookies
7: if origin £ L then
8: let messag@eaders[0rigin| := origin
9: end if
10: if referrer#£ L then
11: let messag@eaders|Referer] := referrer
12: end if

13: let S.pendingDNS[vg] := (referencemessaggurl)
14: stop ((S.DNSaddress, a, (DNSResolve,hostrg))), S
15: end function

The functionRUNSCRIPT performs a script execution step of the script in the docursian(which
is part of the windows.W). A new script and document state is chosen according tcetaon defined
by the script and the new script and document state is savitdrwards, thecommandhat the script
issued is interpreted.

Algorithm 5 Execute a script.

1: function RUNSCRIPT(W, d, )
2:  lettree:= Clean(s,5.d)
3 let cookies= ({(c.name, C.content.value)|c €' §.cookies [S.d.origin.host]
— AC.content.httpOnly = L
<+ A (c.content.secure => (S.d.origin.protocol =8))})
let tiw < S.windows such thattlw is the top-level window containing)
let sessionStorage- s'.sessionStorage[(S.d.origin, tw.nonce)]
let localStorage= S.localStorage [s.d.origin]
let secrets= S.secrets [s.d.origin]
let R« script 1(s.d.script)
letin := (treg §.d.nonce,.d.scriptstate, §.d.scriptinputs, cookies
— localStoragesessionStorage’.ids, secret$
10: let staté < T, (V),
~ cookie§ <« Cookies”,
localStoragé« 7y (V),
sessionStorage— T (V),
command— T (V),
out* := (staté, cookie$ localStoragé sessionStoraggcommanil
such that(in,out") € R
11: let out:= out*[v10/A1,v11/ 2, - . -]
12: lets'.cookies [s.d.origin.host]
«+ 1= (CookieMerge(s'.cookies [§.d.origin.host], cookie$))
13:  lets.localStorage|s.d.origin| :=localStoragé
14: letS.sessionStorage [(S.d.origin, tiw.nonce)| := sessionStorage

©x N aA

AN
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15: let §.d.scriptstate = staté
16: switch commandio

17: case(HREF, url, hrefwindownoreferrer
18: let W := GETNAVIGABLEWINDOW (W, hrefwindow noreferrer, ')
19: let req:= (HTTPReq, v4,GET, url.host, url.path, (), url.parameters, ())
20: if noreferrer= L then
21: let referrer := §.d.1ocation
22: else
23: let referrer:= L
24: end if
25: let s := CANCELNAV(S.W .nonce,s)
26: SEND(S.W .nonce, req, url, L, referrer, ')
27: case(IFRAME, url,window)
28: letw := GETWINDOW (W, windows)
29: let req:= (HTTPReq, v4,GET, url.host, url.path, (), url.parameters, ())
30: let referrer := §.W.activedocument.location
31 letw := (vs, (), L)
32: let §.W.activedocument.subwindows
<s = d.W.activedocument.subwindows+! w
33 SEND(ws, req, url, L, referrer, §)
34: case(FORM, url, methoddata hrefwindowy
35: if methodZ {GET,POST} then 2
36: stop (), §
37: end if
38: let W := GETNAVIGABLEWINDOW (W, hrefwindow L, S
39: if method= GET then
40: let body:= ()
41: let parameters= data
42: let origin := L
43: else
44: let body:= data
45: let parameters= url.parameters
46: let origin := §.d.origin
47: end if
48: let req:= (HTTPReq, v4, methodurl.host, url.path, (), parametersbody)
49: let referrer := §.d.1ocation
50: let s := CANCELNAV(S.W.nonce,s)
51: SEND(S.W .nonce, req, url, origin, referrer, s)
52: case(SETSCRIPT,window script)
53: let W := GETWINDOW (W, window s)
54: let §.W.activedocument.script = script
55: stop (), s
56: case(SETSCRIPTSTATE, window scriptstate
57: let W := GETWINDOW (W, window s)
58: let S.W.activedocument.scriptstate ;= scriptstate
59: stop (), s
60: case(XMLHTTPREQUEST, url, methoddata xhrreference
61: if methode {CONNECT, TRACE, TRACK} A xhrreferenceZ {A(, L} then
62: stop (), s
63: end if
64: if url.host # §.d.origin.host

2lThe working draft for HTML5 allowed for DELETE and PUT metloth HTML5 forms. However, these have since
been removed. Seéstp://www.w3.0org/TR/2010/WD-html5-diff-20101019/#changes-2010-06-24.
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<> Vvurl #¢.d.origin.protocol then
stop (), §
end if
if methode {GET,HEAD} then
let data:= ()
let origin := L
else
let origin := §.d.origin
end if
let req:= (HTTPReq, v4, methodurl.host, url.path,,url.parameters,data)
let referrer := ¢.d.1ocation
SEND((S.d.nonce, xhrreferencg, req, url, origin, referrer, s)

case(BACK, window) 22

let W := GETNAVIGABLEWINDOW (W, window L, S

if 3] € N,] > 1such thats.w.documents.j.active = T then
let S.W .documents.j.active := L
let S.W.documents.(j — 1).active:= T
let s := CANCELNAV(S.W .nonce,s)

end if

stop (), s

case(FORWARD, window
let W := GETNAVIGABLEWINDOW (W, window L, S)
if 3] € N such thats.w.documents.j.active =T
~» A S.W.documents.(] + 1) € Documents then
let §.W.documents.j.active := L
let §.w.documents.(j +1).active:= T
let s := CANCELNAV(S.W.nonce,S)
end if
stop (),
case(CLOSE, window
let W := GETNAVIGABLEWINDOW (W, window L, S)
removes.w from the sequence containing it
stop (), s
case(POSTMESSAGE, window messaggrigin)
let W «+ Subwindows(s') such thats.W .nonce = window
if 3] € N such thats.w.documents.j.active =T
< A(origin # | = §.W.documents.].origin = origin) then
let S'.W.documents.T.script inputs

«» := ¢.W.documents.].scriptinputs
<+ +{ (POSTMESSAGE, S .W.nonce,s.d.origin, message
end if
stop (), §
caseelse
stop (), §

104: end function

The functionPROCESSRESPONSE is responsible for processing an HTTP respomsgponsgthat
was received as the response to a requegués} that was sent earlier. Ireference either a window
or a document reference is given (see explanation for Atlgorit above).requestUrlcontains the URL
used when retrieving the document.

22Note that navigating a window using the back/forward bugtdoes not trigger a reload of the affected documents. While
real world browser may chose to refresh a document in this,a@e assume that the complete state of a previously viewed
document is restored. A reload can be triggered non-detéstizally at any point (in the main algorithm).
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The function first saves any cookies that were containedarrésponse to the browser state, then
checks whether a redirection is requested (Location haldi¢hat is not the case, the function creates
a new document (for normal requests) or delivers the camigfithe response to the respective receiver
(for XHR responses).

Algorithm 6 Process an HTTP response.

1
2
3:
4

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:
35:
36:
37:

38:
39:
40:
41:
42:
43:
44

function PROCESSRESPONSE((responsegreferencerequestrequestUr] )
if Set-Cookie € responseheaders then
for eachc €0 responseeaders [Set-Cookie], ¢ € Cookies do
let S.cookies[requesthost]
< = AddCookie(S.cookies[requesthost],C)
end for
end if
if Strict-Transport-Security € responseheaders A requestUrlprotocol = S then
lets.sts = 5.sts +{ requestost
end if
if Referer € requestheaders then
let referrer := requestheaders[Referer]
else
let referrer:= L
end if
if Location € responséeaders Aresponsestatus € {303 307} then
let url := responseéheaders[Location]
if url.fragment = 1 then
let url.fragment := requestUrlfragment
end if
let method := requestmethod
let body := requestbody

if Origin € requestheaders then
let origin := (requestheaders|[0rigin], (requesthost,url.protocol))
else
let origin := L
end if
if responsestatus = 303Arequesinethod ¢ {GET,HEAD} then
let method := GET
let body := ()
end if
if W € Subwindows(s) such thats .W.nonce = referencethen
> Do not redirect XHRs.
stop (), s
end if

let req := (HTTPReq, v, method, url .host, url.path, (), url.parameters, body)
SEND(referencereq, url, origin, referrer, ')
end if
if 3W € Subwindows(s) such thats.W.nonce = referencethen
> normal response
if responséody 7 (x,x) then
stop{}, s
end if
let script:= 71 (responséody)
let scriptstate = > (responsebody)
let d := (17, requestUr]referrer, script, scriptstate(), (), T)
if §.W.documents = () then
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45:
46:
47:
48:
49:

50:
51:
52:
53:
54:

55:

let S.W.documents := (d)
else
leti < N such thats .W.documents.i.active =T
let S .W.documents.i.active (= |
removes.W.documents. (i + 1) and all following documents
<~ froms.W.documents
let . W.documents ;= §.W.documents +! d
end if
stop{},s

else if3W € Subwindows(s), d such thats'.d.nonce = 71 (reference
— AS.d=¢9.W.activedocument then > process XHR response

lets.d.scriptinputs:=S.d.scriptinputs +
(XMLHTTPREQUEST, responsebody, 7 (reference)

end if

56: end function

Main Algorithm.. This is the main algorithm of the browser relation. It reesithe messagaas input,
as well asa, f ands as above.

Algorithm 7 Main Algorithm

Input: (a, f,m),s
1 lets :=s
2: if sisCorrupted # 1 then

3:

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:

© N aR

let S.pendingRequests := (M, S.pendingRequests) > Collect incoming messages
letm' + dv(S)

leta < IPs

stop ((&,a,m)), s

if m= TRIGGER then > A special trigger message.
let switch«+ {1,2,3}
if switch= 1then > Run some script.

let W <— Subwindows(s') such thats .W.documents # ()
< if possible; otherwise stop(), §

letd := W+ activedocument

RUNSCRIPT(w, d, )

else ifswitch= 2 then > Create some new request.

letw := (v, (), L)

let §.windows := §.windows +{ w

let protocol«+ {P,S}

let host«— Doms

let path« S

let fragment« S

let parameters— [S x S|

let url := (URL, protocol host path parametersfragmen}
let req:= (HTTPReq, 12, GET, host path (), parameters())
SEND(v, req, url, L, )

else ifswitch= 3 then > Reload some document.

let W <— Subwindows(s) such thats .W.documents # ()
< if possible; otherwise stop(), §
let url ;== S .W.activedocument.location
let req:= (HTTPReq, 12, GET, url.host, url.path, (), url.parameters, ())
let referrer ;.= s .W.activedocument.referrer
let s := CANCELNAV(S.W.nonce,s)
SEND(S.W.nonce, req, url, L, referrer, )
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32: end if
33: else ifm= FULLCORRUPT then > Request to corrupt browser
34: let S.isCorrupted ;= FULLCORRUPT
35:  stop(),s
36: else ifm= CLOSECORRUPT then > Close the browser
37 letS.secrets = ()
38: let S.windows = ()
39 let S.pendingDNS := ()
40: let S.pendingRequests = ()
41:  letS.sessionStorage = ()
42: let .cookies ! Cookies such that
<+ (cel ¢ .cookies) «= (ccl scookiesAC.content.session= 1)

43: let S'.isCorrupted := CLOSECORRUPT
44.  stop(), s
45: else if3 (referencerequesturl  key, f) € ¢ .pendingRequests

< such thatm(decs(m,key)) = HTTPResp then > Encrypted HTTP response
46: let m' := decs(m, key)
47: if M .nonce # requesmonce then
48: stop (), s
49: end if
50: remove (referencerequesturl, key, f) from s'.pendingRequests
51: PROCESSRESPONSE(m, referencerequesturl, ')
52: else ifrry (M) = HTTPResp A 3 (referencerequesturl, L, f) € §.pendingRequests

< such thatm' .nonce = requestkey then
53: remove (referencerequesturl, L, f) from s.pendingRequests
54: PROCESSRESPONSE(m, referencerequesturl, s)

55: else ifm € DNSResponses then > Successful DNS response
56: if mnonce ¢ S.pendingDNSV m.result ¢ IPsV m.domain # m,(S.pendingDNS).host then
57 stop (), s
58: end if
59: let (referencemessageirl) := s.pendingDNS[m.nonce]
60: if url.protocol =8 then
61: let S.pendingRequests ;= S.pendingRequests
< 40 (referencemessageurl, v3, mresult)
62: let message= enc,({messagg/3),s .keyMapping messag@ost])
63: else
64: let S.pendingRequests ;= S.pendingRequests
« 40 (referencemessageurl, 1., mresult)
65: end if

66: let S'.pendingDNS ;= .pendingDNS — M.nonce
67:  stop({mresult,a messagg, S

68: end if

69: stop (), s

E. Formal Model of OAuth

We here present the full details of our formal model of OAutfick we use to analyze the authentication
properties.

We model OAuth as a web system (in the sense of AppeBdsx. We call a web systenoms =
(W,S,script, E?) anOAuth web systeriit is of the form described in what follows.
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E.1. Qutline

The system?/ = Hon U Net consists of network attacker processes Nit), a finite setB of web
browsers, a finite seRP of web servers for the relying parties, a finite HoP of web servers for the
identity providers, wittHon := BURP UIDP. More details on the processes# are provided below.
We do not model DNS servers, as they are subsumed by the keattacker. Figurd3 shows the set
of scripts$ and their respective string representations that are defipéhe mappingcript. The seE°
contains only the trigger events as specified in AppeBds

‘ ses ‘ script(s) ‘
Rat att_script
script_rp_index | script_rp_index
script_rp_implicit | script_rp_implicit
script_idp_form | script_idp_form

Figure 13. List of scripts in$ and their respective string representations.

This outlinesons. We will now define the DY processes iW/S and their addresses, domain names,
and secrets in more detail.

E.2. Addresses and Domain Names

The setPs contains for every network attackeriet, every relying party irRP, every identity provider
in IDP, and every browser iB a finite set of addresses each. Bidr we denote the corresponding
assignment from a process to its address. ThBseis contains a finite set of domains for every relying
party inRP, every identity provider inDP, and every network attacker Met. Browsers (inB) do not
have a domain.

By addr anddom we denote the assignments from atomic processes to skts afidDoms, respec-
tively.

E.3. Keys and Secrets

The setA of nonces is partitioned into five sets, an infinite sequécan infinite seKggy, an infinite
setKsign, and finite setPasswords, RPSecrets’ andProtectedResources. We thus have

N = N UKgs1 U Passwords URPSecrets’ U ProtectedResources .
~— —~—
infinite sequence finite finite finite finite

We then defindRPSecrets := RPSecretsU { L }. These sets are used as follows:

e The seiN contains the nonces that are available for each DY proceBs (it can be used to create
arun of W).

e The setKss, contains the keys that will be used for SSL encryption. dstéey: Doms — Kss.
be an injective mapping that assigns a (different) privaeth every domain. For an atomic DY
processp we definesslkey$ = ({(d,sslkey(d)) | d € dom(p)}).

e The setPasswords is the set of passwords (secrets) the browsers share wittightity providers.
These are the passwords the users use to log in at the IdPs.
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e The setRPSecrets is the set of passwords (secrets) the relying parties shihetlre identity
providers. These are the passwords the relying partiesousg in at the IdPs. The passwords
can also be blankl().

e The setProtectedResources contains a secret for each combination of IdP, client, aed U$hese
are thought of as protected resources that only the owné&eaksource (i.e., the user) should be
able to read.

E.4. ldentities, Passwords, and Protected Resources

Identites consist, similar to email addresses, of a useeramd a domain part. For our model, this is
defined as follows:

Definition 40. An identity (email address) is a term of the form'namedomair) with namec S and
domaine Doms.

Let ID be the finite set of identities. BDY we denote the sef(namedomain} € ID|domaine
dom(y)}.

We say that an ID igiovernedby the DY process to which the domain of the ID belongs. Folymal
we define the mappingovernor : ID — %, (namedomair) — dom*(domain.

The governor of an ID will usually be an IdP, but could alsolieadttacker. Besidesvernor, we define
the following mappings:

e By secretOfID : ID — Passwords we denote the bijective mapping that assigns secrets tdeadt i
tities.

e Let ownerOfSecret : Passwords — B denote the mapping that assigns to each secret a
browser thatowns this secret. Now, we define the mappinogmnerOfiD : ID — B, i —
ownerOfSecret(secretOfID(i)), which assigns to each identity the browser that owns tlés-id
tity (we say that the identity belongs to the browser).

e Let trustedRPs : Passwords — 2RP denote a mapping that assigns a setrasted relying parties
to each password. Intuitively a trusted relying party islging party the user entrusts with her
password (in the resource owner password credentials graaé of OAuth).

e Let clientIDOfRP : RP x IDP — S denote a mapping that assigns an OAuth client id for an re-
lying party to each combination of a relying party and an tidgrprovider. We require that
clientIDOfRP(-,i) is bijective for anyi € IDP.

e LetsecretOfRP : RP x IDP — RPSecrets denote a bijective mapping that assigns a relying party
password (or the empty password to each combination of a relying party and an identity
provider.

e As a shortcut, we define the mappisgcretOfClientlD : S x IDP — RPSecrets to return the
relying party password to a relying party identified by an @#Aalient id (at some specific
identity provider), i.e.,secretOfClientlD(s,i) maps tosecretOfRP(r,i) with r such thats =
clientIDOfRP(r,i).

e By resourceOf : IDP x RP x (IDU{_L}) — ProtectedResources we denote the injective mapping
that assigns a protected resource to each combination pidesgity, IdP and client (RP). We
also include protected resources that are not assignecptecdis user (in this case, the userli}.
(Note that a protected resource depends not only on the IdRisar ID but also the RP. This is
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motivated by the fact that different RPs may get access terdiit protected resources at one IdP,
even if they access the resources of the same user.)

E.5. Corruption

RPs and IdPs can become corrupted: If they receive the nmess8aguPT, they start collecting all
incoming messages in their state and (upon triggering) seell messages that are derivable from
their state and collected input messages, just like thelattgprocess. We say that an RP or an IdP is
honestif the according part of their stats.¢orrupt) is L, and that they are corrupted otherwise.

We are now ready to define the processegiias well as the scripts 8 in more detail.

E.6. Processes in W (Overview)

We first provide an overview of the processesin All processes imi/ contain in their initial states
all public keys and the private keys of their respective dosé&f any). We defindP = addr(p) for all
p € Hon.

Network Attacker. There is one atomic DY procesgm € Net which is a network attacker (see Ap-
pendixB.3), who uses all addresses for sending and listening.

Browsers. Eachb € B is a web browser as defined in Appendix The initial state contains all secrets
owned byb, stored under the origins of the respective IdP and of adtéidi RPs for the respective secret.
See AppendiE.8for details.

Relying Parties. Each relying party is a web server modeled as an atomic DYesso@ollowing the
description in Sectior2 and the fixes discussed in Sectidn The RP can either (at any time) launch
a client credentials mode flow or wait for users to start anthefother flows. RP manages two kinds
of sessions: Théogin sessionswhich are only used during the login phase of a user, ande¢hdce
sessiongmodeled by aervice tokems described above).

When receiving a special messageRRUPT) RPs can become corrupted. Similar to the definition of
corruption for the browser, RPs then start sending out aflsages that are derivable from their state.

Identity Providers. Each IdP is a web server modeled as an atomic DY process faliothe descrip-
tion in Section2 and the fixes discussed in Secti®nIn particular, users can authenticate to the IdP
with their credentials. Authenticated users can interdth the authorization endpoint of the IdP (e.g.,
to acquire an authorization code). Just as RPs, IdPs camigecarrupted.

E.7. Network Attackers

As mentioned, the network attackes is modeled to be a network attacker as specified in AppeRdx

We allow it to listen to/spoof all available IP addresses] hance, defing"® = IPs. The initial state is

%2 = (attdomssslkeyssignkeys$, whereattdomss a sequence of all domains along with the correspond-
ing private keys owned by the attackes, sslkeyds a sequence of all domains and the corresponding
public keys, angignkeyss a sequence containing all public signing keys for all ldPs

E.8. Browsers

Eachb € B is a web browser as defined in Appendixwith 1° := addr(b) being its addresses.

To define the inital state, first I&D° := ownerOfID~(b) be the set of all IDs ob. We then define the
set of passwords that a browdegives to an origiro to consist of two parts: (1) If the origin belongs
to an IdP, then the user’s passwords of this IdP are contam#ge set. (2) If the origin belongs to an
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RP, then those passwords with which the user entrusts thisr&Bontained in the set. To define this
mapping in the initial state, we first define for some progess

Secrets®P = {S‘ b = ownerOfSecret(s) A ((3i : s= secretOfID(i) Ai € governor *(p))

V(3R: pe RAsE trustedRPs }(R))) } .

Then, the initial stateg is defined as follows: the key mapping maps every domain fouitdic (ssl)
key, according to the mappinglkey; the DNS address is an address of the network attacker;sthef li
secrets contains an entfyd, s), (Secrets®P)) for eachp € RPUIDP andd e dom(p); ids s (IDP); sts
is empty.

E.9. Relying Parties

Arelying partyr € RP is a web server modeled as an atomic DY pro¢esZ", R', ) with the addresses
I" := addr(r). Its initial states), contains its domains, the private keys associated withoitsains, the
DNS server address, and information about IdPs RP is registd. The full state additionally contains
the sets of service tokens and login session identifiers théds issued as well as information about
pending DNS and pending HTTPS requests (similar to broywsBIR only accepts HTTPS requests.

RP manages two kinds of sessions: Togin sessionswhich are only used during the login phase
of a user, and theervice session@wve call the session identifier of a service sessi@emvice token
Service sessions allow a user to use RP’s services. Theatdtigoal of a login flow is to establish such
a service session.

We now first describe howcan become corrupted, then we describe the handling of DNSIai PS
requests and responses, before we describe the behaviodufg a login flow.

Corruption. Whenr receives a corrupt message, it becomes corrupt and actbdilatacker from then
on (i.e., it collects all incoming messages and non-detastically sends out all messages derivable
from its state).

Pending DNS Requests and Pending HTTPS Requeistse the RR also acts as an HTTPS client, it
manages two kinds of records for messages that have beenwanto the network and are waiting
for corresponding responses. When an HTTPS message is enhdte RP first needs to resolve the
hostname into an IP address. To this end, the RP first stoeedTAPS request (together with some
state information) in a subterm of its state caliethdingDN&nd (instead of sending the HTTPS request
immediately) sends out a DNS request to the DNS server. WHENSresponse arrives that matches
one of the entries in this subterm, the HTTPS request is sgndver the network (to the resolved IP
address) and stored in the subtgsandingRequestsf the RP’s state. Note that this mechanism is very
similar to (generic) browsers (see Appendix

Initial Request.In a typical flow,r will first receive an HTTP GET request from a browser for théhpa
/. In this caser returns the scriptcript_rp_index. In the browser, this script non-deterministically
selects an identity of the user, i.e., a combination of angeae and a domain of an IdP. Further this
script non-deterministically decides whether an inteévadigin (i.e., authorization code mode or im-
plicit mode) or a non-interactive login (i.e., resource ewpassword credentials mode) is used. If an
interactive login is chosen, the script instructs the bewvts send an HTTPS POST request for the
path /startInteractiveLogin. This POST request contains in its body the domain of the"idP.

23Note that while the script has selected an identity of the, usey the domain of the IdP is used in this case and during
the authentication to the IdP, a different username may bserh
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the script chooses a non-interactive login, the domain@idl, the username, and the user’'s password
are sentta in an HTTPS POST request for the pdifasswordLogin.

As the flow now forks into different branches, we will expldihe first part of) each of these branches
separately: If the script has chosen to run an interactigaJave continue our description in the para-
graphinteractive Loginbelow. Else, if the script has chosen to run a non-interadtigin, we continue
our description of this in the paragraplon-Interactive Login

Interactive Login. In this case,script_rp_index has sent an HTTPS POST request for the path
/startInteractiveLogin to r containing the name of an IdP in its body. Whereceives such a
requesty non-deterministically decides whether the OAuth auttatiin code mode or the OAuth im-
plicit mode is used. Also; non-deterministically selects a redirect URRHirect uri of its redirection
endpoints (and appends the domain of the IdP to this redilB¢t} or selects no redirect URI. Further,
non-deterministically selects a (fresh) nomstateand a (fresh) nonce as login session id. Thesgves

all the chosen information in its state. Nowgonstructs and sends an HTTPS response containing an
HTTP 303 location redirect or an HTTP 307 location redffé¢thosen non-deterministically) which
points to the corresponding authorization endpoint at ti dlong withr’'s OAuth client id for this
IdP, stateand information which OAuth modehas chosen. Additionally, this response also contains
a Set-Cookie header, which sets a cookie containing the leggsion id.r also stores a record in the
subtermloginSession®f its state. This record contains the login session id, tiesen OAuth mode,
and the domain of the IdP.

Later, when IdP redirects the user’'s browser'®redirection endpointyr will receive an HTTPS
GET request for the patfredirectionEndpoint. This request must contain a login session id cookie,
which refers to the information stored in the subtdaginSessionén r’s state. The request must also
contain a parameter with the domain of the IdP and this dommaist match the domain stored for this
login session.

If r has stored that for this login session the OAuth authoomatiode mode is used,checks if the
statevalue contained in a parameter is correct (i.e., the valukisfparameter is congruent to the value
recorded irr’s state). Thent extracts the authorization codedefrom the parameters of the incoming
request and prepares an HTTPS POST request to the IdP’s eokigoint to obtain an access token as
follows: r adds the authorization code to the request’s body. If agetldRI has been set byybefore
(according tor's state for this login session), the redirect URI is incldide the request’s body. If
knows an OAuth client secret for the ldPadds its OAuth client id and its OAuth client secret for the
IdP to the header of the request, elsedds its OAuth client id for the IdP to the request’s body. Now
r sends a DNS request for the domain of the IdP’s token endfmitite DNS server (according tés
state), saves this (prepared) request and all informationiging to the (incoming) HTTPS request
received from the browser (such as IP addresses, tempofBRP 8 keys) inpendingDNSn its state.
We will continue our description of which requestwiill process next in the OAuth authorization code
mode in the paragrapfoken Respondeelow.

If the (incoming) HTTPS request’s login sessiom atates that implicit mode is usedinstead sends
an HTTPS response to the sender of the incoming messageHTRIBS response contains the script
script_rp_implicit and the initial state for this script in this response corgdhe domain of the IdP.

In a browser, this script extracé&cesstokenandstatefrom the fragment part of its URL and extracts
the domain of the IdP from its initial state. The script themds this information in the body of an
HTTPS POST request for the patheceiveTokenFromImplicitGranttor.

Whenr receives such an HTTPS POST request (for the patleeiveTokenFromImplicitGrant),

r checks if this request contains a login session id cookigclwefers to the information stored in its

24Note that while in this paper we present an attack againstttbBased on an HTTP 307 location redirect, our analysis
shows that an HTTP 307 location redirect is safe at this poitite protocol flow.
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state and if the values aftateandidp (contained in the request) match the information there.tNex
prepares an HTTPS request to IdP’s inspection endpointitong the access token just received.
saves all information belonging to this new request and i@ (ning) request it had just received in
pendingDN3n its state and sends out a DNS request for the domain of #ie ikdspection endpoint to
the DNS server.

We describe what happens whetater receives the response from IdP in the paragiappection
Responséelow.

Non-Interactive Loginln this casescript_rp_index has sent an HTTPS POST request for the path
/passwordLogin to r containing a domain of an IdP, a username and a user’s passwdis body.
Next, r constructs an HTTPS POST request to the token endpoint ofdfPeThis request contains
the username and the user’'s password in its body andkifows an OAuth client secret for the IdP,
the request contains an HTTP header with OAuth client id and OAuth client secretr saves all
information belonging to this new request and the (incommeguest has just received in the subterm
pendingDNSn r’s state and sends out a DNS request for the domain of the tdies endpoint to the
DNS server.

We describe what happens whetater receives the response from the IdP in the paragfagkn
Responséelow.

Client Credentials Mode. When r receives aTRIGGER message (which models that non-
deterministically starts an OAuth flow in the client credalst mode),r first non-deterministically se-
lects a domain of an IdP. Thengconstructs an HTTPS POST request to the token endpoint déithe
This request contains an HTTP header withOAuth client id and OAuth client secrét. r saves all
information belonging to this (prepared) requespandingDNSand sends out a DNS request for the
domain of the IdP’s token endpoint to the DNS server.

We describe what happens wheifater receives the response from IdP in the paragigien Re-
sponsebelow.

Token Responsahenr receives an encrypted HTTP response that matches a rectid subterm
pendingRequestsf its state and belongs to a request for an access token fnoldPa(according to

the information recorded ipendingRequesksthenr extracts the access token and prepares an HTTPS
request to the IdP’s inspection endpoint containing thesstokenr saves all information belonging

to this new request ipendingDNSFurther,r also stores selected information, which is passed along in
r's state in the corresponding record of the incoming requeesth as the IP address of the sender and
the HTTPS response key of the request which initiatedequest for the access token before. Thren,
sends out a DNS request for the domain of the IdP’s inspeetigipoint to the DNS server.

Inspection Respons@/henr receives an encrypted HTTP response that matches a redbesnbterm

pendingRequesti its state and this record belongs to a request to an IdBjseirtion endpointy

behaves as follows: If the response belongs to a flow in dliettentials mode (according to the record),

r stops. Else, if the response contaifssOAuth client id,r retrieves the user id from the response and

non-deterministically chooses a fresh nonce as a servi@nta records in its state that the service

token belongs to this user at the IdP. Nowends out an HTTPS response to the IP address recorded in

the record inpendingRequesisvhich contains the IP address of the browser, which imjtisént either

user credentials, an authorization code, or an access)tokkis response contains the service token.
This concludes the description of the behaviour of an RP.

Formal description. We now provide the formal definition ofas an atomic DY proces$’,Z",R', ).

25Note that in our model, may even construct such a request dfoes not have an OAuth client secret for the IdP. In this
case, the symbal is placed in this header instead of an OAuth client secreg. [@R, however, will drop such a request, as it
is not authenticated.
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As mentioned, we definE = addr(r). Next, we define the set" of states ofr and the initial states,
of r.

Definition 41. An IdP registration records a term of the form
(tokenEndpointauthorizationEndpoininspectionEndpointlientld, clientPassword

with tokenEndpoint authorizationEndpoint inspectionEndpointe URLs, clientld € S, and
clientPassword= 4.

An IdP registration record for an identity provider i at a rehy party ris an IdP registration record
with tokenEndpoinhost, authorizationEndpoinhost, inspectionEndpoinhost € dom(i), clientld =
clientIDOfRP(r,i), andclientPassword= secretOfRP(r,i).

Definition 42. A state s€ Z" of an RP ris a term of the form(DNSAddressidps, serviceTokens
loginSessionskeyMapping sslkeys pendingDNS$ pendingRequestscorrupt) where DNSAddress
IPs, idps € [Doms x T,| is a dictionary of IdP registration recordserviceTokens [A( x Ty,
loginSessiong [9\[ X TN] is a dictionary of login session recordggyMappinge [S x A(], sslkeys=
sslkeys, pendingDNSe [ x Ty |, pendingRequests [A x T, |, corrupt € T,

An initial state g, of r is a state of with g,.idps being a dictionary that maps each domain of all
identity providers to an IdP registration record foatr, j.serviceTokens = §;.1oginSessions = (),
S-corrupt = L, ands;,.keyMapping is the same as the keymapping for browsers above.

We now specify the relatiolR’. Just like in AppendixD, we describe this relation by a non-
deterministic algorithm. In several places throughous @dgorithm we use placeholders to generate
“fresh” nonces as described in our communication model [ggdmition 1). Figurel4 shows a list of all
placeholders used.

| Placeholdet Usage \
V1 new HTTP request nonce
V2 lookup key for pending DNS entry
V3 new service token
V4 fresh HTTPS response key
s new HTTP request nonce
Vg lookup key for pending DNS entry
vy new CSRF token
Vg new login session cookie
Vg new HTTP request nonce
10 lookup key for pending DNS entry
11 new HTTP request nonce
V12 lookup key for pending DNS entry
V13 new HTTP request nonce
V14 lookup key for pending DNS entry

Figure 14. List of placeholders used in the relying party algorithm.

Algorithm 8 Relation of a Relying PartiR'

Input: (a f,m),s
1. if .corrupt # 1 V m= CORRUPT then
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2 let S.corrupt := ((a, f,m),s.corrupt)
3 letm' + dv(S)

4:  letd < IPs

5 stop{{a,am)),s

6: end if
7

. if 3(referencerequestkey, f) €! & .pendingRequests
< such thatmi(decs(m,key)) = HTTPResp then > Encrypted HTTP response
8: let m' := decs(m, key)
9: if M .nonce # requeshonce then
10: stop (), s
11 end if
12: remove (referencerequestkey, f) from s'.pendingRequests
13: let mode:= 71 (reference
14: if mode= code V mode= passwordV mode= client_credentialsthen
15: letidp, &, f/, ', K’ such that (modeidp,d, f',n’,k’) = referencef possible; otherwise stop(), s
16: let token:= n'.body[access_token]
17: let inspectionEndpoirnt= s'.idps[idp]
18: let parameters= inspectionEndpoinparameters
19: let parameters= parameterst! (token, token
20: let host:= inspectionEndpoindomain
21: let path:= inspectionEndpoinpath
22: let message= (HTTPReq, v1,GET, host path parameters(), ())
23: let S.pendingDNS[1] := ((inspect,modeidp,a, f’,n’,k’), message
24: stop ((S.DNSaddress, a, (DNSResolve,inspectionEndpoindomain, 1)), S
25: else ifmode= inspect then
26: let modeidp, &, f/, ', K’ such that (inspect,modeidp,d’, f’,n’,k’) = reference
— if possible; otherwise stop(), s
27: if mode= client_credentialsthen
28: stop (), s > In client credential grant mode, no service token is issued.
29: end if
30: let clientld := bodyclient_id]
3L if clientld= <'.idpslidp].clientIdV (clientld= () A mode= passwordA
< ¢.idpslidp|.clientPassword = 1) then

32: let user:= bodyuser]
33: else
34: stop (), s
35: end if
36: let serviceToken= v3
3T let S.serviceTokens[serviceToken= (user idp)
38: let M := encs((HTTPResp, N, 200 (), (serviceToker), k')
39: stop ((f',a’,m)), s
40: end if
41:  stop(),s
42: else ifm € DNSResponses then > Successful DNS response
43: if mnonce ¢ S.pendingDNSV m.result ¢ IPsV m.domain # m,(S.pendingDNS).host then
44: stop (), s
45: end if
46: let (referencemessage:= s.pendingDNS[m.nonce]

47 let S.pendingRequests ;= S.pendingRequests
< 40 (referencemessaggs, m.result)
48: let message= enc,((messagg/s),s .keyMapping[messagéost)|)
49: let S.pendingDNS := S.pendingDNS — m.nonce
50:  stop ({mresult,a messagg, S
51: else ifm= TRIGGER then > Start Client Credentials Grant
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52:
53:
54:
55:
56:
57:
58:
59:

60:
61:

62

63:

64:

65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
7.
78:

79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:

90:
91:
92:
93:

94:
95:
96:
97:

let idpEntry<« <.idps

let idp := 71 (idpEntry)

let tokenEndpoint= §.idps[idp|.tokenEndpoint > tokenEndpoinis a URL

let host:= tokenEndpoinfiomain

let path:= tokenEndpoinpath

let parameters= tokenEndpoinparameters

let headers= ((Authorization, (S.idps[idp].clientId,s.idps[idp|.clientPassword)))

let message=

< (HTTPReq,vs,P0ST,host path parametersheaders({grant_type,client_credentials)))

let S.pendingDNS[vg] := ((client_credentials,idp, 1, 1,1, ) message

stop ((S.DNSaddress, a, (DNSResolve,idp.tokenEndpoint.domain, vg))), S

: else > Handle HTTP requests
let Mgeq K, K', inDomainsuch that

<+ (Myeg, K) = dec, (M K') A (inDomaink’) € s.sslkeys

— if possible; otherwise stop(), s
let n, method path, parametersheadersbodysuch that

< (HTTPReq, n,methodinDomain path parametersheadersbody = myec

< if possible; otherwise stop(), s
if path= / then > Serve index page.

let m' := encs({(HTTPResp,Nn, 200, (), (script_rp_index,())),k)

stop ((f,a,m)), s
else ifpath= /startInteractiveLogin/A method= POST then > Serve start interactive login request.
let idp := body
if idp & §.idps then
stop (), s
end if
let state:= 17

let mode+ {code,token}
let responseStatus- {303 307}
let authEndpoint= s'.idps|idp|.authorizationEndpoint > authEndpoints a URL
let authEndpoinparameters := authEndpoinparameters + (response_type, mode
let authEndpoinparameters := authEndpoinparameters +
< (client_id,s.idpslidp].clientId)
let authEndpoinparameters := authEndpoinparameters +{ (state, staté
let redirectUri « { L, T}
if redirectUri= T then
let sslkey < S.sslkeys > Choose one of RP’s domains non-deterministically
let host := 71 (sslkey)
let redirectUri := (URL, S, host, /redirectionEndpoint, ((idp,idp)), {))
end if
let loginSessionld= vg
let §.1oginSessions := §.1loginSessions +! (loginSessionldidp, state moderedirectUri))
let setCookies= ({(loginSessionId,loginSessionldT, T, T))
let m' := encs((HTTPResp, N, responseStatu§Location,authEndpoint
< (Set-Cookie,setCookiey, L), k)
stop ((f,a,m)), s
else ifpath= /redirectionEndpoint then
let loginSessionld= headerfookie|[loginSessionId]
let idp, state mode redirectUri such that (idp, state moderedirectUri) =
— S.loginSessions[loginSessionldif possible; otherwise stop(), s
if idp # parametergidp] then
stop (), s
end if
if mode= code then > Continue Authorization Code Grant
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98: if parameterstate] # statethen

99: stop (), s
100: end if
101: let code:= parametergode]
102: let tokenRequestHeadets ()
103: let tokenRequestBody: ((grant_type,authorization_code), (code,code)
104: if redirectUri L then
105: let tokenRequestBody: tokenRequestBody! (redirect_uri, redirectUri)
106: end if
107: let clientld := S".idps[idp|.clientId
108: let clientPassword= s.idps[idp].clientPassword
109: if clientPassword= L then
110: let tokenRequestBody: tokenRequestBody! (client_id,clientld)
111: else
112: let tokenRequestHeadets tokenRequestHeadets’
< (Authorization, (clientld, clientPassword)
113: end if
114: let tokenEndpoint= §.idps|idp|.tokenEndpoint
115: let message = (HTTPReq, 9, POST, tokenEndpointiomain, tokenEndpoinpath,
tokenEndpoinparameters,tokenRequestHeadetskenRequestBogly
116: let S.pendingDNS[v1g] ;= ((code,idp,a, f,n, k), message
117 stop ((S.DNSaddress, a, (DNSResolve,tokenEndpoinfiomain,v10))), S
118: else ifmode= token then > Continue Implicit Grant
119: let m' := encs((HTTPResp,n,200, (), (script_rp_implicit,idp)),k)
120: stop ((f,a,m)), s
121: end if
122: stop (), s
123: else ifpath= /passwordLoginA method= POST then
124: let idp, usernamepasswordsuch that ((usernamgdp), password = bodyif possible; otherwise
— stop(),s
125: let tokenRequestHeadets ()
126: let tokenRequestBody: ((grant_type,password), (username, (usernamedp)),
< (password, password)
127: let clientld := §.idps[idp].clientId
128: let clientPassword= s.idps|idp].clientPassword
129: if clientPasswordz | then
130: let tokenRequestHeadets tokenRequestHeaders’
< (Authorization, (clientld,clientPassword)
131: end if
132: let tokenEndpoint= <.idps|idp|.tokenEndpoint
133: let message = (HTTPReq, 11, POST, tokenEndpointiomain, tokenEndpoinpath,
tokenEndpoinparameters,tokenRequestHeadetskenRequestBogly
134: let S.pendingDNS[v17] := ((password,idp,a, f,n,k), message
135: stop ((S.DNSaddress, a, (DNSResolve,tokenEndpointiomain,v17))), S
136: else ifpath= /receiveTokenFromImplicitGrant A method= POST then
137: let loginSessionld= headerfookie|[loginSessionId]
138: let idp, state mode redirectUri such that (idp, state moderedirectUri) =
< ¢.loginSessions[loginSessionlfif possible; otherwise stop(), s
139: let tokensuch that (token stateidp) = bodyif possible; otherwise stop(), s
140: let inspectionEndpoint= S'.idps[idp|.inspectionEndpoint > inspectionEndpoins a URL
141: let parameters:= inspectionEndpoinparameters
142: let parameters:= parameters+{ (token,toker)
143: let host:= inspectionEndpoindomain
144: let patH := inspectionEndpoinpath
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145: let message= (HTTPReq, 113, GET, host path, parameter§ (), {))

146: let S.pendingDNS[v14] ;= ({(inspect,implicit,idp,a, f,n k), message
147: stop ((S.DNSaddress, a, (DNSResolve,inspectionEndpointomain,v14))), §
148:  endif

149: end if

150: stop (), s

In the following scripts, to extract the current URL of a downt, the function
GETURL(tree docnonceg is used. We define this function as follows: It searches ferdbcument
with the identifierdocnoncen the (cleaned) tretree of the browser’s windows and documents. It then
returns the URLu of that document. If no document with nondecnonces found in the tredreg, < is
returned.

Algorithm 9 Relation ofscript_rp_index

Input: (tree, docnoncescriptstate scriptinputs cookieslocalStoragesessionStoragéds, secrets$
. leturl ;== GETURL(tree docnoncg
. letid «+ ids
. letinteractive«— {L, T}
. if interactive= T then
let url’ := (URL,S,url.host, /startInteractiveLlogin, (), ())
let command= (FORM, url’,POST, m,(id), L)
else
let url’ := (URL, S, url.host, /passwordLogin, (), ())
let secretsuch thatsecret= secretOfID (id) A secretc secretsf possible; otherwise
< stop (s, cookieslocalStoragesessionStoragé))
10: let command= (FORM, url’,POST, (id, secre}, 1)
11: end if
12: stop (s, cookieslocalStoragesessionStorageommang

=

©NoOOR®DN

Algorithm 10 Relation ofscript_rp_implicit

Input: (tree, docnoncescriptstate scriptinputs cookieslocalStoragesessionStoragéds, secrets
. leturl ;== GETURL(tree docnoncg

. leturl’ := (URL, S, url.host, /receiveTokenFromImplicitGrant,(),{))

. let body:= (url.fragment[access_token],url.fragment[state], scriptstate

. let command= (FORM, url’, POST,body, )

stop (s, cookieslocalStoragesessionStorageommand

=

gAWN

E.10. Identity Providers

An identity provideri € IdPs is a web server modeled as an atomic prod¢sZ', R, ) with the ad-
dressed’ := addr(i). Its initial states{) contains a list of its domains and (private) SSL keys, thagpat
for the endpoints (authorization and token), a list of usarkst of clients, and information about the
corruption status (initially, the IdP is not corrupted).siBkes this, the full state @ffurther contains a list
of issued authorization codes and access tokens.

Once the IdP becomes corrupted (when it receives the messagept), it starts collecting all input
messages and non-deterministically sending out whategssages are derivable from its state.

Otherwise, IdPs react to three types of requests:

Requests to the authorization endpoint path:ln this case, the IdP expects a POST request contain-
ing valid user credentials. If the user credentials are nppled, or the request is not a POST request,
the answer contains a script which shows a form to the userttw ber user credentials. In our model,
the script just extracts the user credentials from the beoasd sends a request to the IdP containing the
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user credentials and any OAuth parameters contained irritiea request (e.g., the intended redirect
URI).

If the IdP received a POST request with valid user credemtibthecks the contained client identifier
against its own list of clients. If the client identifier iskmown, the IdP aborts. Otherwise, it ensures
that the redirect URI, if contained in the request, is vakar this, it checks the list of redirect URIs
stored along with the client identifier. If none of the redir&/RIs match the redirect URI presented in
the request (see “Matching Redirect URIs” below), the IdBreh If no redirect URI is provided in the
request, the first URI in the list of redirect URIs is chosethasredirect URI.

Now the IdP creates a new authorization code and saves tiiéstogether with the client identifier
and the redirect URI (if provided in the request) to the lishathorization codes.

Now, if the response type parameter in the request is “catle”ldP issues a Location redirect header
to the redirect URI, appending (as parameters) the newlgtetieauthorization code and the state (if
provided in the request).

If the reponse type is “token”, the IdP redirects the browsethe redirect URI, but appends the
authorization code, the state (if provided) and a fixed gtfimntaining the token type, which is “bearer”)
to the hash of the redirect URI.

Requests to the token endpoint pathRequests to the token endpoint path are only accepted by the
IdP if they are POST requests. The IdP then checks that thesegither contains a valid client ID,
provided as a parameter, or a pair of client ID and clientwass in a basic authentication header.

If the grant type parameter authorization codethen the IdP checks that the authorization code
delivered to it is contained in the list of codes. It checkat the client ID and redirect URI are the same
as those stored in the list of codes. It then creates an atessand returns it in the HTTPS response
(with token type “bearer”).

If the grant type igpassword the IdP checks the provided username and password aneési@at
access token as above.

If the grant type ilient credentialsthe IdP checks that the client was authorized with clienaiid
client password above. If so, it creates an access tokeroas.ab

Requests to the inspection endpoint path:ln this case, the IdP expects an access token in the
parameters of the request. If the access token is validd®iedturns the client and user id for which the
access token was issued along with the protected resourti@dalient, user, and IdP.

Formal description. In the following, we will first define the (initial) state @formally and afterwards
present the definition of the relatid.

To define the initial state, we will need to add a list of allfeded resources that this IdP manages.
We therefore definerlist' := ({resourceOf(i,c,u) |c € RP,u € ID}) for some IdPi. (Note that we do
not use this term for term manipulations in the algorithnmstdiad, this term ensures that the output of
the atomic process is derivable from the input.)

Definition 43. A state se Z' of an IdP iis a term of the form(sslkeys srlist, authEndpoint
tokenEndpoint inspectEndpoint clients codes corrupt) where sslkeys= sslkeys srlist = srlist',
authEndpoinxtokenEndpointinspectEndpoinE S, cIientse'[S X T.N] , codesc 79.\0 atokense [A[ x S].

An initial state ¢ of i is a state of the form(sslkey§srlist',w,x,y,clients, (), (), L) for some
stringsw, x andy and a dictionaryclients that for each relying party contains an entry of the
form (clientIDOfRP(r,i),z) wherez is a sequence of URL terms that may contain the wildcard
(see Definition4) where for everyu €' z we have thatu.protocol = S, uhost € dom(r) and
U.parameters[idp| = d for somed € dom(i).

The relationR' that defines the behavior of the 1dB defined as follows:

Algorithm 11 Relation of I[dPR
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Input: (a, f,m),s

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39:
40:
41:
42:
43:
44
45:
46:
47:
48:

o Noakrw

if S.corrupt # 1 V m= CORRUPT then
let S.corrupt = ({a, f,m),s.corrupt)
letm « dy(S)
leta < IPs
stop ((a',a,m})), s
end if
lets :=s
let Mygec K, k', inDomainsuch that
<+ (Myeg, K) = dec, (M K') A (inDomaink’) € s.sslkeys
— if possible; otherwise stop(), s
let n, method path parametersheadersbodysuch that
< (HTTPReq, n,methodinDomain path parametersheadersbody = myec
— if possible; otherwise stop(), s
if path= s.authEndpoint then > Authorization Endpoint.
if method= GET vV (method= POST A (bodyfusername] = () V bodypassword] = ())) then
let data:= parameters
let M := encs((HTTPResp,n,200, (), (script_idp_form,data)),k)
stop ((f,a,m)),
else ifmethod= POST then
if headerfrigin| # (inDomains) then > CSRF protection.
stop (), s
end if
let username= bodyfusername]
let password= bodypassword]
let clientid := bodyjclient_id]
let allowedredirects= s.clients][clientid]
if password# secretOfID (usernamgthen
stop (), s
end if
if allowedredirects= () then
stop (), s
end if
let redirecturi:= bodyjredirect_uri]
if redirecturiZ () then
if not redirecturi~ allowedredirectghen

stop (), s
end if
else
let redirecturi < allowedredirects > Take one from list of redir URIs.
end if
if bodyresponse_type| = code then
let§.codes :=§.codes 4 (v, (clientid, bodyredirect_uri],usernamg) > Create

authorization code.
let redirecturiparameters := redirecturiparameters +{ (code,v1)
let redirecturiparameters := redirecturiparameters +{ (state,bodystate])
let m' := encs((HTTPResp, N, 303 ((Location,redirecturp), ()),k)
stop ((f,a,m)), §
else > Assume response type token.
let S.atokens := §.atokens +{ (11, clientid, usernamg
let redirecturi.fragment := redirecturifragment 4+ (access_token, )
let redirecturi.f ragment := redirecturi.fragment +{ (token_type,bearer)
let redirecturi.fragment := redirecturifragment +{ (state,bodystate])
let m' := encs((HTTPResp, N, 303 ((Location,redirecturp), ()),k)
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49:
50:
51:
. else ifpath= s.tokenEndpoint then > Token Endpoint.
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74
75:
76:
T7:
78:
79:
80:

52

81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94
95:
96:
: else ifpath= s.inspectEndpoint then > Inspection Endpoint.
98:

99:

100:
101:

97

stop {(f,a,m)), s
end if
end if

if method# POST then
stop (), s
end if
let auth:= L
let clientid := L
if bodyclient_id] # () then > Only client ID is provided, no password.
let clientid := bodyjclient_id]
let clientinfo:= s.clients|clientid]
if clientinfo= () Vv secretOfClientID(clientid,i) # L then > Empty client secret allowed?
stop (), s
end if
else ifheaderfiuthorization|.1% () then
let clientid := headerfiuthorization].1
let clientpw:= headerfiuthorization].2
if secretOfClientID(clientid,i) # clientpwv clientpw= L then
stop (), s
end if
let auth:= clientid > Authentication with client credentials.
end if
if body{grant_type| = authorization_code then
if clientid= L then
stop (), s
end if
let codeinfo.= s.codes[bodycode]]
if codeinfo= () v codeinfol # clientidV codeinfo2 # bodyredirect_uri] then
stop (), s
end if
let .atokens := S.atokens + (1, clientid, codeinfa3) > Add nonce, client ID and user ID to list

of tokens.

let M := encs((HTTPResp,n,200, (), ((access_token, 1), (token_type,bearer))),k)
else ifbodygrant_type| = password then
let username= bodyfusername]
let password= bodypassword]
if password# secretOfID (usernamgthen
stop (), s
end if
let S .atokens := S.atokens + (v, clientid, usernamg
let m' := encs({(HTTPResp,Nn, 200, (), ((access_token,v1), (token_type,bearer))),k)
else ifbodygrant_type] = client_credentialsthen
if auth= L then
stop (), s
end if
let .atokens := S.atokens +1 (1, clientid, L)
let m' := encs({(HTTPResp,Nn, 200, (), ((access_token,v1), (token_type,bearer))),k)
end if

if method# GET then
stop (), s
end if
let atoken:= parameterioken]
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102: let clientid, useridsuch that (atokenclientid, userid € §.atokens if possible; otherwise stop(), s
103: let secret:= resourceOf(i, clientid, L)

104: let body := ((secret_resource,secre}, (client_id,clientid), (user,userid)
105:  letm := encg((HTTPResp,n,200, (), body), k)
106: end if

107: stop (), s

Algorithm 12 Relation ofscript_idp_form

Input: (tree, docnoncescriptstate scriptinputs cookieslocalStoragesessionStoragéds, secrets
1: leturl := GETURL(tree docnoncg

let url.path < S

let formdata:= scriptstate

letid < ids

let secret+ secrets

let formdata:= formdata+{ (username,id)

let formdata:= formdata+ (password, secre}

let command= (FORM, url,POST,formdata L)

stop (s, cookieslocalStoragesessionStorageomman(l

F. Formal Security Properties

The security properties for OAuth are formally defined atbofes.

Definition 44 (Authorization Property). Let OnS be an OAuth web system. We say th@ms is
secure W.Lt. authorizatioif for every runp of O, every statgS,El,NJ) in p, every IdPi € IDP,
every RPr € RP that is honest it®/, everyu € IDU{_L}, for n = resourceOf (i, r, u), nis derivable from
the attackers knowledge Bl (i.e.,n € do(S (attacker))), it follows that

1. i is corrupted irS, or

2.u# L and (i) the browserb owning u is fully corrupted in S or (i) some ' ¢
trustedRPs(secretOfID(u)) is corrupted inSl.

Definition 45 (Authentication Property). Let OnS be an OAuth web system. We say th@ms is
secure w.r.t. authenticatioifi for every runp of Ons, every statdS ,E!,NJ) in p, everyr € RP that is
honest inS, everyi € IDP, everyg € dom(i), everyu € governor (i), every RP service token of the
form (n, (u,g)) recorded irS) (r).serviceTokens, andn being derivable from the attackers knowledge
in S (i.e.,n € dp(S (attacker))), then the browseb owningu is fully corrupted inS (i.e., the value of
isCorruptedis FULLCORRUPT), somer’ € trustedRPs(secretOfID(u)) is corrupted irS), ori is corrupted
inS.

G. Proof of Theorem 1

Before we prove Theorerh, we show some general properties of bBS. We then first prove the
authentication property and then the authorization pitgper

G.1. Properties of OUs

Let Ol = (W, S, script,E?) be a web system. Letbe a run ofons. We writes, = (S, EX,NX) for
the states im.
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Definition 46. In what follows, given an atomic procepsand a messagm, we say thap emits nin a
runp = (%,81,...) if there is a processing step of the form

Si-1—— Sy
p—>E

for someu € N, a set of event& and some addressgsy with (x,y,m) € E.

Definition 47. We say that a terrhis derivably contained in (a term) for (a set of DY processes) P (in
a processing step s» 51 of arunp = (S,S1,...)) if t is derivable fromt’ with the knowledge available
toP,i.e.,

tedp({t'}uJS™(p)

peP

Definition 48. We say that set of processes P leaks a termt (in a processing stepss. 1) to a set of
processes Hf there exists a messagethat is emitted (irg — s.1) by somep € P andt is derivably
contained irmfor P’ in the processing step — s.1. If we omitP’, we defineP’ := W\ P. If Pis a set
with a single element, we omit the set notation.

Definition 49. We say that an DY procegscreateda messagen (at some point) in a run ifnis deriv-
ably contained in a message emittedbin some processing step and if there is no earlier processing
step wheramis derivably contained in a message emitted by some DY psqzes

Definition 50. We say that browser b accepted message (as a response to some request) if the brow-
ser decrypted the message (if it was an HTTPS message) ded thad functiolPROCESSRESPONSE,
passing the message and the request (see Algofithm

Definition 51. We say that an atomic DY procegsknows a term in some stats = (S E,N) of a run
if it can derive the term from its knowledge, i.e5 dp(S(p)).

Definition 52. We say that ascript initiated a request if a browser triggered the script (in LinE0
of Algorithm 5) and the first component of theommandoutput of the script relation is eithéiREF,
IFRAME, FORM, or XMLHTTPREQUEST such that the browser issues the requeist the same step as a
result.

The following lemma captures properties of RP when it use3PH. For example, the lemma says
that other parties cannot decrypt messages encrypted by RP.

Lemma 1 (RP messages are protected by HTTPS])f in the processing steg — 51 of a runp of
ons an honest relying party (I) emits an HTTPS request of the form
m= enc,((req,k), pub(k’))

(wherereqis an HTTP requesk is a nonce (symmetric key), ahdis the private key of some other DY
procesal), and (ll) in the initial statesy the private key' is only known tou, and (Ill) u never leak«/,
then all of the following statements are true:

1. There is no state adPs where any party except far knowsk’, thus no one except far can
decryptreq.

2. If there is a processing stsp— sj.1 where the RR leaksk to W\ {u,r} there is a processing
steps, — shy1 With h < j whereu leaks the symmetric kelyto W\ {u,r} orr is corrupted irs;.
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3. The value of the host headerriq is the domain that is assigned the public ke (k') in RP’s
keymappings.keyMapping (in its initial state).

4. If r accepts a response (say) to min a processing steg — sj1 andr is honest ins; andu
did not leak the symmetric kdyto %\ {u,r} prior to s;, then eithem or r created the HTTPS
responsen to the HTTPS request, in particular, the nonce of the HTTP requessjis not known
to any atomic procesg, except for the atomic DY processeandu.

ProoFR (1) follows immediately from the condition. K is initially only known tou andu never leaks
K, i.e., even with the knowledge of all nonces (except for ¢hafu), k' can never be derived from any
network output ofu, k' cannot be known to any other party. Thus, nobody except fran derivereq
from m.

(2) We assume that leaksk to %\ {u,r} in the processing stef) — sj;1 without u prior leaking
the keyk to anyone except fon andr and that the RP is not fully corrupted 8, and lead this to a
contradiction.

The RP is honest ig. From the definition of the RP, we see that the ké&yalways a fresh nonce that
is not used anywhere else. Further, the key is storpéilingRequests, in Lines4 7. of Algorithm 8).
The information frompendingRequestis not extracted or used anywhere else, except when handling
the received messages, where the key is only checked agathssed to decrypt the message (Liviés
of Algorithm 8). Hence[ does not leak to any other party ir$; (except foru andr). This proves 2).

(3) Per the definition of RPs (Algorithr8), a host header is always contained in HTTP requests by
RPs. From Line48 of Algorithm 8 we can see that the encryption key for the requegtvas chosen
using the host header of the message. It is chosen frorkefyfdappingin RP’s state, which is never
changed during. This proves 8).

(4) An HTTPS responser that is accepted by as a response tm has to be encrypted with The
noncek is stored by the RP in theendingRequeststate information (see Ling7 of Algorithm 8). The
RP only stores freshly chosen nonces there (i.e., the n@meawt used twice, or for other purposes than
sending one specific request). The information cannot leeegltafterwards (only deleted) and cannot
be read except when the RP checks incoming messages. Thekisranly known tou (which did not
leak it to any other party prior tg) andr (which did not leak it either, asdid not leak it and is honest,
see R)). This proves4). n

On a high level, the following lemma shows that the contemtié list of pending HTTP requests are
immutable.

Lemma 2 (Pending DNS messages become pending requesisgi r be some honest relying party in
ons, v e A, | >0 such thatS,E',N") is a state irp, and letref € T, req € HTTPRequests such
thatS (r).pendingDNS = S~1(r).pendingDNS +% (v, (ref  req)). Then we have thatl’: if there exist
ref’, req, X, y € T with reqnonce = req.nonce and(ref’,req,x,y) € §'(r).pendingRequests then
req= req Aref =ref’.

PrROOF We first note that Algorithn8 (of relying parties) modifies the subtepandingDNSf the RP’s
state only in such a way that entries are appended to or rafrfov@ this subterm, but never modified.
Entries are appended in Lin@8, 60, 116, 134, and146. At all these places in the algorithm, an HTTP
message term, sagq, having a fresh (HTTP) nonce, is appended (together withestemmref) to the
subtermpendingDNS (A processing step executing one of these parts of theittigoresults in the
state(S,E',N') of p.) Entries are only removed in Ling9. In this part of the algorithm, a sequence
(ref” req’,x,y) with x, y € T, andreq’ = req andref” = ref (which could not have been altered in
any processing step) are appended to the subpemdingRequestsf RP’s state (in Linel7). Besides
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Line 12, where some entry is removed from this subterm, there is herqiart of the algorithm that
alterspendingRequesis any way. Hence, there we cannot have any s(lﬁfeE", N") of p where we
have an request ipendingRequestsith the same (HTTP) nonce but a differeat( or a differentref’.g

Lemma 3 (RPs never send requests to themselveshn honest RP never sends an HTTP request to
any RP (including itself), and only sends HTTPS requestsRe Rat the receiving RP cannot decrypt.

PROOF Honest RPs send HTTP requests only in LiA2s59, 115 133 and145. In all of these cases,
they send the HTTPS request to an endpoint configured in #te §hidps). With Definition 42, it
follows that the domains to which these requests are sentheer a domain of an RP. All requests are
sent over HTTPS, and the “correct” encryption keys (as dtor&eyMapping) are used (i.e., even if the
attacker changes the DNS response such that an HTTPS régjgent to an RP, it cannot be decrypted
by the RP) .

G.2. Proof of Authentication

We here want to show that every OAuth web system is securte authentication, and therefore assume
that there exists an OAuth web system that is not secure authentication. We then lead this to a
contradiction, thereby showing that all OAuth web systemessacure w.r.t. authentication. In detail, we
assume:

Assumption 1. There exists an OAuth web systaPm/s, a runp of On’s, a statg(S/, E1,N!) in p, some
r € RP that is honest ir§/, somei € IDP that is honest ir§, someg € dom(i), someu € governor (i)
with the browserb owning u being not fully corrupted irS! and allr’ € trustedRPs(secretOfID(u))
being honest, some RP service token of the fannju, g)) recorded irS) (r).serviceTokens such that
nis derivable from the attackers knowledgesin(i.e., n € dy(S (attacker))).

To show that this is a contradiction, we first show some lemmas

Lemma 4 (Attacker does not learn passwords) There exists né < j, (S,E',N') being a state i
such thasecretOfID(u) € dp(S (attacker)).

PROOF. Let s := secretOfID(u) and R := trustedRPs(s). Initially, in S°, s is only contained in
S (b).secrets[(d,s)] for anyd € |, cgdom(r’) Udom(i) and in no other states (or waiting events).
By the definition of the browser, we can see that only scripasiéd from the origingd, S) can access.
We know thati and allr’ € R are honest (from the assumption). We therefore have thgttbelscripts
script_rp_index script_rp_implicit, andscript_idp_form can access (if loaded from their respective
origins) and that the browser does not use or leakany other way.script_rp_implicit does not use
any browser secrets. We therefore focus on the remainingevipts:

script_rp_index. If this script was loaded and has access, tid must have been loaded from origin
(d,s) for a domaind of some trusted relying party, say€ R). If script rp_indexselects the
secrets in Line 9 of Algorithm 9, we know that it must have selected theudn Line 2. We
therefore know that in Lind0, the browselb is instructed to send (using HTTP8),s) to the
path /passwordLogin atd. If b sends such a requestjs the only party able to decrypt this
request (see the general security propertie9]in This message is then processed bgcording
to Lines123f. There, username and password are forwarded to someagP, ssing an HTTPS
POST request. More precisely, this request is sent to theantoof the token endpoint URL
contained in the IdP registration record for the domain &@imied inu. From DefinitionsA1 and42
and the fact that this part of the state (of relying partisshéver changed, we can see that the
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reguest is sent to a domainipfind therefor& = i. (The attacker can also not modify or read this
request, see Lemnia) The body of the HTTPS POST request serititoof the following form:

({(grant_type,password), (username, U), (password,S)).

Such a request can processed by IdP only in L8#k of Algorithm 11. There, IdP checksand
discards it. Therefores does not leak fronn, t, or b to the attacker (or any other party).

script_idp _form. If this script was loaded and has access, tib must have been loaded from origin
(d,s) for a domaind of i. This script sendstod in an HTTPS POST request. ifsends such a
requestj is the only party able to decrypt this request (see the gksecarity properties ind)).
This message is then processedi lagcording to Lined5ff. of Algorithm 11. There, the IdR
checkssand discards it. Thereforedoes not leak fronh or b to the attacker (or any other party).

This proves Lemmé4.

Lemma 5 (Attacker does not learn authorization codes).There exists nd < j, (S,E',N') being a
state inp, v € N[, y € Ty such thav € do(S (attacker)) and(v, (clientDOfRP(r,i),y,u)) €V S (i).codes.

PROOF S(i).codes is initially empty and appended to only in Lir&8 of Algorithm 11 (where an
authorization code is created). From LifBff. it is easy to see that the request which triggers the
creation of the authorization code must carry a valid pasdviar the specific identity in the request
body. With Lemmad, we can see that such a request can not come from the attaskéme attacker
does not know the password needed in the request. It can@iswiginate from an IdP, as IdPs do not
send requests. Further, the request can not originate fngraarupted party or an attacker-controlled
origin in the honest browser (as otherwise there would beva Wbere the attacker would learn the
password by sending it to himself, which can be ruled out byir@4). It is also impossible that the
request originated from any non-attacker controlled arigithe honest browser: Such a request could be
caused by either a Location redirect or a script. (We wikreb the following as *.) A Location redirect
must have been issued by an honest party (otherwise, tlakexttaould have learned the password by
the time he issued the response, see LemM)narhere are two occasions where honest parties issue
Location redirect headers:

IdP in Lines 41/48 of Algorithm 11 In this case, an HTTP status code of 303 is sent. While this
causes the browser to do a new request, the new request hampgnbedy in any casé®

RP in Line 89 of Algorithm 8 In this case, a 307 redirect could be issued, causing theskerotu
preserve the request body. We therefore have to check whid tave caused the browser
to issue a request that caused this Location redirect regpand what body could be con-
tained in such a request. For clarity, we call the requessioguthe redirectiorm. It is clear
that m cannot come from the attacker (as it contains the passwdtdust therefore come
from an honest browser. If it was caused by a redirect in thesiobrowser, (*) applies recur-
sively. Otherwise, there are three scripts that could sect a request to RRcript_rp_index
script_rp_implicit, and script_idp_form. Of these, onlyscript rp_index causes a request for
the path/startInteractiveLogin (Which triggers the redirection in Lin&9 of Algorithm 8),
which, however, does not contain any secret.

26Note that at this point it is important that a 303 redirectésfprmed, not a 307 redirect. See Li2@of Algorithm 6 for
details.
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A Location redirect can therefore be ruled out as the causkeofequest. There are three scripts that
could send such a requestcript rp_index script_rp_implicit, and script_idp_form. The first two,
script_rp_index script_rp_implicit, do not send requests to any IdP (instead, they only senésexjto
the RP that sent the scripts to the browser, IdP does not besd scripts to the browser). The latter
script, script_idp_form, can send the request. In this (last remaining) case, thedsifonds with a
Location redirect header in the response, which, amongtlearries a URL containing the critical
valuev (in Line 41). In this case, the browser receives the response, and iratelydtriggers a new
request to the redirection URL. This URL was composed by dfeusing the list of valid redirection
URIs from S(i).clients, a part of the state dfthat is not changed during any run. Definitid8
defines hows (i).clients is initialized: For the client ict := clientIDOfRP(r, i), all redirection URLs
carry hosts (domains) af, have the protocos (HTTPS), and contain a query parameter component
identifying the IdPi. In the checks in Line2ff., it is ensured that in any case, this restriction on
domain and protocol applies to the resulting redirectior {¢Rlledredirecturiin the algorithm) as well.
Therefore, the browser's GET request which is triggerednieyLtocation header and contains the value
vis sent tor over HTTPS.

The RPr can process such a GET request only in LiGBsaand 91 of Algorithm 8. It is clear, that
in Line 65, the valuev does not leak to the attacker: An honest script is loadedtivedorowser, which
does not use in any form.

In Lines91ff., vis forwarded to the IdP for checking its validity and retiieythe access token (there
is also code for retrieving the access code from the imdlioit in this part of the code, which is not
of interest here). When sending the authorization cods,dtitical to ensure that is forwarded to an
honest IdP (in particulai), and not to the attacker. This is ensured by checking thieeatbn URL
parameters, which, as mentioned above, contain a hint éold in use, in this case In Line 94 it is
checked that the IdP, to whiahis eventually sent, is

Therefore, we know that is sent via POST to the honest IdP There, it can only be processed
in Lines 52ff. Here, it is easy to see that the valuécalled bodycode] in the algorithm) is checked.
However, the value is never sent out to any other party aréfibre does not leak.

We have shown that the valwecannot be known to the attacker, which proves Lensma n

Lemma 6 (Attacker does not learn access tokens)There exists no < j, (S,E',N') being a state in
p, VE N[, such thaw € dg(S (attacker)) and (v, clientiDOfRP(r,i),u) €% S (i).atokens.

PROOF. Initially, we haveS(i).atokens = (). S(i).atokens is appended to only in Line$4, 80, 88,
and94 (where in each an access token is issued) of Algoritirand not altered in any other way.

In Line 94, a term of the form(x, %, L) is appended, which is not of the forw clientIDOfRP(r,i),u).
In what follows, we will distinguish between the lines of Algthm 11 were (v, clientIDOfRP(r,i),u) is
created:

Line 44. It is easy to see, thatmust have received an HTTPS POST request containing annOrigi
header with one of its HTTPS origins and containing (in itglyjoa dictionary with the en-
tries (username, U), (password,secretOfID(u)), and (client_id,clientIDOfRP(r,i)). From
Lemmad it follows that such a request cannot be assembled by thekatta Also, neither an
IdP nor an RP sends such a request. Hence, this request nvasbéaent from a browser.
In the browser, only the scriptscript_idp_form and the attacker scrig® can instruct the
browser to send such a request. From Len¥mae know that the attacker script cannot ac-
cesssecretOfID(u) (otherwise, there would be a ryni in which the attacker script would send
secretOfID(u) to the attacker instead). Hence, this request must origifiam a command re-
turned byscript_idp_form and it must be created by the brow&efwhich isownerOfID(u)).
This script only sends such a request to its own origin, whicist be an HTTPS origin (it would
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not have access tacretOfID(u) otherwise). The IdP responds with a Location redirect heimde
the response, which among others, carries a URL contaihagritical valuev (in Line 48) in the
fragment of the URL. In this case, the browser receives thpaese, and immediately triggers a
new request to the redirection URL. This URL was composechbyldP using the list of valid
redirection URIs fronS (i).clients, a part of the state dfthat is not changed during any run.
Definition 43 defines howS (i).c1lients is initialized: For the client ict := clientIDOfRP(r,i),

all redirection URLs carry hosts (domains) qf have the protocos (HTTPS), and contain a
query parameter component identifying the idih the checks in Line22ff., it is ensured that in
any case, this restriction on domain and protocol applighdaesulting redirection URI (called
redirecturiin the algorithm) as well. Therefore, the browser's GET esjwhich is triggered by
the Location header and contains the valie the fragment, is sent toover HTTPS.

The RPr can process such a GET request only in LiBBand91 of Algorithm 8. It is clear, that
in Line 65, the valuev does not leak to the attacker: The honest s@ipipt rp_indexis loaded
into the browser, which does not ug@ any form.

In Lines91ff., RP’s algorithm branches into two different flows: (1) RiRes some value from the
URL parameters (which do not contaipand sends it to some process. RP defers its response to
the browser and will (later) only send out the response ir&36ff. This response, however, does
not contain a script and hence, the browser will not be iegddito create any new messages from
the resulting document. Hencedoes not leak in this case. (2) RP sends an HTTPS response
containing the scripscript_rp_implicit (and, in the script’s initial state, a domain ioflerived

from the redirection URL), which takesfrom the URL parameters and instructs the browser to
send an HTTPS POST request contaimmand the domain off to the script’s (secure) origin at
path /receiveTokenFromImplicitGrant. RP processes such a request in Libh86&ff. where

it forwardsv to the IdP for checking its validity. Here, it is critical tmsure that is forwarded

to an honest IdP (in particulain, and not to the attacker. This is fulfilled since a domain isf
contained in the request’s body, and, before forwarding, ¢hecked that is only forwarded to

this domain.

Therefore, we know thatis sent via GET to the honest IdPThere, it can only be processed in
Lines97ff. Here, it is easy to see that the values never sent out to any other party and therefore
does not leak.

Line 80. In this casej must have received an HTTPS POST request carrying a dicjionats body
containing the entrieégrant_type,authorization_code) and (code,code with codec Al
such that(code (clientDOfRP(r,i),y,u)) € §'(i).codes for somey € 7, and!’ < 1. From
Lemmas it follows that such a request can neither be constructetidgttacker nor by a browser
instructed by the attacker scripf™. In a browser, the remaining honest scripts do not insthet t
browser to send such a request. (Honest) IdPs do not sendeobsts. Hence, such a request
must have been constructed by an (honest) RP. An RP prepatesa sequest only in LineB03f.

(of Algorithm 8) and finally sends out this request in LiB@ (after a DNS response). With
Lemma2 and Lemmal we know thatreferencecontains a term of the forrcode,idp, x, *, *, *)

with idp € dom(i) (as the request was sent encrypted for arijl td/hen RP receives the response
fromi, RP processes this response in Lid#swhere RP distinguishes between two cases based
on the first subterm ireference As we know that this subterm iode, we have that the response

is processed only in Lines5ff. RP takes a subterm from the response’s body which might co
tair?’ v in Line 16 and prepares an HTTPS POST request to an URiL(ohich is taken from

the subternidps of RP’s state and this subterm is never altered and init@dlyfigured such that

2"The subterm actually is
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the URLs under the dictionary keglp are actually belonging t9. This HTTPS POST request
containsv in the parametetoken. This request is finally sent out this request in Ls@&(after a
DNS response) encrypted for andito

It is now easy to see thabnly accepts the request only in Lin@gf. (of Algorithm 11). There,
the IdP only checks the parameterken against its state and discards it afterwards. Hemnce,
does not leak.

Line 88. In this casej must have received an HTTPS POST request carrying a dicjionats body
containing the entriegrant_type, password), (username, U), and(password, secretOfID(u)).
From Lemma4 it follows that such a request cannot be constructed by ttaeladr, dishonest
scripts in browsers, or any other dishonest party. (Hord&3 do not construct such a request.
All honest scripts do not instruct a browser to send such aeslq Hence, the request must
have been constructed by an honest RP. An RP prepares sughestrenly in LinesL26ff. (of
Algorithm 8) and finally sends out this request in Li5@ (after a DNS response). With Lemra
and Lemmal we know thatreferencecontains a term of the forpassword, idp, *, *, *,*) with
idp € dom(i) (as the request was sent encrypted for angl td/hen RP receives the response from
i, RP processes this response in Lififfs where RP distinguishes between two cases based on
the first subterm imeference As we know that this subterm i de, we have that the response is
processed only in Lines5ff. RP takes a subterm from the response’s body which mightiai®
v in Line 16 and prepares an HTTPS POST request to an URL (efhich is taken from the
subtermidps of RP’s state and this subterm is never altered and initiedigfigured such that
the URLs under the dictionary kagip are actually belonging t9. This HTTPS POST request
containsv in the parametetoken. This request is finally sent out this request in LEtx(after a
DNS response) encrypted for anditdt is now easy to see thabnly accepts the request only in
Lines 97ff. (of Algorithm 11). There, the IdP only checks the parameteken against its state
and discards it afterwards. Henegjoes not leak.

We have shown that the valwecannot be known to the attacker, which proves Lentma n

We can now show that Assumptidris a contradiction.
Lemma 7. Assumptionl is a contradiction.

PROOF The service tokerin, (u,g)) can only be created and added to the sBife).serviceTokens

in Line 36 of Algorithm 8. To get to this point in the algorithm, in Lir@6, it is checked thateference

is a tupel of the forminspect,modeg,d’, f’,n’,k’). This is taken from the pending requests, where
the value is transferred to from the pending DNS subterm [(s@ema?2). Such a term (starting with
inspect) is added to thependingDNS subterm only in Line®23 and 146. We can now do a case
distinction between these two possibilities to identifg tlequest’ to which the response containing
the service token will be sent.

Subterm was added in Line 23. In this case, in Linel5, an entry of the formmodeg, d, f',n’, k')
must have existed as a reference in the pending HTTP requastsemodeis eithercode or
password.?? Such entries are created in the following lines:

Line 116. Here, a request must have been received which contained a valid authavizathde
for the identityu at the IdPi.2° The attacker cannot know such an authorization code (see

28The subterm actually is

29If modewasclient_credentials, No service token is created.

300therwise, the I1dP would not have returned an access toketdoidentityu. As g = idp is the value stored in the
reference, it is also clear that the authorization code imdact, sent ta for retrieving the access token, and not to the attacker
or another identity provider. Also, the request tgas sent over HTTPS, and therefore, Lenthapplies.
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Lemmab). The RPr does not send requests to itself or to other RPs (see Le3jiraad no
IdPs send requests. Therefong,must have originated from an honest browser.

Line 134. Inthis case, a request was received which contained a valid username and password
combination foru ati. (As above, we know thatwas used to verify that information gds
a domain ofi, andidp = g. ) Only the honest browsédrand some relying parties know this
password (see Lemmg, but the RPs would not send such a request. The requiesas
therefore sent from the browsker

Subterm was added in Line 146. If the subterm(inspect,modeg, @, f’,n’,k’) was added in this
line, the request causing thisY) must have carried a valid access token for the identéyi. (As
above, the access token was seritfar validation.) The attacker does not know such an access
token (see Lemma@), and other RPs or IdPs cannot senid Therefore, an honest browser must
have sentr.

We therefore have that in all cases,was sent by an honest browser. Furtimérmust have been an
HTTPS request (by the definition of RPs). If the request watagthe result of an XMLHTTPRequest
command from a script, that script must have been loaded tinerorigin(g;, S) with g; € dom(r). This
is a contradiction (there are no honest scripts that use XMLPRequest). Otherwise, it was a “regular”
request. In this case, the browser tries to load the servicentas a document (which will fail). In
particular, the service tokefm, (u,g)) never leaks to the attacker.

We therefore know that the attacker cannot know the serakent which is a contradiction to the
assumption. -

G.3. Proof of Authorization

As above, we assume that there exists an OAuth web systeris thatt secure w.r.t. authorization and
lead this to a contradiction. Note that in the following, soof the lemmas shown above are used.

Assumption 2. There exists a rup of On’s, a state(S/,EJ,NJ) in p, some IdP € IDP that is honest
in S/, some RA € RP that is honest ir§/, someu € ID U { L}, somen = resourceOf (i,r,u), n being

derivable from the attackers knowledgegh(i.e., n € dy(S/ (attacker))), andu = L or ((i) the browser
b owningu is not fully corrupted inS and (ii) allr’ € trustedRPs(secretOfID(u)) are honess!).

Lemma 8 (Attacker does not learn RP secrets.)There exists no < j, (3,E',N') being a state ip
such thasecretOfRP(r,i) € dp(S (attacker)) unlesssecretOfRP(r,i) = L.

PrRooOF Following the definition of the initial states of all atonpoocesses (in particular Definitiai),
initially, secretOfRP(r,i) is only known tor.

The secret is being used and sent out in an HTTPS messageeisblih of Algorithm 8 The message
is being sent to the token endpoint configuredifevhich, according to Definitiod1, bears a host name
belonging toi. With the definition ofsslkeysin Definition 42 and Lemmal it can be seen that this
outgoing HTTP POST request can therefore only be read byithaded receiver,

In i, the message cannot be processed in the authenticationiehdpnes15to 51 of Algorithm 11,
since it does not carry an Origin header. It can be processkithés52to 96. It is easy to see that the
secret in the message is not used in any outgoing messatjesrmgtored in the IdP’s data structures.
The message not be processed in L9i#., since it is a POST request.

The same applies when the client sends the password inllOifé or Line 127f. of Algorithm 8.

Therefore, the secreécretOfRP(r,i) cannot be known to the attacker. =

Lemma 9. Assumption2 is a contradiction.
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PROOF At the beginning of each run, the attacker cannot kndas defined in the initial states). Only
the IdPi can send out the protected resoungén Line 105 of Algorithm 11. In a state(S,E",N") in
p for somel’ < |, for i to send oun, an HTTPS request must be receivedi byhich contains, among
others, an access tokarsuch that(a, clientIDOfRP(r,i),u) €' §'(i).atokens. We therefore note that
for the attacker to learn, it has to knowa. We also note that if requesta at the IdPi, the attacker
cannot reaadh or a from such messages (see Lemina

We now have to distinguish two cases:

Anonymous Resource, i.e.,u= L. In this case, the access tokarnwas chosen by in Line 94 of
Algorithm 11. There,a is sent out in response to a request that must have contdieedi¢nt
credentials for, where the client secret cannot hg(see Line64. With Lemma8 we see that the
attacker cannot send such a request, and therefore, caamogl This implies that the attacker
cannot send the request to learfromi.

User Resource, i.e.,uz# 1. Inthis Case, Lemm@shows that it is not possible for the attacker to send
arequest to learn.

With this, we have shown that the attacker cannot learand therfore, Assumptio® is a contradica-
tion. -
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