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GLOBAL WELL-POSEDNESS OF THE DYNAMIC ¢; MODEL
ON THE TORUS
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ABSTRACT. We show global well-posedness of the dynamic <I>§ model on the
torus. This model is given by a non-linear stochastic PDE that can only be
interpreted in a “renormalised” sense. A local well-posedness theory for this
equation was recently developed by Hairer as well as Gubininell, Perkowski,
Imkeller and Catellier, Chouk. In the present article, we show that these solu-
tions cannot blow up in finite time. Our method relies entirely on deterministic
PDE arguments (such as embeddings of Besov spaces and interpolation), which
are combined to derive energy inequalities.
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1. INTRODUCTION

The aim of this paper is to show global-in-time well-posedness for the stochastic
quantisation equation on the three-dimensional torus. This model is formally given
by the stochastic partial differential equation
{ 0 X = AX — X3 +mX + €, on Ry x [—1,1]3,

(1.1) X(0,1) = X,

where ¢ denotes a white noise over R x [—1,1]3, and m is a real parameter. Equation
(1.1) describes the natural reversible dynamics for the ®3 quantum field theory,
which is formally given by the expression

1 1 m
1.2 -9 ZIVX)P2 4+ Xt - = X2 X(x).
(1) wxexp( /[_171]3[2|v Pyt D I ax@

ze[—1,1]3

Neither (1.1) nor (1.2) make sense as they stand. Due to the irregularity of the noise,
solutions to (1.1) as well as realisations of the measure (1.2) should be distribution-
valued, and the non-linear terms X2 in (1.1) and X* in (1.2) have to be interpreted
in a renormalised sense.

The construction of the measure (1.2) was a major result in the programme of
constructive quantum field theory, accomplished in late the 60s and 70s [13, 8, 14,
10, 9]. The construction of the dynamics (1.1) was proposed in [32], but very little
progress was made on this question until Hairer’s recent breakthrough results on
regularity structures. Indeed, the construction of local-in-time solutions to (1.1) was
one of the two principal applications of the theory of regularity structures presented
in [23]. Hairer’s work triggered a lot of activity: Catellier and Chouk [5] were able
to reproduce a similar local-in-time well-posedness result based on the notion of
paracontrolled distributions put forward by Gubinelli, Imkeller and Perkowski in
[18]. Yet another approach to obtain solutions for short times, based on Wilsonian
renormalisation group analysis, was given by Kuppianinen in [29]. Convergence of
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lattice approximations to (1.1) was shown in [25] and [33]. This was used in [25] to
implement an argument in the spirit of Bourgain’s work on non-linear Schrédinger
equations (see e.g. [3]) to show that for almost every initial datum with respect
to the measure (1.2), solutions to (1.1) do not explode. This result relies on the
analysis of the measure (1.2) performed in [4].

In this article, we present a global well-posedness theory for (1.1) based on the
paracontrolled approach of [18, 5]. The emphasis is on ruling out the possibility
of finite time blow-up. Our method relies solely on PDE arguments and energy
inequalities, and shows that (1.1) is globally well posed for every initial datum in a
suitable class, without making reference to the measure (1.2).

Every notion of solution relies heavily on the subcriticality of (1.1) in three
dimensions. To explain this property, let us momentarily consider this equation over
R? for an arbitrary d > 1. Formally rescaling the equation via

N ~ d+2 o 2—d

t =\t &= \z, E=\7 ¢, X =\7 X, m = \m,
yields
(1.3) ;X =AX - X7IXP 4 mX 4+ €

which suggests that for d < 4, the influence of the non-linear term should vanish
as we consider smaller and smaller scales. This corresponds to the well-known fact
that the ®% theory is superrenormalisable in dimension d < 4.

Based on this observation, the first step in both the approach using regularity
structures and the approach using paracontrolled distributions is the explicit con-
struction of several terms in a perturbative expansion based on the solution of the
linear stochastic heat equation

(1.4) (0 — A)1 = €.

Throughout the article we adopt Hairer’s convention to denote the terms in this
expansion by trees: here the symbol 1t should be interpreted as a graph with a
single vertex at the top which corresponds to the white noise, and with a line below
corresponding to a convolution with the heat kernel. This graphical notation is
extremely useful to keep track of a potentially large number of explicit stochastic
objects.

The construction of these objects involves a renormalisation procedure, that is,
the subtraction of several “infinite constants”. For example, the simplest stochastic
objects constructed from 1 are V' and ¥, which formally play the role of “12” and
“137 These objects are constructed by considering a regularised version 15 of 1, e.g.
the solution obtained by replacing £ with its convolution with a smoothing kernel
on scale §, and then taking the limits as § tends to zero of

(1.5) T§ —Cs and Tg —3Cs1s,

for a suitable choice of diverging constant Cs. The construction of these objects
makes strong use of explicit representations of the covariances of 1 and of its
Gaussianity.

In both theories, the full non-linear system (1.1) is only treated in a second step.
This step is completely deterministic, with the random terms constructed in the first
step treated as an input. The solution X is sought in a space of functions whose
small-scale behaviour is described in detail by the explicit stochastic objects. In
both theories, this is implemented by replacing the scalar field X by a vector-valued
function whose components correspond to the different “levels of regularity” of
X. The scalar equation (1.1) then turns into a coupled system of equations. This
point is at the heart of both methods. The approaches via regularity structures
and via paracontrolled distributions then differ significantly. In the regularity
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structures approach, a local description of the solution X in “real space” is given,
whereas the paracontrolled approach uses tools from Fourier analysis. However,
in both approaches, local-in-time solutions X are found by performing a Picard
iteration for the system of equations interpreted in the mild sense. We stress that
the renormalisation is completely treated at the level of the construction of the
stochastic objects based on (1.4), and that no “infinite constants” appear in the
deterministic analysis.

All approaches focus on the problems arising in the analysis of (1.1) on small scales,
and devise a powerful method to deal with the so-called wltra-violet divergences.
However, extra ingredients are necessary to obtain information on large scales. This
already becomes apparent from the fact that the “good” sign of the term —X?3 is
not used. The theories allow for the construction of solutions of (1.1) with the sign
of the non-linear term reversed, and solutions of this modified equation are expected
to blow up in finite time. Moreover, the scaling analysis above suggests that it is
the non-linear term —X? which dominates the dynamics on large scales, so that it
can no longer be treated as a perturbation.

In situations where the noise is less irregular, there are well-known tools available
to obtain large scale information on non-linear equations such as (1.1). In fact,
in the deterministic case £ = 0, the non-linear term is known to have a strong
damping effect, and the non-linear equation satisfies better bounds than the linearised
version: for solutions of (1.1) with £ = 0 (started with an L initial datum, say), a
simple argument based on the comparison principle and the behaviour of the ODE
& = —2% 4+ mz yields L™ bounds on X which are independent of the initial datum.
Other standard tools to extract information on the non-linear term involve a simple
testing of X against itself or powers of itself. In this paper, we show how similar
PDE arguments can be implemented in the context of the system of equations
arising in the paracontrolled solution theory of (1.1).

1.1. Formal derivation of a system of equations. The obvious difficulty in
developing a solution theory for (1.1) is the fact that the solution X will be a
distribution, and that it is unclear how to interpret the non-linear expression —X3.
However, as we have explained in the previous section, on small scales X is expected
to “behave like” the Gaussian process 1; more precisely, we expect that X —1
has better regularity than each of the terms separately. Moreover, the detailed
knowledge of the covariance and the Gaussianity of 1 can be used to define the
“renormalised” products

(N2~ v and (1)% ~ v,

via (1.5). In this section, we present a formal computation in the spirit of [5] to
reorganise (1.1) into a system that we are able to solve, assuming that we can define
the products of the explicit stochastic terms, even if they are distributions of low
regularity. For the moment, we will ignore the “infinite constants” and manipulate
the equation formally, adopting the following rules:

e Every term has a regularity exponent associated with it. We will say, for
example, that the terms X and ' have regularity (f%)’, i.e. regularity % —€
for € arbitrarily small. All regularities are derived from the regularity of the
white noise ¢, which is (—2)~.

e A function of regularity oy > 0 can be multiplied with a distribution of
regularity as < 0 if a3 + a > 0, resulting in a distribution of regularity .

e Convolution with the heat kernel of J; — A increases the regularity by 2.

e Explicit stochastic objects can always be multiplied, irrespective of their
regularity. The product of stochastic objects of regularity «; and as has

regularity min{oy, as, a1 + as}.
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In the next Section 1.2, we will then go back and give a precise meaning to these
statements and discuss in particular how the last of these rules has to be interpreted.
There, we will give a rigorous link between the system we derive formally in this
section and the original system (1.1).

For illustration, we briefly show this calculation in the two-dimensional case d = 2,
sketching a method introduced by Da Prato and Debussche in [7]. In dimension 2,
the noise ¢ has regularity (—2)~, so both X and 1 have regularity 0~. According to
the rules above, we cannot define X2 directly (the regularity being negative), but
we can define the square ¥ and the cube W of 1, both of which also have regularity
0~ . If we make the ansatz X =1+ Y, then Y solves

(1.6) (0 — A)Y = =Y —3Y%1 —3YV —w+m(1+Y).

Convolution with the heat kernel increases regularity by 2, so that we expect Y to
have regularity 27, which in turn allows to define all the products on the right hand
side. Hence, we can solve (1.6), at least locally in time. We define the solution we
seek, as a replacement for (1.1), to be X :=14Y.

We now come back to our original problem, posed in three space dimensions. As
stated above, in this case £ has regularity (—g)_, so that X and 1 have regularity
(—2)7, v has regularity (—1)~ and < has regularity (—2)~. Therefore, the simple
procedure leading to (1.6) does not suffice, as it would lead to Y being of regularity
(3)~, which is not enough to define the products on the right-hand side of (1.6).
The most irregular term we encounter in this approach, limiting the regularity of Y
to (3)7, is the term ¥, so we use it to define the next-order term in our expansion.

We introduce \V, the solution of

(L7) (@ =AY =,
which has regularity (%)’, and postulate an expansion of the form
(1.8) X=1-Y+u,

for some hopefully more regular u. Analogously to the two-dimensional case, we
write the formal equation satisfied by u:

O —DNu=—(u+1-V>+mu+1-Y)—w
=—u’ = 3(u—"T)v+Q(u),
where we introduced the notation
Q(u) = by + byu + bau?,

with

bo =m(1 =)+ (1)? =31 (1),

b =m+6Y1-3(Y),

by =-31+3Y.
All of these coefficients have regularity (—%)_. Since the regularity of v is (—1)7,
the regularity of u is expected to be 17, so that the product ¥ is still ill-defined a
priori.

In order to solve this problem, we use the notion of paraproducts, following [18].

Roughly speaking, the paraproduct of f and g, which we denote by f ® g, carries

the high-frequency modes of g, modulated by the low-frequency modes of f. The
product fg can be written

(1.9) fo=fog+fog+fOg,
where f©g carries the resonant interactions between f and g. The striking property
of paraproducts is that, on the one hand, the quantities f @ g and f © g are always
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well-defined, and only the resonant term f © g can fail to be defined. But on the
other hand, whenever the resonant term is well-defined, its regularity is given by
the sum of regularities of f and g (as opposed to the minimum). We refer to the
appendix for a more precise discussion, in particular Proposition A.7. We use (1.9)
with f =u — Y and g =V, and decompose u into v + w solving

(1.10) (0 — Aw=-30w+w-Y)ov,

(1.11) (0 — Nw=—(v+w)?-3v+w—-Y)ov+Q+w),

where we write © = © 4+ © for concision. The idea is that v carries the same local
irregularity as u, while w should have better regularity, namely ( %)_ instead of 1.
The paraproduct in the right side of (1.10) contains the high-frequency modes of v
modulated by the low-frequency modes of (v +w — V). It is always well-defined

and has regularity (—1)~. The paraproduct (v +w — V) ©V is also well-defined and
has regularity (—1)~. It remains to consider the resonant term

(v+w-"Y)ov,

which cannot be made sense of classically (the criterion being the same as for the
product of course, that is, the sum of regularities should be strictly positive). As
was pointed out above, this term should have regularity given by the sum of the
regularities of each term, that is, regularity (—%)’ in our case. Since w is expected
to have regularity (%)_, the term w®YV can be made sense of classically. In extension

of our rules, we postulate that we can define Yov = QE as a distribution of

regularity (—3)7'.

It remains to treat the term v©V. The key advantage of the decomposition using
paraproducts lies in the following commutator estimates, which allow to rewrite
this term using explicit graphical terms of low regularity and more regular objects
involving v and w. As a first step, we denote by Y the solution of

(1.12) @ -A)Y=v (Y(t=0)=0),
that is,
(1.13) Y(t) = /t elt=92(s) ds.

We also write (1.10) in the mild form

v(t) = ey — 3/ eI (v +w —Y)ov] (s)ds.
0

The behaviour of the heat kernel suggests that the local irregularity of v is that of
—3(v+w—"Y)®Y. In other words, the difference

com; (v, w)(t) == ey — 3/ elt=2)A (v+w—"Y)oV](s)ds
0

+3[(v+w-P)oV] @)
has better regularity than v itself. (Justifying this relies on Proposition A.15 and
on suitable time regularity of v, w and Y.) We thus decompose v ©V into

vov=-3[v+w-Y)oY]ev+com;(v,w)oV.

(1.14)

The second of these terms is defined classically, and it only remains to control the
first term. Recall that (v + w — \V) @Y carries the high-frequency modes of VY,
modulated by the low-frequency modes of (v 4+ w — \V) Hence, it is reasonable to
expect [(v +w— \V) S Y] ©V to have the same local irregularity as

<U+w _\V)%’
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where < is a postulated version of the resonant term Y ©%. To be more precise,
the domain of the commutation operator

can be extended to cases for which the terms appearing in the definition are not
well-defined separately (see Proposition A.9), so that

(1.15) comy (v +w) = [3,6] (=3(v+w —"),Y,V)
is well-defined. Our renormalisation rule is thus given by

=3[v+w-T)eY]ov~ =3(v+w—"T)V+ coma(v + w),

that is,

VOV~ —3(v+w — V) + com(v,w),
where
(1.16) com(v, w) := comy (v, w) OV + coma(v + w).

To sum up, we are interested in solutions of the system

(O —Aw = Fv+w),
(1.17) {(at—A)w = G(v,w),

where F' and G are defined by

(1.18) Fv+w):=-3v+w-Y)ov,
(1.19) G(v,w) := —(v+w)® — 3com(v, w)
—3woev-3v+w-Y)ov+ P+ w),
with
(1.20) P(v+w) = ap+ a1 (v+w) + az(v +w)?,
ag =by — YV ov+37y a1 = by + 9,
as = by

with com defined by (1.16), (1.14) and (1.15).

1.2. Renormalised system. We now turn to giving a precise meaning to the
discussion of the previous section. From now on, we refer to processes represented by
diagrams as “the diagrams”. For such a process, we understand the notion of “being
of regularity &” as meaning that it belongs to C([0, 00), BS,). This definition would
have to be modified for £ and W, which only make sense as space-time distributions,
but we will not refer to these any longer. We refer the reader to Appendix A for
the definition and some properties of the Besov spaces B;;. These spaces are more
commonly denoted by By, but since we do not make use of fine properties encoded
by the second integrability index ¢, we will always set it equal to co and drop it
in the notation. For the graphical term YV, some additional information on time
regularity will be needed. The regularity of v and w will also be measured in norms
on the Besov scale, but we will vary the integrability index throughout the article.
The content of this article is a global solution theory for the system (1.17), assuming
that we control all of the graphical terms in these norms.

Before we pass to developing this theory, we briefly discuss in which way the
system (1.17) can be linked to the original equation rigorously, and in particular
in which sense the products (and resonant terms) of the graphical terms of low
regularity should be interpreted. The diagrams entering our equations for v and w
are

(1~21) LV, \Va \&7 i& %,
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TABLE 1. The list of relevant diagrams, together with their regu-
larity exponent, where € > 0 is arbitrary.

as well as Y, which is defined as the solution of (1.12), that is, as a function of
V. These quantities, together with their regularity exponent, are summarized in
Table 1.

The two remaining ambiguous terms in our formal derivation, namely 1('V)? and
V1, can be defined classically in terms of the more fundamental object \i’/ For V1,

Yi=Yer+Y¥.
As for 1(Y)2, we only need to define 1 © (V)2 This term can be formally

decomposed into
210 [Yo¥V]+10[YeY],
and only the first term is ill-defined. The commutator
[©,el(Y, Y,
is well-defined, and we can thus set

10 [YoV] =YV +ea,Y,mn,

we can set

that is,

1) =re)?>+ro[YoV] +2V ¥ +20,e(Y,Y,1.

In this way, the coefficients ag, a1 and as appearing in (1.20) can be re-expressed as
ao =m(1 =)+ (V)* -3 [r oY) +10[Yo¥] +2¥¥+2p,0/Y.Y, r)}
-9V ¥ -39,
ai =m+ 6 [*V@ww —-3(Y)% + 9,
a=—-31+3Y.

Throughout the article, we will never make use of the explicit form of these coeffi-
cients, but only that they are of regularity (f%)’

A natural approach to construct the diagrams in (1.21) is via regularisation: if
¢ is replaced by a smooth approximation &5, then these terms have a canonical
interpretation: One can define 15 as the solution to (1.4) with ¢ replaced by &5,

Vs :zﬁ, Vs :z?i, and \?5 and Y5 as solutions of (1.12) and (1.7) with right hand
sides Vs and V5. Furthermore, one can then define \i’/(s e em w(s =Ys0Vs
and %6 = \?5 ©Vs. Finally, if (5, Ws) solves (1.17), with diagrams interpreted in

this way, then indeed, X5 = 15 — Vs + U5 + W solves (1.1) (with £ replaced by &5).

However, these “canonical” diagrams fail to converge as the regularisation param-
eter § is sent to zero. Given their low regularity, this is not surprising. Yet, the first
striking fact about renormalisation is that these terms do converge in the relevant
spaces if they are modified in a rather mild way. Indeed, if we set

5 =Ts, vs =V — CY, w5 = W5 — 3C5 T,
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for a suitable choice of diverging constant Cél), then define Y and \V(; as solutions
of (1.12) and (1.7) with right hand sides Vs and Vs, and finally

Vo=Yson Y o=Viov-30, ¥ =Ys0vs -G

for another choice of diverging constant C§2), then these terms converge to non-
trivial limiting objects. This is shown in [5], and a very similar result is already
contained in [23, Sec. 10]. We stress once more that these results rely heavily
on explicit calculations involving variances of the terms involved, which allow to
capture stochastic cancellations.

The second striking fact is that the "renormalisation” of these diagrams translates
into a simple transformation of the original equation. Indeed, if (vs, ws) solves (1.17),
with diagrams interpreted in the renormalised way, then X5 = 15 — \V(; + vs + ws
solves the identical equation (1.1), with £ replaced by & but with renormalised
massive term mgs 1= m + 3C’§1) - 90§2). Since the solution theory for (1.17) is stable
under convergence of the diagrams, we can conclude that the solution X5 to this
renormalised equation does converge to a non-trivial limit, denoted by X, as § tends
to 0.

The fact that we have modified the equation we intended to solve may be
discomforting at first. That this modification is the “correct” one is ultimately
justified by the fact that the solutions thus defined are indeed the physically relevant
ones. In particular, these solutions arise as scaling limits of models of statistical
mechanics near criticality. The connexion between renormalised fields and statistical
mechanics has been studied at least since the 60s (see e.g. [15, 21, 16] and the
references therein). We showed in [30] that the ®5 model can be obtained as the
scaling limit of Ising-Kac models near criticality, as anticipated in [12]. Related
results were obtained for the KPZ equation, first in [2] via a Cole-Hopf transformation,
and then, following [22], in a series of works including [17, 11, 27, 20, 19, 26]. See
also the survey articles [24, 6] for a summary of the work on the ®* model with
regularity structures.

1.3. Main result. Our aim is to show that such renormalised solutions of (1.1)
are well-defined globally in time. We will not discuss further the convergence of the
various diagrams, but only concentrate on the analysis of the deterministic system.
Before we do so, we make a modification to the system (1.17). We give ourselves a
(large) constant ¢, and consider instead the system

{ (O —Aw = Fluv+w)—cu,

(1.22) Oy —Aw = Gv,w)+ cv,

with F' and G as in (1.18) and (1.19) respectively, and with initial condition
(1.23) v(0) = vo, w(0) = wo.

Naturally, this modification changes the definitions of v and w, but we stress that it
does not change the sum v + w, and therefore the final solution X. This can easily
be seen on the level of the regularised solution (vs,ws) discussed in the previous
section. Since (v, w) is the limit of the (vs,ws), it follows that v 4+ w itself does not
depend on the choice of c¢. Therefore, it is ultimately enough to show the existence
of a constant ¢ for which the system does not blow up. (For the same reason, the
solution X depends on vy and wy only through the sum vy + wyg.)
Here is our main result.

Theorem 1.1 (Global existence). Let € > 0 be sufficiently small, let § = % + 2¢
and v = g + 2¢. For every Ky > 0, there exists cg < oo such that the following
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holds for every ¢ > cg. Let T >0, let 1, V, Y, \(L’/, w, < be any processes such that

for every pair (1, a.) as in Table 1, we have

(1.24) T e C([0,T),B), sup ||T(t)||lg:or < Ko,
as well as
1Y)~ ) g
sup 1 = < KO-
0<s,t<T [t — s|8

For every (v, wo) € BS x BY, there exists exactly one pair (v,w) in
(c(0, 71,89 n A (0.7),8, 1) x (C(lo, 71, B n ([0, 71,8 H))
solving (1.22) with initial condition (1.23).

Remark 1.2. The notion of solution derived in [5] is closely related to (1.17), but
slightly different: There, our ansatz

X=1—-Y4+v+w

is replaced by

X=1-V+20' oY+,
and a system of equations for ® and the remainder ®* is solved. The term ® @Y
in this decomposition corresponds to v up to a commutator term. Although these
approaches are very similar, ours makes the equations solved by v and w more
explicit.

Remark 1.3. As stated, this theorem might appear to make unnaturally strong
restrictions on the choice of initial datum. Indeed, if (vo,wo) € BS x B and if
1(0) = Y(0) = 0, then the process X is started with Xo = vy 4+ wo € Bg +B3. Given

that X (t) takes values in a distributional space of negative regularity (e.g. B;o%_a)
for all positive ¢ > 0, this may appear to be an unreasonable assumption on Xj.
However, this apparent shortcoming can be easily fixed. First of all, our analysis
does not rely on the convention to start the diagrams at 0, and other choices such
as working with stationary processes would be possible. Second, it is possible to
develop a local well-posedness theory for (1.17) for much less regular initial datum
(in both [23] and [5], local well-posedness is shown for initial datum Xy € BE for
any o > —2). For these solutions, (v(t),w(t)) would have the required B x B}
regularity for all ¢ > 0, and we could use the solution at some small strictly positive
time as initial datum in Theorem 1.1.

Remark 1.4. A similar analysis in the simpler two dimensional case was performed
in [31]. There, we were able to push the analysis further and show global existence
of solutions if the equation is posed on the full space R2. The full-space setting is
physically more relevant, but also more difficult to analyse, because the stochastic
terms lack any decay at infinity, which mandates an analysis in weighted distribution
spaces. Nevertheless, we expect that a solution theory in R? is within reach of the
methods presented here combined with those developed in [31].

Remark 1.5. Another very interesting extension of our result would be to obtain
bounds which are uniform in time. For now, our final energy estimate, Theorem 6.1,
is obtained through a Gronwall-type argument, and thus the constants in the
resulting estimate grow exponentially in the time horizon. Obtaining bounds that
hold uniformly over time would show the tightness of a Krylov-Bogolyubov scheme
based on (1.1). Such bounds would provide an alternative construction of the ®3
measure (1.2), not appealing to correlation inequalities. Similar bounds for simpler
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systems were derived, for example in [28], and we hope that the technique developed
there can be combined with ours to yield such a result.

1.4. Organisation of the paper. We present a local existence and uniqueness
result in Section 2. The main part of the article, which consists in deriving suitable
a priori bounds on solutions to (1.22), is divided into several sections. In Section 3,
we show that v can be controlled in terms of wj; in fact, we show that if the constant
c is sufficiently large, then a suitable norm of v is controlled by a small multiple
of a suitable norm of w. This allows us in effect to reduce the study of the system
(1.22) to that of an equation involving w only. In Section 4, we control the time
increments of w in terms of various norms, an ingredient made mantatory by the
presence of the commutator term com;. The core testing argument is given in
Section 5. As explained in more details there, the testing argument allows us to
replace non-linear terms by linear ones. Once this is done, we can proceed via
a Gronwall-type argument in Section 6 to finally obtain a self-contained a priori
estimate. A moderate amount of post-processing is then performed in Section 7 to
conclude the proof of Theorem 1.1.

2. LOCAL EXISTENCE AND UNIQUENESS

The aim of this section is to provide a local existence and uniqueness result for
the system (1.22). The constant ¢ € R appearing there is introduced for reasons
that will become clear in a later stage of the analysis, but plays no role for the
results presented in this section.

We interpret the system (1.22) in the mild sense:

(2.1) v(t) = A"y + /t =)A= P (y(s) 4+ w(s), s) ds,
0
(2.2) w(t) = e wy —l—/ e=I8[G(v(s), w(s), s) + cv(s)] ds.
0

A similar local theory was already presented in [5] in a slightly different formulation
(see Remark 1.2). The main result of this section is the following.

Theorem 2.1. Let e > 0 be sufficiently small, c € R, 5 = % +2e, v = % + 2¢, and
let1,v, Y, \(L’f, Q&, > be any processes such that for every pair (7,c) as in Table 1,
we have 7 € C([0,00),B%) and for every T > 0,

(2.3) sup |[|7(t)|[ger < Ko(T)
0<t<T

as well as
MOB T

(24) sup 1 = g KO (T)a
0<s,t<T [t — 5|3

with Ko(T) < oo. For every pair of initial conditions (vo,wo) € BY x BY, there
exists T* € (0,00] such that the system (2.1)—~(2.2) has a unique solution (v,w) in

X = (C(0, 77, B)) N CH(0,77), B, 1))
X (C’([QT*),B;) N C%([O,T*), Bgii))_

Moreover, this time T* can be chosen mazimal, in the sense that either T* = oo or
limgppe [[o(8)| o V [w(t) |57 = oo
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We start by isolating a bound on the commutator com; defined in (1.14), which
we will use again in subsequent sections. We introduce the difference operator

(2.5) dstf = f(t) = f(s).

Proposition 2.2 (First commutator estimate). Let & > 0, 8 = 1 + 2¢, p € [1, o]
and T > 0. Under the assumption (2.3)—(2.4), we have for every (v,w) € Xp and
tel0,T),

_14B8_
om0, w)()llgyea S 14522 o]l

+ / <t—>1+ (Io(s)lsp + ls) ;) s

t
1
+ /0 m”ést(v + w)”LP dS,
where the implicit multiplicative constant depends on e, p, T and Ko(T).

Proof. Recall the definition of com; in (1.14). The contribution of the initial
condition vg is controlled via Proposition A.13:

148
e voll greae S 7345 lugl g5
We now introduce the commutation operator

(2.6) [2,6] : (f,9) = e (f@g) — fO ("),
so that

2.7) e 92 (v+w—Y)ov|(s)
= (0w ="7)(s)© [eIAV(s)]| + [ 6] (0 +w = )(5),V(s))

We start by estimating the last term in the sum above. The contribution of ¥ can
be estimated using Proposition A.15:

‘ /t[e(ts)A’(@] (V(s),v(s)) ds ) < /t H[e(tfsm,@] (\V(s),v(s))‘
0 BL+2e 0
By the same reasoning, we have

)

We now turn to the first term in the right-hand side of (2.7), which we will
combine with the last term in (1.14). Recalling (1.13), we observe that

142¢
B,

1
5/ — - ds S L
0 (t—3)1+2€

/0 (=03 @] (0 + w)(s),(s)) ds

t
1
S — g vt w)(s ds.
811)4_25 N/(; (t—S W”( )( )”BS

(v+w—"Y)aY]{t) - /Ot(v +w—"Y)(s)® [e(t_s)AV(S)} ds
= /Ot [6st(v 4w — \V)} ® [e(tfs)A V(s)} ds.

By Proposition A.7, the || - [|gr+2e morm of the integral above is bounded by a
constant times

t t
) 1
/ 165t (v4+w="F) Lo [~ 2V(s) ]| grree ds < / ————— |65t (v+w =) £» ds,
0 o0 0 (t — 3) +5
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where we used Proposition A.13 and the fact that ||V(s)| z-:1-= S 1 in the last step.

By the assumption of Hélder regularity in time on V' (with exponent %)7 this last
integral is bounded by a constant times

t
1
1 — |95 » ds,
+ ) G et ol ds

which completes the proof. O

Proof of Theorem 2.1. We follow the usual strategy to first solve the system for
some small but strictly positive T € (0, 1] using a Picard iteration. In a second step
solutions are restarted iteratively to obtain maximal solutions.

We ﬁxﬁz%—i—% andfy:g—ﬁ—Qe. For every T' > 0 and M > 0, we define the
ball

Xrom = {(v,w) € Xr: (v, w)[|x, < M},
where

[v(t) —v(s) HB&%

)

(v, w) ||z, := max{ sup [|v(t)][zs, sup T
0<t<T 6 0<s,t<T |t — s|®

[w(t) —w(s)l -3 }

B

sup [[w(t)|[sy, sup -
0<t<T 0<5,t<T |t — 5|3

Furthermore, we denote by ¥ the fixed point map, i.e. the mapping which associates
to (v,w) € X the function t — (¥ [v, w], ¥W[v,w])(t), where

¢
WY v, w](t) = et A=Dyy + / =)A= P(y(s) + w(s), s) ds,
0

t

WV v, w](t) = "By, —l—/ =)A= G(v(s), w(s), s) ds.
0

We now show that for a suitable M and for 7" small enough, ¥ maps X7 s into itself.

The core ingredients are the following bounds, which we formulate as a lemma.

Lemma 2.3. There exists a constant C depending only on ¢ and Ko(1) (defined in
the assumption of Theorem 2.1) such that the following holds. For every M > 0,
T €(0,1], (v,w) € Xy and s € [0,T], we have

(2.8) [1E(v(s) +w(s), )l g-1-e < C(M +1),

and the term G can be split into G(v(s),w(s),s) = G1(s) + Ga(s), with
(2.9) G () 32 <C(1+%),

(2.10) 1Ga(s)|l 22 < C (1 st M) .

The proof of this lemma is deferred to the end of the proof. We first use it to
establish that ¥ maps X7 5 into itself.

We start by deriving bounds on ¥V. Using Proposition A.13 and (2.8), we get
that for every t < T,

2

t
» 1
||‘I’V[va](t)||gg < s )U0||Bg +/0 WHF(U(S) +w(8)78)||6671*5 ds
— S

Bt1l+te

< lollge + 85 (M + 1),
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To bound time differences, we make use of the identity

TV [v, w](t) — TV [v, w](s) =(e@=D A=) _1q)es(A=0)y,

(8 1) [ IO P () (), r)dr
0

¢
+/ A=) P (y(r) 4+ w(r), r)dr,

which holds for any 0 < s < ¢. This allows us to write, using Proposition A.13 and
(2.8) again,

1Y [, w](t) = T [v, w](s)]

Bl

B~
Btlte
S (t=5)3 vollge + (E—s)5t' "2 sup [|F(u(r) + w(r),r)] g1
6 0<r<s 6
+(t— )t

= sup ||F(v(r)+w(r), 7°)||Bg175
s<r<t

1 _ Btl+te
S (= 5) (lvollgs +1*

2

(M +1)).

The argument for " is similar: replacing (2.8) by (2.9)(2.10) and adjusting the
exponents, we get

t
O R R

e Gy
|
o [ G
S llwollgs + $-Grare) (a8 4 1) + 41 (5H3) (1 + M),
and
(2.11)

19 [v, w(t) - \I’W[vvw](S)IIB;-

S (t—9) ¥ wollsy + (t — )3~ (3H44e) sup |Gy (r)

Bl

2

0<r<s ”57%725
+(t - )17 qup 6o (r)

_1_o.
s<r<t ||Bz 2
+ (¢ 8)8t1_<%+%) sup TiHGQ(’/‘)HLZ
0<r<s
+ (t— s)éﬂ_(%*‘%) sup ri |G (1)l L2
s<r<t
1 (x4 1
S (b= 5% ([lwol gp + 1~ G (217 4 1))
Note also that for € > 0 sufficiently small, we have
B+14+e 9 v o1 9
Prore 2 d Lo yeg< o,
> S0 ™M 3tiTesTg
Summarising, we conclude that there exists a constant C* which depends only on
Ky(1) (whose value we momentarily want to remember) such that for all T < 1,
(v,w) € Xp,r and M > 1, we have

1Y o, 0], 9% o, wl) ey < C* ma{L, ool lwollsg, T M3},
Hence, if we choose M = C* max{1, [[vol|s, [[wol|gy } and T = (C*M?)~'%, we can
6

conclude that ¥ indeed maps X, 1 into itself. The fact that it is also a contraction
on this ball can be established with the same method and we omit the proof.
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At this point, we can conclude that for every initial data (vg, wp) and every choice
of processes 7 satisfying (2.3), there exists a strictly positive time 0 < 7Tj < 1 such
that (2.1)—(2.2) has a unique solution over [0, 71]. Furthermore, any upper bound on
[lvo] B2 [[woll sy and Ko(1) provides a lower bound on 77. Our argument also implies

that ||U(T1)||Bg < oo and [lw(T1)|[p; < oo, which makes these functions admissible

initial conditions to repeat the argument to obtain solutions on [0, T} + T5] for some
strictly positive T5. By induction, we can extend solutions up to a maximal time
T* =512, T). By the previous observation, the time 7% can only be finite if at
least one of the quantities ||U(t)HB§» [w(®)lls3

4
oo

17 ) =Y ra)ll -

(2.12) sup ||7(r)||ger, or sup T
t<r<t+1 t<r,ra<t+1 |r1 — ro|3

blows up as ¢t T T*. But by assumption, the quantities in (2.12) are bounded on any
compact interval, which excludes their blowup.

There remains to argue about uniqueness of solutions to the system (2.1)—(2.2).
This follows from the local contractivity of the fixed point map by classical arguments
(see e.g. Step 3 of the proof of [31, Theorem 6.2]). O

Proof of Lemma 2.3. According to the definition of F' in (1.18) and Proposition A.7,
we have (dropping the time argument s to lighten the notation)

1F (v +w)llg-1-c = 3ll(v+w =) OVl|g-1-c < [lo+w =V oIVl 21—

The estimate (2.8) then follows from the fact that |[v||zs is controlled by |v]|4e,

6
that according to Proposition A.2 and Remark A.3, [|w||rs is controlled by |[w]|s;
and that H\VHLG is controlled by H\VHB%,BE.

In order to verify (2.9) and (2.10), we set (recalling the definition of G in (1.19))

Gi(s) = —(v+w)® —3wev-3w+w—-Y)Ov+ P+ w),
Ga(s) = —3com(v, w),

where the polynomial P is defined in (1.20). We proceed by using the triangle
inequality and bounding the terms on the right hand side of these expressions one by
one. For Gy, the least regular term is the term ag(v + w)? arising in the polynomial
P. We use Proposition A.7 to bound this term:

lag (v + w)Qllg;%—ze S llaz(v + w)QHBZ—%—s

S llazll -3 - ll(v +w)2||8§+22

oo

< 2 2

Sl g (12 ),

which is bounded by C(1 + M?). Indeed, this follows from the assumption that

(v, w) € Xpr,7, the obvious comparison ||11||B%+25 < ||v||8%+25 (recall that 8 = 3 +2)
6

and the fact that by Proposition A.2, !

S llwll

Hw”8§+26 ~ B,‘;%HE.

(This is where our choice of the exponent = is critical.)
For the remaining terms in the polynomial P, we observe that by Propositions A.7
and A.9,

(2.13) Ha0||87%,5 <C and Ha1||87%,5 <C.

oo oo
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Hence, using Proposition A.7 again, we obtain

llar (v +w) +aoll 3 S llasll —3-cllo+wl 31a +llaoll -3 <O+ M).

2 o 2 oo

Another rather irregular term is that given by
130+ = V) OVl _g-ae S (Il gge + 0l e + 1Vl 3V llso-e

where we used Proposition A.7 once more.

The remaining terms appearing in the definition of G; can be bounded in stronger
norms. Indeed, we have

(v +w)*llz2 < llvligs + llwllZe < M7,

where we used the fact that [[v[zs < [[v[|zs as well as the embedding [[wl|rs < [lw| sy
6

provided by Proposition A.2 and Remark A.3 (since v > 1). The only term left to
control is

1BwOVL2 S wlgi+= [Vl g1-e S M.
This completes the proof of (2.9).
We now turn to the proof of (2.10). We recall that according to (1.16), we have
com(v,w) = comy (v, w) @V + comy(v + w),
and use Proposition A.7, Remark A.3 and Proposition 2.2 to write

lcomy (v,w) ©V(s) |2 < llcoms (v, w)(s) | s [[V(5) | =1
t
1 1
< -3 -
L4 fopllgs + / T (s sz + ()5 ) s

t
1
S d
| g ety vl s
S14t73M+ti Mt 2)],

where in the last step we have used the assumption (v, w) € Xps . Note in particular
that we have made use of the control on the Holder regularity in time of (v, w) in
order to treat the last integral. For the second commutator term (defined in (1.15)),
we use Proposition A.9 to obtain

[coma(v +w)[[z2 1+ [lv+wllpge S 1+ M.

This completes the argument for (2.10). O

3. A PRIORI ESTIMATE ON v

Before starting to derive a priori estimates for solutions of (1.22), we state some

Important conventions. We list a certain number of quantities that will remain
fixed throughout the rest of the paper. We fix

1 5
(3.1) 5254—25, 721—1—25,

where € > 0 will need to be chosen sufficiently small. We give ourselves Thax € (0, 00),
and processes 1, V, Y, \(& &, > such that for every pair (7, ;) as in Table 1 and

for n = é, we have

T € C([0,00), B ), sup  [[7(t)|[sar < Ko(Tmax),
0<t < T nax
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as well as
MOE \V(S)IIB%E
sup % < Ko(Tmax),
0<5,t< Tinax [t — s|3

for some Ko(Tmax) < 00. We also give ourselves an initial condition (v, wp) €
Bg x B3 and a solution (v, w) to (2.1)—(2.2) on a maximal time interval [0,T*), as
given by Theorem 2.1. We write T = T* A Trax-

In the inequalities < of Sections 3 to 6,

(3.2) the implicit constant does not depend on (vg, wp).

Our final aim is to establish that if the constant ¢ is sufficiently large (depending on
Ko(Thax)), then
tn (8] 5 V o (®)s; < oc.

In view of the maximality property of T, this shows that T* > Ti,.x, as desired.

In this section, we focus on deriving an a priori estimate on v. This estimate
becomes better as ¢ increases. Roughly speaking, taking ¢ sufficiently large will
effectively enable us to reduce the study of the system (1.22) to an equation on w
only. We recall our notation d5v = v(t) — v(s).

Theorem 3.1 (A priori estimate on v). Lete >0, 5’ € (0,1 —2¢), p € (1,00),

/
1 _
(3.3) Uzw and g:c—l—[F(l—o)]l/(1 o)
where T is Euler’s Gamma function. For every s <t €[0,T),
t g—c(t—u)
e e

(3.4) [o(®)llgor S e Jlvoll go- +/ . L+ [[w(w)]zr) du,

P » o (t—u)

—c(t—u)

t
B e e
(3:5)  Ndsevllr St —s[7= [lo(s)l e +/ ( (L4 [lw(u)llLe) du,

s (t—u)zte
where the implicit constants depend on e, p .5 and Ko(Tmax), but not on ¢ € R.

Remark 3.2. In view of the proof below and of Remarks A.3 and A.14, we also have
—c(t—s)
e

t
v(t < e ¢||u —&—/71—1— w(s ds.
IOl 5 e ol + [ (1 w6)l)
Remark 3.3. It is also straightforward to see using Proposition A.13 that for any
given n > 0, one can replace the term ||vl/ze in (3.4) by t’%HvOHBW_U. (The
) p
implicit constant then depends on 7.)

Proof of Theorem 3.1. By Proposition A.13, the first term in the right-hand side of
(2.1) is estimated by

(3.6) T

As for the second term in the right-hand side of (2.1), by Proposition A.13,

< t efc(tfs) P d
‘ Bg’N/o g IF @ w.8) e d

Recall the definition of F' in (1.18). By Proposition A.7,
(v +w =) @VI(s)llg; - S (v +w="T)(s)le S llo(s)ll g + () ]w +1.

t
/ =)A= P (y 4w, s)ds
0

Hence,

. t efc(tfs)
o)l S € ool + [
0

t—s)" (1 +[Jw(s)lze + ||11(3)||85,) ds.
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Inequality (3.4) then follows using the Gronwall-type Lemma 3.4 proved below.
We now turn to (3.5). By homogeneity in time of the equation, it suffices to show
(3.5) for s = 0. By Remark A.3, we have || - |[z» < || - |5, so

t —c(t—s)
—c e
||'U(t) —et(A )UOHLP S /O m “F(U+w,8)||8p—l—s dS.

By Proposition A.13 and Remark A.3,

_ B —c
11 = A= DNwgllpr St llvollgg -

~

Hence,
—c(t—s)

t
B —¢ e
_ <tz , _— . — .
(B7)  o(t) ~ wollir S 7 fluollg +/0 eI w9l ds
By the same argument as above,
[1F(v+w,s)|g-1-= S [[o(s)llsg + [[w(s)lr +1,

and by (3.4),

s s o—c(s—u)
[o(s)llsz < e [lvolls; +/O = (1+ lw(w)l|re) du.

_u)§

Inserting this estimate in (3.7), we are left estimating

tog—clt—s) s g—c(s—u)
/ / - (L4 w(uw)|[zr) duds
o ( “Jo (

t—s)2t s —u)zte

t t
1
< / et (1 1 () 1) / ds du.
0

w (t— s)%Jrs (s — u)%ﬁ

—2¢ 50 the proof is complete.

O

The last integral is bounded by a constant times (¢ — )

Lemma 3.4 (Gronwall-type lemma). Let0 < 0 < 1, c € R and k(s) = e~ *°s™ 7 1450.
Assume that f,g,h : Ry — Ry are locally bounded measurable functions such that
for every t > 0,

F(t) < glt) + / k(t - 5)(h(s) + f(5)) ds.

Then for every t > 0,

(3.8) () < glt) + / K(t — 5)(g(s) + h(s)) ds,

where
_ +oo n+1
_e” I'(1—o) n(l—c
Ko =" Lo a°

Moreover,

+oo Y n+1
69 g (Z o 11 o7 5"“‘”) U

Proof. Note that by iterating the hypothesis once,

0 <o)+ | k- 1) (e +ote) + [ " Kt — t2)h(t2) ) a

+/ k(t—tl)k(tl —t2)f(t2) dito dity.
0<ta<t1<t
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We introduce some notation that will allow to iterate further. For every integer
n >0, we let

K™ (tg, thyr) = / F(tppr —tn) - k(ty — to)dty - dty,

to<- Stnt1

(with K (s,t) = k(t — s)). By induction,
N-1 t
f(t) <g(t) + (Z/ K™ (s,t)(g+ h)(s) d8>
n=0 0

t

(3.10) +/ KM (s,t) (h(s) + f(s)) ds.
0

The kernels satisfy

K™ (tg, tny1) = e n+1=t0) / (tngr — )" -+ (t1 — to) " dty - - dty,.

to<- Stn41

A change of variables enables to rewrite the integral above as

/ $77 8, (tpy1 —to— 81—+ — 8p) “dsy---dsy,
1+ +8n<tnt1—to
= (tn+1 — to)n(l_a)_a/ SIU e S;U(]_ — 81— — Sn)_a dSl e dsn
st +sn<1
(the condition s; > 0 is kept implicit). The latter integral is the beta function
evaluated at (1 —o,...,1—0), and is equal to
(1 —o)"*

Tl(n+1)(1—0)]
(In fact, one can check this by computing the L! norm of the n-fold convolution of
the function s — e *s77145¢.) To sum up, we have shown that
[ —o)"*
I[(n+1)(1—-0)]

This proves that the remainder term in (3.10) tends to 0 as N tends to infinity, and
yields (3.8). In order to check (3.9), we use the fact that for z > 1,

K(")(s,t) — e—c(t—s)(t _ s)n(l—o)—o

xn(lfa) too m[n(lfa)J+1

+o00 1 .
;I‘[(n(l—a)—i—l] gﬂ; =)l S 7= 1

Since T'[(n + 1)(1 —0)] = [(n+ 1)(1 — 0)] 7' T[(n + 1)(1 — o) + 1], this gives the
upper bound for (3.9). Since we will never use the matching lower bound, we simply
mention that it follows by evaluating the contribution of the summand indexed by
n such that n(1 — o) ~ s[['(1 — o)]/(1=), O

4. A PRIORI ESTIMATE ON dg;w

As was already apparent in Section 2, one difficulty in the analysis of the behaviour
of solutions to (1.22) comes from the presence of the first commutator term com; in
(1.16). Indeed, assessing the (finiteness and) spatial regularity of this term requires
information on the time regularity of v, w and Y. Adequate information on the
time regularity of v was obtained in Theorem 3.1, while the time regularity of Y
is given. The purpose of this section is to derive a bound on ||§s;w||» in terms of
various norms of w. (Recall that §;;w = w(t) — w(s).)
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Theorem 4.1 (A priori estimate on duw). Let p € [2,38), and £ > 0 be sufficiently
small. For every s <t €[0,T),

(4.1)  ||6sw|rr < (t—5)F x

~

t "
Lt ool + ()l + ( [ i, du)
3p P 0
t 5 t 3 t
([ otolgyean) + ([ i)+ ([ loora) ]

where the implicit constant depends on €, p, Tmax, Ko(Tmax) and c.
Before turning to the proof, we briefly explain why we choose to measure dgw
with the quantities appearing on the right-hand side of (4.1). To begin with, the

1

terms |lw(s)||zs and (fot ||w(u)||21+2£du) " are linear in their dependence in w (by
P P

NI

“linear”, we simply mean that these quantities are 1-homogeneous, i.e. replacing w by
Aw for some A > 0 changes the value of each of these quantities by a multiplicative
factor A); heuristically, their presence should not cause a blow-up. The other terms
are non-linear in their dependence in w, and are thus more menacing. They appear
because at this stage, we cannot make use of the fact that the leading term —w?
in the definition of G has the right sign. In the next section, we test the equation
for w against |w[*’~*w to benefit from this. This will give us control of ||w(s)||zs».
In the case p = 3 (when we test against w), we also gain control of [w(s)]|1; in the

case p = 2 (when we test against w?), we gain control of ||w2(s)||3é.

We introduce
6l aw = w(t) — e 2 u(s),

so that
t
Slw = / VA G(v,w) + cv](u) du.

The core of the proof of Theorem 4.1 focuses on the estimation of the LP norm
of 0%, w. We then derive an estimate of ||ds;w||L» at the last step, which makes the
term [lw(s)| 45 appear.

P

Recall the definition of G in (1.19) (see also (1.16)). There are several terms in G
which require special attention: the cubic term (v + w)? has the highest degree. As
was already said, for now we cannot make use of the “good” sign of this term, but
only treat it as a “bad” term. This makes the cubic non-linearities in (4.1) appear.
The estimation of comy (v, w) involves |05, w| rr itself; we will derive an estimate of
the form

1 6/, wll 7 1/2
||6fetw”L’J S(t—s)8 l( sup ”““”L> (v )+ -

1
wust |u—u'|8

where - -+ are quantities that do not involve ¢’,w, so that an explicit estimate on
|67, w]| » follows. The term involving w©YV is the only term which requires to control

derivatives of w of order higher than one. This is the reason for the appearance
1

of the term (fot Hw||gl+2sdu) ” on the right-hand side of (4.1). Finally, the term

az(v+w)? (the quadratic term in the polynomial P(v+w) defined in (1.20)) involves
controlling the spatial regularity of non-linear quantities of v and w. (Recall that
as is a distribution with spatial regularity of order f% —¢.) It is this term that
causes the restriction p < & and makes the last two terms in (4.1) appear. (We also
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assume p < 6 in Lemma 4.4, but this is less essential.) We summarize this as

¢
(4.2) Slw = / WA (y 4+ w)(u) du
t
(4.3) - 3/ e=WA [comy (v, w) © V](u) du
t
(4.4) - 3/ WA [ o v](u) du
tS
(4.5) + / WA [ay (v + w)?|(u) du
ot
(4.6) —|—/ WAL (u) du,
where [ ... ] stands for the easier terms left out. We provide bounds on the terms

listed in (4.2)—(4.6) in the following lemmas.

Lemma 4.2. Letp € (1,00) and e > 0 be sufficiently small. For everys <t €[0,T),

|

t
/ WA (y + w)3 (u) du
S Lp

sa=9% (Lot + [ o)’

where the implicit constant depends on €, p, Tmax, Ko(Tmax) and c.

Proof. We start with the simple estimate

(t—s)7 (/ (v + w)(u |L3pdu>

We learn from Theorem 3.1 (in fact, Remark 3.2) that

U
1
o)l S lonllzon + [ o=sr 1+ )lw) ds,

)

for o = % + €. We can focus on bounding

[ ([ s 0 I as)

By Jensen’s inequality, the quantity above is bounded by a constant times

t
/ / 1 + flw(s )||L3p) dsdu <1 +/0 w(s)]%5, ds.

Summarizing, we obtain (4.7). O
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Lemma 4.3 (Estimating comy). Let p € (1,00) and € > 0 be sufficiently small.
For every t € [0,T),

_1-8_,
(4.8) llcomy (v, w)(#)[ gre2e S THE72 " ool s

t
1
+ /0 m”w(s)nsf ds

t
1
+ /0 m“astw”LP ds,

where the implicit constant depends on &, p, Tmax, Ko(Tmax) and c.

Proof of Lemma 4.3. By Proposition 2.2,

1
[lcomy (v, w)(#)| gz +2e S PEE lvollsg +1

t
1
+/0 mmt(v +w)||z» ds.

We now use the estimates of ||v(s)||zs and ||ds;v||L» provided by Theorem 3.1. We
D
start by estimating

(1.9 [ ol @

using (3.4), which takes the form of a sum of two terms. The first term is

t
1 _
[ Gy < ey ds S el

The second term of the upper bound for (4.9) is bounded by

t 1 s 1
= (L + [Jw(u duds
/0 (t_8)1+25—§/0 (s—u)“%( l[w(u)zr)

t t
1
< [t [y e

and the last integral is bounded by a constant times (¢ — u)_%_%g. Since for € > 0
sufficiently small, 1 + 35 <1— g +2,and || - f|zr S| - HB;?’ this term is bounded
by the right-hand side of (4.8).

As for the term with ||d5v||L», we have

|
/0 m”éstv”Lp ds

¢ 1 B¢ s 1
S| oo \t-sl T ; — »)duds ).
< [ gy (= AT 0y + [ s (0 o)) dut)

The first term is (4.9) again (up to an irrelevant extra exponent £/2), while by the
same reasoning as above, the double integral is bounded by

i 1
|| Gy O Il du

and this completes the proof. O
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Lemma 4.4. Let p € [£,6], and £ > 0 be small enough. For every s <t €[0,T),

t
(4.10) ‘ / et~ [comy (v, w) © V] (u) du
S Lr
S =)t (1+uollgy)
t_sé (/ ||’LU ||B[3 )
1
1-& 3 3p o
+(t—s) o Jwll, i IIw(u)HLp du)
where ||w|lp,. is defined by
o, w
(4.11) fwlpe = sup Wl

wust |u—u|3
The implicit constant in (4.10) depends on €, p, Tmax; Ko(Tmax) and c.

Remark 4.5. By assumption, w € C’é([O,T),B%HE). By Proposition A.2 and
Remark A.3, the space B%Hs is continuously embedded in L%. As a consequence,
the quantity ||w||,,: is finite for every p < 6.

Proof. We start the proof of (4.10) by using Proposition A.7:
t
‘/ =28 [com; (v, w) ©V](u) du

By Lemma 4.3,

t
S/ [lcomy (v, w)(u)]| gr+2e du.
Lp s P

_1-8_
leoms (v, w) () gss2e < 14w 5 [Juo]l g5

“ 1
+ oy Ol
u 1 ,

We can estimate the contribution of the first line above by

t
/ 1+ 0™ ool | du S (6= )M (14 ool ) -
S

As for the integral on the second line, since p > % and 1— g +2e < 1 for ¢ sufficiently
small, we can apply Hoélder’s and Jensen’s inequalities to get

/ / )l
t—sé<// p—— ()| dudu)
(113) -9t ( / i au)

We now analyse the more subtle term coming from (4.12):

(414) / / 1+E Hdu/u’lU”Lp dul du.
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To begin with, we replace d,/,w by ¢.,,w. The difference is estimated by Proposi-
tion A.13: for 8 € (1/4,1),

16uruwlzr = 18w]lze] < 1L = e )w(w)|| s
< (u— )5 w)|gs-

Hence, the difference between (4.14) and the same expression with J,,, replaced by
4!, is bounded by (using Holder’s and Jensen’s inequalities and p > %)

[ ] oot a
S-ab (/t /u(u_;) lw (@) s du’du>;
-9 ([ 1w, du>

Note that this is the same error term as in (4.13). Moreover, by Remark A.14,
1/2 1/2 1/2
18wl S Nl (@l + o)1)

Hence, the double integral in (4. 14) with §,/,, replaced by ¢/, . is bounded by

u'u

1/2 1/2 1/2
(4.15) Y / / - THE(H w(u) |12 + ()| Y2) dud du.
We have
/ / o O
16
1/2
= / ||w<u>||Lé, du
(t— )" (/ e ||izdu> ,
as well as
)Y a
s Jo (u—u)Tte Az G U
1
6p
<(t— s (/ / el <u'>||i€du’du)
16
P
(t—s) (/ Jw(a ||Lpdu) |
Summarizing, we obtain (4.10). O

The following lemma is the only place where we need to measure a derivative of
index higher than 1 of w.

Lemma 4.6. Let p > 1 and € > 0 be small enough. For every s <t € [0,T),
1
P

t
/e(t_“)A[w(%V](u)du (t—3s) e (/ [Jw(u HBH% )
p

(4.16) ’
where the implicit constant depends on €, p and Ko(Tmax)-
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Proof. The estimate (4.16) follows easily by writing

t t
5/ I © V| 1o (1) dug/ O —

t — S p </ ||w ||Bl+2€du) . O

For the next lemma, we recall that as is the coefficient in front of the quadratic
term in P which was defined in (1.20), and that as is a distribution with spatial
regularity —% — ¢ controlled uniformly in time. This is where the condition p < 8/3
enters.

/t =W [y © V] (u) du

Lr

Lemma 4.7. Letp € (1,%) and € > 0 be small enough. For every s <t € [0,T),

ool

(4.17) t WA [ay(v + w)?(u )du

S(t—s)

1+ ol +( [ 1 ||Bldu) ( [t ||Lspdu);+( /Otnw(u)n%;du)i],

where the implicit constant depends on €, p, Tmax, Ko(Tmax) and c.

Proof. We start by bounding the term which is of highest order in w, using Re-
mark A.3 and Propositions A.13 and A.7:

¢
/ eI [a5uw?) (u) du
s Lr

t t
1 1
< - - 2 < I 9
~ /s (t— u)%JFE lazw HB;%7£ (w)du 3 /S (t— u)%JrE [|w (U)HB§+2E du .

By Proposition A.4 and Remark A.3, we have uniformly over u

lw? (u) = Jw? )|z ™ w2,

@w)‘

L2 12
yrae S N ()llgy ™ w?(w)llz ™

I
L1, )1, (1 0!
p 27 )T\ =)

Note that for p < 4 and € > 0 small enough (depending on p), such an r can always
be found. It will however be most useful to choose r such that 2r < 3p, in which
case we need to impose

Lo (L o\, (1,2
p~ \2 2 2 3p

For p < % and e small enough, this condition is satisfied, and from now on we will
assume that it holds. Then using ||w(u)||pzr < |Jw(u)||Lz», we get

142 —
(@) gsee S T @iz oz
P

as soon as r > 1 satisfies
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Plugging this estimate into (4.18) and applying Holder’s inequality, we get

t
‘ / e=A [a5w?) (u) du

§</:<(t_i)+> ) </ w? (u Bldu) </ ol ||i€,,du) 1

1—4e

t 3p
S (t— s)%*(i%ﬁ) (/ |w2(u)||f;édu> (/ [|lw(u |igpdu) ,
0

as soon as
1 1 1—4e 1
r’+(4+€>+ 3 =1 and r'<4+5)<1-

For any p > 1 and for £ > 0 small enough, the 7’ determined by the first condition is
< 22, which yields an exponent for (¢ — s) which is > } — £. By Young’s inequality,
we can conclude that for any p > 1 and for € > 0 small enough,

Lp

(4.19) ‘ / te@*“m [asw?](u )du

| </ I 'BldU) # ([ i)’ ]

We now turn to the term involving asv?. Arguing as in (4.18), we get

¢
‘/ e g50%](u) du

1

(-9t

Lp
! 1 2 ‘ 1 2

4.20 < e 1., du < _ du .
U g 1l S / g I e
Recall that by Theorem 3.1,

“ 1
(42) s S ol + [ o (U ) ) e

0 (u—u,’)4+2

The term containing the initial condition contributes

t
1 ) s
- < _ —€ 2
(4.22) /s (t_uﬁ%HvoHngduN(t s)3 Hv0||B§p.

The contribution of the second term in (4.21) to the integral on the right-hand side
of (4.20) can be rewritten as

2

/:f(tu) (/Oug(uu’)h(u’)du') du |

(4.23) fwy=-—r 9= 5, hw) =1+ w(urs .

for
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Therefore, using Holder’s inequality in the first and Young’s inequality in the second
step we get

L =2 [0507) (u) du

< (/t f(u)‘“du) g (/Ot /Ou g(u — ) )du! " du) "
S(Lwamgé(Alwwmgé(ﬂ%wwmoé,

where ¢/ is the adjoint exponent of ¢; and ¢, g3 € (1, 00) satisfy q% + q% =

Lpr

1
We also impose ¢; and g2 to be sufficiently small that the corresponding integrals

are finite. That is, we impose

3 1 1 1
4.24 —=— 4+ —4 —, <
(4.24) 2 20 @ g B EE

and g2 < E .

Choosing g3 = 3p (for any p > 1), and ¢; = W (which implies that the second
condition in (4.24) is satisfied) one sees that the the ¢o determined by the first
condition in (4.24) satisfies g2 < % for any p > 1, which implies in turn that for
¢ > 0 small enough the third condition holds. Therefore, using ||w||r2» < ||w||Lse

we can summarise
1
(/nw )%, du )
Lp

¢
(4.25) ‘ / WA 4502 (u) du (t—s)2

The term involving the product vw also requires some thought. As before, we
write

(4.26)

. t
1
/ e(t’")A[ang](u) du S/ W HUU’(U)”B%Ma du.
. s — w1 P

It is convenient to split the integrability requirement on vw asymmetrically between
the two factors. We use Proposition A.7 to write

Lp

(4.27) [vw(u)| i i S Sl s ocllw(@)ll 14ee
‘8[14 B‘IS
where
1 1 n 1 d 3
—_ = _ an = .
P Q1 ¢ B 1

In particular, we assume that p < (which, of course, is already implied by our

3
1+4+2¢
earlier assumption p < % if € is small enough). We use Proposition A.2 to bound
the term involving w:

||’LU( )” 7+2£ ~ H’LU( )“Bé :

For the term involving v, we seek to use a norm with exponent of mtegrablhty 3p.
For p < 1+25, this is automatic because then we have g4 < 3p. For 1+2E <p< 1_325
we resolve the lack of integrability by raising the differentiability index, using again
Proposition A.2. This is summarised in the bound

o)l 3 pEtee IS ||v(u)||8%+25+0

‘14 3p

1 1 2
03()\/0<1+25>v0.
3 @ D

for
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In particular, for p < 3 and € > 0 small enough (depending on p), we have o < %
Summarising these bounds in conjunction with the a priori bound on v from
Theorem 3.1, we get

t t
/e(f—“)A[CLva](u)du 5/ F = wllvollgs llw(u)]sy du

s Lr

t u

w [ rte= ([ atu =) a ) s du,

s 0

where, similarly to (4.23), we have set
1 1
flu) = g(u) = e S

(note that the functions f and h are the same as in (4.23), but that ¢ has been

added to the exponent of u in the definition g). We first bound the second term in
the right-hand side of (4.28). By Holder’s inequality, this term is bounded by

(/s “”‘“d“)qlﬁ (f ||w(u)||fgédu>; ([ ([ st smiran)” du)“lﬂ

where

(4.28) ‘

ey h(u) =1+ [Jw(w)| Lo -

1 1 1
4.29 1= — + -+ =
(4.29) % 2 q7

The integral involving f is finite as soon as

4.30 <
( ) g6 4 I

and in this case we can bound the first factor (up to a constant) by (¢t — s)i_i_s

Using Young’s inequality, we bound the integral involving the convolution of g and
h by

([ (oo w)* < ([ ([m)”

for

1 1 1 1
4.31 I+ —=—+— and g < - .
(4:31) g gs 3p Tt5+%
Parameters gg, q7, and gg satisfying the conditions (4.29)—(4.31) can always be found.
Indeed, for p < 2 and € small enough, we have o = 0 and we can choose gg close to
, which even in the worst case p =1 allows to chose g7 close to 12. Plugging this

1nto (4.29) yields a gg close to 12, so that finally we obtain an exponent for (¢ — s)
which is as close as we want to 2. For2<pg< 3 we use the crude bound o < 3
which (for € small enough) allows for qs close to 2 Again, for any p > 2, the ﬁrst

condition in (4.31) implies that for & small we Can choose g7 close to 12, and we
get the same control on the time regularity as before. To sum up, we get for any
p < 3 and € small enough that the second integral in the right-hand side of (4.28)
is bounded by

1

(4.32) <t—s>é(/Otnw(r)uz;dr)é(u / lw(r ||L3pdr)3”
([ i)+ ([ o) ] .

1

S(t—s)8 |1
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There remains to bound the first integral in the right-hand side of (4.28). By the
Cauchy-Schwarz inequality, this integral is bounded by

folleg, /10t~ u)zolu)é ([ ||w<u>||z;du)é ,

which, by Young’s inequality, is bounded by

(t—s)* [nm;gp ([ ||w<u>||%;duﬂ .

This concludes the estimation of (4.28). Combining this with (4.19), (4.22) and
(4.25), the desired estimate (4.17) follows. O

We now bound the terms which were not made explicit in (4.6).

Lemma 4.8. Let p € (1, %) and € > 0 be small enough. For every s <t € [0,T),

(4.33) /t WAL (u)du S (& — s)pp;lA%

t 5
ool + ||w<u>||;;;+2€du> # ([ i) ]

where the dots ... represent all the terms left out in (4.6) (spelled out explicitly in
(4.34) below). The implicit constant depends on €, p, Tmax, Ko(Tmax) and c.

Proof. We need to bound
(4.34)
t

/ et—wA [—3coma(v 4+ w) = 3(v+w — V) OV + ag + a1 (v + w) + cv] (u) du,

and we proceed by bounding these terms one by one.

To begin with, we show that

¢
(4.35) ‘/ e~ WA comy (v 4 w)(u) du

Lp

- t 1
=97 (1t Tl + ([ Totlye. a0)7].
? 0

Indeed, by Remark A.14 and Proposition A.9, the left-hand side above is bounded
by

/||com2(v+w)(u)|\Lpdu
< / (0 + w) () g+

(t—5)" { / fo(@)fedu)” /||w ) du)” ]

For the integral involving v, we apply Theorem 3.1 as before to obtain

t t u 1 , , p
[ 1vlgedn S ol + [ ([ (0 ) ) ') "
0 v » 0 0o (u—u')2

t
Sloollys + [ (4 et )
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where we have first used Jensen’s inequality to move the p-th power inside the du’-
integral, and then carried out the du integral. So (4.35) follows.

We now show that

(4.36) ‘

/ "0 (4 4 w) ©V) (u)du

Lr
1

<(t—s)5 [||vo|3§ n (/Ot ||w(u)|\g;+25du)5 n (/Ot <1+ ||w(u)||iz)du)ﬂ .

Indeed, on the one hand, by Proposition A.7,

’ /St WA (1 o V) (u)du

< / |(w V) (@), du

Lr

t
S [ ) agsae
S
t

<95 ( / ||w<u>|gl+25du) .
0 P

On the other hand,

t t
- 1
‘ [ e woviwad| < [ i I0eV@I -y du
s Lp s - P
t 1
</ T Il e

We use Theorem 3.1 again to estimate ||v(u)HB%+E. The contribution of the initial
p

condition poses no difficulty (recall that g > % + ). The contribution of the other

term takes the form

/: (t— le)h'a (/ou (u — 11L’)Z+8 (14 [lw(u) Lr) du')du

<(/ (tu><1+>d“) (] (/Oum<1+||w<u'>|m>du')3pdu)3p

St—s)% 7 (/ (1+|w<u>||if;)du);p .

As before, we have used Jensen’s inequality to move the power 3p inside the du’

integral. Therefore, (4.36) follows, since for 1 < p < $, we have spl 15 pl
We also have
t
1
< - -
‘ Lv N/s (t—u)%+2e”(\V®V+a°)(“)”6*%*25d“
S(t—s)7,

3p 47 p
t
/ WA (VY ov +ag)(u) du
which is bounded by the right-hand side of (4.33), because for p <

S
=l b g

%, we have
> S§S % — 2¢ for € small enough.

Finally, we write

<

t
1
N/S m(”v(u)ngéug + ||w(u)||6p%+25) du.

/ e=A (a1 (v + w) 4 ev](u) du

S

Lp
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For the term involving v, we have

1

t 1 3p—1 3p
/S@_W||U(u)|31+zzd7ﬁ<(t—3 3 (/ v ()| it )

Recall that the estimate given by Theorem 3.1 is a sum of two terms; the term
involving vy poses no difficulty (since 8 = % + 2¢), while the other term contributes

[ T U Il au') T g [ et a

-1
3p
p 1 /\ — ¢, we see that the term involving v is bounded by the right-hand side of

(4 33). For the integral involving w, we write

By notlng as before that for p > 1 and € > 0 small enough, we have 321 — i —e<

t
1
/ WHW(U)HB%ME du

1
ey, du)’
1

(
5 (tfs)l—%—i— (/ ||w ”;21:4255 ” ( )” 2+45)q )E
1 (

1 1 ) 1

(2+4a’ 2+4e
/ ||w<u>||;;;+zgdu ([ ||Lpdu)

where in the first inequality we have set

_ 4 1+ 2¢
1=P\ 556z )

in the second step we have made use of the interpolation bound provided by
Proposition A.4 and of Remark A.3; we have then applied Holder’s inequality with

inverse exponents ii}gi and _:126 in the third inequality. Note in particular that
4

for every p < 3 and ¢ small enough (depending on p), this choice of ¢ ensures

1—->—3— € > pTTl, while for larger p (and e small enough), it is bounded from
below by % So this term is bounded by the right-hand side of (4.33) as well. O
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Proof of Theorem 4.1. Combining the bounds we have derived in Lemmas 4.2—4.8,
we obtain for p € [%, %) and ¢ small enough that

15wl L

p—1
(-5 (1+||vo||w / Jw(u ||L3,,du>

+ (=)t (1+]leollgg )

([ g an)’
# 0= s fut [ To1 du)
+ t—S 7’ </ ||w ||81+25du>
+(t—s)3 [1 + Hvollzgp + </0 |w2(u)||?3édu>
t % t 3
([ wtwizan)” + ([ i)
0 0
_ t L t ; 35
=9 14 luollg + ([ Tlgedn)” + ([ Tl
0 P 0

where we recall that ||w|p,. is defined in (4.11), and that this quantity is finite by
Remark 4.5. Using that p > £, the comparisons || - [|z2» < || - ||BB - ||B/s < - HBﬁ

and || - HB;‘;‘ S g together with the fact that

m\»a

t—s

)

—

r<a+VvVbr = xS a+b,

we obtain

(5/ w| Lp % ' %
Weetwllr < 1+ ool s+ (/ (@), dU> + (/ llw(“>||fgl+2sd“)
(t—9)* '
t :
+(f |w2<u>||%3;du) ([ i)
0

To conclude, we observe that by Proposition A.13, since § > 1 7, We have

s 1
185 wlze = [sewlle] <N =2 w(s)|Le S (t = 8)% w(s)lgs. O

5. A NON-LINEAR TO LINEAR BOUND ON w

In this section, we test the equation for w against suitable powers of w. This will
allow us to leverage on the “good” sign of the term —w? in the definition of G. We
will rely on the results of the previous two sections: Section 3 allows us to neglect
terms involving v and effectively reduce the analysis of the system (1.22) to that of
a single equation on w; while Section 4 provides us with sufficient information on
the time regularity of w to allow us to handle the commutator term com;.

As was already observed, controlling the “bad term” w © V requires information
on the regularity of w beyond exponent 1. We cannot control this at the present
stage of the analysis. We simply keep track of this term, and interpret the testing
argument as allowing us to exchange a non-linear quantity in w for a linear one.
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This “non-linear to linear” bound will be the starting point of a Gronwall argument
in the next section.

Theorem 5.1 (A priori estimate on w). Let p € {3,2}. There exists co (depending
on e and Ko(Tmax)) such that if ¢ > cq, then for every t € [0,T),

t
60 o2+ [ (el 46l + o)1) ds

t 5
2 3
S 1t ol + ol + ([ ool as)

where the implicit constant depends on €, Trmax, Ko(Tmax) and c.

The cases p = % and p = 2 correspond to testing the equation for w against
w and w? respectively. In the first case, we obtain a bound on the space-time L*
norm of w, and also on the time integral of |[Vw||%,, which is the square of the
homogeneous part of the B norm of w. When p = 2, we obtain a bound on the
space-time L° norm of w, as well as on the time integral of ||V (w?)||32, which is

the homogeneous part of the B3 norm of w?.
In order to isolate the “good term” —w?, we let G be such that
G(v,w) = —w® + G(v,w).
Proposition 5.2 (Testing against w*=3). Let p € {3,2}. For every t € [0,T),

1
3p—2

i
(5.2) (lo@I352% = lhwol3%2 ) + (30— 3) / [Vl 4(s) | 2 ds

—l—/o [[w(s)|35, ds :/0 (G(v,w) + cv,w*™3) (s) ds.

The proof of Proposition 5.2 is very similar to that of [31, Proposition 6.8]. The
main ingredient is the following lemma.

Lemma 5.3 (Time regularity of w). We have

14+e

= ([0,7), L)

we C(0,T), L) nC([0,7),8; ) n e

and
Vw € C([0,T),L%).

Proof. For Holder continuity, we use (2.11) with n = 12i to obtain that w is
1
n-Holder continuous as a function from [0,T) to By e By Proposition A.2 and

1
Remark A.3, the space B3 s continuously embedded in L%7 which proves the
claim. The same argument with n = § shows that w is a continuous function from

5 1
[0,T) to By . This space is continuously embedded in L2, B} T and BYFe. This

5
completes the proof of the statement concerning w. The statement concerning Vw
follows by Proposition A.5. O

Proof of Proposition 5.2. Note first that by Lemma 5.3 and Hoélder’s inequality,
the quantities on the left-hand side of (5.2) are finite. (That the quantity on the
right-hand side is finite will become apparent in the lemmas to follow.)

By classical arguments (see e.g. [31, Proposition 6.7]), w is a weak solution of
(1.22), in the sense that for every ¢ € CSS

per»

(w(t),d) — (wo, ¢) = /0 (= (Vw(s), Vo) + ([G(v, w) + cv](s), ¢)] ds.
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For the rest of the argument, we fix p = 2 for clarity (which corresponds to p = 4 in
the notation of [31]). We proceed as in the proof of [31, Proposition 6.8]. We split
the interval [0,¢] into a subdivision 0 = ¢g < - -+ < ¢, = ¢. We first check that

n—l oty
Z/ (Vaw(s), w?(t:)Vw(t)) ds
i=0 7t

converges to

/ [Vaw(s) Pu?(s)]|, ds
0

as the subdivision gets finer and finer. This follows from the fact that w €
C([0,T),L*?) and Vw € C(]0,T),L%), as given by Lemma 5.3. We postpone
for a short while the verification of the fact that

i /:Hl ([G(v,w) + cv](s),w ) ds — / )+ cv,w?) (s)ds

as the subdivision gets finer and finer. The last point that needs to be verified (see
[31, (6.16) and below]) is the fact that

n—1

D (wltinn), (w(tipa) — w(ts))(w?(tigr) — w?(t:)))

i=0
tends to 0 as the subdivision gets finer and finer. The summand can be rewritten as
(w(tip1)(w(tivr) +w(ts)), (w(tipr) — w(ti)?)
< fwtirn) (wtivn) +wt)) e [[(w(tie) —w(ti)?[ s

<lw(tivn) —w(t)|? . sup Jw(s)[Ze-
<s<

The desired result then follows by Lemma 5.3.

We now come back to (5.3), which calls for a slightly longer argument. We denote
by C' < oo a constant which may depend on v and w in addition to &, Tmax, Ko(Tmax)
and ¢, and may vary from place to place. We decompose G into Gg + G1 + G2 + G,
where

Go = a1(v+w) + az(v +w)?,
G = —w? — 3w?v — 3wv? —v3 —3wev -3 +w)ov,
Go = —3com(v, w),
Gy =vOV +ay.
The definition of G5 is that used in Lemma 2.3, hence

[Gas)lze < 0 (14571).

This and Lemma 5.3 thus ensure that

(5.4) i /t " (Ga(s),w’(t;)) ds — /0 (Ga,w?) (s)ds.

By Proposition A.7 and Remark A.3,
[wOV(s)ll2 < llw(s)lgi+2e [[V(8)ll g1 < C,

and similarly,

lwev(s)|: <C.
By Lemma 5.3, ||w(s)||rs remains bounded, and so does ||v(s)||rs by the obvious
comparison of norms || - ”B%”E < ||+ |le. Hence, ||G1(s)||Lz < C, and (5.4) holds

with Go replaced by Gj. ’



34 JEAN-CHRISTOPHE MOURRAT, HENDRIK WEBER

For (G3, we observe that

lvov(s)l ~3+e S o)l gsee IV(8)llpr-c < C.
6

6

Since ||ag(s )||B_%_E < 1, we obtain

<Ol
IGas)l, 4. <C

6

By Proposition A.1, in order to show that (5 4) holds with G5 replaced by G,
we thus need to assert that w® € C([0,T), B2 /Jgs) It follows from Lemma 5.3 and
Proposition A.7 that w® € C([0,T), 842/;6) which is better than needed.

We now turn to Gg. Recall that both a; and as are (locally) uniformly bounded

1
in Bo? °. Hence, we will only discuss the term az(v + w)?, the term a; (v 4 w)
being only easier. Our goal is to show that

(az(v + w)*(s), wP (1) — w?(s))

approaches 0 as |t; — s| = 0. Using Propositions A.1 and A.7, we observe that
(az(v +w)*(s), w’(t:) — w’(s)) = (az, (v +w)*(s)(w’(t:) — w’(s)))

S @ +w)(8)(w(t:) = w ()

1

SN+ 0P e () = (6] .

2 2

Since v,w € C([0,T), BZ+5) the first term is uniformly bounded As for the second
term, we use Proposition A.6 (in the crude form ||uH 1+E S lullzz + |Vulr2) to

bound it by a constant times
[w?(t:) — w(s)| L2 + [[w? (t:) Vw(t:) — w?(s)Va(s) | 2.
We then write
w? (t;)Vw(t;) — w?(s)Vw(s)
=w?(t;) (Vw(t;) — Vw(s)) — Vw(s) (w?(s) — w(t;)),

and conclude using Holder’s inequality and Lemma 5.3. (]

Similarly to (4.2)—(4.6), we now rewrite the right-hand side of (5.2) as

(5.5) /0 (G(v,w) + cv,w™3) (s)ds = —/0 (3w?v + 3wv® +v* WP 73) (s) ds

(5.6) —3/t<com1(v,w)OV, w73 (s)ds
0
(5.7) —3/t<wOV, w73 (s)ds
0
tav w)?, w3 (s)ds
(5.8) +/0<2(+), ) (s)d

(5.9) + /0 (ooo) wP73) (s)ds.

We now proceed to estimate each of these terms. The first term has a cubic
homogeneity. We need to control it with the contribution of the “good term” —w?3.
This crucially relies on our ability to choose ¢ sufficiently large (and it is the only

place where we use this).
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Lemma 5.4. Let p > 1 and § > 0. For every c sufficiently large (depending on ¢,
g, p and Ko(Tmax)), and t € [0,T),
(14 loI5) as]

t
/ <1)3 + 30w + 3vw2’w3p—3> (5) ds < 9§ |:||’U0|:Z1;p + /
0 0

Proof. We start with the bound

t

t
/ (v® + 3v*w + 3vw?®, w*P?) (s) ds
0
t
S/ (I w2 [l g + [v*w® 2| g1+ [low® = 1) (s) ds

0
t t
<6 / lew(s)|%, ds + Cs / ()22, ds

which follows from Hélder’s and Young’s inequalities. Therefore, it is sufficient to
bound the space-time L*’-norm of v. By Theorem 3.1 (or rather Remark 3.2), we
have

s g—c(s—u)
—CS €
(5.10) [v(s)llzsr S €™ lvollLer +/ —— (I +[[w(w)l|s) du,
0o (s—u)zte

where c=c—1— [I‘(% — 5)]%*5. By Jensen’s inequality, we have uniformly over
c>1land s>0,

e du)f%/(_(u)i( + eI, du

Combining these estimates, we get

t 3 —c(s u)
[ as s [ e pulast [ [ (i) avas

< el + K@) [ (14 s >||Lsp)

where K(c) = OOO ¢ =" < 0. Since K (¢) can be made arbitrarily small by taking ¢

1
2te

large enough, this i:ompletes the proof. O

We now use the a priori estimate on dsw derived in the previous section to
estimate the contribution of the first commutator term.

Lemma 5.5. Letp € [%, %) and € > 0 be small enough. For every § € (0,1] and
tel0,7),

p—1

< ([ menas)

1

1+||@0|BB+(/ (s ||Bl+25ds> o1 (/ lw(s) ||L3,,ds) +58_25N(t)],
where
1 1 3
P t 2 t 1
(/ e as) "+ ([ 1e2las) + ([ luelas)

and where the implicit constant in (5.11) depends on €, p, Trmax, Ko(Tmax) and c,
but not on 4.

(5.11) ‘/ (comy(v,w) @V, w7 (s)ds




36 JEAN-CHRISTOPHE MOURRAT, HENDRIK WEBER

Proof. We start with the estimate (dropping the time variable in the notation)
| ([comy (v, w) ©V], w*~3) | < ||com (v, w) ®VHLPHU’3P73HLP—51
< llcomy (v, w)| 2= [Jwl]| 75,2

where we used Proposition A.7 in the second step. Integrating this in time and
applying Holder’s inequality, we get

'/Ot ( [eomy (v, w) ©V], w*~3) ds

1

< ([ leom ooy rncs)’ ([ i) ™

so it remains to bound the integral involving the commutator. According to
Lemma 4.3, for any fixed s, we have the bound

[lcom (v, w)(s )||61+25 S1+t ””OHB"

) 1 s 1
+/0 (S_UWEMU(U)HB}DZEdU—F/O m“&uswlhpdu

The contribution of [[vg|| 46 is easily taken care of, since % <3< %. We calculate
D

the LP norm in time of the first integral, using the bound || - ||g1-2c S| - HBé+2E:
p

t S p t
1
T Iia- —2e < p
/O (/0 (s_u)%_i_%”w(u)”&l) > du) dsN/O () l[gsa- ds,

which gives the second term in the second line of (5.11). For the remaining integral,
we need to make use of the time regularity bounds derived in Theorem 4.1. First,
we write for any ¢ > 0,

(s—0)VO 1 1 s
| ol du s sz [ ol + o)) du

which implies that
P

t (s—68)Vv0 1 1 ‘ ,
VRS < -
/0 /0 (5 — u)l+ee 0uswl||ze du | ds < 5072 /0 lw(s)||},ds.

For the remaining integral, we use Theorem 4.1 to write

t s 1 p
= e
t s 1 ) »
5/0 </(s<s)vo (s —u)st2e {N(t) + ”w(u)”Bﬁ} du) ds,

(6:12) N(0) =1+ ol +( [t ||Lapdu)

) (/0 el te) g </0 ”w2<“)'%%d“)é - (/0 Ilw(u>|%;du)ﬁ

Note that N (t) does not depend on the variables of integration, and that

t s 1 P N
/ / — qu) ds e,
0 \Js—syvo (s —u)st2e

where we have set
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Finally, by Jensen’s inequality,

t s 1 p
U Tl )
s—0)V -
//( i +25||w< 1 duds</||w Iz,
s—0)V -

Since ||w(u)||zs < [Jw(u)|g1+2<, this completes the proof. O
P P

We now turn to the term involving w © %, which can only be controlled by a
norm of w with regularity index above 1.

Lemma 5.6. Letp > 1 and e > 0. For every t € [0,T),

t t pp;l t %
[ wov sy @ asl < ([ hoeizas) ([ i)

where the implicit constant depends on €, p, and Ko(Tmax)-

Proof. This bound follows directly from Holder’s inequality and the bound
[wOV(s)lLr S lws)llgirae - O
The quadratic non-linearity is rather delicate to handle.

Lemma 5.7. Let p > 1 and € > 0 be suﬁciently small. For every ¢ € (0,1], there
exists Cs < oo (depending on d, €, p, Tmax, Ko(Tmax) and c) such that for every
tel0,T),

t
/ (as(v+w)?, w=?) (s)ds

0
wo Il + [ IvwPa o as+ [ o0

Proof. We will use repeatedly the following version of Young’s inequality: for every
vi > 0 such that > v; < 1 and § > 0, there exists Cs such that uniformly over
T > Oa

(5.14) [[z7 <Cs+6>

We treat the term of highest homogeneity in w first. Recall that as is uniformly

(5.13) < Cs

1
bounded in B2 °. We write, using Propositions A.1 and A.6 (dropping the time
variable in the notation),

(g, w™) = (ag w¥™1) 5 'y
(5.15) < (e 12 0wl 5 4 2 s
An application of the Cauchy-Schwarz inequality yields the bound

1 1L
Vw2l < [[[Vwlw =12 w7,

Using that [|w® |1 < [|w]|3%, " and [|w®?||11 < |Jw|/?%, and then Young’s inequal-
ity, we deduce from (5.15) that
2 3p-3 =2 2 3p—a = 3p—1
(ayw?, w?2) < S or IVwFw =2 + [Jwl|7s,

Integrating in time, using Jensen’s inequality and (5.14), we obtain the bound on
the right-hand side of (5.13).
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We next treat the term involving v? in the left side of (5.15). We use Proposi-
tions A.1 and A.7 to write, for any fixed time s (again dropping the time argument
to lighten the notation)

<CL2’U2, ,w3p—3> _ <a2’w3p 3 2> < ”wSp 3 2” §+E

(5.16) S w72 g llo?]l

B 2 Ate | Bi+5 ’
where the exponents ¢; and ¢, satisfy 1 = qT + q—z and will be specified below. The
term involving w is bounded similarly to the previous step. Indeed, we appeal again

to Proposition A.6 to write

+ i- _
R I T P (1L e e o I T P
a1
In order to control the L9*-norm of w3 ~3 by the L3P norm of w, we require
1

which allows us to write ||w3P~ 3||Lq1 S ||wHLgp3 by Jensen’s inequality. For the
term involving the gradient of w, we write

1V (w4 o < ||Vl ™ || o™ | as
where
1 1 1
5.19 — =4 =
(5.19) @ 2 g3
We assume ¢3 < 36 which amounts to
1 1 3p—4 3p-— 3 2
(5.20) >+ 272 P72 hatis, g < 2

> =1+ .
q = 2 6p 3p 3p—2 3p—2

For any p > 1, condition (5.20) implies (5.18), and therefore we can assume from
now on that equality holds in (5.20). In this case, we get

<)

3p—3

3p—3 =22) 2 3p—d4) 2=
[ g4e S llw HLsp [Vw w5 + (w5,

31’
3p—

We now bound the term involving v? in (5.16), noting that for our choice of
Q= 3;’%2, we get qo = 37”. We therefore have to bound

2 aee S N0l2,

HU B§+E ~

2+s7

3p
2

by Proposition A.7. For any fixed s, we can use Theorem 3.1 to bound this quantity
by (recall that 3 = 1 + 2e)

[[v(s)
Summarising these calculations, we get
t
/ {agv®, w7?) (s)ds
0

621 5 [ WIS e e @ + )

s 1
X {UOHijP +/0 m(1+ llw(w)| Lsr) dU} ds.

It

s 1
b Sl + [ g (U ) du
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The contribution of |lvg||ze can be handled with no difficulty using (5.14). We
3p

now leave it aside, and treat first the (easier) contribution coming from ||w(s)H:z’§;3

Applying Holder’s and Jensen’s inequalities, we get
2

[tz ([ g 0 s a)as

3p—3 2

(/ lro(s) d) 3,, V (/OS(S;(HII"LU( W)lloen) du>3p dS]
<([ o+ )

Now turning to the contribution of the first term of the first sum in (5.21) (still
leaving ||vg||zs aside, which has already been treated), we apply Holder’s inequality
3p

to bound it by

1+25 25 5—2¢

(fraenens) = ([ |?£’§pd5) ’
X </0 (/O (3_2”“ (14 (@) zs) du>2Q4 d8>;4 :

1 5 —2¢

qa 6p

where

By Jensen’s inequality,

</ </ <—i>+ (1 () o) du) ds) i
: (/ot” lw(s)|[7%, d )

This leads to the desired bound by another application of (5.14).

Finally, we move to the mixed term involving the product vw. As before, we start
by writing for any fixed time (dropping the time argument, to lighten the notation)

(v =) S 0w g S ol g0 2) e
a5 a6
where
1 1
(5.22) — 4+ — =1
qs g6

To bound the norm of w, we use Proposition A.6 to write

i P
[ 2 e S 0™ 2 oo + Voo™ 3] 25?2 | 20
a6

Assuming that

3p
3p—2’

(5.23) 76 <

we can bound ||w3P 2| s < ||w3p_2||i1§,;2. For the term involving the gradient, we

write

1972 s S [[Veolw ™ g2 w ™ ||,
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provided that

1 1 1
5.24 —_ ==+ —.
(5.24) % 2 q

P 3p—2
As before, we assume that g7 < %, which allows to bound stp; lpar S w2 -
With this constraint, (5.24) turns into
3p
5.25 < .
( ) 46 X 3p 1
Noting that this condition implies our earlier condition (5.23), we can assume from

now on that equality holds in (5.25), which by (5.22) implies that g5 = 3p. We
summarise these calculations in the estimate

< wlf0? + ] &y 9T EEIEED gy 5

+
pr 2||B,2+s L3P L3p H2 -
3p

3p—1

For the term involving v, we get from Theorem 3.1 that

s 1 3P
[ 1wy s [ (1ol g+ [ o 0 Tl ) s

3p

Sl + [ (1 o)1) as

The conclusion follows by integrating these bounds, using Jensen’s inequality and
applying (5.14). O

Lemma 5.8. Let p > 1 and ¢ > 0 be sufficiently small. For every § € (0,1], there
exists Cs < oo (depending on 0, €, p, Tmax, Ko(Tmax) and ¢) such that for every
tel0,7),

t
/([...],w?ﬁpf?’)( )ds < Cs
0
eIl + [ IRl as+ [ o).

The dots ... represent all the terms left out in (5.9) (spelled out explicitly in (5.26)
below).

Proof. We need to bound
(5.26)
t
/ ([3comz (v +w) — 3(v+w — Yyov+ag+ai(v+w)+ v LW (s) ds.
0
For the first term,

(comy(v +w), wP™?) (s) < [lcoma (v +w)(s)| » IIw( )HE?J

S 1w +w)(s)llsge [[w(s )I\Lap ;

by Proposition A.9. Hence, the bound for this term follows from arguments very
similar to those of the previous proof, and we leave out the details. For the second
term in (5.26), Proposition A.1 gives

(0w =9V, ) () Sl +w =N OV a7 4o

p*l
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3p—3||

We have seen how to bound ||w gt in the proof of the previous lemma, see

(5.17). For the other term, by Proposii?ion AT,
v +w="T)ov| 4 Slo+w="T 4,

which we can bound to obtain the rlght—hand side of (5.26)7 as already discussed.
The other terms in the left-hand side of (5.26) are only easier. O

Proof of Theorem 5.1. Combining Proposition 5.2 with the bounds derived in Lem-
mas 5.4-5.8 (and with Young’s inequality and comparisons of norms), we obtain, for
pE {g, 2}, € > 0 sufficiently small and every ¢ € (0, 1], the existence of a constant
Cs < 0o depending on 9§, &, Trmax, Ko(Tmax) and ¢ such that

(5:27)  Jw(®)P% + / (VP =4(s)ll s + fw(s)I3%, ) ds

t
<O 14wl + [ o)l as
0 r

5 t e
w5 ol + ([ preas) ([ weiz)

Specialising this estimate to the case p = % and choosing ¢ > 0 sufficiently small
allows to absorb the last term of the estimate. Indeed, by Proposition A.6, we have

(5.28) lw(s)IEs < lws)llie + [Vw(s)llze,
and thus

(5:29)  |lw(t)|7- +/O (1wl (s)llLr + lw(s)llzs) ds

2
t 4 t 3
S+ unlle + ol + [ (o)) oot ( / ||w2<s>||é;ds)

Note that by (5.28), the right-hand side is also an upper bound for fo |w(s ||
We now show that Theorem 5.1 is true for p = 2, that is,

(5.30) IIw(t)II‘iHr/0 (lw?[Vwl*(s)llzr + w(s)]gs) ds

t
1+ e + ool + [ o) Bpea- ds.

In order to do so, we turn back to (5.27), this time with the choice p = 2. We just
obtained an upper bound for the last integral in this estimate, which is now raised

to the power % We check that each term to the power % in the right-hand side of

(5.29) is bounded by a term in the right-hand side of (5.30), except for

t
| ey

which was already present in the right-hand side of (5.27) with p = 2. This term
can be absorbed, choosing § > 0 sufficiently small and using Proposition A.6 again:

(5.31) lw?(s)lEy < lw?(9)]1Z2 + lwVw(s)|Zs,

therefore (5. 30) is proved. By (5.31), the right-hand side of (5.30) is also an upper
bound for fo |w?(s)[1% 1ds, and recall that the right-hand side of (5.29) is an upper
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bound for fo [lw(s ||B1 ds. Using these estimates and (5.27) again for p = 3 thus
completes the proof of the theorem. O

6. GRONWALL-TYPE ARGUMENT FOR w

For the first time, we are in a position to derive a self-contained a priori bound
for a quantity involving v or w.

Theorem 6.1. Let ¢ > ¢y as given by Theorem 5.1. There exists a constant C < oo

depending only on €, Timax, Ko(Tmax), ¢ and on an upper bound on |[vol|zs V [lwo| 5
6

such that

T
| (e lgea: + lwle + 1)l dr < c.

From now on, we fix ¢ > ¢y as given by Theorem 5.1. Throughout this
section, we will use the short-hand notation

= ([ Iwl)ear)’ Bl = o)l + )R

We begin by rephrasing Theorem 5.1, allowing for more general starting time and
dropping the first non-negative term on the left-hand side of (5.1):

for p € {3,2} and s <t €[0,7),
t
[ (I9aPa =0l + oe)1%.) dr 1427066+ B76),

where the implicit constant depends on &, Tmax, Ko(Tmax) and ¢. We will mostly
use (6.1) for p = 2. The only applications of the case p = % are in the proofs of
Lemmas 6.4 and 6.6.

We will use the mild form (2.2) of (1.22) once more to perform a Gronwall-type
argument for Z2. The bound (6.1) plays a crucial role, because it allows us to
replace “non-linear” quantities by “linear” ones. We start by proving the following
proposition.

(6.1)

Proposition 6.2. There exist t, > 0 and C < oo (both depending on €, Tax,
Ko(Thax) and ¢ = ¢g) such that for every s <t € [0,T) satisfying t — s < 2t,,

(6.2) T3(s,t) < C(t — s)||w(5)HB;+zs +C(t— s) (14 B3(s)).

As before, the proof of this proposition is split up into several steps. We use the
mild formulation for w, Proposition A.13 and Remark A.3 to write

5 t
T3(s,t) < (t — s)||w(s)||i,;+25 + Z/ sz(sm) dr
j=17s
where

(6.3) o EE (lw(m)llze + [l(r)l[7s) d7,

5= [lcomy (v, w) O V|2 (7) dr,

—~
R
D

=

\ \

== las (v +w)?|| - (7)dr,
4 2

A
A
\]

2

\ |

=] o=
=] o=
(6.5) / o ool () ar
b
=] o=

Tl e e
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We proceed by bounding these terms one by one.

Lemma 6.3. For every s <t €[0,T),
t
[ W ar s (- 5 (2.0 + B(s).

where the implicit constant depends on €, Trmax, Ko(Tmax) and c.

Proof. By Young’s convolution inequality,
2

W2 = t Til w(T)|]36 o(T)|I36) dr T
[ wienar= | (/ e (el + 1ot >|L6)d> d

t# ) 2 e e T
5(/ (t_r)lngd> [ ol + o)) o

t
< (t—S)lfgs/s (lw(r)lI%e + [lv(r)lle) dr
According to (6.1), the integral involving w is bounded by
(6.8) /t lw()|S6 dr S 1+ Z2(s, ) + B2(s).
For the term involving 1;, we invoke Theorem 3.1 (in the form given by Remark 3.2)

to get
6

t t T 1
[ ar s @-seols+ [ ([ 0l ar) ar
s s s (7” - T) 3te
t
S (=9l + (= 5% [ (14 L)) an
The claim thus follows by (6.8). O

Lemma 6.4. For every s <t € [0,T),
t
/ Wi(s,r)dr S (t =)' + (t = ) T u(s) 3o + (= 5) T (s, 1),

where the implicit constant depends on €, Tmax, Ko(Tmax) and c.

Proof. As before, we start by writing

2
t t T 1
/wg(s,r)dr,s/ (/ ()%coml(v,w)ovum(r)dT) dr
s s s (r—7) 2

t
N 3)1*25/ [comy (v, w) ©V||22(r) dr

t
< (t— s / lcomy (v, w)(r) |22 dr.
S 2
According to Lemma 4.3 and the comparison || - |55 < || - [|g2+2¢, we have for any r
2
that

_142e-8
Jcom (o, w)(r)llspae S 1+ (r — )~ 5 fo(s)] 50

" 1
+ /5 —(r - T)1_§+28 Hw(T)HB;JrzE dr

r
1
+/ m”éTTwHLQ dr.
S
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We now derive bounds on the temporal L? norm of each of these terms separately.
For the term involving v(s), we have

t
[ = D ) dr S (6= 5 o)

while for the term in the second line,

2
t T 1 _ t
/ ( | e vl dr | s S 677 [l ar.
s s — T s

For the term involving d,,w, Theorem 4.1 ensures that
N -
[67rwl[r2 S (7 =7) (Jw(r)llgi+2e + N(s,1)),

where the remainder N(s,t) (as in (5.12)) is given by

¢ 3
8(s.0) = 1+ ool + ([ w6l ar)

1 3
t 2 t t Y
([ o) ([ ar) (] o)
S S S

In particular, N(s,t) does not depend on the variables 7 and r appearing in the
integration. Therefore, we can write

t T 1 2
/ </ m”é}»ﬁlﬂ”[ﬁ d’r) dr
! " 1 ? 72 54
5/ (/ m”w(T)”Bé-we dT) dr+ N (Sﬂf)(f—s)z— €
S S -

t
S 0 [ TR K, e - )5
s 2

M

Now the claim follows observing that by (6.1) (applied both for p =2 and p = 3)
and Proposition A.6, we have N2(s,t) < 14 Z2(s,t) + B2(s). O

Lemma 6.5. For every s <t €[0,T),
t
[ Wi S - s ),

where the implicit constant depends on & and Ko(Tmax)-

Proof. This bound follows easily by writing

2
t r )
/</ (T_T)lgkllwoanQ(T)dT) dr
t 1 2 . 2
S /(tr)l-#;sd?” /”w®v||[,2(7“)dr

t
5 (t_s)l—Qs/ HUJ||§;;+25(T)dT~ O
Lemma 6.6. Let € > 0 be sufficiently small. For every s <t € [0,T),
t
/ W2(s,r)dr < (t—s)3 (L4+Z%(s,t) + B(s)),

where the implicit constant depends on €, Trmax, Ko(Tmax) and c.
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Proof. The term W, naturally splits into one term involving w?, one term involving
v2, and a mixed term involving the product vw. To bound the terms involving w?
and v2, we observe as before that

[ (/ (_l) laz(v® +w2>||5,%,5<7> dT)Z dr

recalling that g = 5 + 2¢. The term involving w? can be bounded using Proposi-
tion A.6:

[ 1 ar s [ V@A + lwt)I) ar 1+ 7260+ 8%6),

by (6.1). We use Proposition A.7 and Theorem 3.1 to control the term involving v?

[ ar s [ e, o
4
—s)|Jv(s)|| t T; w(T)||pa)dr r
S (=9l + [ (/ e <>||L>d> d

S(t—9)B3(s)+ (t— 8)1‘65/ (1 + [lw(r)|[74) dr
S (t—8)B5(s) + (t — ) 70 (1 + I3 (s,t) + B3(s)),

where we used (6.1) once more in the final step. Finally, we proceed to bound the
term involving the product vw. We start by writing
1

t T 1 2
‘/S /6 WHQQUU}(T)”B;%,E dr dr
_ ¢ r 1 2q1 a1
<(t—s)"R / /W||vw(7)|65df ar|

for ¢; > 1 to be determined below. Now, reasoning as in (4.27) and the calculation
that follows (specialised to p = 2), we obtain that for any 7,

(6.9) low ()]s S HU(T)IIBG%HEIIw(T)IIB;-

Therefore, by Young’s and Holder’s inequalities, for ¢; < g (and € > 0 small enough,
depending on ¢1), we have

1
2q1 a1

t r 1
/(/ Wllvw(TﬂB;ﬁEdT) dr

t 3 3
< ([ 1wt o)
t 3 gt
6 2
(et nar) [

o
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Using (6.1) for p = % and Proposition A.6, the integral involving w can be

bounded by 1+ Z3(s,t) + B3 (s). For the integral involving v, by Theorem 3.1 and
Remark 3.3, we have

JACGIeY
S @'—5)1_qh45)|gg*‘]Ct(jcr(r:l(1%-UK7)HLs)dT)6 ar

—7)it¥

t
. 1_5¢
(=9 )i+ =9 [ (14 Jul)]e) ar

I°
BG
< (t— ) 70 (14 T3(s,t) + B2(s)),

~

where we used (6.1) in the last step. This completes the proof. O
Lemma 6.7. For every s <t €[0,T),
t
| W ar S (0= 94 T (sit) + B,
where the implicit constant depends on €, Trmax, Ko(Tmax) and c.
Proof. Recall that as before the dots in (6.7) represent the terms
.= =3comy(v4w) — 3w +w—Y)OV+ag+ ai(v+w) + cv.
It can easily be checked that

ool gmae () S T+ [0z + (D)l

2

which implies that

t T 1 2
t
< (t— $—4e 1 2 2 d
S(t—s) FlJor)lige + llwr)ls ) dr

The integral involving w is obviously bounded by Z?(s, t). For the integral involving v,
we write as before

[ 1 ar < a~—snhms>nz§4-jit(jfr(T__731+;H3<1+—numr>an>dr)2ds

t
S (- S)IIU(S)IIfgg + (t - 8)1_8_5/ (1 + [Jw(r)][72) dr,
so that the desired estimate follows. O

Proof of Proposition 6.2. Combining the estimates we have obtained in Lemmas 6.3
to 6.7, we get

I°(s,1) < C(t = s)[|w(s)|[grac + C(t = 5)5 (1+I7(s,1) + B(s)) -
Therefore, if (¢t — s) is small enough to guarantee that

L1
Ct—s)5 < =,
(t—s)% <3

we obtain the desired estimate (6.2). O
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Proof of Theorem 6.1. By Theorem 2.1, possibly after reducing ¢, > 0 and making
it depend on an upper bound on |[vol| 35 V [lwol| 5y, we have
6

ty

ty
72(0,1,) +/ w(r)S dr—i—/ ()8 dr < C < oo.
0 0 6

As a consequence, the desired bound follows by induction as soon as we establish
that for every k € N,

(k+2)t, (k+2)t,

T?((k + Dy, (b +2)t) + /
(k+1)t,

leo(r) G dr + /

lo(r)lI5s dr
(k+1)ts 6

(k+1)t,

<14+ T2 (kty, (K + 1)t,) +/

kt,

(k+1)t,
[w(r)||Ge dr + [o(r)[|%s dr
kty 6

In order to prove this, we may assume without loss of generality that k& = 0.

We start by observing that by Theorem 3.1, for every s € [0, t,],

2t
| e ar
6 2t T 1 6
S (2t = 8)llv(s) 155 +/ / W(“F [w(o)llze) do ) dr
s s T—O0 2

2t
ST+l + [ Tuldr
S

Combining this estimate with (6.1) and Proposition 6.2, we obtain

2t 2t
T2(s.2t,) + / (e[S dr + / lo(r) .5 dr
S S 6

STHT(s,26) + 0(s)lgs + llw(s)] 74
S L [w(s)llgreee + lo(s) s + lw(s)l| e

We average the resulting estimate over s € [0, t,], which yields

1 ta 2t 2t
[ (Ee [ elear s [ ol ar)
* JO s s

IS
St [ (g + @l + lu)) ds
* JO

It only remains to observe that trivially,

1 [t 2t, 2t,
= (@2 [ e+ [ g ar) as
2t,

2t,
> 220+ [ fuledr+ [ ol

to

and we obtain the estimate we were seeking. O

7. POSTPROCESSING

We fix ¢ > ¢¢ as given by Theorem 5.1. We now depart from (3.2) and set the
new convention that in the inequalities < of this section, the implicit constant may
depend on &, Tmax, Ko(Tmax), ¢ and on an upper bound on HUOHB{f V [lwollsz -

Theorem 6.1 provides us with the bound

T
(7.1) (lwlZssae + lwllfs + lols ) () ds S 1.
0 2 ‘86
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Combining this with Theorem 5.1, we obtain
T
(7.2) sup |lw(s)]|zs +/ IV (w?)(s)[|72 ds < 1.
0<s<T 0

This estimate and (5.31) also yield

T
(7.3) / w?(s)|% ds < 1.
O 2

In order to invoke the local existence result, Theorem 2.1, and to exclude the
possibility of finite-time blowup, we need to obtain a bound on stronger norms,
namely on

sup |[[v(t)]lgs and sup [lw(t)| |57,
0<t<T 6

i<

where we recall that 5 = % + 2¢ and v = % + 2e¢. The purpose of this section is to
post-process the bounds (7.1)—(7.3) to get control on these quantities. The values
of 8 and ~y are fixed throughout the section.

The required bound on v follows easily.

Proposition 7.1. We have

(7.4) sup |[[v(t)[l g < 1.
0<t<T 6

For every g < 12, we also have

T
(7.5) /IMM%&SL
0 69

Proof. According to Theorem 3.1, we have for o = w = % + % that

t
1
|Mwﬁsmw¢+/gif7u+W@mam
: A AT

Sty + ([ =) () 04 o) as)

Estimate (7.4) then follows from (7.1) and the fact that 2o < 1 for & > 0 sufficiently
small. As for (7.5), we first use Proposition A.2 to bound ||v(t)||B§ by ||U(1§)HB[,+%,
6

and then call Theorem 3.1 and Remark 3.3 to write
t
_1 1
||U(t)HB§+é ST vollgs +/0 m(l + [lw(s)]|ze ) ds.

The function ¢ s ¢~ lvoll g6 is controlled in L7 in time for any ¢ < 12. Using
6
once more the L% bound on s — |Jw(s)||zs provided by (7.1) and Young’s inequality,
we see that the convolution appearing in the second term is bounded in L9 for
q < é [l
We now prove the final estimate on w.

Proposition 7.2. We have

sup [[w(®)|[sy < 1.
0<t<T

We start by observing that as a consequence of Theorem 4.1 (for p = 2) and the
bounds (7.1) and (7.3), we have the following result.
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Corollary 7.3. For every s € [0,T),

105 10| L2
S S 1A [Jw(s) | g
s<t<T |t — 8|8 2

Proof of Proposition 7.2. We use the mild formulation of w one final time. As in
(6.3)—(6.7), we use Proposition A.13 and Remark A.3 to write w(t) = e®twg +
25:1 W;(t), where

t
1
IVl < / ol an

W2 ()llsy S = o(r)l[7e dr,

(t—r)

IWs(®)llsy < leoms (v, w) ©V(r)| 2 dr,

|
1
/0 (tfr)%
to
WiOlls; S [ s lwovisdn
0 (t—?")2
¢ 1
/0 (t,r)%+i+2a
¢ 1

IWs(0) s < [y 4o
B
2

Wes(t)lls; <

o)l o

Wr ()]s

A

t
1 2
/o e 1 Ol e dr

2

t
1
Ws(®)llsy < /0 m” vl g ae dr

2

We have split the mild formulation into more terms than in (6.3)—(6.7); this will
turn out to be convenient below. All of these bounds are of the form

1

W)l S / (=

mEY F;(r)dr,

for some non-negative function Fj, and either a; = 3 = 5 4+ & (for Wy — Wy) or
aj =3+ % +2e = %+36 (for W5 — Ws). In each case, we will use Young’s inequality
T

to write
(7.6) (/OT|wj(t)||gsg at)" < (/O (T%Mdr) (/OTFj(r)pdr);

for 14+ ¢ =+ 2. As usual, for ¢ = oo the left-hand side of (7.6) should be
interpreted as supg<;<r [|W;(t)ll5;. The first integral on the right-hand side is finite
if and only if pa; < 1, which amounts to

/=

—3+e for Wy — Wi,

1 1
7.7 ->—-4a;,—1=
(1) p A { —%4—35 for W5 — Wk.

q

2Lk L

We ultimately aim to set ¢ = oo for all of the W;, which requires p > % for
W1 — Wy, and the higher integrability p > ﬁ for W5 — Ws. We now proceed to
derive bounds on the various quantities fOT F;(r)? dr to feed into (7.6)—(7.7). For
several of the W;, namely W, W5 and Ws, we will be able to treat the case ¢ = oo
directly. For the other terms, this argument has to be iterated several times. For the

reader’s convenience, the exponents ¢ that appear in this iteration are summarised
in Table 2.



50 JEAN-CHRISTOPHE MOURRAT, HENDRIK WEBER

W1 WQ Wg W4 W5 Wﬁ W7 Wg w
24 24
120
2) 8 o0 oo 8- o0 - 8- 8— 8—
3) oo— oo o0 00 00 co—  oo— 00—
4) o0 00 0o 00 X 00 00 00 00

TABLE 2. The table displays the proved exponent of integrability
in time of ||W;[|s; and [|w||s; at each step of the iteration. A
symbol “8—” denotes that any exponent below 8 can be reached,
provided that e is sufficiently small; the symbol “co—" denotes that
any finite exponent can be reached provided that ¢ is sufficiently
small.

For Wy, we use the bound on supy;<7 [|[v(t)||zs obtained in Proposition 7.1
<Xt 6

(which implies in particular a bound on supg<,<7 [[v(t)||Ls), i.e. we can choose
p = 0o. We conclude that

Sup Wa(t)llsy S 1.

For W5, we proceed as in Lemma 6.4 and write

T T
/ ||com1(v,w)@v(r)||§2dr5/ Jcoms (v, w) 2, 2. (r) dr
0 0 2

< 1+/TT(H2§5)Pdr lvoll? +/T(/T ! o) | ggsa-dr ) dr
e e T 1+2e AT
~ 0 0 Bg 0 0 (7,77)1—%—1-25 82+

(7.8)
T ™ 1 P
+A (/0 m”(&—ﬂd]”[ﬂdﬂ') dr.

The first integral is finite for (W)p < 1, which (up to taking e sufficiently small)
amounts to p < 4. The bound on fOT Hw(r)||%1+2£ dr and Young’s inequality provide
2

a bound on the second integral as soon as 1 + % > % +(1- g + 2¢), ie. for p<4

(and e sufficiently small). Finally, according to Corollary 7.3, the third integral is
bounded by a constant times

/OT (/OT (T_Tl)gﬁg(l + ||w(7')||85d7'>pdr,

By Proposition A.4 and Remark A.3, we have
42

277 1
lo(Mllgg S w2 o)l ™

Using the L*-in-time bound on |Jw||;+ provided by (7.2) and the L2-in-time bound
on ||wHB;+25 from (7.1), we can conclude that

T gdt2e
1o
/ [w(r)] 2" dr S 1.
0 2



GLOBAL WELL-POSEDNESS OF THE DYNAMIC <I>§ MODEL ON THE TORUS 51

The convolution with the L! function r — 782 only improves the integrability.
Therefore, we can conclude that for any exponent p < 4, all integrals on the right-
hand side of (7.8) can be controlled, provided € > 0 is small enough (depending on
p). In particular, this covers p which are strictly larger than the threshold value

3%385 which implies that

sup [Wa(0)] 5 1.

Itx

For W5, we observe that by Proposition 7.1, we have an L°°-in-time bound on
l|lv]|gs, which immediately yields
6

sup [[Ws(t)sy < 1.
0<t<T

For the remaining terms Wy, Wy, Wg, Wy and Ws, we do not obtain an L°°-in-
time bound immediately, but we have to improve the integrability iteratively. In
order to control all terms, a maximum of four iterations is necessary.

For Wi, we use the L?-in-time bound on |Jw||3¢ provided by (7.1), which by (7.7)
implies that

8
148

T
(7.9) /0 ||W1(t)\|q6; dt <1 for ¢<
The bound (7.9) is represented by the entry 8— in Table 2. In the same way, the

L2-in-time bound on ||w © V|2 < ||w]|gi+2- yields

8
1+ 8¢

T
[ imolgarst o<
0 2

For Wg we use Proposition A.7 to write

S ol %+2s”wH L2

2
BZDQ

(7.10) lowl gz

82 P1

for % = p% + p%. At this point (and only at this point), we make use of the improved

integrability estimate (7.5) provided in Proposition 7.1. This allows us to choose

p1 =9, which yields py = % (and in particular this exponent is < 3), and allows us
to interpolate

%+25

1
1+2e 2+4e

Hw” 1ioe S Hw||8§+25||w||]j)‘ s

Bg,
if € > 0 is small enough. Hence, using the integrability of ||v||B% +2. provided by
9

(7.5), we obtain an LP-in-time control of ||vw|\8%+25 for
2

11 13+2 1 1
p 12 2142 ' 62+4e
yielding
T
24
[ vl dest o g=e
0 2 7

where g = 2—74— means that any exponent g < 2—74 can be reached by choosing € > 0

small enough. For Wy, we observe that

L42e 1_92¢ 149¢ _
||w2||8%+25 Sl lw?llza ™ S lw?llgy lwllga™.
5
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By interpolating between (7.3) and the L control on |lwl]|za from (7.2), we can see

that this term is controlled in L” in time, for p = 7 45 This yields

T
Ok dt <1 f .
| ol ast o<

We represent this fact by the symbol “8—" on the first line of Table 2. For Wy, we
observe as in Lemma 6.7 that

I (T)HB;%_% ST o()llge + llw(r)lge-

The term |lv(r)||ze is controlled uniformly in time by Proposition 7.1. For [lw(r)| 4,
2 2
we use Proposition A.4 and Remark A.3 to get

$+2¢
lw(r)llgs S [lw(r )Ilgff;

|| 2+4s

By (7.1)—(7.2), this quantity is in L? in time for p = 2(%+—25) This yields a bound
on

T
1 1+4 1
/ng(t)nqwdty or > T s
0 2

448 8

which is represented by 8— in Table 2, and completes our first round of estimates
on Wy — Wk.

The worst of all the bounds we obtained is that on Wgs. We can thus conclude
the first round of the iteration with the bound

T
(7.11) / ||w(t)||qB; dt <1 for g=——.
0

In the second iteration, we use (7.11) to improve the bound on Wgs. Indeed, by
Proposition A.4 and Remark A.3,

IIMIIB;IHE S llwll® 4+25||1UH1LEQ,
for
B 342 1 _« n e
i + 2e p1 2 6

In particular, the exponent « is close to 2 £, and the exponent p; close to 1 > 3 (for
¢ > 0 sufficiently small). Recalling (7.10), we obtain

low]| 4 B < ol ,+25||w||a5+25||w||1L§a.
2

By Proposition 7.1, (7.11) and (7.1), this yields control on va”B%HE in LP for
2

1 1 7+ 1 13

5 - + Oéﬂ + ( )6 = @‘f’,
so that we obtain
T
120
q < =
| ol aest o o= 7

The resulting estimate for w is iterated two more times to obtain the L° control
on all of the W;. We skip the straightforward details and only refer to Table 2 for
the exponents obtained. O
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APPENDIX A. PRODUCTS AND PARAPRODUCTS IN BESOV SPACES

We denote by C3g, the space of Z4-periodic infinitely differentiable functions. For
p € [1,00], we write LP = LP([—1,1]¢,dx), with associated norm || - ||z». We write
(-,+) for the scalar product in L?. We denote by | - ||z, the norm of the space
LP(RY dx). For u = (uy)ner with I a countable set, we write

1

Jeuler = (Zwm)p,

nel

with the usual interpretation as a supremum when p = co. We write % f or f
for the Fourier transform (and by .# ! its inverse), which is well-defined for any
Schwartz distribution f on R%, and reads, for f € L'(R?),

FHO) = F(O) = / e f () da.

A.1. Besov spaces. We recall briefly a construction of Besov spaces on the torus.
Following [1, Proposition 2.10], there exist x,x € CS° taking values in [0, 1] and
such that

(A1) Supp x € B(0,4/3),

(A.2) Supp x € B(0,8/3) \ B(0,3/4),
400

(A3) Ve eRY, X(O)+ ) x(¢/2F) =1,
k=0

We use this partition of unity to decompose any function f € Cgg as a sum of
functions with localized spectrum. More precisely, we define

(A.4) X-1=%  xx=x(/2" (k>0),
and for k£ > —1 integer,

onf=F"" (ka), Skfzzéjf

i<k
(where the sum runs over j > —1), so that at least formally, f = > i f. We let
(A.5) me=F (xx),  n=",
so that for k > 0, nx = 289n(2% ), and for every k,
(A.6) Opf =i * [,

where x denotes the convolution. For every o € R, p,q € [1,+00] and f € Coers We
define

A 170, = | ¥ o) -

It is easy to check that this quantity is finite (see [31, Lemma 3.2]). We define the
Besov space B, as the completion of C3g with respect to this norm. Outside of
this appendix, we use the shorthand notation By := By ..

We first state a duality relation between Besov spaces, see [1, Proposition 2.76].

Proposition A.1 (Duality). Denote by Let o € R, and p,q,p’,q" € [1,00] be such

that
1 1 1 1
A8 e T |
(4.8) p 7 qa q
The mapping (f,g) = (f,g) (defined for f,g € Cg5,) can be extended to a continuous

. o “a
bilinear form on By, x B, .
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In particular, we can think of Besov spaces as being all embedded in the space of
Schwartz distributions.

Clearly, By, , is continuously embedded in BfB e I8 <o, pr<pand @2 2 q1.
We also have the following embeddings (cf. [31, PI"OpOblthl’l 3 7]).

Proposition A.2 (Besov embedding). Let a < S €R and p > r € [1,00] be such

that L1
Bza—i—d(—).
r p

IFll55, < CllF s
Remark A.3. By [31, Remarks 3.5 and 3.6], there exists C' < oo such that
CH Ifllse . < Ifllee < CUSlse -

An application of Holder’s inequality (see [31, Proposition 3.10]) yields the
following interpolation result.

There exists C' < oo such that

Proposition A.4 (Interpolation inequalities). Let ag, a1 € R, po, qo,p1,q1 € [1,00]
and v € [0,1]. Defining a = (1 — v)ag + vaq and p,q € [1,00] such that

1 1—-v v 1 1—-v v
= +— and -= —,
p Po b1 q q0 Q1

we have

IFllsg, < NFNEE 1l

The effect of differentiating (in the sense of distributions) an element Besov space
is described as follows (see e.g. [31, Proposition 3.8]).

Proposition A.5 (Effect of differentiating). Let o € R and p,q € [1,00]. For every
i€{1,...,d}, the mapping f — 0;f extends to a continuous linear map from By,
-1
to By,
The following extends [31, Proposition 3.25] by allowing o = 1 and arbitrary
values of p.

Proposition A.6 (Estimate in terms of Vf). Let o € (0,1] and p,q € [1,0].
When o = 1, we also impose ¢ = oco. There exists C' < oo such that

CM S lsg,, < I IV FlIg + 1 fllzs -

Proof. We decompose the proof into two steps.

Step 1. We show the result for a € (0,1). By comparison of norms, it suffices to
show the result for ¢ = 1. We assume p < oo, the case p = co being similar. Let f
be a smooth, one-periodic function. For ¢ > 0, we define the projectors

Pf= Y of and  PLf=) 6f,
—1<k<t k>e
so that f =P, f + 736L f, and by the triangle inequality,
1£llss, < IPefllse, + P& Flise,
For the first term, recalling (A.5) and (A.6), we have
(A.9) 0k fllze = [l * flloe < lliklloe [ f]] e,
where we used Young’s convolution inequality on the torus and set

(A.10) Nk = Z (- + ).

y€e(22)¢
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Recall that n;, = 2F9n(2%.). By scaling and rapid decay to 0 at infinity of 7, we have

(A.11) sup |7k ||z < oo,
>"1
and thus
(A.12) 1Pefllse, = > 2*00kfllee S 2 fller.
—1<k<t

On the other hand, using the fact that for k£ > 0, the function 7, has vanishing
integral, we get

1P fllss, = > 2516k fll o

k>0

— 22—k(1—a) /
[—1,1)4

k>0

p

P
/Rd 25 (y) (f(z —y) — f(2)) dy‘ dm)
By Holder’s inequality, the integral above is bounded by

- z—y)— f(z)P
|||2’€-|nk||§11/[ ]/Rmkynk(yn'f( v = @ 4 ay,
—1,1]¢ d

lylP
where we recall that || - ||z: denotes the L' norm in the full space R?. For every
z,y € RY,
flz—y) - flo)F 1 ‘/1 P
=— Vf(:v—ty)-ydt‘
lylP lylP 1 Jo
1
g/ |Vf(x—ty)|pdt.
0
Therefore,
flz—y)— f(=)]
[ eI gy <t 951
[-1,1]¢ JRd Yl

Noting that || [2% - |||z is finite and independent of k > 0 by scaling, we obtain
1P flisg, < 27NV flew,
so that uniformly over ¢ > 0,
I £llss, S 2“1 flle + 27V flLr
The result then follows by optimizing over /.

Step 2. We show the result for « = 1 and ¢ = co. This is a minor modification of
the arguments of the previous step. Indeed, we have

1Pofliss = 10-1fllzo S I fllz,
while

1Po fllsy . = sup 2*(|6x f o,
: k>0

and we have seen that the latter is bounded by a constant times ||V f]|z», so the
proof is complete. O
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A.2. Paraproducts. As in [18], the basis of our analysis rests on the regularity
properties of paraproducts. For f, g € CSS, we define the paraproduct

per»

fog= > 0;fokg=>_ Sc1f kg,

j<k—1 k
and the resonant term
fog= Y 6;f by
l7—k|<1

We write f©g=¢g® f. At least formally, we have the Bony decomposition

Jg=fGg+[0g+ fOg.

We will also use the symbols ® = ©+ O, etc.

The most important estimates for our purpose are summarised in the following
proposition (see [1, Theorems 2.82, 2.85 and Corollary 2.86] or [31, Theorem 3.17
and Corollaries 3.19 and 3.21]).

Proposition A.7 (paraproduct estimates). Let o, 5 € R and p,p1,p2,q € [1, 0]

be such that
1 1

1 J—

P P11 P2
o If a+ 8 > 0, then the mapping (f,g) — f© g extends to a continuous bilinear
map from By X ngl to B;“’;rﬁ.
e The mapping (f,q) — f@g extends to a continuous bilinear map from LP' X 81/327(1
to Bg’q.
o If a < 0, then the mapping (f,g) — f@g extends to a continuous bilinear map
from By % 352’,1 to Bg"gﬁ.
o If a > 0, then the mapping (f,g) — fg extends to a continuous bilinear map from
thq X Bgzyq to Bg,(I'
o Ifa <0< fand a+f > 0, then the mapping (f,g) — fg extends to a continuous

7 /B
bilinear map from By, . x By, . to By .

Remark A.8. Although this will be sufficient for our purposes, we remark that for

a > 0, the extension of the product to a continuous map from By, , x By, . to By,
is vastly suboptimal in its dependency on the parameter p. For instance, if o > %,
then By, is continuously embedded in L, and thus the space By , is in fact an

algebra.

The next result is our first commutator estimate. It extends [18, Lemma 2.4] to
more general Besov spaces.

Proposition A.9 (commutation between @ and ©). Let a < 1, 8,7 € R and p, p1,
P2, p3 € [1,00] be such that
1 1 1 1
B+ <0, a+pB+y>0 and T I
p P11 P2 P3
The mapping
(A.13) [©,6]: (f,9,h) = (f©g)©h— f(gOh)

; ili o B Y atf4+y
extends to a continuous trilinear map from By, o X By, o x B} . to ByIl™.

The proof of Proposition A.9 relies on the following two lemmas.

Lemma A.10. For f,g € C*°, define
[0k, f1(9) = 0k (fg) — f brg.
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Let p,p1,p2 € [1,00] be such that % = p% + p%. There exists C' < oo such that for
every k > 0 and f,g € Cgg,,

C
8%, Fi(@)llze < S IV Fllzen llgllzra-
Proof. The proof is similar to that of [1, Lemma 2.97]. O

Lemma A.11. For f,g € C°, define

(A.14) [0k, ©](f, 9) == 0k (f ©g) — f(drg).
Let p,p1,p2 € [1,00] be such that % = p% + p%, a € (0,1) and B € R. There exists
C < oo such that for every f,g € CSS

per’

166, €1(f 9)ller < 27D Y fllsg llgls -

Remark A.12. Tt would perhaps be more natural to define the commutator between
0 and @ as

(A.15) or(f©g) = f©(0kg)

(and similarly for (A.13)). However, the definition in (A.14) will be more convenient
to work with in the proof of Proposition A.9 (besides matching the choice of [18]).

Proof. We decompose the proof into two steps, the first one being focused on deriving
bounds for the quantity in (A.15).

Step 1. We show that
(A16)  [0(FOg) — FO(Brg)lr < C2HOH) [V fl 0 gl -
(The proof given now shows that (A.16) is also valid when « < 0.) Note that

“+oo
0k (F©9) = F©(Okg) =Y 0k (Si-1f big) — Si-1f dibkg.
=0

The term 6;0,g9 = 6xd;g vanishes unless |i — k| < 1. Moreover, for any h, the Fourier
spectrum of S;_1 f d;h is contained in 2'.<7, where </ is the annulus B(0,10/3) \
B(0,1/12). Hence, & (S;—1f d;h) vanishes unless |i — k| < 5, and

S (fO9) = FOOkg) = D [0k Sim1/1(0ig).

li—k|<5
By Lemma A.10,

1
119, Si—1f1(0ig)lle S 5 IVSi-1 fllLe [18igllzes-
Since we assume o < 1, we have

IVSiaflles < D0 N6 (VF) l[om S 20|V S|

j<i—1

a—1 .
Bpl,oo

Using also the fact that [|6;g]|Lr> < 27%(|g|lzs , we arrive at
P2,

gi(l—a—p8)
166 (f©.9) = FO G S > 9 lmgr lallss, .

ikl <5
which proves (A.16).

Step 2. Recall from Proposition A.5 that [[Vf|lga-1 < [fllsg - In order to
P1,00 o0
conclude the proof, it thus suffices to show that

(A.17) If © @kl <27 fllsg, _ llgllgp, -
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We have
fO@rg) = D 6ikgdif.
i,jii<+1
As observed previously, §;0rg vanishes unless |i — k| < 1. In this case, by writing d;
as a convolution against 7);, applying Young’s convolution inequality in the form of
(A.9) and recalling (A.11), we obtain

100kl er < 10kgllzer < 27 llgll s -

Since we also have ||9; f||zr2 < 2*3“"Hf||3g2 _» We obtain
1f © (Okg)ller < 27" llgllgs, . D 277If sy, o
k-2
and (A.17) follows since we assume that a > 0. O
Proof of Proposition A.9. Observe that
(feg)oh= Y 6(fog)dwh
|k—k'|<1

= Z 5k(52f@g) 5k/h.

ik |k—k'|<1

The Fourier spectrum of §;f @ g is contained in 2/ , where &/ is the annulus
B(0,20/3) \ B(0,1/24). As a consequence, dx(d; f @ g) vanishes unless |k — i| < 6,
and

(fegoh= Y 66 fOg)dwh
|k—k'|<1,i—k<6
(A.18) = > &fdgdeh+ > [66,Cl(6if, ) Sxrh.
|k—k'|<1,i—k<6 |k—k'|<1,i—k<6

As a first step, we show that the Bgfgfﬂ norm of the second sum is bounded by a
constant times || f|zg ”9”352,00 |75y, .- For each fixed k, the Fourier spectrum
of
coy, = > [0k, ©](0i f, g) 1T
K ji: |k—k | <1,i—k<6

is contained in a ball whose radius grows proportionally to 2*. By [1, Lemma 2.84]
(or [31, Lemma 3.16]), and since o + 8 + v > 0, it thus suffices to show that

(gk(a+5+~/) ||C0k||LP>
k>

=

S N fllse

. o< lollgs _lhllsy

3,00 "

(a19) |

We can rewrite cog as

Z [516’@] Z Jif,g Oph.

K k—k'| <1 i<k+6

By Lemma A.11 and Hélder’s inequality, the LP norm of coy is thus bounded by

S ok | S gy lgll sz, . 18Rl

K [k—k'|<1 i<k+6 e
P

1,00

S 27 £ g

P1,00

lallss, el ..

which proves (A.19).
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Now that we have controlled the second sum in (A.18), we will argue that the
first sum is close to f(g©h). We observe that

flgoh)y = Y &ifogdwh,
ik, k| k—k! | <1
so the difference between the first sum in (A.18) and f(g © h) is given by
Z sz (Skg 5k’h
ik, K k=K | <1,i—k>6

As above, in order to control the B;“,'gf‘*‘” norm of this term, we observe that for
each 4, the Fourier spectrum of

s = > 8:f 0rg O h
kk': |k—k'|<1,k<i—6

is contained in a ball whose radius grows proportionnally to 2°. Hence, it suffices to
show that

i(atB+7)||g.
w2 @ ad) S0, g, Vil
By Holder’s inequality,
Isill e < > 16 fll v 10kgl|Lr2 |0k Al Les
ok |k—k |<1,k<i—6
<ofley . X 2 gl ey

kK | k—k'|<1,k<i—6
< 27| £ 5o hllgy _,

P1,00 HgHBﬁz,w | P3,00

where we used the fact that 5++ < 0 in the last step. The proof is thus complete. [

A.3. Heat flow. The next proposition quantifies the regularising effect of the heat
flow, see e.g. [31, Propositions 3.11 and 3.12].

Proposition A.13 (Regularisation by heat flow). Let o, 5 € R and p,q € [1, o0].
o If a > 3, then there exists C < oo such that uniformly over t > 0,

tA Bo=
€2 g, < O | il
o [f0 < B —a< 2, then there exists C < oo such that uniformly over t > 0,
A B—a
(1= ") fllsg, < CE= | fllgs
Remark A.14. We also have, for every p € [1,00] and ¢ > 0,

e flle < I fllze-

Indeed, the heat kernel has unit L' norm, so the inequality above follows by Young’s
convolution inequality.

‘We now turn to our second commutator estimate, which extends Lemma 32 in
the first arXiv version of [18] to more general Besov spaces (see also [5, Lemma 2.5]).

Proposition A.15 (commutation between e'® and ). Leta <1, B € R, v > a+p,
and p,p1,p2 € [1,00] such that 1/p =1/p1 + 1/pa. For everyt > 0, define

[€'2,0] 1 (f,9) = 2 (fOg) — fO('2g).

There exists C' < oo such that uniformly overt > 0,
atB—n

16" CUF Dl < O, o Nl
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Proof. We will actually show that

atf—ny

eI )l <CE5 VS llgg Nl -

Since ”Vf”B?;io < [Ifllsg, . by Proposition A.5, this implies the proposition.

We decompose [e2,@](f,g) into ;:(:)?) hy, where

he == e (Sp_1f 0kg) — Sk—1f 0x(e®g).

The Fourier spectrum of hy is contained in 2*.<7, where we recall that < is the
annulus B(0,10/3) \ B(0,1/12). By [1, Lemma 2.84] (or [31, Lemma 3.16]), it thus
suffices to show that

atB—y

@il ) o), St IVF g lgllsg, -
20| g P1, p2,00

Let ¢ € Cg° be supported on an annulus and such that ¢ =1 on 7, and let
Gro =771 (o2 ) 1),

Any function h whose Fourier spectrum lies in 2*.¢7 satisfies
e'®h = G % h.
In particular,

hy = Git % (Sk—1f 0kg) — Sk—1f (Gr * 0rg),
that is,

() = / Groe(y) B1g(x — ) (Surf(2) — Seorf(x — 1)) dy.

We can rewrite the difference of Si_; f at two points in terms of its gradient:

1
Seorf (@) — Spfla —y) = - / VSi_1f(z - sy) - yds,
so that )
hi () = /0 / 509(z — 9)Cioaly) - VS f(x — sy) dy ds,

where G}..+(y) := y Gr.¢(y). Let us denote the inner integral above by hy ¢(x). We
now show that

(A.21) Ihilizr S NGl IV Se—1fllos [16kgllzre-

We will in fact show that (A.21) holds with hg 4 in place of hy, uniformly over s.
(This inequality is a minor variant of Young’s and Hélder’s inequalities; in particular,
it does not depend on the specific properties of the functions involved, and the
implicit multiplicative constant would be 1 if all functions were real-valued.) We
first observe that by Holder’s inequality,

=

~ 1—-1 ~
he,s (@) SN Grll 2" (/ GreW) org(z = y)[P [V Sp—1 f(x = sy)|P dy)
As a consequence,

IhesllZy < 1G5 / / Gt ()] Brg(x — ) [V Sk flz — sy)|? dyde.

By Hoélder’s inequality,
/ VSko1f(@ — )P 1669z — )P dz < [ VS fIE0n 16501 %ms.

and we obtain (A.21).
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The remaining step consists in uncovering the size of HéktH 1t in terms of k and ¢.
By symmetry, it suffices to study the L' norm of the function y + y1G +(y). Up
to a factor 4, this function is the inverse Fourier transform of

¢C— 0 ((17(27]9@‘) @*t|C|2> _ (27kal¢(27kg) i 2C1t¢(27k<)) eitIC‘Z,

We learn from the proof of [1, Lemma 2.4] (or that of [31, Lemma 2.10]) that for
every ¢ € C'™° with support in an annulus, there exists ¢ > 0 such that

|77 (set et
As a consequence, there exists ¢ > 0 such that
IGhillor S 27% (14 12%%) e,
Combining with (A.21), we get
o2k
||thL;D < 2_k (1 + t22k) e~ ct? ||V5k,1f||Lp1 ||5kg||[,pz.

~

< e—ct22k’

~

L1

By definition of the Besov norm, we have |[0xg|lr. < 27%||g|lzs . Since we
P2,
assume « < 1, we also have |V Sk_1f|rr1 < 2’“(1*0‘)||Vf|\8371 , and thus
1,00
27 [|hy | e < 2507 (14 1225) =2 |8y £l o (|09l Lo

—a—8
2

B y—a=B
St +o— (t22k) (1+t22k) C_CtQ% ||VSk,1f||Lp1 H(SkgHLPQ-

The term between square brackets is uniformly bounded, so the proof is complete. [
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