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Abstract

We present recent developments in lattice Boltzmann modeling for multi-component flows, implemented
on the platform of a general purpose, arbitrary geometry solver PowerFLOW. Presented benchmark
cases demonstrate the method’s accuracy and robustness necessary for handling real world engineering
applications at practical resolution and computational cost. The key requirements for such approach are
that the relevant physical properties and flow characteristics do not strongly depend on numerics. In
particular, the strength of surface tension obtained using our new approach is independent of viscosity
and resolution, while the spurious currents are significantly suppressed. Using a much improved surface
wetting model, undesirable numerical artifacts including thin film and artificial droplet movement on
inclined wall are significantly reduced.
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1. Introduction

Recently, there has been increased interest in en-
gineering applications of multi-component flow sim-
ulation with the lattice Boltzmann (LB) method,
because of its advantages for complex geometry
and turnaround time efficiency. The lattice Boltz-
mann method (LBM) is based on the kinetic theory
which allows to construct physical models from mi-
croscopic as well as from macroscopic viewpoints.
While multi-component LBM’s have shown

promising results on a large number of academic
cases, numerical accuracy and stability still repre-
sent challenges under extreme conditions such as
coarse resolution and low viscosity. Actually, it is
these conditions that are likely to be encountered
in many engineering applications. In this paper,
issues with currently existing schemes and models
are pointed out, and an improved LB scheme is
tested.
The paper is organized as follows. In Sec. 2, the

standard LBM for multi-component flow is briefly
reviewed. In Sec. 3, issues related to the basic func-

tionality are specified, and an improved scheme is
proposed and tested via the simulation of a two-
dimensional droplet. In Sec. 4, cases with wall
boundaries are discussed and typical issues asso-
ciated with boundary models are pointed out. A
new boundary model is tested on some benchmark
cases. We discuss results in Sec. 5. In this paper,
all physical quantities are written in lattice units,
and the discrete lattice time and space increments
are ∆x = ∆t = 1.

2. Multi-component lattice Bolzmann

method

The commonly used LB equation for multi-
component flow can be written as:

fα
i (x+ ci∆t, t+∆t)− fα

i (x, t) = C
α

i +F
α
i , (1)

where α stands for different components (species),
ci is the discrete velocity and Fα

i is inter-
component interaction force [1]. The D3Q19 lattice
model [2] is used so that i ranges from 1 to 19, and
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C α
i is the particle collision operator. The simplest

and commonly used one is the BGK collision oper-
ator [2–5] with a single relaxation time τα for the
α-species:

C
α
i = −

1

τα
(fα

i − feq,α
i ) . (2)

The equilibrium state feq,α
i with the third order

expansion is defined as:

feq,α
i (ρα,u) = ραwi[1 +

ci · u

T0

+
(ci · u)

2

2T 2

0

−
u2

2T0

+
(ci · u)

3

6T 3

0

−
ci · u

2T 2

0

u2]. (3)

Here T0 = 1/3 is the lattice temperature, wi is the
isotropic weight in D3Q19, ρα is the density of the
component α, and u is the mixture flow velocity:

ρα =
∑

i

fα
i (4)

ρ =
∑

α

ρα =
∑

α

∑

i

fα
i (5)

u =

∑

α

∑

i ci · f
α
i

ρ
. (6)

There exist several models that introduce local in-
teractions between components that are responsible
for separation between the components [1, 6]. One
of the most commonly used ones is the Shan-Chen
potential force:

F
α,β (x) = Gα,βρα (x)

∑

i

wiciρ
β (x+ ci∆t) .

(7)
Here, the matrix Gα,β defines parameters which de-
termine the strength of interaction between com-
ponents. If Gα,α = 0, the interaction forces only
exist between different components. The equa-
tion of state for each component is that of ideal
gas. If Gα,α is nonzero, in addition to the inter-
action forces between different components, there
is also a repulsive force within the α-component.
As a result, the α-component acquires the equa-
tion of state of a non-ideal gas and phase transi-
tion within that component becomes possible. In
this paper, phase transitions of single components
are neglected and Gα,α = 0.
There are several ways to apply the forcing term

Fα
i . The existing approaches have the same body

force representation at the first order in resolu-
tion/time step, but different at the second and
higher orders. The high order difference does have
significant influence on simulation quality. In this
work we use the forcing term described in [7].

The resulting fluid velocity uF is the velocity av-
eraged over pre- and post- collision steps,

uF = u+ g∆t/2 (8)

g =
∑

α

gαρα/ρ. (9)

where gα is the acceleration of the component α
derived from the intercomponent force F α,β: gα =
∑

β F
α,β/ρα. This quantity uF is henceforth called

simply velocity.

3. High accuracy bulk solver

Engineering applications usually require simula-
tions involving various material properties and flow
scenarios. Due to the jump of physical character-
istics at the interface between components, accu-
rate representation and simulation of these inter-
faces represents a significant difficulty. There is a
consensus that numerical stability and accuracy re-
main two major challenges in development of multi-
phase/multi-component LB flow solvers. To ensure
numerical stability, the viscosities cannot be too
small, and also the viscosity ratio between different
components cannot be too large. Numerical arti-
facts including spurious current could often con-
taminate flow physics near the interface region. It
becomes even more challenging when the solid-fluid
interaction, i.e. surface wetting, is also considered.
A new LB algorithm for the multi-component flow
used in this work improves these numerical issues.

Even when the interface is static, numerical arti-
facts could provide a source of artificial velocity,
which is called spurious velocity (cf. [8]). The
proper treatment of these phenomena is recognized
as one of the key requirements for accuracy and
stability of the multi-component flow modeling. In
previous studies [9, 10], it is pointed out that the
spurious current is associated with the insufficient
isotropy of the of the numerical system caused by
the discretization.

Instead of BGK, we use here a regularized filter
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collision operator [11]:

fα
i (x+ ci∆t, t+∆t) = feq,α

i (ρα,u)

+

(

1−
1

τα

)

fneq,α
i + F

α
i . (10)

Here τα is the relaxation time of the fluid compo-
nent α that is related to the kinematic viscosity of
that component να [12]. fneq,α

i is the regularized
non-equilibrium distribution function,

fneq,α
i = Φα : Πα, (11)

where Φ is a regularized filter collision operator
based on Hermite polynomials [11, 13, 14] and Πα

is the non-equilibrium momentum flux tensor for
different components. Fα

i is the interaction body
force. The general idea and relevant algorithm de-
tails of the regularization can be found in [11, 13–
16]. Here we would like to emphasize that this
filter collision operator keeps the nonequilibrium
information of moments up to the desired order,
for example the 2nd order for the momentum flux
and the 3rd order for the energy flux, and removes
other higher order nonequilibrium moments in the
Hermite space. Such a filtering procedure could
substantially reduce unphysical noise and numer-
ical artifacts and improve numerical stability and
accuracy.
As a first test of this approach, a two-dimensional

static droplet is simulated with the variable ini-
tial droplet radius, R = {4, 8, 16, 24, 32, 48}, and
relaxation time, τα = {0.525, 0.55, 1.0, 1.5, 3.0} for
each component. The simulation domain size is five
times the droplet radius and the initial density for
each component is 0.22. After a steady state is
reached, the droplet radius is measured by fitting
the hyperbolic tangent curve to the density profile.
In Fig.1, the pressure differences across the

droplet interface, dP , are plotted with respect to
the inverse droplet radius 1/R, using four sets of
τα combinations with the maximum viscosity ratio
of 100. The subscripts 1 and 2 for τ denote quan-
tities inside and outside the droplet, respectively.
Results for all τ options are fitted by a line. Ac-
cording to the Young-Laplace law,

dP =
σ

R
, (12)

the slope of the fitted line is the numerically
achieved surface tension σ, which is independent of

the viscosity and droplet size. Achieving such in-
dependence is an important first step towards sim-
ulating complex practical problems.
As mentioned above the spurious current prob-

lem is believed to be caused by insufficient isotropy
of discrete schemes [9, 10]. In Fig. 2, maximum
spurious currents are plotted in terms of τ2 and R.
In the left figure, τ2 is varied while τ1 is fixed cor-
responding to the initial R = 48. It is seen that the
spurious current of the modified scheme is lower
than the original one for all cases. Furthermore,
with the modified version the spurious current de-
pendence upon τ and R is much reduced. As a
result, one can estimate the spurious velocity quan-
titatively even before simulation, evaluate its effect
on the main flow, and reduce numerical artifacts.
In Fig. 3, the distributions of the velocity field

and ρ2 are presented. Here the initial R is 48 and
the relaxation times are τ1 = 0.525 and τ2 = 3.0.
The results demonstrate that the new scheme sig-
nificantly reduces the spurious current while pre-
serving the density profile and the interface thick-
ness.

4. Wall boundary condition

For developed methodology of multi-component
flow prediction, accurate handling of complex ge-
ometry is required. Moreover, most usage cases for
multi-component flow require accurate treatment of
solid wall properties such as no-slip and wettability.
In the standard LBM, the no-slip condition is re-

alized with pointwise particles’ bounce back model
[17]. In cases with coarse resolution or low vis-
cosity, accuracy may deteriorate. When the geom-
etry or the local shear velocity is under-resolved,
the shear stress along the wall cannot be estimated
accurately. Numerical smearing could also easily
contaminate flow field in the near wall region when
the physical viscosity is low. As a result, the nu-
merically simulated absolute permeability in the
porous media may have significant viscosity depen-
dence even if the Reynolds number is low enough
to satisfy the Darcy’s law approximately [18]. In
the previous studies [19, 20], the multiple relax-
ation time (MRT) scheme along with the interpo-
lated and multi-reflected boundary conditions im-
proved this issue. However those schemes are diffi-
cult to generalize and implement for complex prob-
lems. Both of these types of boundary conditions

3
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Figure 1: Pressure difference across the droplet interface, dP , as a function of the inverse droplet radius, 1/R, using the
original BGK schemes (left) and new schemes (right) with four combinations of relaxation times. The subscripts 1 and 2
of denote τ inside and outside of the droplet, respectively. A line is fitted based on results with four combinations of τ .
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Figure 2: Maximum spurious velocity with the original and modified scheme as a function of τ2 (left) and R (right) using
various viscosity combinations. In the left figure, the initial R is 48.
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Figure 3: Color contours of ρ2 and the velocity field using the original scheme (right) and the modified scheme (left).
τ1 = 0.525 and τ2 = 3.0. Initial R is 48.

do not conserve the local mass and require com-
plicated local numerical interpolations in the near
wall regions. Thus a more robust, accurate, and
simple model is desired.

The wettability condition is often modeled by an
interaction force between the fluid and the wall. A
wall potential ραs is assigned to each wall to enable
interactions between the solid surface and fluid par-
ticles using a point-wise concept along the lines of
Eq. (7). The correspondence between ραs and the
contact angle can be defined by simulating some
test cases, after which it can be used for general
cases. Although this wettability model works well
for certain cases [12], it could sometimes generate
an artificial thin film along a wetting wall. This
film originates from slugs or droplets on the wall,
and this numerical artifact is obviously undesirable
because large amounts of mass may artificially dif-
fuse and escape from the inlet or outlet boundary.
Another well known undesirable issue is the artifi-
cial movement of static droplets on inclined walls.
Because of insufficient isotropy of discrete numer-
ical schemes, even if the droplet is not subject by
any driving force, the droplet may easily descend or
even climb the slope. To address these issues, the
improved wall boundary conditions are developed
and validated.

4.1. Modified wall models

In our work, the bounce back model is an exten-
sion of the volumetric boundary condition proposed
by Chen et al in 1998 [21–24], which has been ex-
tensively studied for arbitrary geometry. The main
features of this model are:

1. Boundary surfaces are discretized into piece-
wise linear surface facets in two dimensions
and triangular polygons in three dimensions;

2. During the fluid dynamics calculation, the
facets/polygons gather incoming particles
from neighboring cells in a volumetric way;

3. At the wall, the direction of the incoming par-
ticle is flipped and the outgoing particle is con-
structed;

4. The outgoing particles are scattered back to
neighbor cells in the similar volumetric way.

More details can be found in [21], in particular a
proof that conservation laws are obeyed locally as
well as globally.

In addition to the correction of surface scatter-
ing described in [22], a hybrid solid wall boundary
condition for the no slip wall is proposed here in or-
der to further reduce numerical smearing for coarse
resolution simulations. The distribution function
of outgoing particles fout,α

i is a combination of
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bounced back particles and the Maxwellian equilib-
rium particle distribution in accordance to viscosity
values.
In our wettability model, the interaction force

F
α,β
w is extended from the inter-component force

form given by Eq. (7) using the volumetric bound-
ary scheme as,

F α,β
w (x) = Gρα (x)

∑

i

wiciρ
′

β (x+ ci∆t) , (13)

where ρ
′

β is constructured in a volumetric way so
that ∂ρβ/∂n = 0 [21]. It is worth pointing out that
such a volumetric wettability scheme has sufficient
isotropy in complex geometry.

4.2. Results

The modified models are validated in order to es-
tablish that the issues specified above are improved.
First, the kinematic viscosity ν dependence of the
absolute permeability is investigated by simulating
the simple cubic (SC) array of spheres. Second,
the thin film along the wall is tested on the case
of a static slug between plates. Third, the artifi-
cial movement of a droplet on an inclined wall is
studied.

4.2.1. The SC array of spheres

The single-component gravity driven flow
through the SC array of spheres is simulated.
The simulation domain is set as a cube with the
edge length L = 34, containing a sphere in the
center. Periodic boundaries are assigned to each
pair of faced cube surfaces. The relative volume
fraction χ = (c/cmax)

1/3 = 1 and the spheres are
touching each other, where c is the ratio of the
solid volume to the cube volume and cmax is its
maximum value, π/6 in the SC array. The choices
of τ are {0.505, 0.51, 0.55, 0.6, 1.0, 1.5, 2.5}. The
gravity g is in the perpendicular direction to a
cube surface and g = 1.e − 4 when ν = 0.1666.
The value of g for the other values of ν is adjusted
so that g/ν2 is kept constant. Such a choice keeps
the Reynolds number constant for the case of the
Hagen-Poiseuille flow when the channel height is
fixed. Under the low Reynolds number assumption,
the Darcy’s law is obeyed and the flow is within
the Stokes flow regime. Therefore for a given
geometry, the absolute permeability K should be
a constant independent of physical properties as

long as the flow Reynolds number is small. In our
simulations, the absolute permeability is evaluated
as K = φνU/g, where φ is the porosity and U is
the spatial averaged velocity.
A streamline in the case of τ = 1 is presented on

the left side of Fig. 4. The color represents the ve-
locity magnitude ranging from 0 to 0.0025. Around
the region where the spheres are touching, the flow
path is of a narrow concave shape and therefore the
flow is fast. In such a region, the resolution tends to
be relatively coarse and numerical smearing could
be quite pronounced when fluid viscosity is low.
On the right side of Fig. 4, the simulated abso-

lute permeability with the original bounce back and
the currently presented models are shown, along
with the analytical solution obtained through the
analytical dimensionless drag force from [19, 20,
25]. In all simulations the Reynolds number UL/ν
is less than 0.4. The absolute permeability simu-
lated using the original model shows a measurable
dependence upon viscosity, consistent with previ-
ous studies by other researchers [18]. On the other
hand, the modified model reported in this work sig-
nificantly reduces this dependence even at very low
viscosities. Simulation results agree well with the
analytical solution. Thus the new models can be
applied for the complex geometry including sharp
convex and concave shapes, while maintaining high
accuracy.

4.2.2. Static slug between flat plates

A two-dimensional static slug between flat plates
is simulated under various wetting conditions. The
channel height is set at 32 and τ for both compo-
nents is 1. The second component is mainly located
in the middle section of the channel. The wall po-
tential ραs is set as ρ1s = 0, ρ2s = 0.088 so that
the contact angle is roughly 40 degrees. In Fig.
5, the color contours show the second component
density distribution with the original and modified
wettability models, respectively. It is seen that the
modified scheme reduces the thin film artifact sig-
nificantly without changing the contact angle.
In Fig. 6, the contact angle and the thin film

density are shown as a function of wall potential.
The wall potentials ρ1s and ρ2s are varied as ρ1s =
−ρ0·α·Θ(−α) and ρ2s = ρ0·α·Θ(α). The parameter
α is actually a dimensionless wall potential, Θ is
the Heaviside step function, and ρ0 = 0.22. The
contact angle was measured by fitting a circle to
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Figure 4: Geometry and flow stream lines colored by velocity magnitude ranging from 0 to 0.0025(left), and the absolute
permeability as a function of the kinematic viscosity ν with the present and original model(right). The analytical solution
for permeability is shown by the dotted line.

the interface. Thin film density is detected in the
first lattice cell of the simulation domain’s edge.
Observe from Fig. 6 that the our modification of
the wall models does not change the contact angle,
as intended, but at the same time reduces the thin
film and wettability dependence of the thin film for
all cases.

4.2.3. A droplet on the inclined wall

A two-dimensional droplet that is not subject
to any explicit driving force on an inclined wall is
simulated. The droplet is composed by the sec-
ond component, surrounded by the first compo-
nent. The channel height is 16 and the wall po-
tential is set similarly to the slug case above. The
periodic boundaries are enforced on the top/left
and bottom/right edges. The inclination angles are
{10, 30, 50, 70} degrees. In the cases with the same
inclination angle, exactly the same initial droplet
mass is set. In Fig. 7 and Fig. 8, the results ob-
tained with the original and modified models are
compared using the inclination angles of 10 and 30
degrees, for τ1 = 0.55 and τ2 = 1.5. Fig. 7 shows
that the droplet is less diffusive with the modified
models, which is likely due to the reduction of the
thin film effect that has been shown for the previ-
ously discussed cases. In Fig. 8 the droplet simu-
lated with the modified model is static, as desired,

while the one with the original model is moving. In
Table 1, results for various τ combinations and in-
clination angles are presented. The droplet velocity
is calculated by measuring the position change of
the droplet center mass between 8.e+4 and 8.5e+4
time steps. Therefore the velocity less than 2.e-
4 cannot be measured accurately and is set to 0.
Utilizing the ratio of the droplet volume to total
volume, the mass diffusion can be evaluated and
the quantitative comparison between the two mod-
els is presented. The droplet volume is detected
by adding volume where the second component
density is more than 0.18. The results show that
the modified model improves the artificial droplet
movement and mass diffusion on the inclined wall
for all tested inclinations.

5. Summary

An enhanced multi-component LB flow solver is
presented whose accuracy and stability are demon-
strated on a set of difficult benchmark cases. The
algorithm and numerical scheme are generalized
for practical applications. The surface tension
achieved in the simulation is independent of fluid
viscosity and resolution. The spurious current is
significantly reduced. The new surface wetting
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Figure 5: Density of the second component, ρ2, with the original (left) and modified wettability model (right). The channel
height is 32 and τ of both components are 1.
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function and ρ0 is 0.22. τ of both components are 1.0.

Table 1: Droplet velocity and the ratio of droplet volume to total volume on the inclined wall with respect to component
τ and the inclination angle with the original model (left) and the modified model (right).

τ1 τ2 Inclination Droplet Droplet volume
angle velocity /total volume

0.55 1.5 10 0 0.077
0.55 1.5 30 6.e-4 0.25
0.55 1.5 50 5.e-4 0.21
0.55 1.5 70 3.e-4 0.27
1.0 1.0 10 0 0.078
1.0 1.0 30 4.e-4 0.23
1.0 1.0 50 0 0.20
1.0 1.0 70 3.e-4 0.26
1.5 0.55 10 0 0.057
1.5 0.55 30 3.e-3 0.21
1.5 0.55 50 5.e-4 0.19
1.5 0.55 70 4.e-4 0.24

τ1 τ2 Inclination Droplet Droplet volume
angle velocity /total volume

0.55 1.5 10 0 0.25
0.55 1.5 30 0 0.35
0.55 1.5 50 0 0.33
0.55 1.5 70 0 0.40
1.0 1.0 10 0 0.24
1.0 1.0 30 0 0.31
1.0 1.0 50 0 0.28
1.0 1.0 70 0 0.37
1.5 0.55 10 0 0.24
1.5 0.55 30 0 0.26
1.5 0.55 50 0 0.26
1.5 0.55 70 0 0.34
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Figure 7: The density of the second component at different timesteps with the original (left) and modified (right) models.
The density range is from 0 to 0.22. The angle of the inclined wall is 10 degrees; τ1 = 0.55 and τ2 = 1.5. No explicit
driving force is applied. The periodic boundaries are enforced between the top/left and bottom/right edges.

Figure 8: The density of the second component at different timesteps with the original (left) and modified (right) models.
The density range is from 0 to 0.22. The angle of the inclined wall is 30 degrees; τ1 = 0.55 and τ2 = 1.5. No driving force
is applied. The periodic boundaries are enforced between the top/left and bottom/right edges.

scheme for complex geometry improves the near
wall algorithm isotropy and the overall quality of
numerical solution in the near wall region, in par-
ticular it reduces the unphysical surface thin film
and mass diffusion. The model enables simulation
of multi-component flows in an extended viscos-
ity range and in complex geometry with much im-
proved accuracy, stability, and robustness.
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