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A GENERALIZED DADE’S LEMMA FOR LOCAL RINGS

PETTER ANDREAS BERGH & DAVID A. JORGENSEN

Abstract. We prove a generalized Dade’s Lemma for quotients of local rings
by ideals generated by regular sequences. That is, given a pair of finitely
generated modules over such a ring with algebraically closed residue field, we
prove a sufficient (and necessary) condition for the vanishing of all higher Ext
or Tor of the modules. This condition involves the vanishing of all higher Ext
or Tor of the modules over all quotients by a minimal generator of the ideal
generated by the regular sequence.

1. Introduction

When is a module over a truncated polynomial ring projective? For group alge-
bras of elementary abelian p-groups, a criterion was provided by Dade in [Dad]: if
the ground field is algebraically closed, then a finitely generated module over such
an algebra is projective if and only if its restriction to all the cyclic shifted sub-
groups are projective. This is now known as Dade’s Lemma. In terms of truncated
polynomial rings, it can be restated as follows. Let k be an algebraically closed
field of positive characteristic p, consider the truncated polynomial ring

k[X1, . . . , Xc]/(X
p
1 , . . . , X

p
c )

and denote the image of the generators Xi by xi. Then Dade’s Lemma says that a
finitely generated module over this ring is projective if and only if it is projective
over the subalgebra k[α1x1 + · · ·+ αcxc] for each c-tuple (α1, . . . , αc) in kc.

Truncated polynomial rings are local complete intersections, that is, they are
quotients of regular local rings by ideals generated by regular sequences. For such
rings, a cohomological generalization of Dade’s Lemma is proved implicitly in [Avr]
and [AvB]: instead of providing a criterion for finite projective dimension, a crite-
rion for vanishing of cohomology for pairs of modules is given.

In this paper, we generalize Dade’s Lemma to quotients of arbitrary local rings,
and provide both a homological and a cohomological version. More precisely, let
(S, n, k) be a local ring with k algebraically closed, I ⊆ S an ideal generated by a
regular sequence, and denote by R the quotient S/I. In our main results (Theorem

3.3 and Theorem 3.4), we provide criteria for the vanishing of TorRn (M,N) and
ExtnR(M,N) for n ≫ 0, where M and N are two finitely generated R-modules, in

terms of the vanishing of TorS/(f)n (M,N) and ExtnS/(f)(M,N) for n ≫ 0 and all

f ∈ I \n I. The special case when N is the residue field k of R, so that vanishing of
the (co)homology is equivalent to M having finite projective dimension, is proved
in [HJK, Corollary 2.2].
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2. Chain maps

Throughout this paper, a local ring is a commutative ring which is both local
and Noetherian, and all modules are assumed to be finitely generated.

Let (S, n, k) be a local ring, f a non-zerodivisor in n
2, and denote by R the

quotient S/(f). Consider a (chain) complex

F : · · · → Fn+1
∂n+1

−−−→ Fn
∂n−→ Fn−1 → · · ·

of finitely generated free R-modules. By choosing bases for the free modules, we
may view the maps ∂i in F as matrices with coefficients in R. Now lift the whole
complex to S, and obtain a sequence

F̃ : · · · → F̃n+1
∂̃n+1

−−−→ F̃n
∂̃n−→ F̃n−1 → · · ·

of finitely generated free S-modules and maps, with F̃ ⊗SR isomorphic to F . Thus

for each integer n, the free S-module F̃n is of the same rank as the free R-module

Fn, and the map ∂̃n can be obtained from ∂n by choosing preimages in S of all its
matrix entries.

In general, the sequence F̃ is not a complex, but the image of the composition

∂̃n+1 ◦ ∂̃n+2 is contained in fF̃n for all n. Therefore, for every element x ∈ F̃n+2

there exists an element wx ∈ F̃n with ∂̃n+1 ◦ ∂̃n+2(x) = fwx. Since f is a non-
zerodivisor in S, this element wx is unique, hence the assignment

t̃n+2 : F̃n+2 → F̃n, x 7→ wx

is a well-defined S-homomorphism for each n. By definition, the equality

∂̃n+1 ◦ ∂̃n+2 = f · t̃n+2

holds for all n.

Lemma 2.1. For every n, the diagram

F̃n+3

∂̃n+3
//

t̃n+3

��

F̃n+2

t̃n+2

��

F̃n+1

∂̃n+1
// F̃n

commutes.

Proof. This follows from the proof of [Eis, Proposition 1.1]. For an element x ∈

F̃n+3, the definition of the maps t̃i gives

f ·
(
∂̃n+1 ◦ t̃n+3(x)

)
= ∂̃n+1

(
f · t̃n+3(x)

)

= ∂̃n+1 ◦ ∂̃n+2 ◦ ∂̃n+3(x)

=
(
f · t̃n+2

)
◦ ∂̃n+3(x)

= f ·
(
t̃n+2 ◦ ∂̃n+3(x)

)

Since f is a non-zerodivisor on F̃n, the result follows. �
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Now for each integer n, define an R-homomorphism tn+2 : Fn+2 → Fn by

tn+2 = t̃n+2 ⊗S R

Then by applying −⊗S R to the diagrams in the lemma, we obtain a commutative
diagram

· · · // Fn+3

∂n+3
//

tn+3

��

Fn+2

∂n+2
//

tn+2

��

Fn+1

tn+1

��

// · · ·

· · · // Fn+1

∂n+1
// Fn

∂n
// Fn−1

// · · ·

of free R-modules and maps. Consequently, the double sequence

t
def
= (. . . , tn+1, tn, tn−1, . . . )

constitutes a degree −2 chain map

t : F → F

of complexes of free R-modules; this is [Eis, Proposition 1.1].

Notation. We denote by t(S, f, F̃ ) the chain map F → F of degree −2 just con-
structed.

This is Eisenbud’s original notation. It emphasizes the fact that the chain map
depends on the overlying local ring S, the non-zerodivisor f ∈ S, and the chosen

lifting F̃ = (F̃n, ∂̃n) of the complex F to S. Note that, by [Eis, Corollary 1.4],

if F = (Fn, ∂n) is another choice of lifting of F to S, then the two chain maps

t(S, f, F̃ ) and t(S, f, F ) are homotopic.
In the rest of this section, we shall consider the situation that occurs when the

ring R is obtained from S by factoring out an ideal generated by a regular sequence
of length two. The above process then produces several degree −2 chain maps
F → F , and we shall link some of these to each other.

Setup. Let (S, n, k) be a local ring, f1, f2 a regular sequence in n
2, and denote

by R the quotient S/(f1, f2). Furthermore, let α be a unit in S, and define the
following local rings:

T1 = S/(f2), T2 = S/(f1), Tα = S/(αf1 + f2)

The seemingly asymmetric indexing in the presentations of the rings T1 and T2 is
made up for by the fact that T1/(f1) = R = T2/(f2). Note also that R = Tα/(f1).
We have chosen not to distinguish notationally between the element fi in S and its
image in the various quotient rings.

Now consider a complex

F : · · · → Fn+1
∂n+1

−−−→ Fn
∂n−→ Fn−1 → · · ·

of free R-modules again. As before, lift it to S to obtain a sequence

F̂ : · · · → F̂n+1
∂̂n+1

−−−→ F̂n
∂̂n−→ F̂n−1 → · · ·

of finitely generated free S-modules and maps, with F̂ ⊗S R isomorphic to F .

The image of ∂̂ ◦ ∂̂ is contained in f1F̂ + f2F̂ , hence there exist two graded S-
homomorphisms

t̂1 : F̂ → F̂ , t̂2 : F̂ → F̂
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both of degree −2, with

∂̂ ◦ ∂̂ = f1 · t̂1 + f2 · t̂2

For each i ∈ {1, 2}, apply −⊗S Ti to the sequence F̂ to get a sequence

F̂ ⊗S Ti : · · · → F̂n+1 ⊗S Ti
∂̂n+1⊗STi
−−−−−−→ F̂n ⊗S Ti

∂̂n⊗STi−−−−−→ F̂n−1 ⊗S Ti → · · ·

of free Ti-modules and maps. This is a lifting of the original complex F to Ti, since

(F̂ ⊗S Ti)⊗Ti
R is isomorphic to F . Moreover, the map

t̂i ⊗S Ti : F̂ ⊗S Ti → F̂ ⊗S Ti

is a graded Ti-homomorphism of degree −2, with

(∂̂ ⊗S Ti) ◦ (∂̂ ⊗S Ti) = (∂̂ ◦ ∂̂)⊗S Ti

=
(
f1 · t̂1 + f2 · t̂2

)
⊗S Ti

= fi · t̂i ⊗S Ti

= fi ·
(
t̂i ⊗S Ti

)

We then know from the first part of this section that the map

t(Ti, fi, F̂ ⊗S Ti) = (t̂i ⊗S Ti)⊗Ti
R

becomes a chain map F → F of degree −2.
Next, we repeat all this, but now for the ring Tα = S/(αf1 + f2). The sequence

F̂ ⊗S Tα : · · · → F̂n+1 ⊗S Tα
∂̂n+1⊗STα
−−−−−−−→ F̂n ⊗S Tα

∂̂n⊗STα−−−−−→ F̂n−1 ⊗S Tα → · · ·

of free Tα-modules and maps is a lifting of F to Tα. Here, the graded Tα-homomorphism

F̂ ⊗S Tα → F̂ ⊗S Tα of degree −2 of interest is (t̂1 − αt̂2)⊗S Tα, since

(∂̂ ⊗S Tα) ◦ (∂̂ ⊗S Tα) = (∂̂ ◦ ∂̂)⊗S Tα

=
(
f1 · t̂1 + f2 · t̂2

)
⊗S Tα

=
(
f1 · t̂1 − f1 · αt̂2 + (αf1 + f2) · t̂2

)
⊗S Ti

=
(
f1 · t̂1 − f1 · αt̂2

)
⊗S Ti

= f1 ·
(
(t̂1 − αt̂2)⊗S Ti

)

The map

t(Tα, f1, F̂ ⊗S Tα) =
(
(t̂1 − αt̂2)⊗S Tα

)
⊗Tα

R

then becomes another degree −2 chain map F → F . The following result shows
that this chain map equals the obvious linear combination of the two chain maps
constructed above.

Proposition 2.2. Let (S, n, k) be a local ring, f1, f2 a regular sequence in n
2, and

denote by R the quotient S/(f1, f2). Furthermore, let α be a unit in S, and define

the following local rings:

T1 = S/(f2), T2 = S/(f1), Tα = S/(αf1 + f2)

Finally, take a complex (F, ∂) of finitely generated free R-modules, and lift it to a

sequence (F̂ , ∂̂) of free S-modules and maps. Then for every unit α ∈ S, there is

an equality

t(Tα, f1, F̂ ⊗S Tα) = t(T1, f1, F̂ ⊗S T1)− αt(T2, f2, F̂ ⊗S T2)

of chain maps F → F of degree −2.
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Proof. This follows from the construction of the three chain maps. Let t̂1 and t̂2
be the degree −2 homomorphisms on F̂ with the property that

∂̂ ◦ ∂̂ = f1 · t̂1 + f2 · t̂2

Then

t(Tα, f1, F̂ ⊗S Tα) =
(
(t̂1 − αt̂2)⊗S Tα

)
⊗Tα

R

=
(
t̂1 ⊗S R

)
− α

(
t̂2 ⊗S R

)

=
(
(t̂1 ⊗S T1)⊗T1

R
)
− α

(
(t̂2 ⊗S T2)⊗T2

R
)

= t(T1, f1, F̂ ⊗S T1)− αt(T2, f2, F̂ ⊗S T2)

�

3. Dade’s Lemma

Having gone through the necessary machinery on chain maps, we now start
establishing the main result. As before, let (S, n, k) be a local ring, f a non-
zerodivisor in n

2, and denote by R the quotient S/(f). In order to prove our first
result, we need the following fact. It implies that if a complex of free S-modules
becomes exact after it is reduced modulo f , then the complex itself is exact.

Lemma 3.1. Suppose that

X
p
−→ Y

q
−→ Z

is a complex of S-modules, with Y finitely generated and f a non-zerodivisor on Z.

If the reduced complex

X/fX
p
−→ Y/fY

q
−→ Z/fZ

is exact, then so is the original complex.

Proof. If y ∈ Ker q, then y+fY ∈ ker q, and so by exactness of the reduced complex,
there exists an element x+fX ∈ X/fX such that y+fY = p(x+fX) = p(x)+fY .
Then p(x) − y ∈ fY , so there exists an element y′ ∈ Y such that p(x) − y = fy′.
Now notice that

fq(y′) = q(fy′) = q(p(x)− y) = q(p(x)) − q(y) = 0

Since f is a non-zerodivisor on Z, it follows that q(y′) = 0, i.e. y′ ∈ Ker q. We have
shown that

Ker q = Im p+ f Ker q

The module Ker q is finitely generated, being a submodule of Y , hence Ker q = Im p
by Nakayama’s Lemma. �

Now let M be an R-module, and choose a free resolution

F : · · · → F3
∂3−→ F2

∂2−→ F1
∂1−→ F0

of this module, not necessarily minimal. Thus F is a complex of finitely generated
free R-modules, with nonzero homology only in degree zero, where H0(F ) ∼= M .
As in the previous section, lift the complex to a sequence

F̃ : · · · → F̃3
∂̃3−→ F̃2

∂̃2−→ F̃1
∂̃1−→ F̃0
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of finitely generated free S-modules and maps, with F̃ ⊗S R isomorphic to F . Let

t̃ : F̃ → F̃ be the graded S-homomorphism of degree −2 satisfying ∂̃ ◦ ∂̃ = f · t̃.

Thus for every n ≥ 0 there is an S-homomorphism t̃n+2 : F̃n+2 → F̃n with

∂̃n+1 ◦ ∂̃n+2 = f · t̃n+2

The corresponding degree −2 chain map t̃⊗S R : F → F , denoted by t(S, f, F̃ ), is
pictured in the commutative diagram

· · · // F4
∂4

//

t4

��

F3
∂3

//

t3

��

F2
∂2

//

t2

��

F1
∂1

// F0

· · · // F2
∂2

// F1
∂1

// F0

with ti = t(S, f, F̃ )i. The mapping cone Ct(S,f,F̃ ) of this chain map is the complex

· · · // F3 ⊕ F2

[
−∂3 0
t3 ∂2

]

// F2 ⊕ F1

[
−∂2 0
t2 ∂1

]

// F1 ⊕ F0

[−∂1 0 ]
// F0

with (Ct(S,f,F̃ ))n = Fn−1 ⊕ Fn−2.

There is a canonical way of lifting this mapping cone complex to a sequence over

S, in terms of the lifting F̃ : replace everything by the appropriate map or module
over S, and insert the element f in the upper right corner of all the matrices.
The following result shows that this canonical lifting is an S-free resolution of the
module M . This result will appear in [Ste]; we include a proof for completeness.

Theorem 3.2. Let (S, n, k) be a local ring, f a non-zerodivisor in n
2, and denote

by R the quotient S/(f). Furthermore, let F = (Fn, ∂n) be an R-free resolution

of an R-module M , and lift it to a sequence F̃ = (F̃n, ∂̃n) of free S-modules and

maps. Finally, for each n ≥ 0, let t̃n+2 : F̃n+2 → F̃n be the S-homomorphism with

∂̃n+1 ◦ ∂̃n+2 = f · t̃n+2. Then the sequence

· · · // F̃3 ⊕ F̃2

[
−∂̃3 −f

t̃3 ∂̃2

]

// F̃2 ⊕ F̃1

[
−∂̃2 −f

t̃2 ∂̃1

]

// F̃1 ⊕ F̃0

[−∂̃1 −f ]
// F̃0

is an S-free resolution of M .

Proof. Denote the sequence by C(F̃ , t̃), and note that it follows directly from the

definition of the maps t̃i that it is a complex. We must show that the homology of
this complex is given by

Hn

(
C(F̃ , t̃)

)
∼=

{
M for n = 0
0 for n 6= 0

In what follows, denote by Σ̊C(F̃ , t̃) the complex C(F̃ , t̃) shifted one degree to

the left, that is,
(
Σ̊C(F̃ , t̃)

)
n
= C(F̃ , t̃)n−1, and without changing the sign of the

differential.
For each n ≥ 0, let tn+2 = t̃n+2⊗S R, and consider the corresponding degree −2

chain map

t(S, f, F̃ ) : F → F
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with t(S, f, F̃ )i = ti. We see directly that its mapping cone Ct(S,f,F̃ ) is isomorphic

to the complex
(
Σ̊C(F̃ , t̃)

)
⊗S R. Now consider the canonical short exact sequence

(1) 0 → F → Ct(S,f,F̃ ) → F → 0

of complexes of free R-modules, where each (Ct(S,f,F̃ ))n = Fn−1 ⊕ Fn−2 sits in the

middle of the canonical split short exact sequence of free R-modules

0 → Fn−2 → Fn−1 ⊕ Fn−2 → Fn−1 → 0

This short exact sequence of complexes gives rise to a long exact sequence of ho-
mology groups, and since Hn(F ) = 0 for n ≥ 1, it follows that Hn(Ct(S,f,F̃ )) = 0

for n ≥ 3. This implies, by Lemma 3.1, that Hn(Σ̊C(F̃ , t̃)) = 0 for n ≥ 3, giving

Hn(C(F̃ , t̃)) = 0 for n ≥ 2. The isomorphisms

M ∼= F0/ Im ∂1 ≃
(
F̃0/fF̃0

)
/
(
(Im ∂̃1 + fF̃0)/fF̃0

)
∼= F̃0/(Im ∂̃1 + fF̃0)

show that H0(C(F̃ , t̃)) ∼= M , and so it remains only to show that H1(C(F̃ , t̃)) = 0.

Let [ a b ]
T
be an element in Ker [−∂̃1 −f ]. Then ∂̃1(a) = −fb, and so a+ fF̃1 ∈

Ker∂1 = Im ∂2. Choose an element u ∈ F̃2 such that a + fF̃1 = ∂2(−u + fF̃2) =

−∂̃2(u)+ fF̃1. Then −∂̃2(u)− a belongs to fF̃1, and therefore −∂̃2(u)− fv = a for

some v ∈ F̃1. Finally, the equalities

f ·
(
t̃2(u) + ∂̃1(v)

)
= ∂̃1 ◦ ∂̃2(u) + ∂̃1(fv) = ∂̃1

(
∂̃2(u) + fv

)
= ∂̃1(−a) = fb

combined with the fact that f is a non-zerodivisor on F̃0 gives t̃2(u) + ∂̃1(v) = b.
We have shown that [

−∂̃2 −f

t̃2 ∂̃1

] [
u
v

]
=

[
a
b

]

that is, that H1(C(F̃ , t̃)) = 0. �

We can now prove the main result, the generalized Dade’s Lemma for local rings.
Recall first that if (S, n, k) is a local ring and I an ideal of S minimally generated
by c elements, then I/ n I is a c-dimensional k-vector space. The image in I/ n I
of any element f ∈ I \ n I can be completed to a basis, and lifting these elements
back to S gives a minimal generating set (containing f) for the ideal I. By [BrH,
page 52], if I is generated by a regular sequence f1, . . . , fc contained in n

2, then
any other minimal generating set for I is also a regular sequence.

Recall also that a residual algebraic closure of S (the terminology is taken from
[AvB]) is a faithfully flat extension S ⊆ S♯ of local rings with the following prop-
erties: the maximal ideal of S♯ equals nS♯, and its residue field S♯/ nS♯ is alge-
braically closed. By [Bou, App., Théorème 1, Corollarie], such an extension always
exists. Now suppose that f1, . . . , fc is a regular sequence in S, generating an ideal
I, and let R = S/I and R♯ = S♯/IS♯. By [AvB, Lemma 2.2], the sequence is also
regular in S♯, and R♯ is a residual algebraic closure of R. We denote by n

♯ the
maximal ideal nS♯ of S♯, and by I♯ the ideal IS♯.

Theorem 3.3. Let (S, n, k) be a local ring, I ⊆ S an ideal generated by a regular

sequence f1, . . . , fc contained in n
2, and denote by R the quotient S/I. Furthermore,

let M and N be two finitely generated R-modules. Then the following are equivalent

(1) TorRn (M,N) = 0 for all n ≫ 0,
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(2) there exists a residual algebraic closure S♯ of S, for which

TorS
♯/(f)

n (S♯ ⊗S M,S♯ ⊗S N) = 0

for all n ≫ 0 and all f ∈ I♯ \ n♯ I♯,
(3) for every residual algebraic closure S♯ of S, the vanishing condition in (2)

holds.

In particular, if k itself is algebraically closed, then TorRn (M,N) = 0 for all n ≫ 0

if and only if TorS/(f)n (M,N) = 0 for all n ≫ 0 and all f ∈ I \ n I.

Proof. Let S♯ be a residual algebraic closure of S, and R♯ the corresponding closure
of R. Then R♯ is faithfully flat over R, and

TorR
♯

n (R♯ ⊗R M,R♯ ⊗R N) ∼= R♯ ⊗R TorRn (M,N)

for all n. Therefore TorRn (M,N) = 0 if and only if TorR
♯

n (R♯ ⊗R M,R♯ ⊗R N) = 0.
Consequently, we may assume that k is algebraically closed, and prove only the last
statement.

If c = 1, then I = (f1), and if f is an element in I \ n I then f = αf1 for some
unit α ∈ S. Thus S/(f1) ∼= S/(f), and the result follows.

Next, suppose that c ≥ 2. We argue by induction on c, starting with the case
c = 2, i.e. I = (f1, f2). Take an element f ∈ I \ n I, complete to a regular sequence
f, g generating the ideal I, and note that R ∼= T/(g), where T = S/(f). Let (F, ∂)

be an R-free resolution of M , and lift it to a sequence (F̂ , ∂̂) of free S-modules and

maps, with F ∼= F̂ ⊗S R. The machinery in Section 2 produces a degree −2 chain
map

t(T, g, F̂ ⊗S T ) : F → F

which, for simplicity, we denote by just t. This chain map gives rise to a short exact
sequence

0 → F → Ct → F → 0

of complexes of free R-modules, as in (1), where Ct is the mapping cone of t. In each
degree the short exact sequence of modules splits, and so when we apply − ⊗R N
we obtain another short exact sequence

0 → F ⊗R N → Ct ⊗R N → F ⊗R N → 0

of complexes of R-modules. The corresponding long exact sequence of homology
groups is

· · · → Hn+1(Ct ⊗R N) → TorRn (M,N)
s
−→ TorRn−2(M,N) → Hn(Ct ⊗R N) → · · ·

where the connecting homomorphism s is induced by the chain map t, that is, s =
TorR(t, N). Moreover, by Theorem 3.2 and its proof, there exists a T -free resolution
FT of M with the property that the mapping cone complex Ct is isomorphic to
Σ̊FT ⊗T R. Here Σ̊FT denotes the complex FT shifted one degree to the left, but
with no sign change on the differential. The homology of the complex Ct ⊗R N is
therefore given by

Hn (Ct ⊗R N) ∼= Hn

(
(Σ̊FT ⊗T R)⊗R N

)

∼= Hn

(
Σ̊FT ⊗R N

)

∼= TorTn−1(M,N)
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for all n, and so the long exact homology sequence takes the form

· · · → TorTn+1(M,N) → TorRn+1(M,N)
s
−→ TorRn−1(M,N) → TorTn (M,N) → · · ·

where we have denoted by s the map TorR(t, N).

Suppose that TorRn (M,N) = 0 for n ≫ 0. Then we see directly from the long

exact sequence that TorTn (M,N) also vanishes for n ≫ 0. Since T = S/(f), and
f is an arbitrary element in I \ n I, this proves one direction of the statement.

Conversely, suppose that TorS/(f)n (M,N) = 0 for all n ≫ 0 and all f ∈ I \ n I. Let
α be a unit in S, and consider the three local rings

T1 = S/(f2), T2 = S/(f1), Tα = S/(αf1 + f2)

For i ∈ {1, 2}, denote by ti the degree −2 chain map t(Ti, fi, F̂ ⊗S Ti) : F → F , and

denote the degree −2 chain map t(Tα, f1, F̂ ⊗S Tα) : F → F by tα. The vanishing

assumption implies in particular that TorTn (M,N) = 0 for n ≫ 0, if we replace
T by each of the rings T1, T2 and Tα. Consequently, in the long exact homology
sequence, the map

TorRn+1(M,N)
s
−→ TorRn−1(M,N)

is an isomorphism for high n, if we replace the map s by each of the maps s1 =
TorR(t1, N), s2 = TorR(t2, N) and sα = TorR(tα, N). However, it follows from
Proposition 2.2 that sα = s1 − αs2. This implies that for every unit α ∈ S, the
maps s2s

−1
1 and

sαs
−1
1 = 1− αs2s

−1
1

are isomorphisms TorRn (M,N) → TorRn (M,N) of R-modules for all n ≫ 0. If

TorRn (M,N) is nonzero, then this is impossible: reduce the R-module TorRn (M,N)
and the isomorphisms modulo the maximal ideal in R. Then s2s

−1
1 and 1−αs2s

−1
1

are k-vector space automorphisms for all α ∈ k. However, since k is algebraically
closed, the automorphism s2s

−1
1 has a nonzero eigenvalue λ ∈ k, and then 1 −

λ−1s2s
−1
1 cannot be an isomorphism. Therefore TorRn (M,N) must vanish for n ≫ 0.

We have now established the case c = 2, and proceed by induction with the case
c ≥ 3. First, suppose that TorRn (M,N) = 0 for all n ≫ 0, and take an element
f ∈ I \ n I. Complete to a regular sequence f, f2, . . . , fc generating I, and let
T = S(f, f2, . . . , fc−2). Then R ∼= T/(fc−1, fc), and the established case c = 2

gives TorT/(fc−1)
n (M,N) = 0 for n ≫ 0. Since T/(fc−1) ∼= S/(f, f2, . . . , fc−1), it

follows by induction that TorS/(f)n (M,N) = 0 for n ≫ 0.

Conversely, suppose that TorS/(f)n (M,N) = 0 for n ≫ 0 and for all f ∈ I \ n I,
and consider the ring T = S/(fc). Then (the image in T of) f1, . . . , fc−1 is a regular
sequence in T , generating an ideal J ⊆ T with T/J ∼= R. Denote the maximal ideal
of T by m, and let g be an arbitrary element in J \ mJ . Lift this element back
to S and obtain an element g′ ∈ (f1, . . . , fc−1) \ n(f1, . . . , fc−1), and note that the
sequence fc, g

′ is regular. Now take any element f in (fc, g
′) \ n(fc, g

′). Then f

also belongs to I \ n I, hence TorS/(f)n (M,N) = 0 for n ≫ 0. The case c = 2

then gives TorS/(fc,g
′)

n (M,N) = 0 for n ≫ 0. Since S/(fc, g
′) ∼= T/(g), this implies

that TorT/(g)
n (M,N) = 0 for n ≫ 0. As g was an arbitrary element in J \ m J , it

now follows from the induction hypothesis that TorRn (M,N) = 0 for n ≫ 0. This
completes the proof. �
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What is the connection between this result and Dade’s Lemma, i.e. [Dad, Lemma
11.8]? Let E be a finite elementary abelian p-group and k an algebraically closed
field of characteristic p. Then Dade’s Lemma says that a finitely generated kE-
module is projective if and only if its restriction to each of the cyclic shifted sub-
groups of E is projective. Now recall that the group algebra kE is isomorphic to
the truncated polynomial ring

k[X1, . . . , Xc]/(X
p
1 , . . . , X

p
c )

where c is the rank of E. For simplicity, we identify kE with this ring. Let xi

denote the coset Xi + (Xp
1 , . . . , X

p
c ) in kE. Given a c-tuple α = (α1, . . . , αc) in kc,

denote the element α1x1+ · · ·+αcxc in kE by xα. Then xp
α = 0, and so the element

xα corresponds to an element in E generating a cyclic shifted subgroup of E. The
subalgebra k[xα] of kE generated by xα is isomorphic to the truncated polynomial
ring k[y]/(yp).

When we identify kE and the truncated polynomial ring as above, Dade’s Lemma
takes the following form: a finitely generated kE-module is projective if and only
if it is projective over the subalgebra k[xα] for every α ∈ kc. However, a module is
projective over k[xα] if and only if it is projective over k[X1, . . . , Xc]/(α

p
1X

p
1 + · · ·+

αp
cX

p
c ); this is implicit in the proof of [Avr, Theorem 7.5], and proved explicitly

in [BeJ, Lemma 4.3]. Thus with S = k[X1, . . . , Xc], the regular sequence being
Xp

1 , . . . , X
p
c , and N = k, Theorem 3.3 above is equivalent to Dade’s Lemma.

Remark. The change of rings long exact homology sequence

· · · → TorTn+1(M,N) → TorRn+1(M,N)
s
−→ TorRn−1(M,N) → TorTn (M,N) → · · ·

in the proof of Theorem 3.3 is standard and appears many places in the literature
(here R = T/(g) and g is a non-zerodivisor in T ). It is nothing but the degenerated
change of rings spectral sequence

TorRp
(
M,TorTq (N,R)

)
=⇒
p

TorTp+q(M,N)

but can also be derived in a completely elementary way, as in [Mur, proof of Lemma
1.5]. However, in order to obtain an explicit description of the connecting homo-
morphism

TorRn+1(M,N)
s
−→ TorRn−1(M,N)

we have to involve techniques as those in Section 2. The cohomology version is
extensively treated in [Avr, Sections 1 and 2].

We end this paper with the cohomology version of Theorem 3.3. Its proof is just
a slight variation of that of the homology version. In the special case when the ring
R is a complete intersection, this result can be deduced from the results in [AvB].

Theorem 3.4. Let (S, n, k) be a local ring, I ⊆ S an ideal generated by a regular

sequence f1, . . . , fc contained in n
2, and denote by R the quotient S/I. Furthermore,

let M and N be two finitely generated R-modules. Then the following are equivalent

(1) ExtnR(M,N) = 0 for all n ≫ 0,
(2) there exists a residual algebraic closure S♯ of S, for which

ExtnS♯/(f)(S
♯ ⊗S M,S♯ ⊗S N) = 0

for all n ≫ 0 and all f ∈ I♯ \ n♯ I♯,
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(3) for every residual algebraic closure S♯ of S, the vanishing condition in (2)
holds.

In particular, if k itself is algebraically closed, then ExtnR(M,N) = 0 for all n ≫ 0
if and only if ExtnS/(f)(M,N) = 0 for all n ≫ 0 and all f ∈ I \ n I.

Proof. The proof follows that of Theorem 3.3. In each degree, the short exact
sequence

0 → F → Ct → F → 0

of complexes of free R-modules splits, and so when we apply HomR(−, N), the
result is again a short exact sequence

0 → HomR(F,N) → HomR(Ct, N) → HomR(F,N) → 0

of complexes. The complex Ct is isomorphic to Σ̊FT ⊗T R, where FT is a T -free
resolution of M . Therefore, in the resulting long exact cohomology sequence, the
cohomology of the complex HomR(Ct, N) is given by

Hn (HomR(Ct, N)) ∼= Hn
(
HomR(Σ̊FT ⊗T R,N)

)

∼= Hn
(
HomT (Σ̊FT ,HomR(R,N)

)

∼= Hn
(
HomT (Σ̊FT , N)

)

∼= Extn−1
T (M,N)

by adjointness. Consequently, we obtain a long exact sequence

· · · → Extn−1
T (M,N) → Extn−2

R (M,N)
u
−→ ExtnR(M,N) → ExtnT (M,N) → · · ·

The rest of the proof of Theorem 3.3 now carries over. �
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