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High-refractive-index semiconductor optical waveg-
uides form the basis for modern photonic integrated
circuits (PICs) , but the conventional methods of
achieving optical confinement require a thick lower-
refractive-index support layer that impedes large-scale
co-integration with electronics. To address this chal-
lenge, we present a general architecture for single-mode
waveguides that confine light in a high-refractive-index
material on a native substrate. Our waveguide con-
sists of a high-aspect-ratio fin of the guiding material
surrounded by lower-refractive-index dielectrics and is
compatible with standard top-down fabrication tech-
niques. The proposed waveguide geometry removes
the need for a buried-oxide-layer in silicon photonics,
as well as the InGaAsP layer in InP-based PICs and
will allow for photonic integration on emerging mate-
rial platforms such as diamond and SiC.

PICs are rapidly being developed for high-refractive in-
dex materials that allow for tight optical confinement, small
on-chip bend radii, and strong light-matter interactions.
For example, high-performance PICs in both silicon [1]
and InP [2, 3] platforms are playing an increasingly im-
portant role in data applications with the potential to en-
able exascale computing [4] and on-chip core-to-core op-
tical communication [5]. Similarly, wide-band gap semi-
conductors, such as diamond [6-13] and SiC [14], have
emerged as promising materials for a plethora of new PIC
applications. Among these are non-linear optics [12-14]
and integrated quantum information processing [8—11, 15],
which is enabled by the presence of spin defects with de-
sirable quantum properties [16, 17].

Common to all of these applications is a need for low-
propagation-loss single-mode waveguides that can be fab-
ricated on a high-refractive-index substrate in a scalable
fashion. While a high refractive index is beneficial for op-
tical design, it also requires a buried lower-refractive-index
layer and the transfer or growth of thin films of high-index
material [1-3, 6-8, 10, 12-14, 18], free-standing structures
[9, 11, 19], or pedestals [20] to minimize optical power
leakage from the waveguide into the substrate. These ap-
proaches limit the device robustness, uniformity, and scala-
bility required for the development of dense PICs on wide-
bandgap semiconductors.

Even on mature PIC platforms optical confinement
presents significant technological challenges. In silicon
photonics, the buried-oxide-layer thickness required for
optical confinement is much larger than the optimum for
VLSI electronics, making co-integration difficult [5, 18,
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FIG. 1. The fin waveguide. An example of a fin waveguide on
a diamond substrate designed for A = 637nm. The geometry
supports a single mode when n¢ > nyg > ni. The profile of the
confined optical mode shown in cross-section has been calculated
numerically.

19]. For InP-based PICs, optical confinement is limited
by the low index contrast between InP and InGaAsP [2, 3].

Here, we propose a new type of waveguide optimized
for high-index substrates that utilizes stacked dielectric lay-
ers to confine light in the top of a fin of high-index ma-
terial. An example of a SiO5/SisN, stack on a diamond
fin/substrate at a wavelength of A = 637 nm is shown in
Fig. 1. Although the refractive index of both the buffer
and confinement layers (n, = nsjo, ~ 1.45 and ny =
nsisN, ~ 2.0, respectively) are lower than that of the fin
and substrate (¢ = Ngjamond ~ 2.4), the proposed design
achieves confinement by engineering the effective index,
resulting in an optical mode confined within the high-index
material (diamond in the case of Fig. 1). This waveguide
mode can propagate without leaking power into the un-
derlying substrate, while the waveguide itself can be fab-
ricated using conventional top-down lithography, etching,
dielectric deposition, and planarization techniques. Our
proposed architecture obviates the need for a buried low-
index layer, providing a pathway towards large-area, scal-
able PICs on native substrates.

Figures 2a—b illustrate an intuitive physical picture that
accounts for optical confinement in the fin waveguide ge-
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FIG. 2. Generalized fin waveguide dispersion. (a) Cross-
section of the fin waveguide geometry. Dashed lines mark regions
that are approximated by effective indices in (b). (¢) Dispersion
of the fin waveguide as a function of w/A. The region in which
modes are confined (blue and green shading) is bound by the ef-
fective indices of the slab waveguides in (a). (d) Dispersion of
the fin-waveguide as a function of A/\. Semi-analytical curves
are plotted for specific values of w/\, and points are the result of
fully-vectorial numerical simulations.

ometry. By treating the two-dimensional cross-section of
the Z-invariant waveguide dielectric topology in Fig. 2a
as two stacked slab waveguides with horizontal () con-
finement, a slab waveguide with vertical (3) confinement

can be formed from the slab-waveguide effective indicies
in £. In Fig. 2b, the two slab waveguides comprised of
ny/n¢/nu (Slab 1) and ny /ng/ny (Slab 2) from Fig. 2a
are replaced by homogeneous layers in & with the ef-
fective indices of the lowest-order supported modes ng
and ngy 5, respectively, where the effective index, ng, =
BF [ ko, is equal to the slab waveguide propagation constant
in Z, B¥, of Slab 7 divided by the free space wavenumber,
ko = 2m/A. The dispersion curves of the two slabs as
a function of the normalized waveguide width, w/\, are
shown in Fig. 2¢ with example refractive index values of
ng = 2.5, nyg = 2.0, and n, = 1.5.

This treatment is key to understanding the nature of con-
finement in the fin structure: a fin mode exists when the
effective index of the two-dimensionally confined struc-
ture, nef, satisfies the condition: ngy, > Neg >
max{ng,, nu}, as indicated by the green and blue shaded
regions in Fig. 2c. When this condition is not met, the con-
fined modes are degenerate with a continuum of radiation
modes and become leaky, as indicated by the gray hatched
region in Fig. 2¢. As a consequence of the effective in-
dex confinement in the fin structure, only a single-mode
in & is supported for the refractive index values chosen in
Fig. 2¢. Higher-order modes can be confined for a different
choice of material indices, but only if higher-order modes
of Slab 1 are contained in the blue or green shaded region
of Fig. 2c¢, i.e., they have an effective index larger than the
lowest-order mode of Slab 2.

The supported modes of the two-dimensionally-confined
structure are found by solving for the modes of the -
confined slab waveguide in Fig. 2b. The resulting fin mode
dispersion as a function of normalized waveguide height,
h/A, (Fig. 2d) has two distinct regions that depend on the
fin width, w:

Region I: ngy, < ny; w < Wgymm (green shading),
Region II: 1y, > ny; w > Weymm (blue shading).

The boundary between these two regions occurs when
TNefro = M at a width that we label w = wgymm, which
is indicated by a vertical red line in Fig. 2¢ and the red
dispersion curve (Wsymm /A = 0.25) in Fig. 2d. For
an asymmetric slab waveguide, the higher-refractive-index
cladding determines both the cut-off condition and the ef-
fective mode width. In Region I, the properties of the
asymmetric waveguide are determined by ny, while in Re-
gion IL, this role is taken by ngy,. The change in cut-
off condition between the two regions causes the inflection
point in the the cut-off height (boundary for the multimode
region in Fig. 2d) at wgymy,. While the fin waveguide can
only be single or few mode in width, it can be multimode
in height, as indicated in Fig. 2d.

The dispersion curves provide the allowable geometry
and wavelength at which confined modes are supported.
Within these constraints, the mode area, A, and confine-
ment factor, I', which quantifies the overlap between the
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FIG. 3. Optical confinement of the fin waveguide. (a) Mini-
mum mode area as a function of w/\ and corresponding A, /.
Mode profiles at the three values of w/A marked by dashed lines
are plotted above. The smallest achievable mode area occurs
when ng = nggr o at wsymm/A = 0.25. (b) The confinement fac-
tor, I', measures the geometric overlap between the optical mode
and the high-index material.

optical mode and the guiding material, provide useful de-
sign metrics for maximizing light-matter interactions in fin
waveguides (see Supplementary Section 1 for definitions
of these parameters). In Fig 3a, we calculate A.g for a se-
ries of w/ A, and plot the minimum, A,,;,, along with the
corresponding height, hyin/A. Mode intensity profiles for
three values of w / A are also shown in Fig. 3a, and the cor-
responding I" at Ay, is plotted in Fig. 3b.

In Region I most of the field penetration occurs in the

confinement layer, relaxing the requirements on the buffer
layer thickness for low leakage at the expense of reduced
I'. Conversely, in Region IT A, increases with w/\, T’
approaches unity, and the mode extends within the fin into
the buffer layer. Waveguides designed in this region may
be desirable for high-power applications. The tightest con-
finement (smallest A;,) occurs at Wsymm» Which also cor-
responds to the maximum group index, Ny = ¢/v,, where
c is the vacuum speed of light and v, is the modal group ve-
locity (see Supplementary Section 1), making w = Wgymm
an ideal design criterion for applications in non-linear or
quantum optics. The waveguide properties in Figs. 2 and
3 have been calculated for the lowest-order mode with
the dominant electric field component along Z. Discus-
sion of higher order modes and further details of our semi-
analytical and numerical calculations are provided in Sup-
plementary Section 1.

To illustrate the potential of the fin waveguide, we ex-
plore geometries in two important material platforms for
PICs: diamond and silicon. The diamond waveguide is de-
signed with an SiO, buffer layer, a conformal 200 nm-thick
Si3N, confinement layer, and SiO, overcladding for single-
mode operation at A = 637 nm. The operating wavelength
corresponds to the nitrogen-vacancy center zero phonon
line [8], which is used to achieve coherent spin-light inter-
actions [21] and distributed entanglement [22] between di-
amond spins. We design the waveguide for the tightest con-
finement with w = Wsymm as discussed above. The waveg-
uide dispersion curve and group index is shown in Fig. 4a,
along with the waveguide dimensions and calculated mode
intensity profile at A = 637nm in the inset. We calcu-
late that for a buffer layer thickness exceeding 1.0 um the
propagation loss due to substrate leakage is < 0.15 dB/cm,
which is small enough that scattering due to fabrication im-
perfections in a realistic device would be expected to dom-
inate. The bending loss for a bend radius of 10 um is de-
termined to be < 0.06 dB per 90° bend with a buffer layer
thickness of 2.5 um, corresponding to an unloaded @) ex-
ceeding 30,000 for a 20 um-diameter ring resonator.

Similarly, the silicon waveguide depicted in the in-
set to Fig. 4b is designed for minimum mode area at
A = 1.55 um for telecommunications applications. With
a buffer layer thickness exceeding 1.5 pum, the propa-
gation loss due to substrate leakage is calculated to be
< 0.1 dB/cm. The bending loss for a bend radius of 10 um
is determined to be < 0.1dB per 90° bend with a buffer
layer of 2.5 um, corresponding to an unloaded () exceed-
ing 10,000 for a ring resonator. Additional details regard-
ing the design and modeling of fin waveguides are provided
in Supplementary Section 2.

The design strategy described in this paper provides a
straightforward pathway towards the implementation of
a full PIC architecture based on monolithic fin waveg-
uides. The required aspect ratios of the fins in Fig. 4 can
be achieved through dry etching [23, 24], and the dielec-
tric stack can be fabricated using standard deposition, pla-
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FIG. 4. Design examples. Fin waveguides designed for maxi-
mum confinement in (a) diamond at A\ = 637 nm and (b) silicon
at A = 1.55 um. For both structures, the effective index and group
index are plotted versus A around the design wavelength, with the
cross-sectional geometry and mode profile inset.

narization, and lithography techniques. Although the ex-
amples in Fig. 4 use a SiO,/SizNy dielectric stack, the fin
waveguide can be designed for any pair of materials with
ny > np. Potential alternatives for the confinement layer
include Al;05 (n =~ 1.8), AIN (n = 2.2), SU-8 (n ~ 1.5),
and Hydex (n = 1.5 to 1.9) [25], and a full stack can also
be designed using polymer layers [26], or chalcogenide
glasses [27]. The compatibility of this design with a num-
ber of different materials platforms allows for integration
in a diverse range of fabrication processes. For example,
active devices for silicon PICs could be achieved through
the realization of vertical p-i-n junctions [28] aligned with
the fin waveguide. One challenge with the proposed ar-
chitecture is the incorporation of devices that are typically
multimode, such as Y-branches and grating couplers, since
higher-order modes in  are leaky. We envision a solution
to this challenge in the form of supermode devices [29],
where multimode propagation is achieved by coupled ar-
rays of single-mode waveguides.

In summary, we have proposed a new waveguide design
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for native high-refractive-index substrates. This method is
compatible with standard fabrication processes and allevi-
ates the need for a buried low-index layer, providing a po-
tential route for CMOS-compatible co-integration of sili-
con photonics with VLSI electronics. For InP-based PICs,
the fin waveguide design provides an alternative to the In-
GaAs guiding layer, providing much higher confinement
and a smaller mode area. Furthermore, the geometry can be
adapted for any high-index substrate material, which will
lead to rapid development of PICs on emerging materials
platforms for quantum information processing and sensing
applications.
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WAVEGUIDE DISPERSION DERIVATION AND
DEFINITIONS

The supported modes of the Z-invariant refractive index
profile, n(zx,y), in Fig. 2a of the main text can be solved
by casting Maxwell’s equations as an eigenvalue problem:

Alm) = B, [m)

(S.1)

where (3, = konl is the propagation constant of mode m,
ko = 27“ is the free space wavenumber, 1 is the effective

refractive index of mode m and the operator A takes the
following form when projected onto the position basis:

A=V2+ k2n?(x,y). (S.2)

The eigenvectors represent the transverse electric fields:

AED) = B2 [EP) (S.3)
where
E'm
E") = [Em} . (S4)
Y

With two-dimensional confinement the two transverse field
components are mixed by boundary conditions for the tan-
gential electric fields and perpendicular displacement fields
at the dielectric interfaces contained in n*(z,y). The
modes of the two-dimensionally confined structure can-
not be calculated analytically; however, solutions to equa-
tions (S.3) can be found using numerical approaches such
as finite-difference method (FDM) [1]. An alternate ap-
proach is to use the effective index method [2, 3] to find
an approximate solution by treating equation (S.1) as two
separable problems in & and §j. We use the effective index
method outlined in the following section to find approxi-
mate solutions to the fin waveguide dispersion, and verify
our calculations with FDM [1].

Effective index method

In the one-dimensional analysis for Z, n?(x,y) —
ni(z), A = A, = 8%22 + kin?(x), and equation (S.3)

reduces to two separable equations representing two or-
thogonal polarizations. We represent these polarizations
by r = & for the horizontal (E,)-polarization, and r =
for the vertical (E,)-polarization. We follow the approach
of [2] to solve for the slab waveguide effective indices. The
indices of the & confined slab waveguides shown in Fig. 2a
of the main text are:

Ne1 =Ng, T >3

Slab 1: ny(x) = < ng, T >z > -5 (85)
Nei =NH, —4% > T
Neg =NL, T>7%

Slab 2: ny(z) = < ny, T >x> -4 (S.6)
Neo = NL, —% >

The field is assumed to be sinusoidal in the guiding region,
and exponentially decaying outside. The phase constants
for the field in each region are defined as:

Yeoi = koy/ (N ;)? —ng; cladding  (S.7)
ki, = k’o\/71??"%2}“)2 guiding region  (S.8)

where ¢ = 1,2, corresponding to Slab 1 and Slab 2, re-
spectively. The effective index of Slab i, ng ;, is found by
matching the phase constants at the boundaries to find the
following eigenvalue equations:

kxi R

kyiw = (p; + 1)m — 2tan™! <w> , r—

C,i
(S.9)
2
i kwi N
kysw = (p; + 1)m — 2tan~! (nc> <z> ., r=2
ne /Yc,i

(S.10)

where p; = 0,1,2,... is the mode index for Slab z. The
phase constants are related to 8 by equations (S.7) and
(S.8), and solutions to the transcendental equations (S.9) or
(S.10) provide the propagation constant for mode p;. The
cut-off condition for mode p; can be expressed in terms of
a minimum waveguide width:
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FIG. S1. Dispersion plots for the lowest-order |0, 0, §) mode of
the fin waveguide in Fig. 2a of the main text.
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Since the slab waveguides in & are symmetric, there is no
cut-off for the lowest order mode. Using the solutions
for the slab waveguides in Fig. 2a of the main text, a §-

confined asymmetric slab waveguide (Fig. 2b of the main
text) can be constructed with the following indices:

pi=0,1,2,... (S.11)

Weut-off,p; =

ny, Yy > %
n(y) nip, E>y> -tk (S.12)
n:foJ _% >y

Using the nomenclature from [2], the asymmetric
waveguide can be parameterized by a “substrate” with re-
fractive index ng and “cladding” with refractive index n,

where ny > ng > n.. The effective index of Slab 2,
N o depends on w/ A, thus we define the “substrate” and
“cladding” indices in the following way:

n? = max {n;”fm, nH}

(5.13)
n¢ = min {ng,, nu} (S5.14)

Using these definitions, the phase constants of the asym-
metric waveguide are defined as follows:

7Y = koy/ (né)? — (né)? (S.15)

%W = koy/ (neg)? — (n3)? (S.16)

By = koo () — (%) (S.17)

which result in the following eigenvalue equations:
ky
k{h = (g+ 1)m —tan™! (—g)
Vs
ky
—tan™* (—2) , r=21I

Ye

(S.18)

2
y LY
kh = (q¢+1)m —tan™" B (—f)
! ( ) (newfh v

2
nY kY

—tan™' [ —5 (—;) , T=7
Tetf,1 Ye

(S.19)

where ¢ = 0, 1, 2, ... is the mode index for {-confinement.
The limits on allowable height for single mode operation
are found by the cut-off condition for the lowest and first
order modes of the asymmetric waveguide in Fig. S3d,
which define the asymmetry parameter a¥:

(n¥)?—(n¢)?

. Y2_(n¥)2 s r=21
v = T (S.20)
<n_) D 0 W
’I'Lcy (neIff,l)z_(nsl)2’ y
The cut-off for mode |0, ¢, ) occurs at a height of:
A (tan™' vav + qr
hcut—off,q = ( ) , g = 0, 1, 2,
2my /(g )2 — (n?)?
(8.21)

Although pure polarization state solutions of the two-
dimensionally confined modes do not exist, we use the
mode numbers of the approximate effective index method
solutions as waveguide eigenvalue labels:

Im) =~ |p, q,7) . (S.22)



All of the calculations in the main text have been per-
formed for the |0, 0, %) mode. The dispersion curves for
the |0,0, y) mode of the structure in Fig. 2a of the main
text are shown in Fig. S1.

In the example considered in Fig. 2 of the main text, the
fin waveguide only supports a single horizontal mode (p =
0). For a different choice of n and ny, such that the cut-off
width of higher-order modes in the guiding layer is smaller
than wy . additional horizontal modes can be supported,
but the p = 0 mode for the buffer region always provides a
lower limit for n.g of confined modes as shown in Fig. 2¢
of the main text.

Power flow

The complex Poynting vector is defined as [4]:

1
S = _EE x H*. (S.23)
The Z-component of the Poynting vector represents the
mode intensity profiles plotted in the main text and is de-
fined as: Re {S,} = Re {S - 2}. The time-averaged power
flow in 2 can also be found from the complex Poynting vec-
tor:

p.— / Re{S.} dA (S.24)
where A is area. For all calculations the modes are normal-
ized such that P, = 1 W.

For substrate loss calculations, there is power flow in
1, which is visualized by the ¢-component of the Poynt-
ing vector, Re {S,} = Re {5 - ¢}, plotted in the insets of
Fig. S2. The time-averaged power flow in g is defined in a
similar manner to equation (S.24).

Mode area and confinement factor

For small perturbations the effect of waveguiding on
light-matter interaction can be approximated as [5, 6]:

A
Angg ~ —TnNgF

(8.25)
where Aneg is the change in the waveguide effective index
due to a perturbation An, which depends on both the group
index, IV,, and the fraction of mode energy contained in the
perturbed region, F'. The perturbation can be complex val-
ued and can represent light-matter interactions such as ab-
sorption, gain, or material nonlinearity. Since we are con-
cerned with perturbations to the waveguide core, F' can be
approximated by the confinement factor, I', which is de-
fined as:

Diamond fin

05 10 15 20 25
Buffer layer thickness (um)

Si fin

a (dB/cm)
s 2

10-6 L
0.5 1.0 1.5 2.0 2.5
Buffer layer thickness (um)

FIG. S2. (a),(b) Propagation loss, «, versus buffer layer thick-
ness at the design wavelength. Solid lines and points repre-
sent two different calculation methods: absorbing boundary con-
ditions (blue line) and coupled-mode theory (red points). (in-
set) Poynting vector in the y-direction, Re {5y}, for buffer layer
thicknesses of 0.5 um and 2.5 pm.

_ fnf Re{S.}dA

JRe{S.}dA
and is plotted in Fig. 3b of the main text.
The ratio of the group velocity, v,, to phase velocity, vp,

can be related to electric and magnetic field energies in the
following way [7]:

T (S.26)

Ve

=F - F, (S.27)

Up
where Fi is the fraction of mode energy contained in the
transverse fields, &, £, H,, H,, and I, is the fraction of
mode energy contained in the longitudinal fields, ., H..



TABLE I. Sellmeier equation parameters
Material ¢ A;  A; [um] Ref.
Diamond 1 0.3306 0.175 [9]

4.3356 0.106

1 10.6684 0.3015

2 0.0030 1.1347 [4]

3 1.5413 1104
SisNg 1 2.8939 0.13967 [10]

1

2

3

[\®)

Si

0.6962 0.06840
0.4079
0.8975

Si0o 0.1162 [4]

9.8962

As was noted in [8], IV, is inversely proportional to the ef-
fective mode area, A, as related through the energy con-
tained in the longitudinal fields. Thus, A, can be used as
a proxy for N, and the minimum mode area, Apj,, corre-
sponds to the maximum N,.

The effective mode area, A, plotted in Fig. 3a of the
main text has been calculated as the area of an ellipse with
axes defined by the modal effective width, weg and effec-
tive height, h.g, as follows:

™
Aetr = Zweffheff

where wegr and heg are calculated using the definitions in
Supplementary Section :

(S.28)

2
Weff = W + - (S29)
c,1
1 1
het =h+— + — (S.30)
Vs Ve

DIAMOND AND SILICON FIN WAVEGUIDE DESIGNS
Substrate leakage

The substrate leakage as a function of buffer layer thick-
ness shown in Fig. S2 has been calculated using two differ-
ent methods: coupled-mode theory (red points) and absorb-
ing boundary conditions (blue line). For the coupled-mode
theory calculations the unperturbed mode is calculated us-
ing FDM without the high index substrate. Coupling of
the unperturbed mode to the substrate is then calculated by
using the following overlap integral [2, 3]:

aerr = (E|Ac|E) = ‘”Tgo E* - An?(z,y)E dA
(8.31)
where An?(z,y) = n? and the overlap region extends

from the bottom of the buffer layer to —oo in ¢, and from
—00 to 400 in 2.

For the second method, the high-index substrate is in-
cluded in the FDM calculation, and perfectly matched layer

(a)
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FIG. S3. Bending loss and Q-factor as a function of bend radius
for (a) diamond fin and (b) silicon fin.

(PML) boundary conditions are added to the simulation
cell. These boundary conditions allow for absorption at the
simulation cell edge with minimal reflections. The FDM
solver can find complex eigenvalues [1], which can be re-
lated to the propagation loss in the following manner:

47rIm{neff}

h (8.32)

Qeff =

Bending loss

Bending loss of the structures in Fig. S3 is calculated in
cylindrical coordinates with FDM using the method in [11],
where the loss per 90° bend as a function of bend radius is
shown. A buffer layer thickness of {3 = 2.5 um has been
used for both waveguides. The bending-loss limited Q-
factor of a ring resonator is also shown in Fig. S3, where



QeirC

N,
The values in Fig. S3a,b are calculated at A = 637 nm and
A = 1.55 pm, respectively.

Q = w/7, w = cky is the center frequency and y =

Material Sellmeier equations

The calculations in the main text use Sellmeier equations
to model the various material refractive indices. The pa-
rameters for each material are given in table I and are used
in the following equation [4]:

(8.33)

For the designs in Fig. 4 of the main text, the dia-
mond material stack has the following refractive indices
at 637 nm: Ngiamond = 2.41, ngi;n, = 2.01, and ngio, =
1.46 as determined from Sellmeier equations for each ma-
terial. The silicon material stack has the following refrac-
tive indices at A = 1.55 um: ng; = 3.48, nsi,n, = 1.98,
and nsio, = 1.44.
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