ON THE BEHAVIOR OF INTEGRABLE FUNCTIONS AT INFINITY

ANDRZEJ KOMISARSKI

ABSTRACT. We investigate the behavior of sequences $(f(c_n x))$ for Lebesgue integrable functions f: $\mathbb{R}^d \to \mathbb{R}$. In particular, we give a description of classes of multipliers (c_n) and (d_n) such that $f(c_nx) \to 0$ or $\sum_{n=1}^{\infty} |f(d_n x)| < \infty$ for λ almost every $x \in \mathbb{R}^d$.

It is well known that if a series $\sum_{n=1}^{\infty} a_n$ is convergent, then $a_n \to 0$. It may seem surprising that a similar result does not hold for integrals. Namely, if $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable, then it is not necessary that $\lim_{x\to\infty} f(x) = 0$. Various authors investigated the behavior of integrable functions at infinity, see e.g. [\[2,](#page-6-0) [3,](#page-7-0) [4,](#page-7-1) [5,](#page-7-2) [6\]](#page-7-3).

E. Lesigne showed in [\[2\]](#page-6-0) that if $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable, then for λ almost every $x \in \mathbb{R}$ one has $f(nx) \to 0$. In this paper we generalize Lesigne's investigations in several directions. One way is to replace the domain of f by the space \mathbb{R}^d equipped with d-dimensional Lebesgue measure λ . On the other hand, we want to describe a possibly large class of multipliers c_n which may be substituted for n in Lesigne's result. As the first result going in this direction we present the following theorem:

Theorem 1. Let $d \in \mathbb{N}$ and let (c_n) be a sequence of positive numbers such that for some permutation (c'_n) of (c_n) the sequence $(\sqrt[d]{n}/c'_n)$ is bounded. Assume that $f : \mathbb{R}^d \to \mathbb{R}$ is Lebesgue integrable $(\int |f(x)|dx <$ ∞). Then for λ almost every $x \in \mathbb{R}^d$ one has $\sum_{n=1}^{\infty} |f(c_n x)| < \infty$ (hence $f(c_n x) \to 0$).

A little comment is necessary to explain the assumption on the sequence (c_n) . Theorem [1](#page-0-0) would be valid if we just assumed that $(\sqrt[d]{n}/c_n)$ is bounded. However, the conclusion of the theorem is permutation invariant, i.e., if it holds for a sequence (c_n) , then it also holds for any permutation of (c_n) . If any form of the reversal of Theorem [1](#page-0-0) should hold true, then its assumptions have to be permutation invariant as well. Unfortunately, the condition " $(\sqrt[d]{n}/c_n)$ is bounded" is not permutation invariant. For this reason an additional sequence (c'_n) (being a permutation of (c_n)) has to be explicitly introduced.

We note that in Theorem [1](#page-0-0) we obtain more than we intended. Namely, we get $\sum_{n=1}^{\infty} |f(c_n x)| < \infty$ instead of $f(c_nx) \to 0$. If one wishes to conclude that $f(c_nx) \to 0$, then weaker assumptions on the function f are needed:

Theorem 2. Let $d \in \mathbb{N}$ and let (c_n) be a sequence of positive numbers such that for some permutation (c'_n) of (c_n) the sequence $(\sqrt[d]{n}/c'_n)$ is bounded. Moreover, let $f : \mathbb{R}^d \to \mathbb{R}$ be measurable and such that for every $\varepsilon > 0$ one has $\lambda(\{x \in \mathbb{R}^d : |f(x)| \ge \varepsilon\}) < \infty$. Then for λ almost every $x \in \mathbb{R}^d$ one has $f(c_n x) \to 0$.

In the conclusion of the above theorem we cannot keep the stronger statement $\sum_{n=1}^{\infty} |f(c_n x)| < \infty$ from Theorem [1.](#page-0-0) Indeed, if $f(x) = 1/(1 + ||x||)$, then $\sum_{n=1}^{\infty} |f(nx)| = \infty$ for every x.

²⁰¹⁰ Mathematics Subject Classification. Primary 26B15; Secondary 40A05, 26A42, 28A25.

Key words and phrases. Lebesgue integral, behavior of a function at infinity, convergence of series, convergence of sequences.

The next theorem shows that the assumption on the sequence (c_n) in Theorem [1](#page-0-0) cannot be weakened.

Theorem 3. Let $d \in \mathbb{N}$ and let (c_n) be a sequence of positive numbers such that for every permutation (c'_n) of (c_n) the sequence $(\sqrt[d]{n}/c'_n)$ is unbounded. Then there exists a continuous, nonnegative function $f: \mathbb{R}^d \to \mathbb{R}$ such that $\int |f(x)|dx < \infty$ and $\sum_{n=1}^{\infty} |f(c_n x)| = \infty$ for every $x \in \mathbb{R}^d$.

The above theorem may be seen as the inverse of Theorem [1.](#page-0-0) The situation is much more delicate when we try to inverse Theorem [2.](#page-0-1) Consider the following example: Let (c_n) satisfy the assumption of Theorem [2,](#page-0-1) for simplicity set $c_n = n$. Then for any integrable f we have $f(nx) \to 0$ for λ almost every $x \in \mathbb{R}^d$. Now, we define a sequence (d_n) such that it tends to infinity arbitrarily slowly, yet $f(d_n x) \to 0$ for λ almost every $x \in \mathbb{R}^d$. It suffices to take (d_n) which is formed by repeating each term of the sequence $(c_n = n)$ finitely many times. Indeed, the convergence of $f(d_n x)$ to zero follows from $f(nx) \to 0$. On the other hand, (d_n) may tend to infinity slowly enough to ensure that $(\sqrt[d]{n}/d'_n)$ is unbounded for every permutation (d'_n) of (d_n) . All this shows that Theorem [2](#page-0-1) cannot be fully inversed. Instead, we show the following theorem:

Theorem 4. Let $d \in \mathbb{N}$ and let (c_n) be a sequence of positive numbers such that for every permutation (c'_n) of (c_n) the sequence $(\sqrt[n]{n}/c'_n)$ is unbounded. Then there exist a sequence (b_n) of positive numbers and a continuous, nonnegative, integrable function $f : \mathbb{R}^d \to \mathbb{R}$ such that $b_n/c_n \to 1$ and $f(b_n x) \to 0$ for every $x \in \mathbb{R}^d$.

In fact we prove a bit more: If $c_n \to \infty$, then additionally $\limsup_{n\to\infty} f(b_n x) = \infty$ for every $x \neq 0$.

In Theorem [4](#page-1-0) we claim that if a sequence (c_n) does not satisfy the assumption of Theorem [2,](#page-0-1) then even if it is not "bad" itself, it can be slightly modified to a "bad" sequence. On the other hand, each sequence (c_n) with $c_n \to \infty$ can be improved in the following sense:

Theorem 5. Let $d \in \mathbb{N}$ and let (c_n) be a sequence of positive numbers tending to infinity. There exists a sequence (b_n) of positive numbers with $b_n/c_n \to 1$ such that: For any measurable $f : \mathbb{R}^d \to \mathbb{R}$ satisfying $\forall_{\varepsilon>0} \lambda(\lbrace x \in \mathbb{R}^d : |f(x)| \geq \varepsilon \rbrace) < \infty$ one has $f(b_n x) \to 0$ for λ almost every $x \in \mathbb{R}^d$.

In [\[2\]](#page-6-0) Lesigne also investigated the rate of convergence of $(f(nx))$ to zero. In particular, he showed that for any sequence (a_n) with $0 \le a_n \to \infty$ there exists a continuous, integrable function $f : \mathbb{R} \to \mathbb{R}$ such that $\limsup_{n\to\infty} a_n f(nx) = \infty$ for λ almost every $x \in \mathbb{R}$. Moreover, if we drop the continuity requirement (we only require integrability of f), then we may obtain $\limsup_{n\to\infty} a_n f(nx) = \infty$ for every $x \in \mathbb{R}$. Lesigne asked if we may have both: continuity of f and $\limsup_{n\to\infty} a_n f(nx) = \infty$ for every x. This question has been positively answered by G. Batten in [\[1\]](#page-6-1). The original Batten's paper is accessible through arXiv, but (to best our knowledge) has never been published. Here we present a much shorter proof of Batten's result in \mathbb{R}^d , based on completely different ideas.

Theorem 6. Let $d \in \mathbb{N}$ and let a sequence (a_n) satisfy $0 \le a_n \to \infty$. There exists a continuous, nonnegative, integrable function $f : \mathbb{R}^d \to \mathbb{R}$ such that $\limsup_{n \to \infty} a_n f(\sqrt[n]{n}x) = \infty$ for every $x \in \mathbb{R}^d$.

PROOFS

The following lemma plays a very important role in the proofs of (almost) all theorems in this paper:

Lemma 7. Let $d > 0$ and $a > 1$ be real numbers and let (c_n) be a sequence of positive numbers. The following conditions are equivalent:

- (i) There exists a permutation (c'_n) of (c_n) , such that the sequence $(\sqrt[d]{n}/c'_n)$ is bounded.
- (i) There exists a (unique) nondecreasing sequence (c'_n) being a permutation of (c_n) and for this permutation the sequence $(\sqrt[d]{n}/c'_n)$ is bounded.
- (ii) There exists $M > 0$, such that $\forall_{t>0} \sum_{n \in \mathbb{Z}} n \leq c_n < \infty$, $\frac{1}{c_n^d} \leq M$.
- (iii) There exists $M' > 0$, such that $\forall_{k \in \mathbb{Z}} \frac{|\{n : a^k \leq c_n < a^{k+1}\}|}{a^{kd}} \leq M'$

Proof. Clearly (i') implies (i). We will show (i) \Rightarrow (iii) \Rightarrow (ii)

(i)⇒(iii). Let $L > 0$ satisfy $\sqrt[d]{n}/c'_n \leq L$ for every n. If we put $M' = (La)^d$, then for every $k \in \mathbb{Z}$ we have

$$
\frac{|\{n : a^k \le c_n < a^{k+1}\}|}{a^{kd}} \le \frac{|\{n : c_n < a^{k+1}\}|}{a^{kd}} = \frac{|\{n : c'_n < a^{k+1}\}|}{a^{kd}} \le \frac{|\{n : \sqrt[n]{n} < La^{k+1}\}|}{a^{kd}} = \frac{|\{n : n < (La^{k+1})^d\}|}{a^{kd}} \le (La)^d = M'.
$$

(iii)⇒(ii). We put $M = 2M'$. Let $t > 0$. We have $a^{k-1} \le t < a^k$ for some $k \in \mathbb{Z}$ and then

$$
\sum_{\{n:\ t \le c_n < at\}} \frac{1}{c_n^d} \le \sum_{\{n:\ a^{k-1} \le c_n < a^k\}} \frac{1}{c_n^d} + \sum_{\{n:\ a^k \le c_n < a^{k+1}\}} \frac{1}{c_n^d} \le \frac{1}{\left\{n:\ a^k \le c_n < a^{k+1}\right\}} \frac{1}{c_n^d} \le \frac{1}{a^{(k-1)d}} + \frac{|\{n:\ a^k \le c_n < a^{k+1}\}|}{a^{kd}} \le M' + M' = M.
$$

(ii)⇒(i'). For any $t > 0$ we have

$$
|\{n : c_n < t\}| = \sum_{k=1}^{\infty} |\{n : ta^{-k} \le c_n < ata^{-k}\}| \le \sum_{k=1}^{\infty} \sum_{\{n : ta^{-k} \le c_n < ta^{1-k}\}} \frac{(ta^{1-k})^d}{c_n^d} \le \sum_{k=1}^{\infty} (ta^{1-k})^d \cdot M = t^d \cdot \frac{M}{1 - 1/a^d}.
$$

In particular, for every $t > 0$ the set $\{n : c_n < t\}$ is finite, hence there exists a nondecreasing permutation (c'_n) of (c_n) . For this permutation we have $|\{n : c'_n < t\}| = |\{n : c_n < t\}| \leq t^d \cdot \frac{M}{1-1/a^d}$. Since (c'_n) is nondecreasing, for every $m \in \mathbb{N}$ we have:

$$
m \le \inf_{t > c'_m} |\{n : c'_n < t\}| \le \inf_{t > c'_m} \left(t^d \cdot \frac{M}{1 - 1/a^d} \right) = c'^d_m \cdot \frac{M}{1 - 1/a^d},
$$

$$
c'_m \le \sqrt[d]{\frac{M}{1 - 1/a^d}}.
$$

hence $\sqrt[d]{m}/c$

Proof of Theorem [1.](#page-0-0) In the first part of the proof we show that for λ almost every $x \in \mathbb{R}^d$ satisfying $\frac{1}{2} < ||x|| \leq 1$ we have $\sum_{n=1}^{\infty} |f(c_n x)| < \infty$. We define $f_n : \mathbb{R}^d \to \mathbb{R}$ by the formula

$$
f_n(x) = \frac{1}{c_n^d} \cdot |f(x)| \cdot \mathbf{1}_{c_n/2 < ||x|| \le c_n}.
$$

Functions f_n are nonnegative and $\sum_{n=1}^{\infty} f_n(0) = 0$. For every $x \neq 0$ we use Lemma [7](#page-2-0) ((i)⇒(ii) with $a = 2$ and $t = ||x||$ to obtain:

$$
\sum_{n=1}^{\infty} f_n(x) = |f(x)| \cdot \sum_{\{n: \|x\| \le c_n < 2\|x\|\}} \frac{1}{c_n^d} \le |f(x)| \cdot M.
$$

It follows that the function series $\sum_{n=1}^{\infty} f_n(x)$ is convergent and $\int \sum_{n=1}^{\infty} f_n(x)dx \leq M \cdot \int |f(x)|dx < \infty$. Hence

$$
\sum_{n=1}^{\infty} \int_{\{x: \frac{1}{2} < \|x\| \le 1\}} |f(c_n x)| dx = \sum_{n=1}^{\infty} \int |f(c_n x)| \cdot \mathbf{1}_{\frac{1}{2} < \|x\| \le 1} dx = \sum_{n=1}^{\infty} \int |f(x)| \cdot \mathbf{1}_{c_n/2 < \|x\| \le c_n} \cdot \frac{1}{c_n^d} dx = \sum_{n=1}^{\infty} \int f_n(x) dx = \int \sum_{n=1}^{\infty} f_n(x) dx < \infty.
$$

Thus, the function series $\sum_{n=1}^{\infty} |f(c_n x)|$ is convergent λ almost everywhere on $\{x \in \mathbb{R}^d : \frac{1}{2} < ||x|| \leq 1\}$ and the first part of the proof is completed.

Now, for $k \in \mathbb{Z}$ we consider the function $g_k(x) = f(2^k x)$. Clearly g_k is integrable, hence, by the first part of the proof, for λ almost every y satisfying $\frac{1}{2} < ||y|| \leq 1$ the series $\sum_{n=1}^{\infty} |f(c_n 2^k y)| = \sum_{n=1}^{\infty} |g_k(c_n y)|$ converges. Denoting $x = 2^k y$ we obtain that for λ almost every x satisfying $2^{k-1} < ||x|| \leq 2^k$ we have $\sum_{n=1}^{\infty} |f(c_n x)| < \infty$. This observation completes the proof, because $\mathbb{R}^d = \{0\} \cup \bigcup_{k \in \mathbb{Z}} \{x \in \mathbb{R}^d : 2^{k-1} <$ $||x|| < 2^k$. k .

Proof of Theorem [2.](#page-0-1) For $k = 1, 2, ...$ $k = 1, 2, ...$ $k = 1, 2, ...$ we apply Theorem 1 for an integrable function $f_k(x) = \mathbf{1}_{|f(x)| \ge 1/k}$. As a result, we obtain a set $A_k \subset \mathbb{R}^d$, such that $\lambda(A_k) = 0$ and for every $x \in \mathbb{R}^d \setminus A_k$ we have $f_k(c_n x) \to 0$ when $n \to \infty$. Clearly, $\lambda(\bigcup_{k=1}^{\infty} A_k) = 0$. The convergence $f_k(c_n x) \to 0$ implies that the set $\{|n: |f(c_n x)| \geq 1/k\}$ is finite. It follows that if $x \in \mathbb{R}^d \setminus \bigcup_{k=1}^{\infty} A_k$, then $\forall_{k \in \mathbb{N}} |\{n: |f(c_n x)| \geq 1/k\}| < \infty$, which means $f(c_n x) \to 0$.

Proof of Theorem [3.](#page-1-1) If $c_n \nrightarrow \infty$, then there exists $c \geq 0$ and a subsequence (c_{n_i}) such that $c_{n_i} \rightarrow c$. In this case we can take any f which is strictly positive, integrable and continuous, e.g. $f(x) = 1/(1 + ||x||^{d+1})$. Indeed, if $x \in \mathbb{R}^d$, then $f(c_{n_i}x) \to f(cx) > 0$, hence $\sum_{n=1}^{\infty} |f(c_nx)| \ge \sum_{i=1}^{\infty} |f(c_{n_i}x)| = \infty$. In the remaining part of the proof we assume $c_n \to \infty$.

For $k \in \mathbb{Z}$ let $A_k = \{n : 2^k \le c_n < 2^{k+1}\}\$ and $l_k = \sum_{n \in A_k} \frac{1}{c_n^d}$. The assumption $c_n \to \infty$ implies that the sets A_k are finite. Moreover, the sets A_k are pairwise disjoint and $\mathbb{N} = \bigcup_{k \in \mathbb{Z}} A_k$. It follows, that for every $n \in \mathbb{N}$ there exists the unique $k(n) \in \mathbb{Z}$ such that $n \in A_{k(n)}$. By Lemma [7](#page-2-0) $(\neg(i) \Rightarrow \neg(iii)$ with $a = 2)$ and by the inequality $l_k \geq \frac{|A_k|}{2^{(k+1)d}}$ we obtain that the set $\{l_k : k \in \mathbb{Z}\}\$ is unbounded. We take a sequence (k_i) such that k_i 's are pairwise different and $l_{k_i} \geq i$ for every i. We define nonnegative numbers $(r_k)_{k \in \mathbb{Z}}$ by the formula

$$
r_k = \begin{cases} \frac{1}{i^2 |A_{k_i}|} & \text{if } k = k_i, \\ 0 & \text{if } k \neq k_i \text{ for every } i. \end{cases}
$$

(note that $l_{k_i} > 0$ implies $A_{k_i} \neq \emptyset$). Then

$$
\sum_{m=1}^{\infty} r_{k(m)} = \sum_{k \in \mathbb{Z}} \sum_{m \in A_k} r_k = \sum_{k \in \mathbb{Z}} r_k |A_k| = \sum_{i=1}^{\infty} r_{k_i} |A_{k_i}| = \sum_{i=1}^{\infty} \frac{1}{i^2} < \infty
$$

and $\sum_{k \in \mathbb{Z}} r_k |A_k| l_k = \sum_{i=1}^{\infty} r_{k_i} |A_{k_i}| l_{k_i} \ge \sum_{i=1}^{\infty} \frac{1}{i} = \infty.$

Let $g: \mathbb{R}^d \to \mathbb{R}$ be any bounded, strictly positive, integrable and continuous function, such that $g(x)$ is a nonincreasing function of $||x||$ (e.g., $g(x) = 1/(1 + ||x||^{d+1})$). We define

$$
f(x) = \sum_{m=1}^{\infty} \frac{r_{k(m)}}{c_m^d} \cdot g\left(\frac{x}{c_m}\right)
$$

.

Note that the above function series converges uniformly, because g is bounded, $c_m \to \infty$ and $\sum_{m=1}^{\infty} r_{k(m)}$ ∞ . In particular f is continuous. Clearly f is positive. Moreover,

$$
\sum_{m=1}^{\infty} \int \frac{r_{k(m)}}{c_m^d} \cdot g\left(\frac{x}{c_m}\right) dx = \sum_{m=1}^{\infty} \int r_{k(m)} \cdot g(x) dx = \int g(x) dx \cdot \sum_{m=1}^{\infty} r_{k(m)} < \infty,
$$

hence f is integrable.

If $x = 0$, then $\sum_{n=1}^{\infty} |f(c_n x)| = \sum_{n=1}^{\infty} |f(0)| = \infty$, because $f(0) > 0$. For $x \neq 0$ we have

$$
\sum_{n=1}^{\infty} |f(c_n x)| = \sum_{k \in \mathbb{Z}} \sum_{n \in A_k} f(c_n x) \ge \sum_{k \in \mathbb{Z}} \sum_{n \in A_k} \sum_{m \in A_k} \frac{r_{k(m)}}{c_m^d} \cdot g\left(\frac{c_n}{c_m} \cdot x\right) \ge
$$

$$
\sum_{k \in \mathbb{Z}} r_k \sum_{n \in A_k} \sum_{m \in A_k} \frac{1}{c_m^d} \cdot g(2x) = g(2x) \cdot \sum_{k \in \mathbb{Z}} r_k |A_k| l_k = \infty
$$

(we used the following observation: if $m, n \in A_k$, then $\frac{c_n}{c_m}$ $<$ 2).

The proof of Theorem [4](#page-1-0) is presented at the end of the paper. It is the hardest proof and it uses some ideas presented in the proof of Theorem [6.](#page-1-2) For this reasons leaving it for the end is a good idea.

Proof of Theorem [5.](#page-1-3) Let $(b_n) = (\lceil c_n \rceil)$. Then all the terms of (b_n) are in N. The assumption $c_n \to \infty$ assures that for every $k \in \mathbb{N}$ the set $\{n : b_n = k\}$ is finite. By Theorem [2](#page-0-1) we have $f(kx) \to 0$ for λ almost every $x \in \mathbb{R}^d$. Thus $f(b_n x) \to 0$ for λ almost every $x \in \mathbb{R}^d$. Moreover, $c_n \to \infty$ implies $\frac{b_n}{c_n} = \frac{\lceil c_n \rceil}{c_n}$ $\frac{c_n}{c_n} \to 1.$

Proof of Theorem [6.](#page-1-2) It is enough to construct a continuous, nonnegative, integrable function $\tilde{f}: [0, \infty) \to$ R, such that $\limsup_{n\to\infty} a_n \tilde{f}(nx) = \infty$ for every $x \in [0,\infty)$. Then we define $f : \mathbb{R}^d \to \mathbb{R}$ by $f(x) =$ $\widetilde{f}(\Vert x \Vert^d)$. Clearly, f is continuous, nonnegative and $\limsup_{n\to\infty} a_n f(\sqrt[n]{n}x) = \limsup_{n\to\infty} a_n \widetilde{f}(n\Vert x \Vert^d)$ ∞ for every $x \in \mathbb{R}^d$. Moreover,

$$
\int f(x)dx = \int \widetilde{f}(\|x\|^d)dx = S_d \cdot \int_{r=0}^{\infty} \widetilde{f}(r^d)r^{d-1}dr = \frac{S_d}{d} \int_{y=0}^{\infty} \widetilde{f}(y)dy < \infty
$$

(here S_d is $d-1$ -dimensional measure of the unit sphere in \mathbb{R}^d).

For $k \in \mathbb{N}$ let $t_k > 0$ be such that $n \ge t_k \Rightarrow a_n \ge k^4$ for every $n \in \mathbb{N}$. Let $h : \mathbb{R} \to \mathbb{R}$ be any continuous, bounded, nonnegative, integrable function satisfying $h|_{[0,1]} \geq 1$. We define $\tilde{f}: [0,\infty) \to \mathbb{R}$ as follows:

$$
\widetilde{f}(x) = h(x) + \sum_{l=1}^{\infty} \frac{h(\frac{x}{l} - t_l)}{l^3}
$$

.

Function \tilde{f} is nonnegative and continuous (the series converges uniformly). It is also integrable:

$$
\int_0^\infty \tilde{f}(x)dx = \int_0^\infty h(x)dx + \sum_{l=1}^\infty \int_0^\infty \frac{h(\frac{x}{l} - t_l)}{l^3}dx = \int_0^\infty h(x)dx + \sum_{l=1}^\infty \int_0^\infty \frac{h(x - t_l)}{l^2}dx \le
$$

$$
\int h(x)dx + \sum_{l=1}^\infty \int \frac{h(x)}{l^2}dx = \int h(x)dx \cdot \left(1 + \sum_{l=1}^\infty \frac{1}{l^2}\right) < \infty.
$$

If $x = 0$, then $\limsup_{n \to \infty} a_n \tilde{f}(nx) \ge \limsup_{n \to \infty} a_n h(nx) = \limsup_{n \to \infty} a_n h(0) \ge \limsup_{n \to \infty} a_n = \infty$. Let $x > 0$. Then for every $k \in \mathbb{N}$ satisfying $k > x$ we have $0 < \frac{x}{k} < 1$ and there exists $n_k \in \mathbb{N}$ such that $n_k \cdot \frac{x}{k} \in [t_k, t_k + 1], \text{ i.e., } \frac{n_k x}{k} - t_k \in [0, 1].$ In particular, $n_k \ge t_k \cdot \frac{k}{x} > t_k$, hence $a_{n_k} \ge k^4$. It follows that

$$
a_{n_k}\widetilde{f}(n_kx) \ge a_{n_k} \cdot \frac{1}{k^3} \cdot h\left(\frac{n_kx}{k} - t_k\right) \ge k^4 \cdot \frac{1}{k^3} \cdot 1 = k,
$$

thus $\limsup_{n\to\infty} a_n \tilde{f}(nx) \ge \limsup_{k\to\infty} a_{n_k} \tilde{f}(n_k x) \ge \limsup_{k\to\infty} k = \infty$.

The following technical lemma is helpful to perform an inductive construction in the proof of Theorem [4.](#page-1-0)

Lemma 8. Let (c_n) be a sequence of positive numbers such that $c_n \to \infty$ and for every permutation (c'_n) of (c_n) the sequence (n/c'_n) is unbounded. Then for every $a > 1$, $\varepsilon > 0$, $S > 0$, $l \in \mathbb{Z}$ and $M \in \mathbb{N} \cup \{0\}$ there exist $T > S$, $N \ni N > M$, $b_{M+1}, b_{M+2},..., b_N > 0$ and a continuous, integrable, nonnegative function $g: [0, \infty) \to \mathbb{R}$ satisfying $\frac{1}{a} \leq \frac{b_n}{c_n} \leq a$ for $n = M + 1, M + 2, \ldots, N$, $\int_0^\infty g(x) dx < \varepsilon$, $g|_{[0, \infty) \setminus [S,T]} = 0$ and $\forall_{x \in [a^{l-1}, a^l]} \max_{M < n \le N} g(b_n x) \ge 1.$

Proof. For $k \in \mathbb{Z}$ let $A_k = \{n : a^k \le c_n < a^{k+1}\}\$. According to Lemma [7](#page-2-0) $(\neg(i) \Rightarrow \neg(iii))$ there exists a sequence (k_i) such that $\frac{|A_{k_i}|}{a^{k_i}}$ $\frac{A_{k_i}}{a^{k_i}} \to \infty$. We can assume that $A_{k_i} \neq \emptyset$ and $k_i > 1 - l + \log_a S$ and $k_i > \max\{\log_a c_n : n \leq M\}$ for every i. The last inequality ensures that for every n if $n \in A_{k_i}$, then $n > M$. We consider a term $a^{k_i+1}(1 - a^{-1/|A_{k_i}|})$ and its limit when $i \to \infty$:

$$
\lim_{i \to \infty} a^{k_i + l} (1 - a^{-1/|A_{k_i}|}) = \lim_{i \to \infty} a^l \cdot \frac{a^{k_i}}{|A_{k_i}|} \cdot \frac{1 - a^{-1/|A_{k_i}|}}{0 - (-1/|A_{k_i}|)} = a^l \cdot 0 \cdot \log_e a = 0.
$$

It follows that we can choose $K \in \{k_i : i \in \mathbb{N}\}$ satisfying $a^{K+l}(1 - a^{-1/|A_K|}) < \varepsilon$. We put $N = \max A_K$. Then $A_K \subset \{M+1, M+2, ..., N\}.$

We define $b_{M+1}, b_{M+2}, \ldots, b_N$: If $n \in \{M+1, \ldots, N\} \setminus A_K$, then we put $b_n = c_n$. The remaining b_n 's (with $n \in A_K$) are chosen in any way satisfying $\{b_n : n \in A_K\} = \{a^{K+\frac{j}{|A_K|}} : j = 0, 1, \ldots, |A_K|-1\}$. If $n \in \{M+1,\ldots,N\} \setminus A_K$, then $\frac{1}{a} \leq 1 = \frac{b_n}{c_n} \leq a$. If $n \in A_K$, then both b_n and c_n are in $[a^K, a^{K+1})$, hence $\frac{1}{a} \leq \frac{b_n}{c_n} \leq a$.

We choose any $T > a^{K+l}$. The inequality $K > 1 - l + \log_a S$ implies $a^{K+l-\frac{1}{|A_K|}} \ge a^{K+l-1} > S$. Hence $[a^{K+l-\frac{1}{|A_K|}}, a^{K+l}] \subset (S,T)$. We also have $\int_0^\infty \mathbf{1}$ $\int_{[a^{K+l-\frac{1}{|A_K|}}, a^{K+l}]} dx = \lambda([a^{K+l-\frac{1}{|A_K|}}, a^{K+l}]) =$ $a^{K+l}(1-a^{-1/|A_K|}) < \varepsilon$. All these observations show that there exists a nonnegative, continuous function $g:[0,\infty)\to\mathbb{R}$ such that g equals 0 outside $[S,T]$, g equals 1 on $[a^{K+l-\frac{1}{|A_K|}}, a^{K+l}]$ and $\int_0^\infty g(x)dx < \varepsilon$.

It remains to check that $\forall_{x \in [a^{l-1}, a^l]} \max_{M < n \le N} g(b_n x) \ge 1$. We have

$$
[a^{l-1}, a^l] = \bigcup_{j=0}^{|A_K|-1} \left[a^{l - \frac{j+1}{|A_K|}}, a^{l - \frac{j}{|A_K|}} \right] = \bigcup_{n \in A_K} \left[\frac{a^{K+l - \frac{1}{|A_K|}}}{b_n}, \frac{a^{K+l}}{b_n} \right].
$$

It follows, that if $x \in [a^{l-1}, a^l]$, then $b_{n_0} x \in [a^{K+l-\frac{1}{|A_K|}}, a^{K+l}]$ for some $n_0 \in A_K$. Consequently, $\max_{M < n < N} g(b_n x) \geq g(b_{n_0} x) = 1.$

Proof of Theorem [4.](#page-1-0) If $c_n \nrightarrow \infty$, then there exists $c \ge 0$ and a subsequence (c_{n_i}) such that $c_{n_i} \rightarrow c$. In this case we can take any f which is strictly positive, integrable and continuous, e.g. $f(x) = 1/(1 + ||x||^{d+1})$

and $(b_n) = (c_n)$. Indeed, if $x \in \mathbb{R}^d$, then $f(c_{n_i}x) \to f(cx) > 0$, hence $f(b_nx) = f(c_nx) \to 0$. In the remaining part of the proof we assume $c_n \to \infty$.

Let $(\tilde{c}_n) = (c_n^d)$. Then $\tilde{c}_n \to \infty$ and for every permutation (\tilde{c}_n) of (\tilde{c}_n) the sequence (n/\tilde{c}_n) is unbounded. To finish the proof it is enough to construct a continuous, nonnegative, integrable function $\widetilde{f}: [0,\infty) \to \mathbb{R}$ and a sequence (\widetilde{b}_n) such that $\frac{\widetilde{b}_n}{\widetilde{c}_n} \to 1$ and $\widetilde{f}(\widetilde{b}_n x) \to 0$ for every $x \in [0,\infty)$. Then the function $f: \mathbb{R}^d \to \mathbb{R}$ defined by $f(x) = \tilde{f}(\Vert x \Vert^d)$ is continuous, nonnegative and integrable (see the beginning of the proof of Theorem [6\)](#page-1-2). For $(b_n) = (\sqrt[4]{\tilde{b}_n})$ we have $\frac{b_n}{c_n} = \sqrt[4]{\frac{\tilde{b}_n}{\tilde{c}_n}} \to 1$ and $f(b_nx) =$ $\widetilde{f}(\widetilde{b}_n||x||^d) \nrightarrow 0$ for every $x \in \mathbb{R}^d$.

We fix two sequences: (a_i) and (l_i) such that $a_i > 1$ and $l_i \in \mathbb{Z}$ for every $i \in \mathbb{N}$, $a_i \to 1$ and every $x > 0$ is an element of infinitely many of the intervals $[a_i^{l_i-1}, a_i^{l_i}]$. One may put for example

$$
a_i = 1 + \frac{1}{k}
$$

\n
$$
l_i = i - \frac{(k+1)^3 + k^3 - 1}{2}
$$
 for $k^3 \le i < (k+1)^3$, $k \in \mathbb{N}$

(it is easy to compute that for such (a_i) and (l_i) one has $\bigcup_{i=k^3}^{(k+1)^3-1} [a_i^{l_i-1}, a_i^{l_i}] \supset [2^{-k}, 2^k]$).

We construct the function \tilde{f} and the sequence (\tilde{b}_n) piecewise, by induction. In each step we apply Lemma [8](#page-5-0) to obtain the next part of the function \tilde{f} and the next part of the sequence (\tilde{b}_n) . More precisely, in the *i*-th step of the induction we define f on an interval $[S_i, T_i]$ and b_n 's with $n = M_i + 1, \ldots, N_i$. At the beginning no \tilde{b}_n 's are defined, so we put $M_1 = 0$. We choose S_1 arbitrarily, e.g. $S_1 = 1$. Then we apply Lemma [8](#page-5-0) with $a = a_1$, $l = l_1$, $M = M_1$, $S = S_1$ and $\varepsilon = 1/4$. As a result we obtain $N_1 = N$, $T_1 = T$, function $g_1 = g : [0, \infty) \to \mathbb{R}$ such that g_1 is zero outside $[S_1, T_1]$ and \widetilde{b}_n 's for $n = M_1 + 1, \ldots, N_1$. We repeat this procedure infinitely many times. In the *i*-th step we apply Lemma [8](#page-5-0) with $a = a_i$, $l = l_i$, $M = M_i = N_{i-1}, S = S_i = T_{i-1} + 1$ and $\varepsilon = 1/4^i$. As a result we obtain $N_i = N, T_i = T$, function $g_i = g : [0, \infty) \to \mathbb{R}$ such that g_i is zero outside $[S_i, T_i]$ and \widetilde{b}_n 's for $n = M_i + 1, \ldots, N_i$.

The whole sequence (\widetilde{b}_n) satisfies $\frac{1}{a_i} \leq \frac{\widetilde{b}_n}{\widetilde{c}_n} \leq a_i$ for $M_i < n \leq N_i$, which (together with $a_i \to 1$) implies $\frac{\widetilde{b}_n}{\widetilde{c}_n} \to 1$. Let

$$
\widetilde{f}(x) = h(x) + \sum_{i=1}^{\infty} 2^i g_i(x),
$$

where $h : [0, \infty) \to \mathbb{R}$ is an arbitrary continuous, positive and integrable function. Function \tilde{f} is nonnegative, continuous (the series converges almost uniformly) and integrable $(\int_0^\infty \tilde{f}(x)dx < \int_0^\infty h(x)dx +$ $\sum_{i=1}^{\infty} 2^i/4^i < \infty$).

Finally, let $x \in [0, \infty)$. If $x = 0$, then $\tilde{f}(\tilde{b}_n x) \geq h(0) > 0$, hence $\tilde{f}(\tilde{b}_n x) \neq 0$. If $x > 0$, then there exists an increasing sequence (i_j) satisfying $x \in [a_{i_j}^{l_{i_j}-1}]$ $\frac{l_{i_j}-1}{i_j}, \frac{l_{i_j}}{a_{i_j}}$ $\begin{bmatrix} a_{ij} \\ i_j \end{bmatrix}$ and we have

$$
\limsup_{n \to \infty} \widetilde{f}(\widetilde{b}_n x) = \limsup_{i \to \infty} \max_{M_i < n \le N_i} \widetilde{f}(\widetilde{b}_n x) \ge \limsup_{j \to \infty} \max_{M_{i_j} < n \le N_{i_j}} 2^{i_j} g_{i_j}(\widetilde{b}_n x) \ge \limsup_{j \to \infty} 2^{i_j} = \infty.
$$

REFERENCES

- [1] G. W. Batten, Construction of Continuous, Integrable Functions with Extreme Behavior at Infinity, [arXiv:1010.3354](http://arxiv.org/abs/1010.3354) [math.CA]
- [2] E. Lesigne, On the behavior at infinity of an integrable function, Amer. Math. Monthly 117 (2010), no. 2, 175-181.

8 ANDRZEJ KOMISARSKI

- [3] M. Mihai, A remark on the behavior of integrable functions at infinity, An. Univ. Craiova Ser. Mat. Inform. 38 (2011), no. 4, 100–101.
- [4] C. Niculescu, F. Popovici, A note on the behavior of integrable functions at infinity, J. Math. Anal. Appl. 381 (2011), no. 2, 742–747.
- [5] C. Niculescu, F. Popovici, The behavior at infinity of an integrable function, Expo. Math. 30 (2012), no. 3, 277–282.
- [6] C. Niculescu, F. Popovici, The asymptotic behavior of integrable functions, Real Anal. Exchange 38 (2012/13), no. 1, 157–167.

Andrzej Komisarski, Department of Probability Theory and Statistics, Faculty of Mathematics and Com-PUTER SCIENCE, UNIVERSITY OF ŁÓDŹ, UL.BANACHA 22, 90-238 ŁÓDŹ, POLAND

 $\it E\mbox{-}mail\;address\mbox{:}$ andkom@math.uni.lodz.pl