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ON THE BEHAVIOR OF INTEGRABLE FUNCTIONS AT INFINITY

ANDRZEJ KOMISARSKI

Abstract. We investigate the behavior of sequences (f(cnx)) for Lebesgue integrable functions f :

Rd → R. In particular, we give a description of classes of multipliers (cn) and (dn) such that f(cnx) → 0

or
∑

∞

n=1
|f(dnx)| < ∞ for λ almost every x ∈ Rd.

It is well known that if a series
∑∞

n=1 an is convergent, then an → 0. It may seem surprising that

a similar result does not hold for integrals. Namely, if f : R → R is Lebesgue integrable, then it is not

necessary that limx→∞ f(x) = 0. Various authors investigated the behavior of integrable functions at

infinity, see e.g. [2, 3, 4, 5, 6].

E. Lesigne showed in [2] that if f : R → R is Lebesgue integrable, then for λ almost every x ∈ R one

has f(nx) → 0. In this paper we generalize Lesigne’s investigations in several directions. One way is

to replace the domain of f by the space R
d equipped with d-dimensional Lebesgue measure λ. On the

other hand, we want to describe a possibly large class of multipliers cn which may be substituted for n

in Lesigne’s result. As the first result going in this direction we present the following theorem:

Theorem 1. Let d ∈ N and let (cn) be a sequence of positive numbers such that for some permutation (c′n)

of (cn) the sequence ( d
√
n/c′n) is bounded. Assume that f : Rd → R is Lebesgue integrable (

∫
|f(x)|dx <

∞). Then for λ almost every x ∈ R
d one has

∑∞
n=1 |f(cnx)| < ∞ (hence f(cnx) → 0).

A little comment is necessary to explain the assumption on the sequence (cn). Theorem 1 would be

valid if we just assumed that ( d
√
n/cn) is bounded. However, the conclusion of the theorem is permutation

invariant, i.e., if it holds for a sequence (cn), then it also holds for any permutation of (cn). If any form

of the reversal of Theorem 1 should hold true, then its assumptions have to be permutation invariant as

well. Unfortunately, the condition “( d
√
n/cn) is bounded” is not permutation invariant. For this reason

an additional sequence (c′n) (being a permutation of (cn)) has to be explicitly introduced.

We note that in Theorem 1 we obtain more than we intended. Namely, we get
∑∞

n=1 |f(cnx)| < ∞
instead of f(cnx) → 0. If one wishes to conclude that f(cnx) → 0, then weaker assumptions on the

function f are needed:

Theorem 2. Let d ∈ N and let (cn) be a sequence of positive numbers such that for some permutation

(c′n) of (cn) the sequence ( d
√
n/c′n) is bounded. Moreover, let f : Rd → R be measurable and such that for

every ε > 0 one has λ({x ∈ R
d : |f(x)| ≥ ε}) < ∞. Then for λ almost every x ∈ R

d one has f(cnx) → 0.

In the conclusion of the above theorem we cannot keep the stronger statement
∑∞

n=1 |f(cnx)| < ∞
from Theorem 1. Indeed, if f(x) = 1/(1 + ‖x‖), then ∑∞

n=1 |f(nx)| = ∞ for every x.
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The next theorem shows that the assumption on the sequence (cn) in Theorem 1 cannot be weakened.

Theorem 3. Let d ∈ N and let (cn) be a sequence of positive numbers such that for every permutation

(c′n) of (cn) the sequence ( d
√
n/c′n) is unbounded. Then there exists a continuous, nonnegative function

f : Rd → R such that
∫
|f(x)|dx < ∞ and

∑∞
n=1 |f(cnx)| = ∞ for every x ∈ R

d.

The above theorem may be seen as the inverse of Theorem 1. The situation is much more delicate

when we try to inverse Theorem 2. Consider the following example: Let (cn) satisfy the assumption of

Theorem 2, for simplicity set cn = n. Then for any integrable f we have f(nx) → 0 for λ almost every

x ∈ R
d. Now, we define a sequence (dn) such that it tends to infinity arbitrarily slowly, yet f(dnx) → 0

for λ almost every x ∈ R
d. It suffices to take (dn) which is formed by repeating each term of the sequence

(cn = n) finitely many times. Indeed, the convergence of f(dnx) to zero follows from f(nx) → 0. On

the other hand, (dn) may tend to infinity slowly enough to ensure that ( d
√
n/d′n) is unbounded for every

permutation (d′n) of (dn). All this shows that Theorem 2 cannot be fully inversed. Instead, we show the

following theorem:

Theorem 4. Let d ∈ N and let (cn) be a sequence of positive numbers such that for every permutation

(c′n) of (cn) the sequence ( d
√
n/c′n) is unbounded. Then there exist a sequence (bn) of positive numbers

and a continuous, nonnegative, integrable function f : Rd → R such that bn/cn → 1 and f(bnx) 6→ 0 for

every x ∈ R
d.

In fact we prove a bit more: If cn → ∞, then additionally lim supn→∞ f(bnx) = ∞ for every x 6= 0.

In Theorem 4 we claim that if a sequence (cn) does not satisfy the assumption of Theorem 2, then

even if it is not “bad” itself, it can be slightly modified to a “bad” sequence. On the other hand, each

sequence (cn) with cn → ∞ can be improved in the following sense:

Theorem 5. Let d ∈ N and let (cn) be a sequence of positive numbers tending to infinity. There exists

a sequence (bn) of positive numbers with bn/cn → 1 such that: For any measurable f : Rd → R satisfying

∀ε>0 λ({x ∈ R
d : |f(x)| ≥ ε}) < ∞ one has f(bnx) → 0 for λ almost every x ∈ R

d.

In [2] Lesigne also investigated the rate of convergence of (f(nx)) to zero. In particular, he showed

that for any sequence (an) with 0 ≤ an → ∞ there exists a continuous, integrable function f : R → R

such that lim supn→∞ anf(nx) = ∞ for λ almost every x ∈ R. Moreover, if we drop the continuity

requirement (we only require integrability of f), then we may obtain lim supn→∞ anf(nx) = ∞ for every

x ∈ R. Lesigne asked if we may have both: continuity of f and lim supn→∞ anf(nx) = ∞ for every x.

This question has been positively answered by G. Batten in [1]. The original Batten’s paper is accessible

through arXiv, but (to best our knowledge) has never been published. Here we present a much shorter

proof of Batten’s result in R
d, based on completely different ideas.

Theorem 6. Let d ∈ N and let a sequence (an) satisfy 0 ≤ an → ∞. There exists a continuous,

nonnegative, integrable function f : Rd → R such that lim supn→∞ anf( d
√
nx) = ∞ for every x ∈ R

d.
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Proofs

The following lemma plays a very important role in the proofs of (almost) all theorems in this paper:

Lemma 7. Let d > 0 and a > 1 be real numbers and let (cn) be a sequence of positive numbers. The

following conditions are equivalent:

(i) There exists a permutation (c′n) of (cn), such that the sequence ( d
√
n/c′n) is bounded.

(i’) There exists a (unique) nondecreasing sequence (c′n) being a permutation of (cn) and for this

permutation the sequence ( d
√
n/c′n) is bounded.

(ii) There exists M > 0, such that ∀t>0

∑
{n: t≤cn<at}

1
cdn

≤ M .

(iii) There exists M ′ > 0, such that ∀k∈Z

|{n:ak≤cn<ak+1}|
akd ≤ M ′

Proof. Clearly (i’) implies (i). We will show (i)⇒(iii)⇒(ii)⇒(i’)

(i)⇒(iii). Let L > 0 satisfy d
√
n/c′n ≤ L for every n. If we put M ′ = (La)d, then for every k ∈ Z we

have

|{n : ak ≤ cn < ak+1}|
akd

≤ |{n : cn < ak+1}|
akd

=
|{n : c′n < ak+1}|

akd
≤ |{n : d

√
n < Lak+1}|
akd

=

|{n : n < (Lak+1)d}|
akd

<
(Lak+1)d

akd
= (La)d = M ′.

(iii)⇒(ii). We put M = 2M ′. Let t > 0. We have ak−1 ≤ t < ak for some k ∈ Z and then

∑

{n: t≤cn<at}

1

cdn
≤

∑

{n: ak−1≤cn<ak}

1

cdn
+

∑

{n: ak≤cn<ak+1}

1

cdn
≤

|{n : ak−1 ≤ cn < ak}|
a(k−1)d

+
|{n : ak ≤ cn < ak+1}|

akd
≤ M ′ +M ′ = M.

(ii)⇒(i’). For any t > 0 we have

|{n : cn < t}| =
∞∑

k=1

|{n : ta−k ≤ cn < ata−k}| ≤
∞∑

k=1

∑

{n: ta−k≤cn<ta1−k}

(ta1−k)d

cdn
≤

∞∑

k=1

(ta1−k)d ·M = td · M

1− 1/ad
.

In particular, for every t > 0 the set {n : cn < t} is finite, hence there exists a nondecreasing permutation

(c′n) of (cn). For this permutation we have |{n : c′n < t}| = |{n : cn < t}| ≤ td · M
1−1/ad . Since (c′n) is

nondecreasing, for every m ∈ N we have:

m ≤ inf
t>c′m

|{n : c′n < t}| ≤ inf
t>c′m

(
td · M

1− 1/ad

)
= c′dm · M

1− 1/ad
,

hence d
√
m/c′m ≤ d

√
M

1−1/ad . �

Proof of Theorem 1. In the first part of the proof we show that for λ almost every x ∈ R
d satisfying

1
2 < ‖x‖ ≤ 1 we have

∑∞
n=1 |f(cnx)| < ∞. We define fn : Rd → R by the formula

fn(x) =
1

cdn
· |f(x)| · 1cn/2<‖x‖≤cn .
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Functions fn are nonnegative and
∑∞

n=1 fn(0) = 0. For every x 6= 0 we use Lemma 7 ((i)⇒(ii) with a = 2

and t = ‖x‖) to obtain:

∞∑

n=1

fn(x) = |f(x)| ·
∑

{n: ‖x‖≤cn<2‖x‖}

1

cdn
≤ |f(x)| ·M.

It follows that the function series
∑∞

n=1 fn(x) is convergent and
∫ ∑∞

n=1 fn(x)dx ≤ M ·
∫
|f(x)|dx < ∞.

Hence
∞∑

n=1

∫

{x: 12<‖x‖≤1}

|f(cnx)|dx =

∞∑

n=1

∫
|f(cnx)| · 1 1

2<‖x‖≤1dx =

∞∑

n=1

∫
|f(x)| · 1cn/2<‖x‖≤cn · 1

cdn
dx =

∞∑

n=1

∫
fn(x)dx =

∫ ∞∑

n=1

fn(x)dx < ∞.

Thus, the function series
∑∞

n=1 |f(cnx)| is convergent λ almost everywhere on {x ∈ R
d : 1

2 < ‖x‖ ≤ 1}
and the first part of the proof is completed.

Now, for k ∈ Z we consider the function gk(x) = f(2kx). Clearly gk is integrable, hence, by the first

part of the proof, for λ almost every y satisfying 1
2 < ‖y‖ ≤ 1 the series

∑∞
n=1 |f(cn2ky)| =

∑∞
n=1 |gk(cny)|

converges. Denoting x = 2ky we obtain that for λ almost every x satisfying 2k−1 < ‖x‖ ≤ 2k we have
∑∞

n=1 |f(cnx)| < ∞. This observation completes the proof, because R
d = {0} ∪⋃k∈Z

{x ∈ R
d : 2k−1 <

‖x‖ ≤ 2k}. �

Proof of Theorem 2. For k = 1, 2, . . . we apply Theorem 1 for an integrable function fk(x) = 1|f(x)|≥1/k.

As a result, we obtain a set Ak ⊂ R
d, such that λ(Ak) = 0 and for every x ∈ R

d \ Ak we have

fk(cnx) → 0 when n → ∞. Clearly, λ(
⋃∞

k=1 Ak) = 0. The convergence fk(cnx) → 0 implies that the set

{n : |f(cnx)| ≥ 1/k} is finite. It follows that if x ∈ R
d \⋃∞

k=1 Ak, then ∀k∈N |{n : |f(cnx)| ≥ 1/k}| < ∞,

which means f(cnx) → 0. �

Proof of Theorem 3. If cn 6→ ∞, then there exists c ≥ 0 and a subsequence (cni
) such that cni

→ c. In this

case we can take any f which is strictly positive, integrable and continuous, e.g. f(x) = 1/(1 + ‖x‖d+1).

Indeed, if x ∈ R
d, then f(cni

x) → f(cx) > 0, hence
∑∞

n=1 |f(cnx)| ≥ ∑∞
i=1 |f(cni

x)| = ∞. In the

remaining part of the proof we assume cn → ∞.

For k ∈ Z let Ak = {n : 2k ≤ cn < 2k+1} and lk =
∑

n∈Ak

1
cdn
. The assumption cn → ∞ implies that

the sets Ak are finite. Moreover, the sets Ak are pairwise disjoint and N =
⋃

k∈Z
Ak. It follows, that for

every n ∈ N there exists the unique k(n) ∈ Z such that n ∈ Ak(n). By Lemma 7 (¬(i)⇒ ¬(iii) with a = 2)

and by the inequality lk ≥ |Ak|
2(k+1)d we obtain that the set {lk : k ∈ Z} is unbounded. We take a sequence

(ki) such that ki’s are pairwise different and lki
≥ i for every i. We define nonnegative numbers (rk)k∈Z

by the formula

rk =





1
i2|Aki

| if k = ki,

0 if k 6= ki for every i.

(note that lki
> 0 implies Aki

6= ∅). Then
∞∑

m=1

rk(m) =
∑

k∈Z

∑

m∈Ak

rk =
∑

k∈Z

rk|Ak| =
∞∑

i=1

rki
|Aki

| =
∞∑

i=1

1

i2
< ∞

and
∑

k∈Z
rk|Ak|lk =

∑∞
i=1 rki

|Aki
|lki

≥∑∞
i=1

1
i = ∞.
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Let g : Rd → R be any bounded, strictly positive, integrable and continuous function, such that g(x)

is a nonincreasing function of ‖x‖ (e.g., g(x) = 1/(1 + ‖x‖d+1)). We define

f(x) =
∞∑

m=1

rk(m)

cdm
· g
(

x

cm

)
.

Note that the above function series converges uniformly, because g is bounded, cm → ∞ and
∑∞

m=1 rk(m) <

∞. In particular f is continuous. Clearly f is positive. Moreover,

∞∑

m=1

∫
rk(m)

cdm
· g
(

x

cm

)
dx =

∞∑

m=1

∫
rk(m) · g(x)dx =

∫
g(x)dx ·

∞∑

m=1

rk(m) < ∞,

hence f is integrable.

If x = 0, then
∑∞

n=1 |f(cnx)| =
∑∞

n=1 |f(0)| = ∞, because f(0) > 0. For x 6= 0 we have

∞∑

n=1

|f(cnx)| =
∑

k∈Z

∑

n∈Ak

f(cnx) ≥
∑

k∈Z

∑

n∈Ak

∑

m∈Ak

rk(m)

cdm
· g
(
cn
cm

· x
)

≥

∑

k∈Z

rk
∑

n∈Ak

∑

m∈Ak

1

cdm
· g(2x) = g(2x) ·

∑

k∈Z

rk|Ak|lk = ∞

(we used the following observation: if m,n ∈ Ak, then
cn
cm

< 2). �

The proof of Theorem 4 is presented at the end of the paper. It is the hardest proof and it uses some

ideas presented in the proof of Theorem 6. For this reasons leaving it for the end is a good idea.

Proof of Theorem 5. Let (bn) = (⌈cn⌉). Then all the terms of (bn) are in N. The assumption cn → ∞
assures that for every k ∈ N the set {n : bn = k} is finite. By Theorem 2 we have f(kx) → 0 for

λ almost every x ∈ R
d. Thus f(bnx) → 0 for λ almost every x ∈ R

d. Moreover, cn → ∞ implies

bn
cn

= ⌈cn⌉
cn

→ 1. �

Proof of Theorem 6. It is enough to construct a continuous, nonnegative, integrable function f̃ : [0,∞) →
R, such that lim supn→∞ anf̃(nx) = ∞ for every x ∈ [0,∞). Then we define f : Rd → R by f(x) =

f̃(‖x‖d). Clearly, f is continuous, nonnegative and lim supn→∞ anf( d
√
nx) = lim supn→∞ anf̃(n‖x‖d) =

∞ for every x ∈ R
d. Moreover,

∫
f(x)dx =

∫
f̃(‖x‖d)dx = Sd ·

∫ ∞

r=0

f̃(rd)rd−1dr =
Sd

d

∫ ∞

y=0

f̃(y)dy < ∞

(here Sd is d− 1-dimensional measure of the unit sphere in R
d).

For k ∈ N let tk > 0 be such that n ≥ tk ⇒ an ≥ k4 for every n ∈ N. Let h : R → R be any continuous,

bounded, nonnegative, integrable function satisfying h|[0,1] ≥ 1. We define f̃ : [0,∞) → R as follows:

f̃(x) = h(x) +

∞∑

l=1

h(xl − tl)

l3
.

Function f̃ is nonnegative and continuous (the series converges uniformly). It is also integrable:

∫ ∞

0

f̃(x)dx =

∫ ∞

0

h(x)dx +

∞∑

l=1

∫ ∞

0

h(xl − tl)

l3
dx =

∫ ∞

0

h(x)dx +

∞∑

l=1

∫ ∞

0

h(x− tl)

l2
dx ≤

∫
h(x)dx +

∞∑

l=1

∫
h(x)

l2
dx =

∫
h(x)dx ·

(
1 +

∞∑

l=1

1

l2

)
< ∞.



6 ANDRZEJ KOMISARSKI

If x = 0, then lim supn→∞ anf̃(nx) ≥ lim supn→∞ anh(nx) = lim supn→∞ anh(0) ≥ lim supn→∞ an = ∞.

Let x > 0. Then for every k ∈ N satisfying k > x we have 0 < x
k < 1 and there exists nk ∈ N such that

nk · x
k ∈ [tk, tk + 1], i.e., nkx

k − tk ∈ [0, 1]. In particular, nk ≥ tk · k
x > tk, hence ank

≥ k4. It follows that

ank
f̃(nkx) ≥ ank

· 1

k3
· h
(nkx

k
− tk

)
≥ k4 · 1

k3
· 1 = k,

thus lim supn→∞ anf̃(nx) ≥ lim supk→∞ ank
f̃(nkx) ≥ lim supk→∞ k = ∞. �

The following technical lemma is helpful to perform an inductive construction in the proof of Theo-

rem 4.

Lemma 8. Let (cn) be a sequence of positive numbers such that cn → ∞ and for every permutation (c′n) of

(cn) the sequence (n/c′n) is unbounded. Then for every a > 1, ε > 0, S > 0, l ∈ Z and M ∈ N∪{0} there

exist T > S, N ∋ N > M , bM+1, bM+2, . . . , bN > 0 and a continuous, integrable, nonnegative function

g : [0,∞) → R satisfying 1
a ≤ bn

cn
≤ a for n = M + 1,M + 2, . . . , N ,

∫∞

0 g(x)dx < ε, g|[0,∞)\[S,T ] = 0 and

∀x∈[al−1,al] maxM<n≤N g(bnx) ≥ 1.

Proof. For k ∈ Z let Ak = {n : ak ≤ cn < ak+1}. According to Lemma 7 (¬(i)⇒ ¬(iii)) there exists

a sequence (ki) such that
|Aki

|

aki
→ ∞. We can assume that Aki

6= ∅ and ki > 1 − l + loga S and

ki > max{loga cn : n ≤ M} for every i. The last inequality ensures that for every n if n ∈ Aki
, then

n > M . We consider a term aki+l(1− a−1/|Aki
|) and its limit when i → ∞:

lim
i→∞

aki+l(1− a−1/|Aki
|) = lim

i→∞
al · aki

|Aki
| ·

1− a−1/|Aki
|

0− (−1/|Aki
|) = al · 0 · loge a = 0.

It follows that we can choose K ∈ {ki : i ∈ N} satisfying aK+l(1− a−1/|AK |) < ε. We put N = maxAK .

Then AK ⊂ {M + 1,M + 2, . . . , N}.
We define bM+1, bM+2, . . . , bN : If n ∈ {M +1, . . . , N} \AK , then we put bn = cn. The remaining bn’s

(with n ∈ AK) are chosen in any way satisfying {bn : n ∈ AK} = {aK+ j
|AK | : j = 0, 1, . . . , |AK | − 1}. If

n ∈ {M + 1, . . . , N} \ AK , then 1
a ≤ 1 = bn

cn
≤ a. If n ∈ AK , then both bn and cn are in [aK , aK+1),

hence 1
a ≤ bn

cn
≤ a.

We choose any T > aK+l. The inequality K > 1 − l + loga S implies a
K+l− 1

|AK | ≥ aK+l−1 > S.

Hence [a
K+l− 1

|AK | , aK+l] ⊂ (S, T ). We also have
∫∞

0
1
[a

K+l− 1
|AK | ,aK+l]

dx = λ([a
K+l− 1

|AK | , aK+l]) =

aK+l(1−a−1/|AK|) < ε. All these observations show that there exists a nonnegative, continuous function

g : [0,∞) → R such that g equals 0 outside [S, T ], g equals 1 on [a
K+l− 1

|AK | , aK+l] and
∫∞

0 g(x)dx < ε.

It remains to check that ∀x∈[al−1,al] maxM<n≤N g(bnx) ≥ 1. We have

[al−1, al] =

|AK |−1⋃

j=0

[
a
l− j+1

|AK | , a
l− j

|AK |

]
=

⋃

n∈AK

[
a
K+l− 1

|AK |

bn
,
aK+l

bn

]
.

It follows, that if x ∈ [al−1, al], then bn0x ∈ [a
K+l− 1

|AK | , aK+l] for some n0 ∈ AK . Consequently,

maxM<n≤N g(bnx) ≥ g(bn0x) = 1. �

Proof of Theorem 4. If cn 6→ ∞, then there exists c ≥ 0 and a subsequence (cni
) such that cni

→ c. In this

case we can take any f which is strictly positive, integrable and continuous, e.g. f(x) = 1/(1 + ‖x‖d+1)
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and (bn) = (cn). Indeed, if x ∈ R
d, then f(cni

x) → f(cx) > 0, hence f(bnx) = f(cnx) 6→ 0. In the

remaining part of the proof we assume cn → ∞.

Let (c̃n) = (cdn). Then c̃n → ∞ and for every permutation (c̃′n) of (c̃n) the sequence (n/c̃′n) is

unbounded. To finish the proof it is enough to construct a continuous, nonnegative, integrable function

f̃ : [0,∞) → R and a sequence (̃bn) such that b̃n
c̃n

→ 1 and f̃ (̃bnx) 6→ 0 for every x ∈ [0,∞). Then

the function f : R
d → R defined by f(x) = f̃(‖x‖d) is continuous, nonnegative and integrable (see

the beginning of the proof of Theorem 6). For (bn) = (
d

√
b̃n) we have bn

cn
= d

√
b̃n
c̃n

→ 1 and f(bnx) =

f̃ (̃bn‖x‖d) 6→ 0 for every x ∈ R
d.

We fix two sequences: (ai) and (li) such that ai > 1 and li ∈ Z for every i ∈ N, ai → 1 and every

x > 0 is an element of infinitely many of the intervals [ali−1
i , alii ]. One may put for example

ai =1 +
1

k

li =i− (k + 1)3 + k3 − 1

2

for k3 ≤ i < (k + 1)3, k ∈ N

(it is easy to compute that for such (ai) and (li) one has
⋃(k+1)3−1

i=k3 [ali−1
i , alii ] ⊃ [2−k, 2k]).

We construct the function f̃ and the sequence (̃bn) piecewise, by induction. In each step we apply

Lemma 8 to obtain the next part of the function f̃ and the next part of the sequence (̃bn). More precisely,

in the i-th step of the induction we define f̃ on an interval [Si, Ti] and b̃n’s with n = Mi + 1, . . . , Ni. At

the beginning no b̃n’s are defined, so we put M1 = 0. We choose S1 arbitrarily, e.g. S1 = 1. Then we

apply Lemma 8 with a = a1, l = l1, M = M1, S = S1 and ε = 1/4. As a result we obtain N1 = N ,

T1 = T , function g1 = g : [0,∞) → R such that g1 is zero outside [S1, T1] and b̃n’s for n = M1+1, . . . , N1.

We repeat this procedure infinitely many times. In the i-th step we apply Lemma 8 with a = ai, l = li,

M = Mi = Ni−1, S = Si = Ti−1 + 1 and ε = 1/4i. As a result we obtain Ni = N , Ti = T , function

gi = g : [0,∞) → R such that gi is zero outside [Si, Ti] and b̃n’s for n = Mi + 1, . . . , Ni.

The whole sequence (̃bn) satisfies
1
ai

≤ b̃n
c̃n

≤ ai for Mi < n ≤ Ni, which (together with ai → 1) implies

b̃n
c̃n

→ 1. Let

f̃(x) = h(x) +

∞∑

i=1

2igi(x),

where h : [0,∞) → R is an arbitrary continuous, positive and integrable function. Function f̃ is non-

negative, continuous (the series converges almost uniformly) and integrable (
∫∞

0
f̃(x)dx <

∫∞

0
h(x)dx +

∑∞
i=1 2

i/4i < ∞).

Finally, let x ∈ [0,∞). If x = 0, then f̃ (̃bnx) ≥ h(0) > 0, hence f̃ (̃bnx) 6→ 0. If x > 0, then there exists

an increasing sequence (ij) satisfying x ∈ [a
lij−1

ij
, a

lij
ij
] and we have

lim sup
n→∞

f̃ (̃bnx) = lim sup
i→∞

max
Mi<n≤Ni

f̃ (̃bnx) ≥ lim sup
j→∞

max
Mij

<n≤Nij

2ijgij (̃bnx) ≥ lim sup
j→∞

2ij = ∞.

�
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