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ON THE BEHAVIOR OF INTEGRABLE FUNCTIONS AT INFINITY

ANDRZEJ KOMISARSKI

ABSTRACT. We investigate the behavior of sequences (f(cnx)) for Lebesgue integrable functions f :
R? — R. In particular, we give a description of classes of multipliers (c,,) and (dy,) such that f(cnz) — 0

or 32, | f(dnz)| < oo for A almost every z € R%.

It is well known that if a series Y | a, is convergent, then a,, — 0. It may seem surprising that
a similar result does not hold for integrals. Namely, if f : R — R is Lebesgue integrable, then it is not
necessary that lim, ,~ f(z) = 0. Various authors investigated the behavior of integrable functions at
infinity, see e.g. [2], 3], 4, B} 6].

E. Lesigne showed in [2] that if f : R — R is Lebesgue integrable, then for A almost every = € R one
has f(nxz) — 0. In this paper we generalize Lesigne’s investigations in several directions. One way is
to replace the domain of f by the space R? equipped with d-dimensional Lebesgue measure A. On the
other hand, we want to describe a possibly large class of multipliers ¢, which may be substituted for n

in Lesigne’s result. As the first result going in this direction we present the following theorem:

Theorem 1. Letd € N and let (¢;,) be a sequence of positive numbers such that for some permutation (cl,)
of (¢n) the sequence (/n/cl,) is bounded. Assume that f : RY — R is Lebesgue integrable ([ |f(z)|dx <
00). Then for X almost every x € R* one has > oo, | f(caz)| < 0o (hence f(cnz) — 0).

A little comment is necessary to explain the assumption on the sequence (¢,,). Theorem [l would be
valid if we just assumed that (/n/c,) is bounded. However, the conclusion of the theorem is permutation
invariant, i.e., if it holds for a sequence (¢, ), then it also holds for any permutation of (¢,). If any form
of the reversal of Theorem [l should hold true, then its assumptions have to be permutation invariant as
well. Unfortunately, the condition “({/n/c,) is bounded” is not permutation invariant. For this reason
an additional sequence (c,) (being a permutation of (¢y)) has to be explicitly introduced.

We note that in Theorem [I] we obtain more than we intended. Namely, we get > - | |f(caz)| < 00
instead of f(c,z) — 0. If one wishes to conclude that f(c,x) — 0, then weaker assumptions on the

function f are needed:

Theorem 2. Let d € N and let (¢,,) be a sequence of positive numbers such that for some permutation
(c)) of (cn) the sequence (/n/cl) is bounded. Moreover, let f : R — R be measurable and such that for

every € > 0 one has A\({z € R?: |f(z)| > ¢}) < oco. Then for \ almost every x € R? one has f(cpz) — 0.

In the conclusion of the above theorem we cannot keep the stronger statement Y > | |f(c,z)| < oo

from Theorem [l Indeed, if f(z) =1/(1+ ||z|), then Y.~ |f(nx)| = oo for every z.
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The next theorem shows that the assumption on the sequence (¢, ) in Theorem [Il cannot be weakened.

Theorem 3. Let d € N and let (¢c,,) be a sequence of positive numbers such that for every permutation
(cl) of (cn) the sequence (¥/n/cl) is unbounded. Then there exists a continuous, nonnegative function

f:RY = R such that [ |f(z)|dz < oo and 3.7, |f(cn)| = o0 for every x € R

The above theorem may be seen as the inverse of Theorem [[I The situation is much more delicate
when we try to inverse Theorem 2] Consider the following example: Let (c¢,) satisfy the assumption of
Theorem 2] for simplicity set ¢,, = n. Then for any integrable f we have f(nz) — 0 for A almost every
r € R%. Now, we define a sequence (d,,) such that it tends to infinity arbitrarily slowly, yet f(d,z) — 0
for A almost every x € R?. It suffices to take (d,,) which is formed by repeating each term of the sequence
(¢n, = n) finitely many times. Indeed, the convergence of f(d,z) to zero follows from f(nz) — 0. On
the other hand, (d,,) may tend to infinity slowly enough to ensure that (/n/d]) is unbounded for every
permutation (d},) of (d,). All this shows that Theorem 2] cannot be fully inversed. Instead, we show the

following theorem:

Theorem 4. Let d € N and let (¢c,,) be a sequence of positive numbers such that for every permutation

(cl) of (cn) the sequence (/n/ch) is unbounded. Then there exist a sequence (b,) of positive numbers

and a continuous, nonnegative, integrable function f : R* — R such that b, /c,, — 1 and f(b,x) 4 0 for

every x € RY.

In fact we prove a bit more: If ¢,, — 0o, then additionally lim sup,,_, ., f(b,x) = oo for every = # 0.
In Theorem Ml we claim that if a sequence (c,) does not satisfy the assumption of Theorem [2] then
even if it is not “bad” itself, it can be slightly modified to a “bad” sequence. On the other hand, each

sequence (¢, ) with ¢, — 0o can be improved in the following sense:

Theorem 5. Let d € N and let (¢,,) be a sequence of positive numbers tending to infinity. There exists
a sequence (by,) of positive numbers with by, /c, — 1 such that: For any measurable f : R? — R satisfying

Veso A({z € R : |f(z)| > €}) < 00 one has f(bpx) — 0 for X almost every v € R?.

In [2] Lesigne also investigated the rate of convergence of (f(nz)) to zero. In particular, he showed
that for any sequence (a,) with 0 < a,, — oo there exists a continuous, integrable function f : R — R
such that limsup,,_,. anf(nx) = oo for A almost every € R. Moreover, if we drop the continuity
requirement (we only require integrability of f), then we may obtain limsup,,_, .. an f(nz) = oo for every
x € R. Lesigne asked if we may have both: continuity of f and limsup,,_, ., a,f(nz) = oo for every z.
This question has been positively answered by G. Batten in [1]. The original Batten’s paper is accessible
through arXiv, but (to best our knowledge) has never been published. Here we present a much shorter

proof of Batten’s result in R¢, based on completely different ideas.

Theorem 6. Let d € N and let a sequence (ay) satisfy 0 < a,, — o0o0. There exists a continuous,

nonnegative, integrable function f : R — R such that limsup,, .. anf(/nz) = oo for every x € RY.
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The following lemma plays a very important role in the proofs of (almost) all theorems in this paper:

Lemma 7. Let d > 0 and a > 1 be real numbers and let (¢,,) be a sequence of positive numbers. The

following conditions are equivalent:

(i) There exists a permutation (c},) of (cyn), such that the sequence (Yn/cl) is bounded.
(’) There exists a (unique) nondecreasing sequence (c},) being a permutation of (c,) and for this
permutation the sequence (/n/cl) is bounded.
(ii) There exists M > 0, such that Vi~ Z{n: t<en<at}) é <M.
(iil) There exists M' > 0, such that Viez w <M’

Proof. Clearly (i’) implies (i). We will show (i)=-(iii)=-(ii)=(1")
(i)=(iii). Let L > 0 satisfy ¢/n/c/, < L for every n. If we put M’ = (La)?, then for every k € Z we
have

{n:a" <c, <d"'} |{n:c, <a"}  |{n:c, <a"} < {n: ¢/n < La**1}|

akd < okd akd > okd
H{n:n < (La¥*H)4}|  (LaFt1)?
hd < = (La)t = M’

(iii)=>(ii). We put M = 2M’. Let t > 0. We have a*~! <t < a* for some k € Z and then

1 1 1

>, a< ) P > o

{n: t<cp<at} ™ {n: ak=1<cp<ak} " {n: ak<c,<ak+1} ™

Hn: a1 <e, < a¥} n Hn: a* <ec, < art1}
qi—1d ok

<

<M +M =M.

(ii)=(i"). For any t > 0 we have

s s (tal—k)d
fnica<t =3 lnita* <co<atay <y, Y B
k=1 k=1{n: ta=*<c,<tal—F*} Cn
oo
M
ta' =Ry M = ——.
(ta™) 1-1/ad
k=1

In particular, for every ¢ > 0 the set {n : ¢, < t} is finite, hence there exists a nondecreasing permutation

(c!) of (cn). For this permutation we have [{n : ¢/, < t}| = [{n:¢c, < t}] <t % Since (c,) is

nondecreasing, for every m € N we have:

M w M
S R
1—1/ad ™1 —1/a®’

hence ¢/m/c), < W%. O

Proof of Theorem [l In the first part of the proof we show that for A almost every z € R? satisfying

< i o < i d.
m ol s <ol < (¢

1 < |lz|] €1 we have Y07 | | f(cpz)| < co. We define f, : R? — R by the formula

1
fn(z) = o If(@)] - Le, j2<)ali<cn -
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Functions f,, are nonnegative and Y .~ ; f,,(0) = 0. For every  # 0 we use Lemmal[7] ()= (ii) with a = 2
and ¢t = ||z||) to obtain:

- 1

D fala) = |f ()] - > — < f@)-M.

n=1 {n: lzll<en<2lzll} ™
It follows that the function series Y | fu(z) is convergent and [ > 7 | fu(x)dx < M - [|f(x)|dz < cc.

Hence

1
Z/ flenx |dz* /|f Cn® 11<”z|<1d:c7 /|f | 1, j2< el <en - =0 =
{z: 2<||:n||<1} Cp
Z/fn(:c)d:c = /an(z)dz < 0.
n=1 n=1

Thus, the function series 3>, |f(c,z)| is convergent A almost everywhere on {z € R? : 1 < |z|| < 1}
and the first part of the proof is completed.

Now, for k € Z we consider the function gj.(z) = f(2¥z). Clearly gy, is integrable, hence, by the first
part of the proof, for A almost every y satisfying + < [|y|| < 1 the series >0, [f(cn2%y)| = 307 |gr(cny)|
converges. Denoting x = 2¥y we obtain that for A almost every z satisfying 2¥=1 < ||z|| < 2* we have
> |f(caz)| < co. This observation completes the proof, because R = {0} U |J, o {z € R?: 2871 <
Jall < 2+}. o

Proof of Theorem[2 For k =1,2,... we apply Theorem [l for an integrable function fx(x) = 1|¢(z)|>1/k-
As a result, we obtain a set A, C R? such that A(Ak) = 0 and for every z € R? \ Ar we have
fe(enz) — 0 when n — oo. Clearly, A(Up—; Ax) = 0. The convergence fi(c,z) — 0 implies that the set
{n:|f(caz)| > 1/k} is finite. It follows that if € R\ (Jp2, Ak, then Vien |{n: |f(caz)| > 1/k}| < oo,

which means f(c,z) — 0. O

Proof of Theorem[3 1f ¢, /4 00, then there exists ¢ > 0 and a subsequence (¢, ) such that ¢,, — ¢. In this

case we can take any f which is strictly positive, integrable and continuous, e.g. f(z) = 1/(1+ ||z|/?*!).

Indeed, if z € R, then f(cn,z) — f(cx) > 0, hence > oo [f(enz)| > Yooy [f(en,2)] = oo. In the

remaining part of the proof we assume ¢, — oc.

Forke€Zlet A, ={n:2F <c, <2V and I, = . The assumption ¢,, — oo implies that

neAy cd
the sets Ay are finite. Moreover, the sets Ay are pairwise dlSJOlnt and N = (J; oz Ag. It follows, that for
every n € N there exists the unique k(n) € Z such that n € Ay(,). By Lemmal[ll (—(i)= —(iii) with a = 2)
and by the inequality I > 2(‘;47"1‘)0, we obtain that the set {l : k € Z} is unbounded. We take a sequence
(k;) such that k;’s are pairwise different and I, > i for every i. We define nonnegative numbers (ry)xez
by the formula

1 : L.
o Hk=hs,

0 if k # k; for every i.

Tk =

(note that I, > 0 implies Ag, # (). Then

Z?"km)—z Z T = Zrk|Ak|—Zrk |Ay,| = Z—<oo

kEZ mEA keZ

and ZkeZ Tk|Ak|lk = Zf; Tk, i Z Zf; % = OQ.
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Let g : R? — R be any bounded, strictly positive, integrable and continuous function, such that g(x)
is a nonincreasing function of ||z|| (e.g., g(z) = 1/(1 + ||2[|9*1)). We define
> Tk(m T
OES %'QQ—)-
m=1 M m

Note that the above function series converges uniformly, because g is bounded, ¢,, — coand >~ _ 1Tk(m) <

oo. In particular f is continuous. Clearly f is positive. Moreover,

Z / Dh(m) (i) dz = i/rk(m) g(@)dz = /g(z)dz~ i P < 00,

m=1

hence f is integrable.

If # =0, then > 7, [f(cnx)| = >0 |f(0)] = oo, because f(0) > 0. For z # 0 we have

ISICEES SpIFTEES 3p ol S-S FRE

kEZ neAy kEZ nEA, meEA, m
S Y X ot = o0 Xl =
keZ necAg ’ITLGAK keZ
(we used the following observation: if m,n € Ay, then £~ < 2). O

The proof of Theorem Ml is presented at the end of the paper. It is the hardest proof and it uses some

ideas presented in the proof of Theorem [6l For this reasons leaving it for the end is a good idea.

Proof of Theorem [l Let (b,) = ([c,]). Then all the terms of (b,) are in N. The assumption ¢, — oo
assures that for every k € N the set {n : b, = k} is finite. By Theorem Pl we have f(kz) — 0 for
A almost every z € R%. Thus f(b,z) — 0 for A\ almost every z € R% Moreover, ¢, — oo implies

“” — 1. O

Cn

Proof of Theorem[@. It is enough to construct a continuous, nonnegative, integrable function ]?: [0,00) —
R, such that limsup,_,. anf(nz) = oo for every € [0,00). Then we define f : RY — R by f(z) =
F(|lz||4). Clearly, f is continuous, nonnegative and limsup,, , . a,f(/nz) = limsup,_, . anf(n|z]%) =

oo for every x € R Moreover,

[ s@n= [ Faityie= s [ fatyi=tar =3 [ Fopay < oo

(here S, is d — 1-dimensional measure of the unit sphere in R?).
For k € N let t;, > 0 be such that n > t;, = a,, > k* for every n € N. Let h : R — R be any continuous,

bounded, nonnegative, integrable function satisfying h|[071] > 1. We define f: [0,00) — R as follows:

e +Z 7“

Function ]"’v is nonnegative and continuous (the series converges uniformly). It is also integrable:

/Ooof(zmz/ d:c+z/ %— ;p/oooh(z)deri/ooowdzg
/h(x)dx—l—l_zl/hl(f)dx:/h(x)dx- <1+§l12> < oo,
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If 2 = 0, then limsup,, . anf(n) > limsup,, . anh(nz) = limsup, .. anh(0) > limsup, ., an = oco.
Let x > 0. Then for every k € N satisfying k > = we have 0 < £ < 1 and there exists ny € N such that
ng - § € [te, te + 1], e, 2 —tp € [0,1]. In particular, ng >ty - % > tg, hence a,, > k*. It follows that
~ 1 nET 1
ankf(nkz)Zank~ﬁ~h( . —tk) Zk4~ﬁ~1:k,

thus limsup,,_, . anf(nz) > limsup,,_, .. ankf(nkz) > limsupy,_, ., k = oo. O

The following technical lemma is helpful to perform an inductive construction in the proof of Theo-

rem [l

Lemma 8. Let (c,) be a sequence of positive numbers such that ¢, — oo and for every permutation (c,) of
(cn) the sequence (n/c),) is unbounded. Then for everya >1,e>0,5 > 0,1l € Z and M € NU{0} there
erist T > S, N> N > M, byry1,bpm42,-..,08 > 0 and a continuous, integmble, nonnegative function
g:[0,00)—>Rsatisfying%Sg—:gaforn:M—i—l,M—i—Q, , N, fo z)dx < g, gljo,00)\[3,7] = 0 and

Vme[alfl,al] maxpr<n<n g(bnx) > 1.

Proof. For k € Z let Ay, = {n : a* < ¢, < a**'}. According to Lemma [7 (=(i)= —(iii)) there exists

a sequence (k;) such that |2,fj‘ — oo. We can assume that Ay, # 0 and k; > 1 — 1 + log, S and

k; > max{log, ¢, : n < M} for every i. The last inequality ensures that for every n if n € Ay,, then
n > M. We consider a term a* (1 — a=1/14%1) and its limit when i — oo:

k; — a~VIAx,]|
lim a® (1 — V1481 = 1im o - a 1 —a

l
. =a -0-log,a=0.
i—00 i—00 |Ak¢| 0— (_1/|Ak¢|) &

It follows that we can choose K € {k; : i € N} satisfying a®+!(1 — a=/I4xl) < . We put N = max Ag.
Then A € {M +1,M +2,...,N}.

We define byri1,bart2,...,0n: fne{M+1,...,N}\ Ak, then we put b, = ¢,,. The remaining b,’s
(with n € Ak) are chosen in any way satisfying {b, : n € Ax} = {aKJrﬁ :j=0,1,...,|Ag| — 1}. If
ne{M+1,...,N}\ Ak, then <1 = lc’—:: < a. If n € Ak, then both b, and ¢, are in [a®, a®*1),
hence % < IZ—: < a.

K+l The inequality K > 1 — 1 + log, S implies oK > gfti-l > g

de = M[a" TR oKH)) =

We choose any T > a
KHl—1z— K+l oo
Hence [a x1,a" 7t C (8,T). We also have [ l[aKﬂfﬁ,aKﬂ]
a® (1 —a~VI4xl) < . All these observations show that there exists a nonnegative, continuous function
1
g :[0,00) = R such that g equals 0 outside [S,T], g equals 1 on [aKH kT, o] and [ g(z)dx <e.

It remains to check that V,¢ciqi-1 q1) maxpr<n<n g(bnx) > 1. We have

Ag|—-1
-1 1 |Ax] [ S N K'H \AK\ af+
[a_ ’a]: U |:a MKkl a \AK\i| = U 5 '
j=0 n€Ak " "

K+1—

It follows, that if x € [a!~!,d!], then b,z € [a AT ,a®*1] for some ng € Agx. Consequently,

mMaxXp <n<N g(bn:C) > g(bnox) =1 -

Proof of Theorem[4] If ¢, / 0o, then there exists ¢ > 0 and a subsequence (cy,, ) such that ¢,, — c. In this

case we can take any f which is strictly positive, integrable and continuous, e.g. f(x) = 1/(1 + ||x[|4*+1)
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and (b,) = (c,). Indeed, if x € RY, then f(cn,x) — f(cx) > 0, hence f(b,z) = f(c,z) /4 0. In the
remaining part of the proof we assume ¢, — oc.

Let (¢,) = (¢?). Then ¢, — oo and for every permutation (¢,) of (¢,) the sequence (n/c,) is

unbounded. To finish the proof it is enough to construct a continuous, nonnegative, integrable function

f :[0,00) = R and a sequence (by,) such that g—z — 1 and f(bpz) # 0 for every z € [0,00). Then

the function f : R? — R defined by f(x) = f(||z]|) is continuous, nonnegative and integrable (see

the beginning of the proof of Theorem [6). For (b,) = (1/bn) we have l;_: = \d/g—z — 1 and f(byx) =

f(ballz]|?) 4 0 for every z € RZ.

We fix two sequences: (a;) and (I;) such that a; > 1 and I; € Z for every i € N, a; — 1 and every

x > 0 is an element of infinitely many of the intervals [aéi_1

1
i =1+
a Jrk
(k+1)+k*—1

2

,a?]. One may put for example

for k* <i<(k+1)} keN

l; =i —

(it is easy to compute that for such (a;) and (I;) one has UEZZ§)371[aéi71, ali] > [27F, 24)).

We construct the function ]"’v and the sequence (gn) piecewise, by induction. In each step we apply
Lemma [§ to obtain the next part of the function fand the next part of the sequence (gn) More precisely,
in the i-th step of the induction we define fon an interval [S;, T;] and En’s withn =M, +1,...,N;. At
the beginning no En’s are defined, so we put M; = 0. We choose S arbitrarily, e.g. S1 = 1. Then we
apply Lemma § with a = a1, Il =13, M = M3, S = 51 and € = 1/4. As a result we obtain N3 = N,
T, =T, function g; = ¢ : [0,00) — R such that ¢ is zero outside [S1, T3] and gn’s forn=M;+1,...,N;.
We repeat this procedure infinitely many times. In the i-th step we apply Lemma § with a = a;, [ = I,
M=M;,=N; 1, 5=8;=T;_1+1and € = 1/4i. As a result we obtain N; = N, T; = T, function
gi =g :[0,00) = R such that g; is zero outside [S;, T;] and b,’s for n = M; + 1,...,N;.

The whole sequence (En) satisfies ai < :g—: < a; for M; < n < N;, which (together with a; — 1) implies

g—: — 1. Let
f@) =h(z)+ > 2'gi(x),
i=1

where h : [0,00) — R is an arbitrary continuous, positive and integrable function. Function f is non-

negative, continuous (the series converges almost uniformly) and integrable ( fooo flz)de < fooo h(z)dx +
Yoo, 2147 < 00).

Finally, let z € [0,00). If x = 0, then f(b,x) > h(0) > 0, hence f(b,x) # 0. If £ > 0, then there exists

) ) ) o Li—1 1,
an increasing sequence (i) satisfying = € [a,? ~,a,’] and we have
J i » Vi

lim su b,x) = limsu max b,x) > limsu max  29g; (byx) > limsup 29 = oo.
n%oopf( n ) z‘aoopfwi<"SNif( n ) =z j%oop My, <n<N, gzj( n ) = j%oop
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