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It has been found that Markovian quantum dissipative processes, described by the Lindblad
equation, may have attractive steady-state manifolds, in which dissipation and decoherence can play
a positive role to the quantum information processing. In this paper, we show that such attractive
steady-state manifolds with the same positive features as in Markovian dissipative processes can
exist in the non-Markovian dissipative processes. Our finding indicates that the dissipation-assisted
schemes implemented in the Markovian systems can be directly generalized to the non-Markovian
systems.
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Any real quantum system inevitably interacts with its
environment, and hence quantum decoherence is a ubiq-
uitous phenomenon. Yet, decoherence may collapse the
desired coherence of a quantum state, and reduce the
efficiency of quantum information processing. It is one
of the main practical obstacles in quantum information
processing. Interestingly, it was recently found that dis-
sipation and decoherence may even play a positive role
in quantum information processing. A substantial num-
ber of dissipation-assisted schemes have been proposed
for various aims of quantum information processing, such
as quantum state engineering [1–7], quantum simulation
[8–10], and quantum computation [11, 12], in which dis-
sipation is no longer undesirable but plays an integral
part.
The basic idea of dissipation-assisted schemes is to uti-

lize both the coherence stability of steady states and
the effects of dissipation to protect quantum informa-
tion from decoherence. Information is encoded in the
steady-state manifold that possesses some computation-
ally desirable properties, e.g., decoherence-free subspaces
[13, 14] or noiseless subsystems [15, 16], over which the
dynamics is unitary. Dissipation is then utilized to drive
the system to the steady-state manifold and suppress
the leakage outside the manifold. Implementation of
dissipation-assisted schemes is to resort to Markovian
dissipative processes, described by the Lindblad master
equation,

d

dt
ρ(t) = Lρ(t), (1)

where L is a time-independent generator, defined as Lρ =
−i[H, ρ]+

∑
α γα

[
AαρA

†
α − 1

2{A
†
αAα, ρ}

]
[17]. Here, Aα

are time-independent Lindblad operators, γα > 0 are
positive decay rates, and H is a time-independent Hamil-
tonian. Equation (1) can induce a decomposition of the
Hilbert space with the form H = ⊕αHα,1 ⊗ Hα,2 ⊕ K,
where Hα,1 is a noiseless subsystem, Hα,2 is a noiseful
subsystem that supports a unique fixed density operator,
and K is a decaying subspace [18]. As a consequence of

the decomposition, there always exists the steady-state
manifold in the Markovian processes, and its structure
reads ρss =

∑
α pαρα,1 ⊗ ρα,2, where ρα,1 is an arbitrary

density operator on Hα,1, ρα,2 is a unique fixed density
operator on Hα,2, and pα is an arbitrary non-negative
number subject to

∑
α pα = 1. The steady states re-

main unchanged during the evolution of the system while
non-steady states suffer from exponential decay resulting
from the effects of dissipation and decoherence, i.e., the
steady-state manifold is attractive, provided that the at-
tractive condition, minλ6=0 |Re(λ)| > 0, is fulfilled, where
λ are the eigenvalues of L. The evolution of the open
system can be then confined to the steady-state mani-
fold in the long-time limit. By taking advantage of the
positive features of the Markovian dissipative processes,
i.e., the existence, the structure, and the attractiveness
of the steady-state manifold, one can achieve the goal
of both maintaining coherence and suppressing leakage,
thus implementing dissipation-assisted schemes success-
fully.
However, the Markovian process described by the

Lindblad master equation (1) is only an approximation
relying on a number of simplifications, which is usually
valid in the weak-coupling limit [19]. Real physical sys-
tems often feature non-Markovianity and evolve in the
processes described by the general master equation, i.e.,
the time-convolutionless master equation,

d

dt
ρ(t) = L(t)ρ(t), (2)

where L(t) is a time-dependent superoperator known as
the time-convolutionless generator [19]. Do any non-
Markovian quantum systems have the attractive steady-
state manifolds with the same structure as in Markovian
dissipative systems? In this paper, we address this issue.
We will show that such attractive steady-state manifolds
exist in the non-Markovian processes described by Eq.
(2) with the commutative time-dependent generator,

[L(t),L(t′)] = 0, (3)
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such that the dissipation-assisted schemes of Markovian
systems can be directly generalized to the non-Markovian
systems.
We present our result step by step in the following.
First, we prove the existence of the steady-state man-

ifold in the non-Markovian process expressed by Eq. (2)
with Eq. (3).
The dynamics of the open system can be expressed

in terms of a completely positive and trace-preserving
(CPTP) map, Λ(t) := exp(

∫ t

0 L(τ)dτ), transforming the
initial state ρ(0) to the state ρ(t) = Λ(t)ρ(0) at time
t. Hereafter, we denote by H (dim(H) < ∞) the Hilbert
space of the system, by D(H) the set of density operators
on the Hilbert space H, by Ft the set of fixed points of
the map Λ(t) at time t, i.e., Ft := {ρ ∈ D(H)|Λ(t)ρ = ρ},
and by F the collection of the fixed-point sets indexed
by t, i.e., F := {Ft}t.
According to Schauder’s fixed point theorem that any

continuous map on a convex and compact subset of a
Hilbert space has a fixed point, Λ(t) has a fixed point.
Besides, it is a general property of a finite-dimensional
topological vector space, known as the Heine-Borel prop-
erty, that every closed and bounded subset is compact
[20]. It follows that Ft is a nonempty compact set. Since
[Λ(t1),Λ(t2)] = 0 for any two time points t1 and t2, there
is Λ(t1)Λ(t2)ρ = Λ(t2)Λ(t1)ρ = Λ(t2)ρ for all ρ ∈ Ft1 .
It implies that Λ(t2) maps Ft1 into Ft1 . Using again
Schauder’s fixed point theorem, we obtain that Λ(t2) has
a fixed point belonging to Ft1 , i.e., inside the fixed-point
set of the dynamical map at time t1, one can find a subset
consisting of fixed points of the dynamical map at time
t2. Thus, Ft1 ∩ Ft2 6= ∅.
Since the intersection of two compact and convex sets,

Ft1 ∩ Ft2 , is compact and convex, the above procedure
can be repeated, e.g., inside Ft1 ∩ Ft2 , one can find a
subset consisting of fixed points of the dynamical map at
time t3, and hence Ft1 ∩Ft2 ∩Ft3 6= ∅. Continuing in this
manner, we obtain Ft1 ∩ Ft2 ∩ · · · ∩ Ftn 6= ∅ for n being
a finite integer. Hence, the collection F has the finite
intersection property [20]. From compactness property
of Ft and the finite intersection property of F , it follows
that

⋂
t Ft 6= ∅ [20]. This completes the proof of the

existence of steady states.
Second, we analyze the structure of the steady-state

manifold existing in the non-Markovian process ex-
pressed by Eq. (2) with Eq. (3).
To this end, we first establish an auxiliary map

P∞(t) := limN→∞ PN (t), where PN (t) = 1
N

∑N
n=1 Λ(t)

n

are the Cesàro means of the sequence {Λ(t)n, n =
1, 2, . . . }. For a finite-dimensional open system, the limit
of PN (t) forN → ∞ always exists. P∞(t) is a CPTPmap
satisfying P∞(t)Λ(t) = Λ(t)P∞(t) = P2

∞(t) = P∞(t).
We then have P∞(t)ρ = ρ for ρ ∈ Ft and Λ(t)P∞(t)ρ =
P∞(t)ρ for ρ ∈ D(H), which means that P∞(t) is a pro-
jection onto Ft, i.e., Ft = P∞(t)[D(H)].
Based on the auxiliary map P∞(t), we then estab-

lish another auxiliary map P being the projection onto
the set of steady states. Note that {P∞(t)}t is a fam-
ily of mutually commutative projections, which can be
simultaneously diagonalized. The number of distin-
guishing elements of {P∞(t)}t is finite [21]. We use
P∞(t1),P∞(t2), . . . ,P∞(tn) to represent these distin-
guishing elements. Let P := P∞(t1)P∞(t2) · · · P∞(tn).
P is a CPTP map satisfying the conditions P∞(t)P =
PP∞(t) = P2 = P . We then have Pρ = ρ for ρ ∈

⋂
t Ft

and P∞(t)Pρ = Pρ for ρ ∈ D(H), which means that
P is a projection onto the set of steady states, i.e.,⋂

t Ft = P [D(H)].
With the aid of P , we now identify the structure of the

steady states. Note that every density operator ρ has a
support, denoted by Pρ, which is the the smallest projec-
tion operator satisfying Tr(ρPρ) = 1. There exists a den-
sity operator ρ0 ∈

⋂
t Ft that satisfies Tr(ρPρ0

) = 1 for all
ρ ∈

⋂
t Ft, which can be obtained by convex combination.

Further, we decompose the Hilbert space as, H = H̃⊕K,
with H̃ := Pρ0

H and K := (I − Pρ0
)H, where I is the

identity operator. All steady states are then supported
within the subspace H̃. It can be shown that H̃ is invari-
ant under the action of P . Indeed, if P∗ is used to denote
the dual map of P , there are P∗(Pρ0

) ≤ P∗(I) = I and
thus Pρ0

−Pρ0
P∗(Pρ0

)Pρ0
≥ 0. Here, X ≤ Y means that

(Y − X) is positive semi-definite, and P and P∗ satisfy
the relation 〈X,P(Y )〉 = 〈P∗(X), Y 〉 for all operators X
and Y , where 〈X,Y 〉 := TrX†Y is the Hilbert-Schmidt
inner product. Besides, the fact that ρ0 is a fixed point of
P implies that Tr[ρ0(Pρ0

−Pρ0
P∗(Pρ0

)Pρ0
)] = 0. Since ρ0

is a full-rank density operator on the subspace H̃, there
is Pρ0

P∗(Pρ0
)Pρ0

= Pρ0
. It leads to Tr[Pρ0

P(ρ)] = 1 for

all density operators ρ on H̃, which means that H̃ is an
invariant subspace of P . Hence, we are able to define a
map, P̃ := P|H̃, whose action is identical to that of P on

the subspace H̃. The map P̃ satisfies all the conditions
in Ref. [22], i.e., it is a CPTP map, a projection, and
with a full-rank fixed point. Therefore, the map can be
explicitly expressed as

P̃ρ =
∑

α

Trα,1(PαρPα)⊗ ρα,2, (4)

corresponding to a certain decomposition of H̃, H̃ =
⊕αHα,1 ⊗ Hα,2, where Pα denotes the orthogonal pro-
jector onto the subspace Hα,1 ⊗Hα,2, and ρα,2 is a fixed
density operator on Hα,2.
From Eq. (4), we obtain the structure of the steady

states,

ρss =
∑

α

pαρα,1 ⊗ ρα,2, (5)

corresponding to the decomposition of the Hilbert space
H = ⊕αHα,1 ⊗ Hα,2 ⊕ K, where ρα,1 is an arbitrary
density operator on Hα,1, and pα is an arbitrary non-
negative number satisfying

∑
α pα = 1.
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Third, we discuss the attractiveness of the steady-
state manifold existing in the non-Markovian process ex-
pressed by Eq. (2) with Eq. (3).
It is well-known that in the Markovian case, the attrac-

tive condition reads minλ6=0 |Re(λ)| > 0, which is the es-
sential prerequisite condition for the attractiveness of the
steady-state manifold. However, in the non-Markovian
case, the gap Re(λ) may be zero, since the decay rates
may take negative values, which is a sign of the non-
Markovian memory effects and reflects a flow of infor-
mation from the environment back to the open system
[23]. Nevertheless, by resorting to the accumulation of
dissipation-decoherence effects over time instead of the
gap, we find that it is still available to achieve the attrac-
tiveness of the stead-state manifold in the non-Markovian
regime. We now show this point.
To find the attractive condition for the steady-state

manifold in the non-Markovian case, we express L(t) as
the form of the spectral decomposition,

L(t)ρ =
∑

µ

λµ(t)RµTr(L
†
µρ), (6)

where λµ(τ) are the spectral parameters, corresponding
to the gap in the Markovian case, and Rµ and Lµ, being
time-independent because of Eq. (3), define the damping
basis for L(t), satisfying Tr(RµL

†
ν) = δµν [24]. Equation

(6) implies that the dynamical map can be expressed as

Λ(t)ρ =
∑

µ

e
∫

t

0
λµ(t

′)dt′RµTr(L
†
µρ). (7)

The spectral parameters λµ(t) satisfy Re(
∫ t

0
λµ(t

′)dt′) ≤
0 due to the CPTP property of Λ(t). Besides, by using
the existence of steady states, we have that there must
exist some µ’s, corresponding to the steady-state man-
ifold, such that λµ(t) = 0 during the whole evolution.
From Eq. (7), we can then conclude that the steady-
state manifold is attractive if and only if

∣∣∣∣Re
(∫ t

0

λµ(t
′)dt′

)∣∣∣∣ → ∞, when t → ∞, (8)

for all the other µ’s that are not corresponding to the
steady-state manifold. Combining Eqs. (7) and (8), we
immediately have that the evolution of the system will
be confined to the steady-state manifold in the long-
time limit, which is the desirable property for imple-
menting dissipation-assisted schemes. It is obvious that
when λµ(t) is time-independent, Eq. (8) reduces to
minλ6=0 |Re(λ)|t → ∞ for t → ∞, i.e. minλ6=0 |Re(λ)| >
0, which is just the attractive condition for the Marko-
vian dissipative processes. In this sense, Eq. (8) can
be regarded as a generalization of the attractive condi-
tion from Markovian dissipative processes to the non-
Markovian case.
So far, we have completed the proof that in the non-

Markovian process expressed by Eq. (2) with Eq. (3), the

steady states always exist, the steady-state manifold is
with the structure expressed by Eq. (5), and the steady-
state manifold is attractive if and only if Eq. (8) holds.
After having presented the main result, we would like

to discuss on some aspects of its application in the fol-
lowing.
First, it is instructive to note that a manifold of steady

states always exists in the quantum system described by
Eq. (2) as long as L(t) satisfies the commutative relation
Eq. (3), while the existence is not true in general if Equa-
tion (3) is unsatisfied. We would like to take the model in
Ref. [30, 31] as an example to illustrate this point. The
model is a double quantum dot system coupled to an elec-
tron reservoir with the Hamiltonian H = HS +HB +HI ,
where HS =

∑2
n=1 ǫa

†
nan, HB =

∑
k εkb

†
kbk, and HI =∑2

n=1

∑
k e

iαna†n ⊗ gkbk+h.c., corresponding to the sys-
tem, the reservoir, and the interaction between them,
respectively. a†n and an are creation and annihilation op-
erators for nth energy level of the system with energy
ǫ, b†k and bk are creation and annihilation operators for
kth energy level of the reservoir with energy εk, and the
coupling strength is denoted by gk with an explicit phase
αn. By eliminating completely all the degrees of freedom
of the reservoir, one can obtain an exact non-Markovian
master equation for the system, in which the decoherence
term reads

L(t)ρ = κ(t)(2AρA† − {A†A, ρ}) + κ̃(t)(2A†ρA− {AA†, ρ}),(9)

where A = 1√
2

[
a1 + ei(α1−α2)a2

]
is an effective fermion

operator, and κ(t) and κ̃(t) are the decay rates deter-
mined microscopically and nonperturbatively. In general,
the generator expressed in Eq. (9) does not satisfy Eq.
(3), and detailed calculations show that there is not a
manifold of steady states in this case. However, the sys-
tem will possess steady states if Eq. (3) is fulfilled, i.e., at
least one of the decay rates vanishes. To achieve the goal,
one can apply a large bias to raise (or lower) the Fermi
surface of the reservoir such that Eq. (3) is satisfied. Fur-
ther calculations verify that the steady states can consti-
tute a non-trivial decoherence-free subspace, which shows
that one can physically realize the decoherence-free sub-
space in both weakly and strongly non-Markovian regime
[31].
Second, it is reasonable to believe that the non-

Markovian process expressed by Eq. (2) with Eq. (3) can
provide a promising way for implementing dissipation-
assisted schemes. On one hand, our result shows that the
non-Markovian process expressed by Eq. (2) with Eq.
(3) possesses the same positive features as the Marko-
vian dissipative process described by the Lindblad equa-
tion, which has found its applications in implementing
dissipation-assisted schemes. On the other hand, there
are indeed a number of open systems fulfilling Eqs. (2)
with (3), such as the pure decoherence model [25–27], the
damped Jaynes-Cummings model [19], the tight-binding
quantum diffusion model [28], the quantum transport
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model [29], and the model of spontaneous decay of a
two-level system [19]. However, in the practical applica-
tion, there may still be problems needed to be overcome.
For instance, a system fulfilling Eq. (2) with Eq. (3)
may lack interests for practical purposes, e.g., its steady-
state manifold may be only one-dimensional subspace
and hence not sufficient for the purpose of quantum com-
putation. Such problems may be resolved by resorting to
quantum control and the environment engineering. We
would like to take the decoherence model of two qubits
in Ref. [32] as an example to illustrate this point. With-
out loss of generality, the master equation describing the
dynamics of the two qubits reads

dρ

dt
=

γ1(t)− γ2(t)

2
L1ρ+

γ1(t) + γ2(t)

2
L2ρ, (10)

with L1ρ := (σA
z −σB

z )ρ(σA
z −σB

z )− 1
2{(σ

A
z −σB

z )2, ρ} and
L2ρ := (σA

z + σB
z )ρ(σA

z + σB
z )− 1

2{(σ
A
z + σB

z )2, ρ}. Here,
superscripts A and B refer to the first and second qubit,
respectively, and λ1(t) and λ2(t) are decay rates depend-
ing on the details of the microscopic model. The master
equation described by Eq. (10) fulfills Eq. (3). Yet,
in general, the attractive steady-state manifold may be
one-dimensional decoherence-free subspaces. Neverthe-
less, by handling the spatial positions of the qubits such
that they are very close with respect to the bath coher-
ence length, the system can be controlled to experience
collective decoherence. As is well-known, the non-trivial
decoherence-free subspace can then appear in the system.
This example can be generalized to the pure decoherence
model of arbitrary qubits [25–27].

In conclusion, we have found a family of non-
Markovian dissipative processes that possess the same
positive features as Markovian dissipative processes.
Specifically, we have proved that a steady-state manifold
always exists in the non-Markovian dissipative processes
described by the general master equation (2) with L(t)
satisfying the commutation [L(t),L(t′)] = 0. The struc-
ture of the steady-state manifold is expressed by Eq. (5),
which is the same as that in the Markovian dissipative
processes, and the manifold is attractive if the attractive
condition (8) is satisfied. Our finding provides a promis-
ing way for implementing dissipation-assisted schemes
in quantum information processing. By taking advan-
tage of the same positive features, i.e., the existence,
the structure, and the attractiveness of the steady-state
manifold, the dissipation-assisted schemes implemented
in the Markovian systems can be directly generalized to
the non-Markovian systems.
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