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We consider the optical conductivity in the one dimensional Hubbard model in the metallic phase
close to half filling. In this regime most of the spectral weight is located at frequencies above an
energy scale Eopt that tends towards the optical gap in the Mott insulating phase for vanishing
doping. Using the Bethe Ansatz we relate Eopt to thresholds of particular kinds of excitations in
the Hubbard model. We then employ a mobile impurity models to analyze the optical conductivity
for frequencies slightly above these thresholds. This entails generalizing mobile impurity models to
excited states that are not highest weight with regards to the SU(2) symmetries of the Hubbard
chain, and that occur at a maximum of the impurity dispersion.

I. INTRODUCTION

Electron-electron interactions play a crucial rôle in determining the physical response to external probes of various
quasi-one-dimensional materials e.g. organic semiconductors1. In order to successfully describe the mechanisms and
excitations responsible for distinct physical phenomena, it is imperative to have a microscopic model capturing the
essence of the physics involved; providing a framework within which realistic physical systems may be interpreted.
The one-dimensional Hubbard model2 offers an excellent theoretical laboratory in which a comprehensive microscopic
understanding of the origin of various behaviours can be developed. The Hamiltonian for the Hubbard model is given
by

H = −t
∑

i,σ

c†i+1,σci,σ + c†i,σci+1,σ + U
∑

i

ni,↑ni,↓

− µ
∑

i

(ni,↑ + ni,↓)−B
∑

i

(ni,↑ − ni,↓).
(1)

Here, cj,σ annihilates a fermion with spin σ = ↑, ↓ at site j, nj,σ = c†j,σcj,σ is the number operator, t is the hopping
parameter, µ is the chemical potential, B is the magnetic field, and U ≥ 0 is the strength of the on-site repulsion.

The low-energy degrees of freedom in the metallic phase of the Hubbard chain are described2–4 by a (perturbed)
spin-charge separated Luttinger liquid5–8, with Hamiltonian

H =
∑

α=c,s

vα
16π

∫
dx

[
1

Kα

(
∂Φα
∂x

)2

+Kα

(
∂Θα

∂x

)2
]

+ irrelevant operators. (2)

The parameters Kα, vα can be calculated for the Hubbard model by solving a system of linear integral equations (see
Appendix A). The Bose fields Φα(x) and dual fields Θα(x) obey the commutation relation

[Φα(x),Θβ(y)] = 4πiδαβsgn(x− y). (3)

The spectrum of low-lying excitations relative to the ground state for a large but finite system of length L in zero
magnetic field is given by2–4

∆E =
2πvc
L

[
(∆Nc)

2

8Kc
+ 2Kc

(
Dc +

Ds

2

)2

+N+
c +N−c

]
+

2πvs
L

[(
∆Ns − ∆Nc

2

)2

2
+
D2
s

2
+N+

s +N−s

]
, (4)

where ∆Nα, Dα and N±α are integers or half-odd integers subject to the “selection rules”

N±α ∈ N0, ∆Nα ∈ Z, Dc =
∆Nc + ∆Ns

2
mod 1, Ds =

∆Nc
2

mod 1. (5)

At low energies, correlation functions can be calculated from (2) and generically exhibit singularities at the thresholds
of the allowed collective spin and charge degrees of freedom, with power-law exponents given in terms of the quantities
∆Nα, Dα and N±α . However, when working at a finite energy scale RG irrelevant terms have a non-zero coupling
and may (and in fact generically do) significantly alter the predictions of the unperturbed Luttinger-liquid9–35. Over
the last decade or so a fairly general method for taking into account the effects of certain irrelevant operators in
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the vicinities of kinematic thresholds has been developed, which is reviewed in Refs. 36 and 37. The case of spin-
charge separated Luttinger liquids has very recently been revisited35 in order to make it explicitly compatible with
exactly known properties of the Hubbard model. The essence of this approach is that, when considering a response
function, there are thresholds in the (k, ω)-plane that correspond to particular excitations. In integrable models, these
excitations hold privileged positions: they are stable (i.e. have infinite lifetimes) and can be identified in terms of the
exact solution. If the kinematics near the threshold are described by a case in which small number of high-energy
excitations carry most of the energy (in the precise sense of up to corrections of O(L−1)) then the problem becomes
analogous to that of the X-ray edge singularity problem for a mobile impurity38.

In this work we employ mobile impurity methods to study the optical conductivity

σ1(ω) = − Im χJ(ω)

ω
, χJ(ω) = −ie2

∫ ∞

0

dt eiωt
L/2−1∑

l=−L/2

〈GS|[Jl(t), J0(0)]|GS〉, (6)

where Jj is the density of the current operator

Jj = −it
∑

σ

[
c†j,σcj+1,σ − c†j+1,σcj,σ

]
. (7)

In the Mott insulating phase of the Hubbard model the optical conductivity has been previously determined39–43:
σ1(ω) vanishes inside the optical gap 2∆, where ∆ is the Mott gap. At frequencies ω > 2∆ there is a sudden power-law
onset σ1(ω) ∼

√
ω − 2∆. Away from half-filling, the system is a metal and therefore has a finite conductivity for all

ω, specifically acquiring a Drude peak44,45 at ω = 0. Close to half-filling one expects most of the spectral weight
in σ1(ω) to be located above an energy scale Eopt that tends to 2∆ as we approach half-filling. The scale Eopt has
been previously identified in Ref. 46. In the same work it was conjectured that the optical conductivity increases in
a power-law fashion above Eopt

σ1(ω) ∼ (ω − Eopt)
ζ

Θ(ω − Eopt) . (8)

As we will see in the following, the mobile impurity approach leads to rather different results.
The outline of this paper is as follows. In Sec. II, we consider the spectral representation of the optical conductivity

and identify the quantum numbers of the states contributing non-zero spectral weight. In Sec. III we review the Bethe
Ansatz description of the ground state and construct the excited states considered in Sec. II, specifically identifying
the thresholds of these continua. In Sec. IV we calculate the threshold/edge behaviour for the associated excitations
via the mobile impurity approach, fixing the coupling constants using the Bethe Ansatz to determine the finite-size
corrections to the energy in the presence of the high-energy excitation.

II. SPECTRAL REPRESENTATION OF THE CURRENT-CURRENT CORRELATOR

In considering the optical conductivity as defined in (6), the basic quantity of interest is

〈GS|Jj+`(t)Jj(0)|GS〉 =
∑

n

〈GS|Jj+`|n〉〈n|Jj |GS〉e−i(En−EGS)t, (9)

where {|n〉} constitute a complete set of energy eigenstates. To understand threshold behaviours, we wish to identify
the states contributing to this sum. A crucial insight to this end are global continuous symmetries and their relation
to the energy eigenstates provided by the exact Bethe Ansatz solution47–51. In the case of zero magnetic field and
chemical potential, the Hubbard model possesses two independent SU(2) symmetries2,52,53:

Sz =
1

2

L∑

i=1

(c†i,↑ci,↑ − c
†
i,↓ci,↓), S+ =

L∑

i=1

c†i,↑ci,↓, S− =

L∑

i=1

c†i,↓ci,↑ ,

ηz =
1

2

L∑

i=1

(c†i,↑ci,↑ + c†i,↓ci,↓ − 1), η+ =

L∑

i=1

(−1)ic†i,↓c
†
i,↑, η− =

L∑

i=1

(−1)ici,↑ci,↓.

(10)

The Sα generate the well known spin rotational SU(2) symmetry, while the ηα are known as η-pairing generators.
The Bethe Ansatz provides us with the lowest weight states47, which we denote by |LWS ;m〉. Here m is a multi-index
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which labels all distinct regular Bethe Ansatz states in the sense of Ref. 47. The states are lowest-weight with respect
to the two SU(2) algebras in the sense that

η−|LWS ;m〉 = 0 = S+|LWS ;m〉 . (11)

Each state |LWS ;m〉 is defined on a system of length L and has a well-defined number of electrons N and z-component
of spin Sz. A complete basis of states is given by

{
(η+)k(S−)l|LWS ;m〉 | k = 0, . . . , L−N ; l = 0, . . . , 2Sz

}
. For the

repulsive Hubbard model below half-filling, the ground state in zero magnetic field and finite chemical potential is a
spin singlet and a lowest-weight η-pairing state i.e.

S−|GS〉 = S+|GS〉 = η−|GS〉 = 0. (12)

Using the algebra defined in (10) it is readily verified that [η−, [η−, Jj ]] = 0 and therefore for integer m ≥ 0

〈LWS ;n|(η−)m+1Jj |GS〉 = 〈LWS ;n|(η−)m[η−, Jj ]|GS〉 = δm,0〈LWS ;n|[η−, Jj ]|GS〉. (13)

This shows that the only states that may have a non-zero overlap with Jj |GS〉 are lowest weight states |LWS ;m〉 or
η-pairing descendant states of the form η+|LWS ;m〉, which implies the expansion

Jj |GS〉 =
∑

m

(
am|LWS ;m〉+ bmη

+|LWS ;m〉
)
, (14)

where am, bm are complex coefficients. Substituting this into (9) provides further constraints on the subset of energy
eigenstates that may make non-vanishing contributions to the correlator. The subset consists of

1. Lowest-weight states with NGS electrons with S2 = Sz = 0;

2. States of the form η+|LWS ;m〉, with |LWS ;m〉 having NGS − 2 electrons and S2 = Sz = 0.

Using that [H, η+] = −2µη+ we can thus express the current-current correlator in the form

CJJ(`, t) = 〈GS|Jj+`(t)Jj(0)|GS〉
=
∑

m

〈GS|Jj+`|LWS ;m〉〈LWS ;m|Jj |GS〉e−i(Em−EGS)t

+
∑

m

〈GS|Jj+`η+|LWS ;m〉〈LWS ;m|η−Jj |GS〉e−i(Em−EGS−2µ)t. (15)

We note that µ < 0 and hence −2µ is a positive energy shift. It is not obvious how to understand the second term in
the framework of a mobile impurity model. However, using the lowest-weight property η−|GS〉 = 0, we can rewrite
(15) in the form

CJJ(`, t) =
∑

m

〈GS|Jj+`|LWS ;m〉〈LWS ;m|Jj |GS〉e−i(Em−EGS)t

+
∑

m

〈GS|[Jj+`, η+]|LWS ;m〉〈LWS ;m|[η−, Jj ]|GS〉e−i(Em−EGS−2µ)t. (16)

The main advantage of the representation (16) is that it only involves regular Bethe Ansatz states, which can be
constructed by standard methods. As we concern ourselves only with the threshold behaviours of the optical conduc-
tivity, we need only focus on the lower edges of the various excitation continua. On general grounds, processes with
a small number of excitations above the ground state will dominate. Defining

Oj = [η−, Jj ] = 2it(−1)j (cj,↓cj+1,↑ + cj+1,↓cj,↑) , (17)

we can recast (18) in the form

CJJ(`, t) =
∑

m

|〈GS|Jj |LWS ;m〉|2e−i(Em−EGS)t+iPm`

+
∑

m

|〈GS|O†j |LWS ;m〉|2e−i(Em−EGS−2µ)t+i(Pm−π)` ≡ C(1)
JJ (`, t) + C

(2)
JJ (`, t). (18)

Here the additional contribution to the momentum arises because acting with η+ shifts the momentum by π. In terms

of the contributions C
(a)
JJ (`, t) the optical conductivity can then be written as

σ1(ω) =
e2

2ω

[
2∑

a=1

∑

`

∫ ∞

−∞
dt eiωt C

(a)
JJ (`, t)−

{
ω → −ω}

]
≡

2∑

a=1

σ
(a)
1 (ω). (19)
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III. BETHE ANSATZ FOR THE HUBBARD MODEL

To gain further insight into the representation (18) we now construct the ground state and low-lying excitations
above it. We first calculate the energy of such excitations in the thermodynamic limit. This will allow us to identify,
on kinematic grounds, which states within the manifold identified earlier are important with respect to the threshold
behaviours we aim to describe. We therefore recapitulate some results from Ref. 2 to allow a self-contained discussion.

For large system sizes, the eigenstates of the repulsive Hubbard model can be expressed in terms of solutions of the
Takahashi equations, expressed in terms of so-called counting functions. In the case of N electrons, M of which are
spin-down, these are defined by

zc(kj) = kj +
1

L

∞∑

n=1

Mn∑

α=1

θ

(
sin kj − Λnα

nu

)
+

1

L

∞∑

n=1

M ′n∑

α=1

θ

(
sin kj − Λ′

n
α

nu

)
, j = 1, . . . , N − 2M ′, (20)

zn(Λnα) =
1

L

N−2M ′∑

j=1

θ

(
Λnα − sin kj

nu

)
− 1

L

∞∑

m=1

Mm∑

β=1

Θnm

(
Λnα − Λmβ

u

)
, α = 1, . . . ,Mn, (21)

z′n(Λ′
n
α) = − 1

L

N−2M ′∑

j=1

θ

(
Λ′
n
α − sin kj
nu

)
− 1

L

∞∑

m=1

M ′m∑

β=1

Θnm

(
Λ′
n
α − Λ′

m
β

u

)

+ 2Re[arcsin(Λ′
n
α + niu)], α = 1, . . . ,M ′n, (22)

where θ(x) = 2 arctan(x), u = U/4t,

Θnm(x) =




θ
(

x
|n−m|

)
+ 2θ

(
x

|n−m|+2

)
+ · · ·+ 2θ

(
x

n+m−2

)
+ θ

(
x

n+m

)
, n 6= m

2θ
(
x
2

)
+ 2θ

(
x
4

)
+ · · ·+ 2θ

(
x

2n−2

)
+ θ

(
x
2n

)
, n = m

, (23)

and

M =

∞∑

n=1

n(Mn +M ′n), M ′ =

∞∑

n=1

nM ′n. (24)

Takahashi’s equations are

zc(kj) =
2πIj
L

, zn(Λnα) =
2πJnα
L

, z′n(Λ′
n
α) =

2πJ ′
n
α

L
. (25)

Here the sets {Ij}, {Jnα}, {J ′nα} consist of integers or half-odd integers depending on the particular state under
consideration, obeying the “selection rules”

Ij ∈
{
Z + 1

2 if
∑
m(Mm +M ′m) odd

Z if
∑
m(Mm +M ′m) even

, − L

2
< Ij ≤

L

2
,

Jnα ∈
{
Z if N −Mn odd

Z + 1
2 if N −Mn even

, |Jnα | ≤
1

2
(N − 2M ′ −

∞∑

m=1

tnmMm − 1),

J ′
n
α ∈

{
Z if L−N +M ′n odd

Z + 1
2 if L−N +M ′n even

, |J ′nα | ≤
1

2

(
L−N + 2M ′ −

∞∑

m=1

tnmM
′
m − 1

)
,

(26)

where tnm = 2 min(m,n) − δmn. The energy and momentum, measured in units of t, of an eigenstate characterised
by the set of roots {kj ,Λnα,Λ′mβ } are given by

E = −
N−2M ′∑

j=1

(2 cos kj + µ+ 2u+B) + 2BM + 4

∞∑

n=1

M ′n∑

β=1

Re
√

1− (Λ′nβ + niu)2 + Lu, (27)

P =



N−2M ′∑

j=1

kj −
∞∑

n=1

M ′n∑

β=1

(
2 Re arcsin

(
Λ′
n
β + niu

)
− (n+ 1)π

)

mod 2π. (28)

The monotonicity of the counting functions ensures that specifying a set of integers/half-odd integers in accordance
with the “selection rules” uniquely determines a solution of the Takahashi equations.
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A. Ground state

We consider the case where L is even, the total number of electrons NGS is even and the number of down spins
MGS is odd. The ground state is then obtained by choosing the set {Ij , Jnα , J ′mβ } to be2

Ij = −NGS
2
− 1

2
+ j, j = 1, . . . , NGS , (29)

J1
α = −MGS

2
− 1

2
+ α, α = 1, . . . ,MGS . (30)

This configuration is shown for the example L = 16, NGS = 2MGS = 10 in Fig. 1. We denote the ground state, in
the previously established notation, by

|GS〉 = |LWS ; {Ij}, {J1
α}〉. (31)

Ij ∈ Z + 1
2

1
2

− 1
2

3
2

− 3
2

5
2

− 5
2

7
2

− 7
2

9
2

− 9
2

−L
2

L
2

−NGS−1
2

NGS−1
2

J1
α ∈ Z

−2 −1 0 1 2

−MGS−1
2

MGS−1
2

Figure 1: Configuration of the integers for the ground state, explicit numbers given are for L = 16, NGS = 10,
MGS = 5

1. Thermodynamic limit

On taking the thermodynamic limit at fixed density nGS and magnetisation mGS the roots become dense and we
can describe the ground state in terms of root densities ρc,0, ρs,0, which satisfy linear integral equations2

ρc,0(k) =
1

2π
+ cos k

∫ A

−A
dΛ a1(sin k − Λ)ρs,0(Λ), (32)

ρs,0(Λ) =

∫ Q

−Q
dk a1(Λ− sin k)ρc,0(k)−

∫ A

−A
dΛ′ a2(Λ− Λ′)ρs,0(Λ′). (33)

Here an(x) = 2nu
2π

1
(nu)2+x2 and the integration boundaries Q and A are determined by

∫ Q

−Q
dk ρc,0(k) = nGS ,

∫ A

−A
dΛ ρs,0(Λ) =

1

2
(nGS − 2mGS) . (34)

The energy density of the system is given to o(1) by2

eGS =

∫ Q

−Q

dk

2π
εc(k) + u, (35)

where

εc(k) = −2 cos k − µ− 2u−B +

∫ A

−A
dΛ a1(sin k − Λ)εs(Λ), (36)

εs(Λ) = 2B +

∫ Q

−Q
dk cos k a1(Λ− sin k)εc(k)−

∫ A

−A
dΛ′ a2(Λ− Λ′)εs(Λ

′). (37)
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The dressed energies εc(k) and εs(Λ) satisfy εc(±Q) = εs(±A) = 0. The dressed momenta are given by2

pc(k) = k +

∫ A

−A
dΛ ρs,0(Λ)θ

(
sin k − Λ

u

)
, (38)

ps(Λ) =

∫ Q

−Q
dk ρc,0(k)θ

(
Λ− sin k

u

)
−
∫ A

−A
dΛ′ ρs,0(Λ′)θ

(
Λ− Λ′

2u

)
. (39)

B. Excitations contributing to C
(1)
JJ (`, t).

We now turn to excited states that contribute to the spectral representation (18) of C
(1)
JJ (`, t). These are lowest

weight states of the spin and η-pairing SU(2) algebras with quantum numbers N = NGS , M = MGS .

1. “Particle-hole” excitation with N = NGS, M = MGS.

Creating a particle-hole excitation in the charge degrees of freedom yields a state with the same charge and spin
quantum numbers as the ground state, but with a finite momentum and energy difference. The (half-odd) integers
for this type of excitation are given by

Ij =

{
−NGS+1

2 + j + Θ
(
−NGS+1

2 + j − Ih
)
, j = 1, . . . , NGS − 1

Ip, j = NGS
, (40)

Jα = −MGS + 1

2
+ α, α = 1, . . . ,MGS , (41)

where Θ(x) = 1 for x ≥ 0 and 0 otherwise. The arrangement for these integers is shown in Fig. 2. This excitation is

Ij ∈ Z + 1
2

1
2

− 1
2

3
2

− 3
2

Ih

5
2

− 5
2

7
2

− 7
2

9
2

− 9
2

Ip

−L
2

L
2

−NGS−1
2

NGS−1
2

J1
α ∈ Z

−2 −1 0 1 2

−MGS−1
2

MGS−1
2

Figure 2: Configuration of the integers for the particle-hole excitation above the ground state, explicit numbers
given are for L = 16, NGS = 10, MGS = 5

two-parametric and has an energy and momentum of the form

E = eGSL+ εc(k
p)− εc(kh) + o(1),

P = pc(k
p)− pc(kh) + o(1),

(42)

where the rapidities are determined by zc(k
h) = 2πIh

L , zc(k
p) = 2πIp

L . This forms a continuum of excitations above
the ground state, shown in Fig. 3.

2. “k-Λ string” excitation

We start by considering excitations with N = NGS , M = MGS involving a single (“k-Λ string”) bound state. This
excitation has been considered previously e.g. in Section 7.7.2 of Ref. 2. It involves having a single (half-odd) integer

in the sector corresponding to the set {J ′1α}. The lowest-energy bound state which can be created comprises of two
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0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
−
L
e G

S

p/π

Particle-hole continuum for U = 8, n = 0.8

Figure 3: Particle-hole excitation continuum above the ground state

ks and one Λ forming a string pattern in the complex plane. The Takahashi equations describe the real centres of
these and other root patterns. The case we consider is realised by the integer configuration

Ij = −NGS − 2

2
− 1

2
+ j, j = 1, . . . , NGS − 2, (43)

J1
α = −MGS − 1

2
− 1

2
+ α, α = 1, . . . ,MGS − 1, (44)

J ′
1
β = J ′

p
, β = 1, (45)

which is displayed in Fig. 4. In the notations used above, we can denote this excited state by |LWS ; {Ij}, {J1
α}, {J ′1β}〉.

We can again take the thermodynamic limit and compare the energy of this excited state with that of the ground

Ij ∈ Z + 1
2

1
2

− 1
2

3
2

− 3
2

5
2

− 5
2

7
2

− 7
2

−L
2

L
2

−NGS−3
2

NGS−3
2

J1
α ∈ Z

1
2

− 1
2

3
2

− 3
2

−MGS−2
2

MGS−2
2

J ′
1
α ∈ Z

−3 −2 −1 0

J ′p

1 2 3

−L−N
2

L−N
2

Figure 4: Configuration of the integers for the k-Λ string excited state

state. Following similar manipulations to the case of the ground state energy, the O(1) corrections can be calculated2.
The energy is given by

E = LeGS + εkΛ(Λp) + o(1), (46)

where

εkΛ(Λ) = 4Re
√

1− (Λ− iu)2 − 2µ− 4u+

∫ Q

−Q
dk cos k a1(sin k − Λ) εc(k). (47)
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The momentum is given by P = pkΛ(Λp), where

pkΛ(Λ′) = −2Re arcsin (Λ′ + iu) +

∫ Q

−Q
dk ρc,0(k)θ

(
Λ′ − sin k

u

)
, (48)

and Λp is determined by z′1(Λp) = 2πJ′p

L . This form can be readily interpreted physically as a particle-like excitation
above the ground state. The k-Λ string dispersion describes the threshold of an excitation continuum obtained by
adding e.g. particle-hole excitations in the charge sector. The dispersion relation for this excitation and the particle-
hole continuum is shown in Fig. 5. The existence of such a continuum at p = 0 is necessary to understand the problem
within the mobile impurity approach to threshold singularities.

5.85

5.86

5.87

5.88

5.89

5.9

5.91

5.92

5.93

5.94

5.95

5.96

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

ε k
Λ
(Λ

)

p(Λ)/π

k-Λ dispersion relation for U = 8, n = 0.8

(a) Dispersion relation εkΛ(k) for the k-Λ string.

5.5

6

6.5

7

7.5

8

8.5

9

9.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
−
L
e G

S

p/π

k-Λ string and particle-hole continuum for U = 8, n = 0.8

k-Λ + particle-hole continuum
k-Λ dispersion

(b) k-Λ and charge particle-hole excitation continuum.

Figure 5: k-Λ string dispersion and particle-hole excitation continuum above this for U = 8, n = 0.8. For small
momenta, the k-Λ string dispersion marks the lower edge of a continuum described by additional excitations e.g.

particle-hole excitations in the charge sector.

C. Excitations contributing to C
(2)
JJ (`, t).

We now turn to excited states that contribute to the spectral representation (18) of C
(2)
JJ (`, t). These are lowest

weight states of the spin and η-pairing SU(2) algebras and their quantum numbers are N = NGS − 2, M = MGS − 1.

1. “Particle-hole” excitation with N = NGS − 2, M = MGS − 1.

The integer configuration for this type of excitation is given by

Ij =

{
−NGS2 + j + Θ

(−NGS
2 + j − Ih

)
, j = 1, . . . , NGS − 3

Ip, j = NGS − 2
, (49)

Jα = −MGS

2
+ α, α = 1, . . . ,MGS − 1 . (50)

This is shown graphically in Fig. 6.
In complete analogy to the previous case, the energy and momentum of this state are given by

E = LeGS + εc(k
p)− εc(kh) + o(1),

P = pc(k
p)− pc(kh)± 2kF + o(1), (51)

where kp and kh are determined by zc(k
p) = 2πIp

L , zc(k
h) = 2πIh

L . The contributions ±2kF arise from the asymmetry
of the charge “Fermi sea”, leaving a choice of two parity-related states. The continuum of excitations given by (51)
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Ij ∈ Z
−4 −3 −2

Ih

−1 0 1 2 3

Ip −
NGS−2

2
NGS−4

2

−L
2

L
2

Jα ∈ Z + 1
2

1
2

− 1
2

3
2

− 3
2

−MGS−2
2

MGS−2
2

Figure 6: Integer configuration for the particle-hole excitation, explicit numbers for L = 16, NGS = 10, MGS = 5.

is shown in Fig. 7, and consists of the union of two copies of the continuum depicted in Fig. 3 shifted by ±2kF
respectively. We note that in order to make closer contact with the spectral representation (18) we have shifted the
momentum by π.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-1 -0.5 0 0.5 1

E
−
L
e G

S

(p− π)/π

“Particle hole” excitation continuum for U = 8, n = 0.8

Figure 7: Continuum for particle-hole excitation with momentum shifted for clarity.

2. “Two particle” excitation with N = NGS − 2, M = MGS − 1.

A closely related type of excitation corresponds to the choice of (half-odd) integers

Ij =





−NGS−4
2 + j, j = 1, . . . , NGS − 4

Ip1 , j = NGS − 3,

Ip2 , j = NGS − 2

, (52)

Jα = −MGS

2
+ α, α = 1, . . . ,MGS − 1. (53)

Such a configuration is shown in Fig. 8 and can be thought of as involving two particles associated with Ip1 and Ip2

respectively. The energy and momentum of this excitation are

E = LeGS + εc(k
p1) + εc(k

p2) + o(1),

P = pc(k
p1) + pc(k

p2)± 2kF + o(1), (54)

with zc(k
pi) = 2πIpi

L . The continua corresponding to (54) are shown in Fig. 9. We note that both possible choices
±2kF have been taken into account, and we have again shifted the total momentum by π in order to make closer
contact with the spectral representation (18) of our correlator.



10

Ij ∈ Z
−2 −1 0 1 2 3

Ip1 Ip2−NGS−6
2

NGS−4
2

−L
2

L
2

Jα ∈ Z + 1
2

1
2

− 1
2

3
2

− 3
2

−MGS−2
2

MGS−2
2

Figure 8: Integer configuration for the particle-particle excitation, explicit numbers for L = 16, NGS = 10, MGS = 5.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.5 0 0.5 1

E
−
L
e G

S
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“Particle-particle” excitation continuum for U = 8, n = 0.8

Figure 9: Continuum for particle-particle excitation with momentum shifted for clarity.

3. “Two hole” excitation with N = NGS − 2, M = MGS − 1.

Finally, we consider excitations characterised by the distribution of (half-odd) integers

Ij = −NGS
2

+ j + Θ

(
−NGS

2
+ j − Ih1

)
+ Θ

(
−NGS

2
+ j − Ih2

)
, j = 1, . . . , NGS − 2, (55)

Jα = −MGS

2
+ α, α = 1, . . . ,MGS − 1, (56)

which is displayed in Fig. 10. We see that these states can be viewed as involving two holes associated with Ih1 and

Ij ∈ Z
−4 −3 −2 −1

Ih1

0 1 2

Ih2

3 4 5

−NGS−2
2

NGS
2

−L
2

L
2

Jα ∈ Z + 1
2

1
2

− 1
2

3
2

− 3
2

−MGS−2
2

MGS−2
2

Figure 10: Integer configuration for two hole excited state, explicit numbers for L = 16, NGS = 10, MGS = 5.
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Ih2 respectively. The energy and momentum of this excitation are given by

E = LeGS − εc(kh1)− εc(kh2) + o(1),

P = −pc(kh1)− pc(kh2)± 2kF + o(1), (57)

with zc(k
hi) = 2πIhi

L . The continua for these excitations are shown in Fig. 11, where we have taken both possible
choices of ±2kF into account and we again have shifted the total momentum by π in order to make closer contact
with the spectral representation (18) of our correlator.

0

1

2

3

4

5

6

7

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
−
L
e G

S

(p− π)/π

“Two hole” excitation continuum for U = 8, n = 0.8

Figure 11: Continuum for two hole excitation with momentum shifted for clarity.

D. Excitation thresholds at commensurate fillings

By considering additional excitations around the “Fermi points” in the charge sector we can construct other excita-
tions that are degenerate in energy (to o(1)), but differ in their momenta by integer multiples of 4kF . As we consider
the case of zero magnetic field, there is no freedom to rearrange the integers in the spin sector. In this way we can
determine the thresholds for a given class of excited states.

1. The absolute threshold is obtained from the particle-hole excitation III B 1. It is depicted by a dashed red line
in Fig. 12. At zero momentum, the relevant value for the optical conductivity, the absolute threshold occurs
at zero energy. At low energies the optical conductivity is dominated by particle-hole excitations. Close to
half-filling, the spectral weight of this contribution is small and tends to zero for n→ 1.

2. Above an energy scale that tends to the Mott gap as the band filling approaches one from below, excitations
involving a single k-Λ string of length two exist. Their threshold is shown as a dashed green line in Fig. 12.
Precisely at half filling these excitations do not contribute to the optical conductivity2,39,40 as a result of the
enhanced symmetry: at half filling this excitation describes a singlet of the η-pairing SU(2) algebra and does
not contribute to σ1(ω).

3. For band fillings close to n = 1 there are other excitations of the form η+|LWS ,m〉 that contribute to the
optical conductivity. At half-filling these are the only states contributing to σ1(ω) in the frequency regime
2∆ ≤ ω ≤ 4∆, where ∆ is the Mott gap. Below half-filling, their contribution to σ1(ω) can be cast in the form

of C
(2)
JJ (`, t) in (18), and the states to be considered are then given by (III C 1), (III C 2) and (III C 3).

The thresholds shown in Fig. 12 are at a high commensurability: 5(4kF ) = 8π. We note that thresholds involving
high-order umklapp processes are suppressed in σ1(ω), cf. Refs. 10, 14, and 15.
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Figure 12: The continuum of lowest-lying excitations of the Hubbard model involving only the charge sector for
n = 0.8, U = 10. As the optical conductivity is defined at zero momentum, only the features encountered at P = 0

are relevant. The k-Λ string dispersion defines the lower edge of a continuum of excitations involving the k-Λ string.

IV. MOBILE IMPURITY APPROACH TO THRESHOLD SINGULARITIES

Our goal is to determine the behaviour of the optical conductivity in the metallic phase of the Hubbard model close
to half-filling above the excitation thresholds occurring in the vicinity of the Mott gap at n = 1. This can be achieved
by following the mobile impurity approach to the Hubbard chain set out in Ref. 35. In the main cases of interest to
us here, the mobile impurity model describes low-energy degrees of freedom in the presence of a single high-energy
excitation with momentum q and takes the general form

H = HLL +Himp +Hint, (58)

HLL =

∫
dx
[ ∑

α=c,s

vα
16π

(
1

2Kα

(
∂xΦ∗α

)2
+ 2Kα

(
∂xΘ∗α

)2
)]

, (59)

Himp =

∫
dxB†(x)

[
ε(q)− iε′(q)∂x −

1

2
ε′′(q)∂2

x

]
B(x) , (60)

Hint =

∫
dx B†(x)B(x)

[
fα(q)∂xϕ

∗
α(x) + f̄α(q)∂xϕ̄

∗
α(x)

]
+ . . . . (61)

Here vc,s and Kc,s are respectively the velocities and Luttinger parameters of low-energy collective spin and charge
degrees of freedom, ϕ∗c,s, ϕ̄

∗
c,s are chiral charge and spin Bose fields, and

Φ∗α = ϕ∗α + ϕ̄∗α , Θ∗α = ϕ∗α − ϕ̄∗α , α = c, s. (62)

The high-energy excitation under consideration has a “bare” dispersion ε(q) and is described in terms of the field
B(x). Finally, the functions fc,s(q) and f̄c,s(q) parametrise the interactions between the high-energy excitation and
the low-energy degrees of freedom. Our Bose fields are related to the usual spin and charge bosons7,8 by a canonical
transformation

Φα =
Φ∗α√

2
, Θα =

√
2Θ∗α , (63)

and were introduced in Ref. 35 by bosonizing the physical fermionic spin and charge excitations in the Hubbard model.
The form of Hint is fixed by symmetry considerations and assuming the high-energy excitation to be a point-like object.
Within the mobile impurity model the current operator is represented as

Jj → B†(x)OLL(x), (64)
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where OLL(x) is an operator acting in the Luttinger liquid sector of the model (61) only. In order to fully specify our
problem we proceed as follows:

1. The spin and charge velocities and Luttinger parameters are determined directly from the exact solution of the
Hubbard model, see Appendix A for a brief summary.

2. The relevant (“dressed”) dispersion relations for the various excitations we need to consider have already been
determined above in section III.

3. For a given threshold, the projection OLL of the current operator onto the Luttinger liquid sector is determined
by bosonisation/refermionisation techniques. This is done in sections IV A 1, IV B 1 and IV C 1 below.

4. Finally, the interaction parameters fc,s(q), f̄c,s(q) are determined in sections IV A 4, IV B 4 and IV C 4 by
comparing finite-size corrections to excitation energies in the Hubbard model and the mobile impurity model
(58).

A. k-Λ threshold in σ(1)(ω)

This threshold is obtained when the entire O(1) contribution to the excitation energy and momentum are carried
by the k-Λ string. The functional form of the threshold is

Ek-Λ
thres(q) = εkΛ

(
Λ(q)

)
,

q = −2 Re arcsin(Λ + iu) +

∫ Q

−Q
dk θ

(
Λ− sin k

u

)
ρc,0(k), (65)

where ρc,0(k) is the ground state root density (32). It important to note that in the case relevant for the optical con-
ductivity the k-Λ string sits at q = 0, which corresponds to a maximum of εkΛ(Λ). The mobile impurity Hamiltonian
appropriate for the description of this case is therefore of the form

Himp =

∫
dxB†(x)

(
ε(0)− 1

2
ε′′(0)∂2

x

)
B(x), (66)

where ε′′(0) < 0. We note that by virtue of the interactions between the mobile impurity and the Luttinger liquid
degrees of freedom, the bare dispersion ε(q) is differs from the actual threshold εkΛ

(
Λ(q)

)
. The relationship between

the two quantities is established below. The threshold εkΛ(0) is shown in Fig. 13 for various U and n
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Figure 13: The threshold of the k-Λ string εkΛ(0) is shown for various U and n
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1. Projection of the current operator

Having identified the state involving the k-Λ string as contributing to σ
(1)
1 (ω), we wish to project the current

operator (7) onto the operators involved in the mobile impurity model. To this end we introduce the Hubbard
projection operators2, defined on site j as

Xab
j := |a〉jj〈b|, a, b = 0, ↑, ↓, 2 (↑↓). (67)

The current operator is expressed in terms of the Xab
j as

Jj = −it
∑

σ

(
σX2σ̄

j +Xσ0
j

) (
σX σ̄2

j+1 +X0σ
j+1

)
−
(
σX2σ̄

j+1 +Xσ0
j+1

) (
σX σ̄2

j +X0σ
j

)
. (68)

In order to proceed further, we now consider the large-u limit, in which the k-Λ string corresponds to a doubly-occupied
site. The current operator J can be decomposed into three terms: a piece which increases the double occupancy by
one (J+), a piece which decreases it by one (J−) and a piece that leaves the double occupancy unchanged (J0) i.e.

Jj = J+
j + J−j + J0

j . (69)

As we are concerned with creating an excitation involving double-occupation, we are interested in J+
j only. This is

given by

J+
j = −it

∑

σ

σX2σ̄
j X0σ

j+1 − σX2σ̄
j+1X

0σ
j , (70)

and can be suggestively rewritten as

J+
j = −it

[
X20
j

(
X0↓
j X

0↑
j+1 −X0↑

j X
0↓
j+1

)
−X20

j+1

(
X0↓
j+1X

0↑
j −X0↑

j+1X
0↓
j

)]
. (71)

As, in the large-u limit, a k-Λ string corresponds to a doubly occupied site, while the ground state has zero double
occupancy, we can identify the operator creating the k-Λ string as B†(x) ∼ X20

j . This allows us to recast J+ in the
form

J+
j ∼ −it

[
B†j −B†j+1

] (
cj,↓cj+1,↑

(
1− nj,↑

)(
1− nj+1,↓

)
− cj,↑cj+1,↓

(
1− nj,↓

)(
1− nj+1,↑

))
. (72)

In order to complete the projection of the current operator onto the mobile impurity model we simply bosonize all
remaining electron operators. The final result is

JkΛ(x) ∼
(
∂xB

†(x)
)
e−iΘ

∗
c(x)/

√
2 sin

(
Φ∗s

2
√

2

)
+ . . . (73)

2. Finite-size corrections to excitation energies in the mobile impurity model

Energies of excited states in the mobile impurity model in a large, finite volume can be calculated following Refs. 20
and 35. The chiral spin and charge Bose fields have mode expansions

ϕ∗α(x) = ϕ∗α,0 +
x

L
Q∗α +

∞∑

n=1

√
2

n

[
ei

2πn
L xaα,R,n + e−i

2πn
L xa†α,R,n

]
, (74)

ϕ̄∗α(x) = ϕ̄∗α,0 +
x

L
Q̄∗α +

∞∑

n=1

√
2

n

[
e−i

2πn
L xaα,L,n + ei

2πn
L xa†α,L,n

]
. (75)

Here Q∗α, Q̄∗α, ϕα,0, ϕ̄α,0 are zero-mode operators, obeying the commutation relations

[ϕ∗α,0, Q
∗
α] = −[ϕ̄∗α,0, Q̄

∗
α] = −4πi. (76)
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The eigenvalues qα, q̄α of the operators Q∗α, Q̄∗α depend on the boundary conditions of the fields ϕ∗α(x), ϕ̄∗α(x). These
boundary conditions are, crucially, influenced by the presence of a mobile impurity: coupling the impurity to the
Luttinger liquid will change the boundary conditions and therefore modify the eigenvalue spectrum, causing a shift
in the O(L−1) spectrum. It is precisely this relationship that will allow us to determine the coupling constants by
examining the finite-size spectrum of the Hubbard model in the presence of a high-energy excitation. An important
distinction from previous calculations is that the dispersion of the mobile impurity is quadratic in our case and has
negative curvature.

The interactions between the impurity and the LL degrees of freedom in (58) can be removed by a unitary trans-
formation of the form35,36

U = e−i
∫∞
−∞ dx

∑
α(γαϕ

∗
α(x)+γ̄αϕ̄

∗
α(x))B†(x)B(x). (77)

The transformed fields are given by

ϕ◦α = Uϕ∗αU
† = ϕ∗α(x)− 2πγαC(x),

ϕ̄◦α = Uϕ̄∗αU
† = ϕ̄∗α(x) + 2πγ̄αC(x),

B̃(x) = UB(x)U† = B(x)ei
∑
α(γαϕ

∗
α(x)+γ̄αϕ̄

∗
α(x))e−iπ

∑
α(γ2

α−γ̄
2
α)C(x), (78)

where

C(x) =

∫ ∞

−∞
dy sgn(x− y)B†(y)B(y). (79)

By choosing the parameters γα, γ̄α to fulfil
(
fα
f̄α

)
=

(
−v+

α −v−α
v−α v+

α

)(
γα
γ̄α

)
, v±α =

vα
2

(
2Kα ±

1

2Kα

)
, (80)

we find that, retaining only the most relevant terms, the impurity decouples in the new basis i.e.

H =

∫
dx

[ ∑

α=c,s

vα
16π

(
1

2Kα
(∂xΦ◦α)

2
+ 2Kα (∂xΘ◦α)

2

)]
+

∫
dx B̃†(x)

[
ε̃(q)− 1

2
ε̃′′(q)∂2

x

]
B̃(x) + . . . . (81)

We note that the “dressed” impurity dispersion for momenta k ≈ q is ε̃(q)− 1
2 ε̃
′′(q)(k− q)2 and differs from its “bare”

value ε(k). Importantly, it is the dressed dispersion that relates directly to the Bethe Ansatz result for Ek-Λ
thres(k) in

(65). In the decoupled theory of (81) it is a straightforward matter to calculate the spectrum of low-energy excitations
above the ground state in the presence of an impurity. The result is35

∆ELL =
∑

α=c,s

2πvα
L

[
1

4Kα

(
qα + q̄α

4π
− γα + γ̄α

)2

+Kα

(
qα − q̄α

4π
− γα − γ̄α

)2

+
∑

n>0

n
[
M+
n,α +M−n,α

]
]
. (82)

Here M±n,α are non-negative integers corresponding to particle-hole excitations at the edge of the “Fermi seas”. Any
operator acting on the ground state will, in general, produce a superposition of energy eigenstates. Noting that

the ground state is annihilated by Q∗α, Q̄∗α, the state O(x)|GS〉 has well-defined quantum numbers q
(0)
α , q̄

(0)
α if O(x)

satisfies the relations

[Q∗α,O(x)] = q(0)
α O(x), [Q̄∗α,O(x)] = q̄(0)

α O(x). (83)

If the operator satisfies such a property then all states in the superposition defined by O(x)|GS〉 must have the same

qα, q̄α, namely q
(0)
α , q̄

(0)
α . The only difference in the energies comes from having different M±n,α. We can therefore

identify the “minimal” excitation35: this is the state with all M±n,α = 0 i.e. no particle-hole excitations. For the
specific case of interest here, namely acting with the projected current operator JkΛ(x) on the ground state, this can
be represented pictorially as

JkΛ(x)

∣∣∣∣∣

c

s

kΛ

〉
∼ A

∣∣∣∣∣

c

s

kΛ

〉

︸ ︷︷ ︸
qα=q(0)

α , q̄α=q̄(0)
α

“minimal”

+B

∣∣∣∣∣

c

s

kΛ

〉

︸ ︷︷ ︸
qα=q(0)

α , q̄α=q̄(0)
α

M+
n,s 6=0

+C

∣∣∣∣∣

c

s

kΛ

〉

︸ ︷︷ ︸
qα=q(0)

α , q̄α=q̄(0)
α

M+
n,c 6=0

+D

∣∣∣∣∣

c

s

kΛ

〉

︸ ︷︷ ︸
qα=q(0)

α , q̄α=q̄(0)
α

M+
n,s 6=0,M+

n,c 6=0

+ . . . (84)
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From the bosonised expression for JkΛ(x), and focussing only on the eiΦ
∗
s/2
√

2 term with the other following from
parity, it follows that

q(0)
c = q̄(0)

c = 2π
√

2; q(0)
s = −q̄(0)

s = −π
√

2. (85)

The total momentum can also be calculated using the mode expansion, and is found to be of the form

P =
kF

π
√

2
(q̄c − qc) + Pimp(kpL) +

2π

L

∑

α=c,s

[(
qα + q̄α

4π
− γα + γ̄α

)(
qα − q̄α

4π
− γα − γ̄α

)
+
(
N+
α −N−α

)]
, (86)

where kpL includes finite-size shifts to the rapidity kp. We can identify the “minimally excited” state with the Bethe
Ansatz excitation at the relevant threshold. By matching the expressions for the finite-size energies, we will be able
to constrain the parameters γα, γ̄α.

3. Finite-size corrections to excitation energies from Bethe Ansatz

Finite-size corrections to the energies of states involving both high- and low-energy excitations can be determined
from the Bethe Ansatz solution of the Hubbard model following Ref. 25. The details for the excitations of interest
here involving a k-Λ string are given in Appendix B. The final result for zero magnetic field and total momentum
P = O(L−1) is

E = eGSL+ εkΛ(0)− π

6L
(vc + vs) +

2πvc
L

[
(∆Nc −N imp

c )2

8Kc
+ 2Kc

(
Dc −Dimp

c +
Ds −Dimp

s

2

)2
]

+
2πvs
L

[
1

2

(
∆Ns −

∆Nc
2

)2

+
(Ds −Dimp

s )2

2

]
. (87)

Here eGS is the ground state energy per site in the thermodynamic limit, while εkΛ(0) is the contribution due to the
(high-energy) k-Λ string excitation and is obtained from the solution of the integral equations

εkΛ(Λ) = 4Re
√

1− (Λ− iu)2 − 2µ− 4u+

∫ Q

−Q
dk cos k a1(sin k − Λ) εc(k),

εc(k) = −2 cos k − µ− 2u+

∫ Q

−Q
dk′ cos k′ R(sin k − sin k′)εc(k

′), (88)

where the function R(x) is given by

R(x) =

∫ ∞

−∞

dω

2π

eiωx

1 + exp(2u|ω|) . (89)

The spin and charge velocities vs,c and the Luttinger parameter Kc are given in Appendix A, while the quantities
N imp
c and Dimp

c,s are given by

Dimp
c = 0, Dimp

s = 0 , N imp
c =

∫ Q

−Q
dk ρc,1(k), (90)

where

ρc,1(k) = cos k a1(sin k − Λ′p) + cos k

∫ Q

−Q
dk′ ρc,1(k′)R(sin k − sin k′). (91)

Finally, the quantities ∆Nc, ∆Ns, Dc and Ds characterise low-energy excitations of the spin and charge degrees of
freedom and for the “minimal” excitation of interest are given by

∆Nc = −2 , Dc = 0 , ∆Ns = −1 , Ds = 0. (92)

We note that in order to fully specify the mobile impurity model we require the value of the curvature of the impurity
dispersion at its maximum. This is given by

1

m
=
∂2εkΛ(Λ)

∂p2

∣∣∣∣
Λ=0

=
ε′′kΛ(0)

(2πσ′h1 (0))2
, (93)
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where

ε′′kΛ(0) = − 4

(1 + u2)3/2
−
∫ Q

−Q
dk a′1(sin k)ε′c(k),

2πσ′h1 (0) =
2√

1 + u2
− 2π

∫ Q

−Q
dk a1(sin k)ρc,0(k). (94)

The total momentum of the state of interest can also be calculated from the Bethe Ansatz and for the case of interest
results in

P = qL + 2kF (2Dc +Ds) +
2π

L

∑

α=c,s

[
(∆Nα −N imp

α )(Dα −Dimp
α ) + (N+

α −N−α )
]
, (95)

with qL the contribution, including finite-size shifts of the rapidities, from the high-energy impurity and N±α are
integers corresponding to particle-hole pairs at the edge of the “Fermi seas”. The method used for deriving this result
is summarised in Appendix E.

4. Fixing the parameters γα, γ̄α

By equating the Bethe Ansatz results (87) and (95) for energy and momentum with the ones obtained in the
framework of the mobile impurity model (82), (86) we can fix the parameters γα, γ̄α to be

γc = −γ̄c =
1√
2

+
(∆Nc −N imp

c )

2
√

2
; γs = γ̄s = − 1

2
√

2
. (96)

5. Current-current correlator in the mobile impurity model

We are now in a position to work out the current-current correlation function (15) in the mobile impurity model
framework. Given the expression (73) for the projection of the current operator, we have

C
(1)
JJ (`, t) ∼ G(x, t) = 〈J†kΛ(x, t)JkΛ(0, 0)〉. (97)

In order to evaluate G(x, t) we go over to the transformed basis, in which the impurity decouples from the LL degrees
of freedom. Given (96), the leading contribution takes the form

JkΛ(x) ∼ ∂xB̃†(x)e
iΘ◦c(x)

∆Nc−N
imp
c

2
√

2 + iγcB̃
†(x)∂xΘ◦c(x)e

iΘ◦c(x)
∆Nc−N

imp
c

2
√

2

− i

2
√

2
B̃†(x)∂xΦ◦s(x)e

iΘ◦c(x)
∆Nc−N

imp
c

2
√

2 . (98)

Substituting this back into (97) leads to three kinds of contributions to the correlator

G(x, t) = G1(x, t)〈∂xB̃(x, t)∂xB̃
†(0, 0)〉+G2(x, t)〈B̃(x, t)B̃†(0, 0)〉

+ G3(x, t)i
[
〈∂xB̃(x, t)B̃†(0, 0)− 〈B̃(x, t)∂xB̃

†(0, 0)
]
. (99)

Here Gj(x, t) are correlation functions in the LL sector of the theory and can be evaluated by standard methods. The
results are

G1(x, t) =
1

(x2 − v2
c t

2)γ
,

G2(x, t)

G1(x, t)
= −2γ2

c

Kc

[
x2 + v2

c t
2

(x2 − v2
c t

2)2
+

2γx2

(x2 − v2
c t

2)2

]
− 1

2

x2 + v2
st

2

(x2 − v2
st

2)2
,

G3(x, t)

G1(x, t)
= iγc

√
γ

Kc
sgn(N imp

c + 2)
2x

x2 − v2
c t

2
, (100)

where we have defined

γ =
1

2Kc

(
1 +

N imp
c

2

)2

. (101)
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The free impurity correlator is given by

〈B̃(x, t)B̃†(0, 0)〉 =

∫ Λ

−Λ

dp

2π
e−ipxe−iε(p)t, (102)

where ε(p) is the dispersion relation for the k-Λ string and Λ is a momentum cutoff for the impurity excitation. Using
(97), (99), (100) and (102) we may now determine the contribution from the k-Λ string excitation to the retarded
correlator (6). The result can be written in the form

σ1(ω)
∣∣∣
kΛ
∼ 1

ω

∫ Λ

−Λ

dp

{
γ2
c

Kc

(
(1 + γ)

[
G̃cγ+2,γ

(
ω − ε(p), p

)
+ G̃cγ,γ+2

(
ω − ε(p), p

)]
− 2γG̃cγ+1,γ+1

(
ω − ε(p), p

))

+

√
4γ

Kc
γcp

[
G̃cγ+1,γ

(
ω − ε(p), p

)
− G̃cγ,γ+1

(
ω − ε(p), p

)]
+ p2G̃cγ,γ

(
ω − ε(p), p

)

+ γ2
s

[
G̃sγ
(
ω − ε(p), p

)
+ G̃sγ

(
ω − ε(p),−p

)]
}
, (103)

where we have defined

G̃cγ+,γ−(ω, p) =
(2π)2

Γ(γ+)Γ(γ−)(2vc)γ++γ−−1
(ω + vcp)

γ+−1(ω − vcp)γ−−1Θ(ω − vc|p|) , (104)

G̃sγ(ω, p) =

∫ 1

0

ds

[
2π

Γ (γ)

]2
(ω − vsp)2γ−1

(v2
c − v2

s)γ
Θ(ω − vsp)sγ−1(1− s)γ−1

×
[

2vc(ω − vsp)
v2
c − v2

s

s− ω − vcp
vc − vs

]
Θ
(2vc(ω − vsp)

v2
c − v2

s

s− ω − vcp
vc − vs

)
. (105)

The dependence of (103) on the momentum cutoff Λ is shown in Fig. 14. We see that over a wide range the result is
only weakly cutoff-dependent. Additionally, the exponent γ can be calculated for a variety of parameters, as presented
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in Fig. 15.

B. Threshold of the “particle-hole” continuum in σ(2)(ω)

Next we examine the thresholds in the second contribution (19) to the optical conductivity. The lowest threshold
arises in the “particle-hole” and “two-particle” excitations considered in III C 1 and III C 2 respectively. The threshold
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in both cases is given by

Eph
thres(q) = εc(k(q))− 2µ,

q = k +

∫ ∞

−∞
dΛ θ

(
sin k − Λ

u

)
ρs,0(Λ), (106)

where ρs,0(Λ) is the ground state root density (33). The threshold for the particle-hole (two-particle) excitation is
obtained by fixing the position of the hole (one of the particles) in momentum space at one of the “Fermi points”, so
that it contributes only at O(L−1) to the excitation energy. Hence the impurity degree of freedom corresponds to a
particle in both cases.

1. Projection of the operator Oj

We will use the representation (18) to determine the contribution C
(2)
JJ (`, t) to the current-current correlator. Hence

we require the projection of the operator Oj defined in (17) to the mobile impurity model (61). This can be worked
out by following Ref. 35. We start by taking the continuum limit of the lattice fermion operators

cj,σ ∼ Rσ(x)eikF x + Lσ(x)e−ikF x + . . . , x = ja0 (107)

where a0 is the lattice spacing. The continuum limit of Oj then takes the form

O(x) ∼ eix(2kF−π)Rc∂xRce
iπ

∫ x
−∞ dx′Qc(x

′) + . . . , (108)

with Qc(x) = R†c(x)Rc(x) +L†c(x)Lc(x). Next we decompose the charge part into the low-energy and impurity pieces

Rc(x) ∼ rc +B†(x)ei(π−2kF )x + . . . . (109)

Substituting this back into (108) and then bosonising the low-energy degrees of freedom we obtain

O(x) ∼ B†(x)e
− i

2
√

2
Θ∗c(x)

+ . . . , (110)

where we have retained only the most relevant piece in the sector with a single impurity.
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2. Finite-size excitation energy in the Mobile Impurity Model

As the mobile impurity model is again given by (59) to (61), and the impurity again is located at a maximum of
its dispersion, we can follow through the same steps as in our analysis of the k-Λ string threshold. The finite-size

spectrum is, accordingly, of the same form as (82). The values of q
(0)
α follow from the form of the Luttinger liquid

part of (110) to be

q(0)
c = q̄(0)

c = π
√

2; q(0)
s = q̄(0)

s = 0. (111)

3. Finite-size excitation energy from Bethe Ansatz

We consider again the excitation described in Section III C 1. The finite-size corrections to the excitation energy
are calculated in Appendix C. The final result is of the form

E = eGSL+ εc(k
p) +

δkp

L
ε′c(k

p)− π

6L
(vc + vs)

+
2πvc
L

[
(∆Nc −N imp

c )2

8Kc
+ 2Kc

(
Dc −Dimp

c +
Ds −Dimp

s

2

)2
]

+
2πvs
L

[
1

2

(
∆Ns −N imp

s − ∆Nc −N imp
c

2

)2

+
(Ds −Dimp

s )2

2

]
. (112)

Here the ground state energy per site eGS and dressed energy εc(k) are given in (35) and (36) respectively, while the
velocities vs,c and the Luttinger parameter Kc are calculated in Appendix A. The thermodynamic value kp of the
impurity rapidity and its finite-size correction δkp are determined by (C11) and (C15). Finally, we have

∆Nc = −3 , ∆Ns = −1 , Dc = 0 , Ds = 0 ,

N imp
c = 2N imp

s − 1 =

∫ Q

−Q
dk ρc,1(k) , Dimp

s = 0, (113)

2Dimp
c =

∫ π

Q

dk [ρc,1(−k)− ρc,1(k)] +
i

π

{
ln

[
Γ
(

1
2 − i sin kp

4u

)
Γ
(
1 + i sin kp

4u

)

Γ
(

1
2 + i sin kp

4u

)
Γ
(
1− i sin kp

4u

)
]}

+
i

π

∫ Q

−Q
dk ρc,1(k)

{
ln

[
Γ
(

1
2 − i sin k

4u

)
Γ
(
1 + i sin k

4u

)

Γ
(

1
2 + i sin k

4u

)
Γ
(
1− i sin k

4u

)
]}

, (114)

where ρc,1(k) is the solution of the integral equation

ρc,1(k) = cos k R(sin k − sin kp) + cos k

∫ Q

−Q
dk′R(sin k − sin k′)ρc,1(k′). (115)

In order to fully specify our mobile impurity model we also require the the curvature of the dispersion relations of
εc(k) at k = π, which is given by

− 1

m
=

d2εc(k(q))

dq2

∣∣∣∣∣
k=π

=
2 +

∫ Q
−Q dk R′(sin k)ε′c(k)

(2πρc,0(π))2
. (116)

4. Fixing the parameters γα, γ̄α

By matching the expressions (112) and (82) for the finite-size energies we can fix the parameters γα, γ̄α

γc =
1

2
√

2
+

1

2
√

2
(∆Nc −N imp

c ) , γs = 0 ,

γ̄c = − 1

2
√

2
− 1

2
√

2
(∆Nc −N imp

c ) , γ̄s = 0.

(117)
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5. Current-current correlator in the mobile impurity model

Given the expression (110) for the projection of the operator Oj , we have

C
(2)
JJ (`, t) ∼ H(x, t) = 〈O†(x, t)O(0, 0)〉 ∼ 〈B(x, t)e

i
2
√

2
Θ∗c(x,t)

B†(0, 0)e
− i

2
√

2
Θ∗c(0,0)〉. (118)

This is readily calculated using the unitary transformation (77). In the new basis the correlator factorises

H(x, t) ∼ 〈e
i

2
√

2
(∆Nc−N imp

c )Θ◦c(x,t)
e
− i

2
√

2
(∆Nc−N imp

c )Θ◦c(0,0)〉〈B̃(x, t)B̃†(0, 0)〉

∼ 1

(x2 − v2
c t

2)η

∫ Λ

−Λ

dp

2π
e−ipxe−iε(p)t, (119)

where in this case ε(p) is given by εc(π + p) and

η =
1

2Kc

(
3

2
+
N imp
c

2

)2

. (120)

Fourier transforming and using (19) we arrive at

σ
(2)
1 (ω)

∣∣∣
ph
∼ 1

ω

∫ Λ

−Λ

dp G̃cη,η
(
ω − ε(p), p

)
, (121)

where G̃cη,η(ω, p) is given by (104). The behaviour of (121) is shown in Fig. 16. We see that the contribution vanishes
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smoothly at the threshold and increases slowly above it.

C. Threshold of the two-hole continuum in σ
(2)
1 (ω)

Last but not least we wish to consider the threshold of the contribution of the two-hole continuum to σ
(2)
1 (ω). This

occurs at a higher energy than the threshold of the particle-hole and particle-particle continua, but unlike the latter
two persists as we approach half-filling. The threshold is parametrised by

Ehh
thres(q) = −2εc

(
k(q)

2

)
− 2µ, (122)
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where k(q) is again fixed by (106). The threshold corresponds to having two high-energy hole excitations with
momentum q/2 each. As we are now dealing with two impurities with equal momenta, the appropriate mobile
impurity model is of the form (61), but we now have to retain impurity-impurity interactions

Himp =

∫
dx

[
B†(x)(ε− iu∂x −

1

2m
∂2
x)B(x) + V B†(x)∂xB

†(x) B(x)∂xB(x)

]
. (123)

1. Projection of the operator Oj

Next we require the projection of the operator Oj onto the mobile impurity model. This proceeds as before, cf.
eqns (107), (108), but now we take

Rc(x) ∼ rc(x) +B†(x)e−iqx/2. (124)

Substituting this into the expression (108) for O(x) we find

O(x) ∼ ei(2kF−π−q)xB†(x)∂xB
†(x)e

i
2
√

2
Φ∗c(x)

+ . . . , (125)

where we have retained only the most relevant term in the sector with two impurities.

2. Finite-size corrections to excitation energies in the mobile impurity model

The interactions between the mobile impurities and the Luttinger liquid degrees of freedom can again be removed
by the unitary transformation (77). In the transformed basis finite-size corrections to the excitation energies in the
LL part of the theory can then be calculated as before, and lead to the result (82).

The zero mode eigenvalues for the “minimal” excitation (cf. (83)) associated with O(x) as defined in (125) are

q(0)
c = −π

√
2 , q̄(0)

c = π
√

2 , q(0)
s = 0 , q̄(0)

s = 0. (126)

3. Finite-size corrections to excitation energies from the Bethe Ansatz

The two-hole excitation has been constructed in III C 3, and the threshold of interest here occurs when, in the
thermodynamic limit, the two holes have equal momentum. The finite-size corrections to the excitation energy can
be calculated following Ref. 25, details are given in Appendix D. The final result in zero magnetic field is

E = eGSL− εc(kh1)− εc(kh2)− δkh1

L
ε′c(k

h1)− δkh2

L
ε′c(k

h2)− π

6L
(vc + vs)

+
2πvc
L

[
(∆Nc −N imp

c )2

8Kc
+ 2Kc

(
Dc −Dimp

c +
Ds −Dimp

s

2

)2
]

+
2πvs
L

[
1

2

(
∆Ns −N imp

s − ∆Nc −N imp
c

2

)2

+
(Ds −Dimp

s )2

2

]
. (127)

Here the ground state energy per site eGS and dressed energy εc(k) are given in (35) and (36) respectively, while the
velocities vs,c and the Luttinger parameter Kc are calculated in Appendix A. The thermodynamic values khi of the
impurity rapidities and the finite-size corrections δkhi are determined by (D6) and (D7). Finally, we have

∆Nc = 0 , ∆Ns = −1 , Dc =
1

2
, Ds = 0 ,

N imp
c = 2(N imp

s + 1) =

∫ Q

−Q
dk ρc,1(k) , Dimp

s = 0, (128)

2Dimp
c =

∫ π

Q

dk [ρc,1(−k)− ρc,1(k)]−
∑

j=1,2

i

π



ln




Γ
(

1
2 − i sin khj

4u

)
Γ
(

1 + i sin khj

4u

)

Γ
(

1
2 + i sin khj

4u

)
Γ
(

1− i sin khj

4u

)







+
i

π

∫ Q

−Q
dk ρc,1(k)

{
ln

[
Γ
(

1
2 − i sin k

4u

)
Γ
(
1 + i sin k

4u

)

Γ
(

1
2 + i sin k

4u

)
Γ
(
1− i sin k

4u

)
]}

, (129)
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where ρc,1(k) is the solution of the integral equation

ρc,1(k) = − cos k
[
R(sin k − sin kh1) +R(sin k − sin kh2)

]
+ cos k

∫ Q

−Q
dk′ ρc,1(k′)R(sin k − sin k′). (130)

4. Fixing the parameters γα, γ̄α

By comparing the finite-size spectra calculated from the Bethe Ansatz (127) with those obtained from the mobile
impurity model (82) we are again able to determine the parameters γα, γ̄α. In the case at hand we obtain

γc + γ̄c = −
√

2Dimp
c , γc − γ̄c = − 1√

2
N imp
c , γs = γ̄s = 0. (131)

5. Current-current correlator in the mobile impurity model

Given the expression (125) for the projection of the operator Oj , we have

C
(2)
JJ (`, t) ∼ 〈O†(x, t)O(0, 0)〉

∼ 〈∂xB(x, t)B(x, t)e−iΦ
∗
c(x,t)/2

√
2B†(0, 0)∂xB

†(0, 0)eiΦ
∗
c(0,0)/2

√
2〉 ≡ L(x, t). (132)

This is readily calculated using the unitary transformation (77). In the new basis the correlator factorises

L(x, t) = 〈∂xB̃(x, t)B̃(x, t)B̃†(0, 0)∂xB̃
†(0, 0)〉

×
〈
e
−i

1
2
−2D

imp
c√

2
Φ◦c(x,t)+i

N
imp
c√

2
Θ◦c(x,t)

e
i

1
2
−2D

imp
c√

2
Φ◦c(0,0)−iN

imp
c√

2
Θ◦c(0,0)〉

. (133)

The Luttinger liquid part of the correlator is readily calculated

L(x, t) = 〈∂xB̃(x, t)B̃(x, t)B̃†(0, 0)∂xB̃
†(0, 0)〉

(
x− vct

)−ν+
(
x+ vct

)−ν−
, (134)

where

ν± = 2

[√
Kc

(
1

2
− 2Dimp

c

)
∓ N imp

c

2
√
Kc

]2

,

ν = ν+ + ν− = 4Kc

(
1

2
− 2Dimp

c

)2

+

(
N imp
c

)2

Kc
.

(135)

In the absence of interactions between our two high-energy impurities (V = 0) the impurity part of the correlator is
readily calculated as

〈∂xB̃(x, t)B̃(x, t)B̃†(0, 0)∂xB̃
†(0, 0)〉 ∼ 1

t3/2
δ(x− ut). (136)

In order to gain some insight in the importance of interactions, they can be taken into account in a random phase
approximation. The result suggests that V can be neglected sufficiently close to the threshold. Putting everything
together we find

L(x, t) ∼ 1

(x− vct)ν+

1

(x+ vct)ν−
δ(x− ut)
t3/2

+ . . . (137)

The resulting contribution to σ
(2)
1 (ω) for frequencies close to ω0 = −2µ− 2εc

(
k(q))

2

)
is thus

σ
(2)
1 (ω)

∣∣∣
two−hole

∼ 1

ω
(ω − ω0)

ν+ 1
2 Θ(ω − ω0). (138)

As we have pointed out before, the excitation with two high-energy holes persists at half-filling. Moreover, it gives
rise to the square root increase above the absolute threshold in the optical conductivity in this limit28,39,40. Our result
(138) is reconciled with this behaviour by noting that the frequency range ω−ω0 over which (138) holds is related to
the cutoff Λc of the charge sector of the Luttinger liquid degrees of freedom. As we approach half-filling this cutoff
tends to zero i.e. the frequency window in which (138) applies vanishes. At sufficiently high frequencies ω > ω0 + Λc
we expect on general grounds to recover the square root behaviour observed at half-filling.
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V. COMPARISON WITH NUMERICAL RESULTS

In Ref. 55 the optical conductivity of the one dimensional Hubbard model has been computed by matrix product
methods. The approach requires introduction of a damping parameter η > 0 and provides Im χJ(ω + iη) for a chain
of finite length. In order to facilitate a comparison with the results obtained here it is necessary to remove this
broadening. In order to do this approximately we proceed as follows. For positive frequencies the zero temperature
optical conductivity can be expressed as

σ1(ω > 0) = − Im χ+(ω)

ω
,

χ+(ω) =
e2

L

∑

n

|〈GS|J |n〉|2
ω + i0− En + EGS

. (139)

Ref. 55 provides results for the quantity

χ+(ω;L, η) =

∫ ∞+i0

−∞+i0

dω′

2π

2η

η2 + (ω − ω′)2
Im χ+(ω′) , (140)

where L is the chain length and ω takes values on a regular grid of frequencies. We first use rational function interpo-
lation to extract a continuous function from the numerical data, which we then deconvolve using the Richardson-Lucy
algorithm56,57.
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Figure 17: Comparison of deconvolved DMRG data with the onset as predicted in (103), varying the offset and
overall scale factor and choosing Λ = (1− n)π/10.

The deconvolved numerical results obtained in this way can then be compared to the onset predicted at the lowest
threshold, as given by (103). We allow for an unknown scale factor in the calculation, as well as a small constant
contribution from the particle-hole excitations. We choose a specific value of the cutoff Λ, but as noted earlier, the
results do not depend strongly on the precise choice. Due to the soft nature of the onset predicted, it is only realistic
to compare the initial onset due to the k-Λ string, as when moving away from this point less relevant operators will
begin to contribute. Comparisons between the prediction of the MIM and numerical results are shown in Fig. 17.
The agreement is not perfect, but the results are seen to be compatible. As usual the size of the frequency window in
which the MIM prediction applies is not known. The theoretical and numerical results of the onset being convex are
in stark contrast to the results of Ref. 46, which for the parameters we consider predicts concave power-law behaviour.

VI. AWAY FROM q = 0

One can easily generalise the results here to examine the conductivity at finite momentum i.e. consider

χJ(ω, q) = −ie2

∫ ∞

0

dt

L/2−1∑

l=−L/2

ei(ωt−qla0)〈GS|[Jl(t), J0(0)]|GS〉, (141)
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for q 6= 0. The analysis proceeds in an identical manner to identify the quantities N imp
c,s , Dimp

c,s , as the high-energy
impurity simply shifts its momentum. However, in order to find the threshold away from q ∈ [(n − 1)π, (1 − n)π],
umklapp processes must be involved. For an arbitrary filling, these will generically be of a very large order, which
will suppress the contributions. The dispersion relation is generically no longer a saddle point and therefore in the
region where one impurity is involved and one can linearise, power-law behaviour for the onset will be obtained. For
the k-Λ string at momentum q, one must first solve for Λp such that pkΛ(Λp) = q, and then N imp

c (Λp), Dimp
c (Λp) can

be calculated. γ is still given by (101). The most relevant contribution will then have the form

Im χ(ω, q 6= 0) ∼ 1

(ω − ωth(q))γ(Λp)
, (142)

where γ(Λp) is a function of the quantities N imp
α , Dimp

α and Kα.

VII. SUMMARY AND CONCLUSIONS

We have studied the optical conductivity σ1(ω) in the one dimensional Hubbard at zero temperature and close to
half filling. Recent DMRG computations55 have shown that in this regime σ1(ω) is very small within a “pseudo-gap”
and exhibits a rapid increase above an energy scale Eopt that depends on doping as well as the interaction strength
U . Using the Bethe Ansatz we have identified the relevant excitations that contribute to σ1(ω) for ω > Eopt. One of
these, the k-Λ string excitation, had been previously proposed to describe the scale Eopt

46. We then followed Ref. 35
to construct a mobile impurity model describing the behaviour of σ1(ω) above Eopt. The analysis of this model
entailed several generalizations relating to the projection of lattice operators to local fields in the MIM, the treatment
of excitations that are not highest weight states with respect to the η-pairing algebra of the Hubbard model, and
considering the mobile impurity to be located at a maximum of its dispersion. We also derived an explicit expression
for the finite-size momentum of the relevant Bethe Ansatz states, which is useful in determining the various unknown
parameters in the MIM. Our main result is to show that the MIM approach predicts a smooth, slow increase in σ1(ω)
for frequencies above Eopt. Importantly, the increase is not described by a power law, but has a more complicated
functional form. This is in contrast to the half-filled case39 and previous predictions46, but consistent with recent
dynamical DMRG computations55.
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Appendix A: Velocities and Luttinger parameters in zero magnetic field

In zero magnetic field the charge and spin velocities are given in terms of the solutions to the linear integral equations
(32), (33), (36), (37) for the dressed energies and root densities as

vc =
ε′c(Q)

2πρc,0(Q)
, vs =

ε′s(∞)

2πρs,0(∞)
. (A1)

The spin Luttinger parameter is fixed by spin rotational symmetry to be

Ks = 1. (A2)

The charge Luttinger parameter is

Kc =
ξ2(Q)

2
, (A3)

where ξ(k) is the solution of the linear integral equation

ξ(k) = 1 +

∫ Q

−Q
dk′ cos k′ R(sin k − sin k′) ξ(k′). (A4)

Here R(x) is defined in (89).
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Appendix B: Bethe Ansatz results for k-Λ string

Having established that the threshold above the low-energy continuum can be explained by a k-Λ string excitation,
the simplest equations to consider are the Takahashi equations2 in the presence of a single k-Λ string of length 2 i.e.
consisting of 1 Λ and 2 ks. It is also clear that as the correlator is a zero momentum quantity, k-Λ string is pinned to
zero momentum. The Takahashi equations can be analysed for large L, keeping terms to O(L−2) in order to calculate
the finite-size corrections to the energy. The counting functions in this specific case are given by

Lzc(kj) = kjL+

M−1∑

α=1

θ

(
sin kj − Λα

u

)
+ θ

(
sin kj − Λ′p

u

)
, j = 1, . . . , N − 2,

Lzs(Λα) =

N−2∑

j=1

θ

(
Λ− sin kj

u

)
−
M−1∑

β=1

θ

(
Λα − Λβ

2u

)
, α = 1, . . . ,M − 1.

(B1)

Employing the Euler-Maclaurin summation formula

1

L

n2∑

n=n1

f
(n
L

)
=

∫ n+
L

n−
L

dx f(x) +
1

24L2

(
f ′
(n−
L

)
− f ′

(n+

L

))
+ . . . , (B2)

where n+ = n2 + 1
2 and n− = n1 − 1

2 , it can be seen that

zc(k) = k +

∫ A+

A−

dΛ θ

(
sin k − Λ

u

)
ρs(Λ) +

1

L
θ

(
sin k − Λ′p

u

)

+
2π

24L2

[
a1(sin k −A+)

ρs(A+)
− a1(sin k −A−)

ρs(A−)

]
, (B3)

zs(Λ) =

∫ Q+

Q−

dk θ

(
Λ− sin k

u

)
ρc(k)−

∫ A+

A−

dΛ′ θ

(
Λ− Λ′

2u

)
ρs(Λ

′)

+
2π

24L2

[
a1(Λ− sinQ+) cosQ+

ρc(Q+)
− a1(Λ− sinQ−) cosQ−

ρc(Q+)
− a2(Λ−A+)

ρs(A+)
+
a2(Λ−A−)

ρs(A−)

]
. (B4)

Taking derivatives, equations for the root densities can be found

ρc(k) =
1

2π
+

∫ A+

A−

dΛ cos k a1(sin k − Λ)ρs(Λ) +
1

L
cos k a1(sin k − Λ′p)

+
1

24L2

[
cos k a′1(sin k −A+)

ρs(A+)
− cos k a′1(sin k −A−)

ρs(A−)

]
,

(B5)

ρs(Λ) =

∫ Q+

Q−

dk a1(Λ− sin k)ρc(k)−
∫ A+

A−

dΛ′ a2(Λ− Λ′)ρs(Λ
′)

+
1

24L2

[
a′1(Λ− sinQ+) cosQ+

ρc(Q+)
− a′1(Λ− sinQ−) cosQ−

ρc(Q−)
− a′2(Λ−A+)

ρs(A+)
+
a′2(Λ−A−)

ρs(A−)

]
.

(B6)

As the integral equations are linear, we can write

ρα(zα) := ρα,0(zα) +
1

L
ρα,1(zα) +

1

24L2

∑

β,σ

f
(σ)
αβ (z)

ρβ(Xβ
σ )
, (B7)

here Xc
σ = Qσ, Xs

σ = Aσ. The integral equations satisfied by the first two terms in (B7) are

ρα,a(z) = ρ(0)
α,a(z) +Kαβ ∗ ρβ,a, a = 0, 1, (B8)

with Kαβ ∗ fβ denoting the convolution
∑
β

∫Xβ+
Xβ−

dzβKαβ(zα, zβ)fβ(zβ), the kernels defined by

Kcc(k, k
′) = 0, Kcs(k,Λ) = cos k a1(sin k − Λ),

Ksc(Λ, k) = a1(Λ− sin k), Kss(Λ,Λ
′) = −a2(Λ− Λ′),

(B9)
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and the driving terms given by

ρ
(0)
α,0 =

δα,c
2π

, (B10)

ρ
(0)
α,1 = δα,c cos k a1(sin k − Λ′p). (B11)

The final integral equation is determined by

f
(σ)
αβ = d

(σ)
αβ +Kαγ ∗ f (σ)

γβ , (B12)

where

d
(σ)
αβ = −σ ∂

∂z′
Kαβ(z, z′)

∣∣∣∣
z′=Xβσ

. (B13)

The exact finite-size energy of the system is given by (27). Using the Euler-Maclaurin summation formula (B2) again,
corrections can be kept to O(L−1), yielding

E = Lu+ L
∑

α

∫ Xα+

Xα−

dz ε(0)
α (z)ρα(z) + ε

(0)
kΛ(Λ′p). (B14)

Expanding in powers of L and exploiting the identical kernels of the integral equations for dressed charge and root
density equations, if the energy is now considered as a functional of the integration boundaries, performing an
expansion about σXα to second order (the first order term vanishes)25, it can be shown that

E = LeGS({Xα}) + εkΛ(Λ′p) + Lπ
∑

α

vα

{(
ρα,0(Xα)(Xα

+ −Xα)
)2

+
(
ρα,0(Xα)(Xα

− +Xα)
)2}

(B15)

1. Impurity densities

The following are taken as definitions

nα =

∫ Xα+

Xα−

dz ρα(z), (B16)

2Dc = I+ + I− =
L

2π
[zc(Q+) + zc(Q−)] , (B17)

2Ds = J+ + J− =
L

2π
[zs(A+) + zs(A−)] . (B18)

The corrections from adding the “impurity” i.e. the high-energy excitation can be identified and separated off from
the terms that would be present without it. This is achieved by using that

lim
Λ→∞

zs(Λ) = − lim
Λ→−∞

zs(Λ), (B19)

lim
k→±π

zc(k) = −
∫ A+

A−

dΛ θ

(
Λ

u

)
ρs(Λ)− θ

(
Λ′p

u

)
. (B20)

This allows the “quantum numbers” to be expressed in terms of integrals of the root densities, which can then be
split off order-by-order in 1/L. More explicitly, one finds that

2Ds = L

(∫ A−

−∞
dΛ ρs(Λ)−

∫ ∞

A+

dΛ ρs(Λ)

)
,

= L

(∫ A−

−∞
dΛ ρs,0(Λ)−

∫ ∞

A+

dΛ ρs,0(Λ)

)
+ 2Dimp

s ,

(B21)

where

2Dimp
s =

∫ −A

−∞
dΛ ρs,1(Λ)−

∫ ∞

A

dΛ ρs,1(Λ). (B22)
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Similarly for the charge sector

2Dc =
L

2π

(
zc(Q+) + zc(Q−)− zc(π)− zc(−π)− 2

∫ A+

A−

dΛ ρs(Λ)θ

(
Λ

u

)
− 2

L
θ

(
Λ′p

u

))
,

= L

(∫ Q−

−π
dk ρc,0(k)−

∫ π

Q+

dk ρc,0(k)− 1

π

∫ A+

A−

dΛ ρs,0(Λ)θ

(
Λ

u

))
+ 2Dimp

c , (B23)

2Dimp
c =

∫ −Q

−π
dk ρc,1(k)−

∫ π

Q

dk ρc,1(k)− 1

π

∫ A

−A
dΛ ρs,1(Λ)θ

(
Λ

u

)
− 1

π
θ

(
Λ′p

u

)
. (B24)

Similarly,

N imp
α =

∫ Xα

−Xα
dz ρα,1(z). (B25)

2. Relation between Xα
σ − σXα and the impurity densities

Following Ref. 25, considering the variation of the integration bounds Xα
σ with respect to nβ , it can be seen that,

in terms of the dressed charge matrix2 Zαβ , defined by

Zαβ = ξαβ(Xβ),

ξαβ(zβ) = δαβ + ξαγ ∗Kγβ ,
(B26)

with Kαβ given by (B9), one finds

Xα
σ − σXα = σ

1

2

Z−1
αβ

ρα,0(Xα)

(
∆nβ −

1

L
N imp
β

)
+

Z>αβ
ρα,0(Xα)

(
dβ −

1

L
Dimp
β

)
. (B27)

These results can be inserted into the finite-size energy, which now reads as

E = LeGS({Xα}) + εkΛ(0) +
1

L

(
−π

6
(vs + vc) + 2π

[
1

4
∆Ñα(Z>)−1

αγvγZ
−1
γβ ∆Ñβ + D̃αZαγvγZ

>
γβD̃β

])
, (B28)

where

D̃α = Dα −Dimp
α , (B29)

∆Ñα = ∆Nα −N imp
α . (B30)

3. Simplifications for zero magnetic field

In the B → 0 limit, the integration boundary A → ∞ and many results simplify by use of Fourier transforms.
Useful identities used can be found in Ch. 17 of Ref. 2. First, the dressed charge matrix adopts the simple form

Z =

(
ξ 0
ξ
2

1√
2

)
, (B31)

where ξ = ξ(Q) and ξ(k) obeys (A4). Following a similar method to Ref. 25, the root densities can be shown to
simplify as

ρc,1(k) = cos k a1(sin k − Λ′p) + cos k

∫ Q

−Q
dk′ ρc,1(k′)R(sin k − sin k′), (B32)

ρs,1(Λ) =

∫ Q

−Q
dk ρc,1(k) s(Λ− sin k), (B33)
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where

s(x) =
1

4u cosh
(
πx
2u

) . (B34)

Considering the Fourier transform of (B33), it can be shown that

N imp
s =

1

2
N imp
c . (B35)

In the Λ′p → 0 limit, both ρc,1(k) and ρs,1(Λ) are even functions and therefore

Dimp
c = Dimp

s = 0. (B36)

It is useful to note that the dressed energies take the form

εc(k) = −2 cos k − µ− 2u+

∫ Q

−Q
dk′ cos k′ R(sin k − sin k′)εc(k

′), (B37)

εs(Λ) =

∫ Q

−Q
dk cos k s [Λ− sin k] εc(k), (B38)

εkΛ(Λ) = 4Re
√

1− (Λ− iu)2 − 2µ− 4u+

∫ Q

−Q
dk cos k a1(sin k − Λ) εc(k). (B39)

The value of εkΛ(0) provides the location of the threshold at zero momentum in this sector. The finite-size energy
can therefore be simply written as

E = LeGS({Xα}) + εkΛ(0)− πvc
6L

+
2πvc
L

[
(∆Nc −N imp

c )2

4ξ2
+ ξ2

(
Dc −Dimp

c +
Ds −Dimp

s

2

)2
]
. (B40)

Appendix C: Bethe Ansatz results for high-energy charge particle

1. Bethe Ansatz calculation

Starting from the Takahashi equations

Lzc(kj) = kjL+

M∑

α=1

θ

(
sin kj − Λα

u

)
, j = 1, . . . , N,

Lzs(Λα) =

N∑

j=1

θ

(
Λα − sin kj

u

)
−

M∑

β=1

θ

(
Λα − Λβ

2u

)
, α = 1, . . . ,M.

(C1)

We can use the Euler-Maclaurin formula (B2) to recast this as

zc(k) = k +

∫ A+

A−

dΛ θ

(
sin k − Λ

u

)
ρs(Λ) +

2π

24L2

[
a1(sin k −A+)

ρs(A+)
− a1(sin k −A−)

ρs(A−)

]
, (C2)

zs(Λ) =

∫ Q+

Q−

dk θ

(
Λ− sin k

u

)
ρc(k)−

∫ A+

A−

dΛ′θ

(
Λ− Λ′

2u

)
ρs(Λ

′) +
1

L
θ

(
Λ− sin kp

u

)

+
2π

24L2

[
a1(Λ− sinQ+) cosQ+

ρc(Q+)
− a1(Λ− sinQ−) cosQ−

ρc(Q−)
− a2(Λ−A+)

ρs(A+)
+
a2(Λ−A−)

ρs(A−)

]
. (C3)

Taking derivatives gives the root densities

ρc(k) =
1

2π
+

∫ A+

A−

dΛa1(sin k − Λ)ρs(Λ) cos k +
1

24L2
cos k

[
a′1(sin k −A+)

ρs(A+)
− a′1(sin k −A−)

ρs(A−)

]
, (C4)

ρs(Λ) =

∫ Q+

Q−

dka1(Λ− sin k)ρc(k)−
∫ A+

A−

dΛ′a2(Λ− Λ′)ρs(Λ
′) +

1

L
a1(Λ− sin kp)

+
1

24L2

[
a′1(Λ− sinQ+) cosQ+

ρc(Q+)
− a′1(Λ− sinQ−) cosQ−

ρc(Q−)
+
a′2(Λ−A−)

ρs(A−)
− a′2(Λ−A+)

ρs(A+)

]
. (C5)
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We can again split these linear integral equations into the form (B7), (B8), (B12) where in this case

ρ
(0)
α,0 =

δα,c
2π

, ρ
(0)
α,1(zα) = δα,sa1(zα − sin kp). (C6)

and the integral kernels are again given by (B9). We can then construct the impurity densities

N imp
α =

∫ Xα

−Xα
dzαρα,1(zα), (C7)

2Dimp
c =

∫ π

Q

dk [ρc,1(−k)− ρc,1(k)]− 1

π

∫ A

−A
dΛ ρs,1(Λ) θ

(
Λ

u

)
, (C8)

2Dimp
s =

∫ ∞

A

dΛ [ρs,1(−Λ)− ρs,1(Λ)] . (C9)

To determine the thermodynamic rapidity kp and the finite-size correction δkp, we can examine the requirements that

zc(k
p
L) =

2πIp

L
, (C10)

zc,0(kp) =
2πIp

L
, (C11)

with kpL = kp + δkp

L . Expanding (C10) in the deviation δkp and using (C11) yields

δkp = − L

2πρc,0(kp)


∑

β,σ

Ψ
(σ)
β (kp)(Xσ

β − σXβ)


− 1

2πρc,0(kp)

∫ A

−A
dΛρs,1(Λ)θ

(
Λ− sin kp

u

)
, (C12)

where

Ψ
(σ)
β (k) = σρs,0(A)θ

(
σA− sin k

u

)
δs,β +

∫ A

−A
dΛ r

(σ)
s,β (Λ)θ

(
Λ− sin k

u

)
, (C13)

r
(σ)
αβ = σρβ,0(Xβ)Kαβ(zα, σX

β) +Kαγ ∗ r(σ)
γβ . (C14)

Using the results of Appendix E, this can be shown to reduce to

δkp =
1

ρc,0(kp)

∑

α=c,s

(
N imp
α Dα +Dimp

α ∆Nα −Dimp
α N imp

α

)
. (C15)

We then have that

E = eGSL+ εc(k
p) + ε′c(k

p)
δkp

L
− π

6L
(vs + vc) +

2π

L

[
1

4
∆Ñγ(Z>)−1

γαvαZ
−1
αβ∆Ñβ + D̃γZγαvαZ

>
αβD̃β

]
, (C16)

with the form of D̃α, ∆Ñα and Zαβ given by (B29), (B30), (B26).

2. Simplification for B → 0

In the B → 0 limit, the integral equations describing the impurity densities are given by

ρc,1(k) = cos k R(sin k − sin kp) + cos k

∫ Q

−Q
dk′R(sin k − sin k′)ρc,1(k′), (C17)

N imp
c =

∫ Q

−Q
dkρc,1(k), N imp

s =
1

2
(1 +N imp

c ), (C18)
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2Dimp
c =

∫ π

Q

dk [ρc,1(−k)− ρc,1(k)] +
i

π

{
ln

[
Γ
(

1
2 − i sin kp

4u

)
Γ
(
1 + i sin kp

4u

)

Γ
(

1
2 + i sin kp

4u

)
Γ
(
1− i sin kp

4u

)
]}

+
i

π

∫ Q

−Q
dkρc,1(k)

{
ln

[
Γ
(

1
2 − i sin k

4u

)
Γ
(
1 + i sin k

4u

)

Γ
(

1
2 + i sin k

4u

)
Γ
(
1− i sin k

4u

)
]}

,

(C19)

Dimp
s = 0. (C20)

This gives the finite-size corrections to the energy as

E = eGSL+ εc(k
p) + ε′(kp)

δkp

L
− πvc

6L

+
2πvc
L

[
(∆Nc −N imp

c )2

4ξ2
+ ξ2

(
Dc −Dimp

c +
Ds

2

)2
]

+
2πvs
L

[
1

2

(
∆Ns −

∆Nc
2
− 1

2

)2

+
D2
s

2

]
, (C21)

where ξ = ξ(Q) and ξ(k) obeys (A4).

Appendix D: Bethe Ansatz results for two high-energy charge hole excitations

We again start from (C1). Following similar steps to Appendices B and C, applying the Euler-Maclaurin summation
formula (B2) then allows us to write

ρα(zα) = ρα,0(zα) +
1

L
ρα,1(zα) +

1

24L2

∑

β,σ

f
(σ)
αβ (zα)

ρβ(Xβ
σ )
. (D1)

We can again split these linear integral equations into the form (B7), (B8), (B12) where in this case

ρ
(0)
α,0 =

δα,c
2π

, (D2)

ρ
(0)
α,1 = −δα,s

[
a1(Λ− sin kh1) + a1(Λ− sin kh2)

]
. (D3)

and the integral kernels are given by (B9). We can now determine

2Dimp
c =

∫ π

Q

dk [ρc,1(−k)− ρc,1(k)]− 1

π

∫ A

−A
dΛ θ

(
Λ

u

)
ρs,1(Λ), (D4)

2Dimp
s =

∫ ∞

A

dΛ [ρs,1(−Λ)− ρs,1(Λ)] . (D5)

We also have that

zc(k
hi
L ) =

2πIhi

L
, zc,0(khi) =

2πIhi

L
, (D6)

with khiL = khi + δkhi

L , yielding

δkhi = − L

2πρc,0(khi)


∑

β,σ

Ψ
(σ)
β (khi)(Xσ

β − σXβ)


− 1

2πρc,0(khi)

∫ A

−A
dΛρs,1(Λ)θ

(
Λ− sin khi

u

)
, (D7)

with Ψ(σ)(k) given by (C13). We now have all of the quantities required to evaluate the finite-size spectrum in the
presence of the two high-energy holons:

E = eGSL− εc(kh1)− εc(kh2)− ε′c(kh1)
δkh1

L
− ε′c(kh2)

δkh2

L
− π

6L
(vs + vc)

+
2π

L

[
1

4
∆Ñγ(Z>)−1

γαvαZ
−1
αβ∆Ñβ + D̃γZγαvαZ

>
αβD̃β

]
, (D8)

with the form of D̃α, ∆Ñα and Zαβ given by (B29), (B30), (B26).
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1. Zero field

In zero field, the integral equations for the functions ρc,1, ρs,1 simplify due to A→∞ allowing the use of a Fourier
transform, specifically

ρc,1(k) = − cos k
[
R(sin k − sin kh1) +R(sin k − sin kh2)

]
+ cos k

∫ Q

−Q
dk′R(sin k − sin k′)ρc,1(k′), (D9)

ρs,1 = −s(Λ− sin kh1)− s(Λ− sin kh2) +

∫ Q

−Q
dk s(Λ− sin k)ρc,1(k). (D10)

We also have

N imp
s =

1

2
N imp
c − 1. (D11)

The finite-size spectrum can then be written as

E = eGSL− εc(kh1)− εc(kh2)− δkh1

L
ε′c(k

h1)− δkh2

L
ε′c(k

h2)− π

6L
(vc + vs)

+
2πvc
L

[
(∆Nc −N imp

c )2

4ξ2
+ ξ2

(
Dc −Dimp

c +
Ds −Dimp

s

2

)2
]

+
2πvs
L

[
1

2

(
∆Ns −

∆Nc
2

+ 1

)2

+
(Ds −Dimp

s )2

2

]
.

(D12)

Appendix E: Finite-size momentum spectrum

As well as the finite-size energies, it is also possible to match the finite-size momentum spectra. We consider here
the simple case of a single high-energy charge excitation, but the reasoning is the same for other excitations.

1. Mobile impurity model momentum spectrum

We bosonise the Hubbard chain at U = 0, decomposing the fermionic annihilation operator as

cσ(x) = Rσ(x)eikF x + Lσ(x)e−ikF x. (E1)

To identify the momentum operator, we consider it as the generator of translations by one site i.e.

e−ia0P cσ(x)eia0P = cσ(x+ a0). (E2)

Which means that Rσ(x)→ Rσ(x+ a0)eikF a0 . By utilising the refermionisation identities35

R↑ ∼
∏

α=c,s

e
− i√

2
ϕ∗α+ i

4
√

2
Φ∗α , L↑ ∼

∏

α=c,s

e
i√
2
ϕ̄∗α− i

4
√

2
Φ∗α , (E3)

we can identify that, in terms of the mode expansion of the spin and charge modes, the momentum operator is given
by

P =
kF

π
√

2

(
Q̄∗c −Q∗c

)
+

1

8πL

[
Q∗c

2 − Q̄∗c2 +Q∗s
2 − Q̄∗s2

]

+ i

∫
dxB†(x)∂xB(x) +

∑

α=c,s

∞∑

n=1

2πn

L

(
c†α,R,ncα,R,n − c†α,L,ncα,L,n

)
. (E4)

Employing the unitary transformation, this can be written as

P =
kF

π
√

2

(
Q̄◦c − Q̄◦c − 4πγc + 4πγ̄c

)
+

1

8πL

[
Q◦c

2 − Q̄◦c2 +Q◦s
2 − Q̄◦s2

]
+ i

∫
dxB̃†∂xB̃

+
∑

α=c,s

∞∑

n=1

2πn

L

(
c†α,R,ncα,R,n − c†α,L,ncα,L,n

)
.

(E5)
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Which therefore predicts a finite-size spectrum of the form

P =
kF

π
√

2
(q̄c − qc) + Pmimp(k

p) +
2π

L

[(
qc + q̄c

4π
− γc + γ̄c

)(
qc − q̄c

4π
− γc − γ̄c

)
+

(
qs + q̄s

4π
− γs + γ̄s

)(
qs − q̄s

4π
− γs − γ̄s

)]
+

2π

L

∑

k=c,s

(
N+
k −N−k

)
,

(E6)

where the N±k are non-negative integers enumerating the number of particle-hole pairs in the vicinity of the “Fermi
points”.

2. Bethe Ansatz calculation: high-energy charge particle

We wish to know the momentum contribution from the high-energy charge particle: there will be finite-size con-
tributions to this from interactions with the low-energy sector. As we know precisely the integers forming this state
from (50), we can simply sum these integers to find the momentum. This approach, however, yields no information
on which contributions come from the finite-size shift of the rapidity and which contributions come from interactions
between the high-energy and low-energy degrees of freedom. The solution is to explicitly include the finite-size shift
of the rapidity and calculate the remaining corrections in terms of the quantites N imp

α , Dimp
α , Nα, Dα, as we had for

the finite-size energy.

a. Basic integral equations

The solution for ρα,1 implicitly defined by (C6), can be formally written as

ρα,1(zα) =
(
Kαβ ∗ (1− K̂)−1

βc

)
(zα, k

p). (E7)

We introduce the shift functions54

F (0)
cc (k, k′) = 0, F (0)

cs (k,Λ) =
1

2π
θ

(
sin k − Λ

u

)
,

F (0)
sc (Λ, k) =

1

2π
θ

(
Λ− sin k

u

)
, Fss(Λ,Λ

′) = − 1

2π
θ

(
Λ− Λ′

2u

)
,

(E8)

and the “dressed” shift functions

Fαβ(zα, zβ) = F
(0)
αβ (zα, zβ) + (Fαγ ∗Kγβ) (zα, zβ). (E9)

It is useful to note that

Kαβ(zα, zβ) = ∂zαF
(0)
αβ . (E10)

Both the finite-size energy and momentum spectra involve the function

r̃
(σ)
αβ (zα) = Kαβ(zα, σX

β) +Kαγ ∗ r̃(σ)
γβ . (E11)

b. Finite-size momentum spectrum

As for the energy of the system, the momentum can also be expanded as an asymptotic series in powers of L−1. In
the analysis of the finite-size energy calculation, when determining δkp as in (C12), one finds

zc(k
p
L) = zc,0(kp) + z′c,0(kp)

δkp

L

+
∑

σ,β

σρβ,0(Xβ)

[
θ

(
sin kp − σXβ

u

)
δβ,s +

∫ A

−A
dΛθ

(
sin kp − Λ

u

)
r̃

(σ)
sβ (Λ)

]
[
Xβ
σ − σXβ

]

+
1

L

∫ A

−A
dΛ θ

(
sin kp − Λ

u

)
ρs,1(Λ).

(E12)
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We will first look at the term in the sum multiplied by Xβ
σ − σXβ . (E9) and (E11) imply that

Fαβ = F (0)
αγ ∗ (1− K̂)−1

γβ , r̃
(σ)
αβ = (1− K̂)−1

αγ ∗Kγβ(zα, σX
β), (E13)

allowing us to write

F
(0)
cβ (kp, σXβ) + F (0)

cα ∗ r̃(σ)
αβ (kp) = Fcβ(kp, σXβ). (E14)

It can also be shown that
∫ A

−A
dΛ θ

(
sin k − Λ

u

)
ρs,1(Λ) = 2πFcc(k, k

p). (E15)

The finite-size momentum can therefore be written in terms of the dressed shift functions as

zc(k
p
L) = zc0(kp) + z′c,0(kp)

δkp

L
+
∑

σ,β

σ2πρβ,0(Xβ)Fcβ(kp, σXβ)
[
Xβ
σ − σXβ

]
+

2π

L
Fcc(k

p, kp). (E16)

We now wish to relate the functions Fαβ(zα, zβ) to the impurity densities N imp
α , Dimp

α .

c. Relating shift functions to impurity densities

By using (E7) and (E10) in (C7) and (C8), it can be shown that

2Dimp
α = Fαc(X

α, kp) + Fαc(−Xα, kp), (E17)

N imp
α = Fαc(X

α, kp)− Fαc(−Xα, k
p), (E18)

i.e.

Dimp
α ± N imp

α

2
= Fαc(±Xα, kp). (E19)

d. Determining boundary terms

To express the finite-size momentum (E16) in terms of the N imp
α , Dimp

α (E19), we need to relate Fαc(σX
α, kp) to

Fcβ(kp, σ′Xβ). By considering the Neumann series of (E13) and integrating by parts, it can be shown that

Fαβ(zα, zβ) + Fβα(zβ , zα) = −
∑

γ,σ

σFγα(σXγ , zα)Fγβ(σXγ , zβ). (E20)

To establish the desired relationship, (E20) implies that we require the values Fαβ(τXα, τ ′Xβ). It is simple to show
that

Fαβ(Xα, Xβ)− Fαβ(−Xα, Xβ) = Zαβ − δαβ , (E21)

with Z the dressed charge matrix as defined in (B26). (E20) also implies that

Fαβ(Xα, Xβ) + Fβα(Xβ , Xα) = −
∑

γ

[
Fγα(Xγ , Xα)Fγβ(Xγ , Xβ)− Fγα(−Xγ , Xα)Fγβ(−Xγ , Xβ)

]
. (E22)

Substituting (E21) into (E22) and simplifying, if we define F to be the matrix Fαβ(Xα, Xβ), then it satisfies the
equation

Z>F + F>Z = (1− Z)>(1− Z). (E23)

Considering

Fβα(−Xβ , Xα)− Fαβ(−Xα, Xβ) =
∑

σ,γ

σFγα(σXγ , Xα)Fγβ(−σXγ , Xβ), (E24)
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and using (E21) again, we find the similar equation

Z>F − F>Z = Z − Z>. (E25)

(E23) and (E25) determine F uniquely, giving

Fαβ(τXα, τ ′Xβ) =
τ

2
(Z − 1)αβ +

τ ′

2

(
Z−1> − 1

)
αβ
. (E26)

This therefore allows us to write down the dressed shift functions appearing in (E16) in terms of the known quantities
N imp
α , Dimp

α , viz.

Fcc(k
p, kp) = −

∑

γ

Dimp
γ N imp

γ , (E27)

Fcα(kp, τXα) = −
∑

γ

(τ
2
N imp
γ Z−1>

γα +Dimp
γ Zγα

)
. (E28)

Combining the previous results, we find

zc(k
p
L) = zc,0(kp) + z′c,0(kp)

δkp

L
− 2π

L

∑

α

[
N imp
α Dα +Dimp

α ∆Nα −Dimp
α N imp

α

]
. (E29)

Using Eq. (8.38) from Ref. 2, the full finite-size momentum spectrum in the presence of a high-energy charge particle
is given by

P = 2DckF,↑ + 2(Dc +Ds)kF,↓ + zc,0(kp) + 2πρc,0(kp)
δkp

L
+

2π

L


∆Ñ> ·∆D̃ +

∑

k∈{c,s}

(N+
k −N−k )


 , (E30)

where the N±k are non-negative integers enumerating the number of particle-hole pairs in the vicinity of the Fermi
points and kF,↑(↓) = 1

2 (πnc ± 2πm). In the zero-field limit m = 0 and therefore kF,↑ = kF,↓ = kF , giving

P = 2kF (2Dc +Ds) + zc,0(kp) + 2πρc,0(kp)
δkp

L
+

2π

L


∆Ñ> ·∆D̃ +

∑

k∈{c,s}

(N+
k −N−k )


 . (E31)
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