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Abstract We present a comparative study of nucleon structure such as electromagnetic form factors,
transverse charge and magnetization densities in three different models within AdS/QCD framework.
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1 Introduction

In recent years, AdS/QCD has emerged as one of the most promising techniques to unravel the structure
of mesons and nucleons. AdS/CFT conjecture relates a strongly coupled gauge theory in d space-
time dimensions by a dual weak coupling gravity theory in AdSd+1 space. To exploit this duality to
address the problems in QCD, the conformal invariance needs to be broken. In the literature there are
two methods to achieve this goal, one is called hard wall model where a sharp cut-off is put in the
hologhaphic direction in the AdS space where the wave functions are made to vanish and the other is
called the soft wall model in which a confining potential is introduced in the AdS space which breaks
the conformal invariance and allows the QCD mass scale.

Electromagnetic form factors provide us insights into the structure of the nucleons and have been
measured in many experiments. In the light-cone frame with q+ = q0 + q3 = 0, the charge and
anomalous magnetization densities in the transverse plane can be identified with the two-dimensional
Fourier transform(FT) of the electromagnetic form factors. The contributions of individual quark to
the nucleon charge and magnetization densities are obtained from the flavor decompositions of the
transverse densities.

Here we present a detailed analysis of the nucleon form factors in AdS/QCD soft-wall models
[1; 2; 3; 4]. The flavor form factors are obtained by decomposing the Dirac and Pauli form factors for
nucleons using the charge and isospin symmetry. We also present a comparative study of the nucleon
as well as the flavor contributions to the nucleon charge and anomalous magnetization densities in the
transverse plane [5].

2 Nucleon and flavor form factors in ADS/QCD models

Model I : Model I refers to the AdS/QCD model for nucleon form factors proposed by Brodsky and
Téramond [2]. The relevant AdS/QCD action for the fermion field is written as

S =

∫
d4xdz

√
g
( i
2
Ψ̄eMA Γ

ADMΨ − i

2
(DM Ψ̄)e

M
A Γ

AΨ − µΨ̄Ψ − V (z)Ψ̄Ψ
)
, (1)
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where eMA = (z/R)δMA is the inverse vielbein and V (z) is the confining potential which breaks the
conformal invariance and R is the AdS radius. In d = 4 dimensions, ΓA = {γµ,−iγ5}. To map the Dirac
equation in AdS space with the light front wave equation, one identifies z → ζ (light front transverse
impact variable) and substitutes Ψ(x, ζ) = e−iP ·xζ2ψ(ζ)u(P ) and sets | µR |= ν+1/2 where ν = L+1
(more details can be found in [2]). For linear confining potential U(ζ) = (R/ζ)V (ζ) = κ2ζ, one gets
the light front wave equation for the baryon which leads to the AdS solutions of nucleon wavefunctions
ψ+(z) and ψ−(z) corresponding to different orbital angular momentum Lz = 0 and Lz = +1 [2]

ψ+(ζ) ∼ ψ+(z) =

√
2κ2

R2
z7/2e−κ2z2/2, ψ−(ζ) ∼ ψ−(z) =

κ3

R2
z9/2e−κ2z2/2. (2)

The Dirac form factors in this model are obtained by the SU(6) spin-flavor symmetry and given by

F p
1 (Q

2) = R4

∫
dz

z4
V (Q2, z)ψ2

+(z), Fn
1 (Q

2) = −1

3
R4

∫
dz

z4
V (q2, z)(ψ2

+(z)− ψ2
−(z)). (3)

A precise mapping for the spin-flip nucleon form factor using the action in Eq.(1) is not possible. Thus,
the Pauli form factors for the nucleons are modeled in this model as

F
p/n
2 (Q2) = κp/nR

4

∫
dz

z3
ψ+(z)V (Q2, z)ψ−(z). (4)

The Pauli form factors are normalized to F
p/n
2 (0) = κp/n where κp/n are the anomalous magnetic

moment of proton/neutron. V (Q2, z) is the bulk-to-boundary propagator[2]. Here we use the value
κ = 0.4GeV which is fixed by fitting the ratios of Pauli and Dirac form factors for proton with the
experimental data [3; 6].
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Fig. 1 Nucleon form factors (a) the ratio of Dirac and Pauli form factors for proton is multiplied by Q2 =
−q2 = −t, (b) the ratio is divided by κp; (c) electric Sach form factor for neutron Gn

E(Q
2), (d) the ratio

Rn =
µn Gn

E

Gn
M

. The red dashed and pink dash dot lines represent the Model I and Model II and the solid black

lines represent the quark-diquark model [4]. The references of the experimental data can be found in Ref.[3].

Model II : The other model of the nucleon form factors was formulated by Abidin and Carlson[1].
Since the action defined in Eq.(1) can not generate the Pauli form factors, they introduced an additional
gauge invariant non-minimal coupling term

∫
d4x dz

√
g Ψ̄ eAM eBN [ΓA, ΓB]F

MNΨ. (5)
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Fig. 2 Flavor dependent form factors for u and d quarks. The experimental data are taken from [9; 10]. The
lines are same as in Fig.1.
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Fig. 3 Transverse charge and anomalous magnetization densities for nucleon. (a) and (b) represent ρch and
ρm for the proton. (c) and (d) same as proton but for neutron. Lines with circle represent the parametrization
of Kelly [11].

This additional term also provides an anomalous contribution to the Dirac form factor. In this model
the form factors are given by[1]

F p
1 (Q

2) = C1(Q
2) + ηpC2(Q

2), Fn
1 (Q

2) = ηnC2(Q
2), (6)

F p
2 (Q

2) = ηpC3(Q
2), Fn

2 (Q
2) = ηnC3(Q

2). (7)

The functions Ci(Q
2) are defined as C1(Q

2) = a+6
(a+1)(a+2)(a+3) , C2(Q

2) = 2a(2a−1)
(a+1)(a+2)(a+3)(a+4) , and

C3(Q
2) = 48

(a+1)(a+2)(a+3) , where a = Q2/(4κ2). The value of κ = 0.350GeV is fixed by simultaneous

fit to proton and rho meson masses. The other parameters are determined from the normalization
conditions of the Pauli form factor at Q2 = 0 and are given by ηp = 0.224 and ηn = −0.239 [1]. The
Pauli form factors in Model I and Model II are identical, the main difference is in the Dirac form factor
where we have an additional contribution in Model II coming the extra term added.
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Fig. 4 Unpolarized and transversely polarized charge densities for proton(upper) and neutron(lower) in LF
diquark model.

Table 1 Electromagnetic radii of the nucleons

Quantity Model I Model II LF diquark Measured data

r
p
E (fm) 0.810 0.980 0.786 0.877 ± 0.005
r
p
M (fm) 0.782 0.921 0.772 0.777 ± 0.016
〈r2E〉

n (fm2) −0.088 −0.123 −0.085 −0.1161 ± 0.0022
rnM (fm) 0.796 0.937 0.7596 0.862+0.009

−0.008

Quark-diquark model in AdS/QCD : Here we consider a light front scalar quark-diquark model
for nucleon[7] where the 2-particle wavefunction is modeled from the soft-wall AdS/QCD solution. In
the light front overlap formalism, the electromagnetic form factors in this model are given by

F q
1 (Q

2) =

∫ 1

0

dx

∫
d2k⊥

16π3

[
ψ+∗

+q (x,k
′

⊥)ψ
+
+q(x,k⊥) + ψ+∗

−q (x,k
′

⊥)ψ
+
−q(x,k⊥)

]
, (8)

F q
2 (Q

2) = − 2Mn

q1 − iq2

∫ 1

0

dx

∫
d2k⊥

16π3

[
ψ+∗

+q (x,k
′

⊥)ψ
−

+q(x,k⊥) + ψ+∗

−q (x,k
′

⊥)ψ
−

−q(x,k⊥)

]
, (9)

where k′

⊥
= k⊥ + (1 − x)q⊥. ψ

λN

λqq
(x,k⊥) are the LFWFs with specific nucleon helicities λN = ±

and for the struck quark λq = ±, where plus and minus correspond to + 1
2 and − 1

2 respectively. The
LFWFs are specified at an initial scale µ0 = 313 MeV [7] :

ψ+
+q(x,k⊥) = ϕ(1)

q (x,k⊥) , ψ+
−q(x,k⊥) = −k

1 + ik2

xMn
ϕ(2)
q (x,k⊥) ,

ψ−

+q(x,k⊥) =
k1 − ik2

xMn
ϕ(2)
q (x,k⊥) , ψ−

−q(x,k⊥) = ϕ(1)
q (x,k⊥) , (10)

ϕ(i)
q (x,k⊥) = N (i)

q

4π

κ

√
log(1/x)

1− x
xa

(i)
q (1− x)b

(i)
q exp

[
− k2

⊥

2κ2
log(1/x)

(1− x)2

]
. (11)

For a
(i)
q = b

(i)
q = 0, ϕ

(i)
q (x,k⊥) reduces to the AdS/QCD prediction [2]. κ is the AdS/QCD scale

parameter which is taken to be 0.4 GeV [6; 3]. The parameters a
(i)
q and b

(i)
q with the constants N

(i)
q

are fixed by fitting the electromagnetic properties of the nucleons [8].
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Flavor decompositions of the nucleon form factors : Under the charge and isospin symmetry
it is straightforward to write down the flavor decompositions of the nucleon form factors as [9]

F p
i = euF

u
i + edF

d
i and Fn

i = edF
u
i + euF

d
i , (i = 1, 2) (12)

where eu and ed are charge of u and d quarks respectively. The normalizations of the flavor form factors
are Fu

1 (0) = 2, Fu
2 (0) = κu and F d

1 (0) = 1, F d
2 (0) = κd where the anomalous magnetic moments for

the up and down quarks are κu = 2κp + κn = 1.673 and κd = κp + 2κn = −2.033.
In Fig.1 we compare the results for electromagnetic form factors of nucleons calculated in different

AdS/QCD models. The flavor form factors are shown in Fig.2. The figures show that the results of
the Model I and the quark-diquark model are in good agreement with experimental data whereas the
Model II deviates from the data. Only for F d

1 , Model I deviates at higher Q2 from the data and also
for Gn

E(Q
2) Model II is better than Model I. The fitted results for the electromagnetic radii of the

nucleons are listed in Table 1.

3 Transverse charge and magnetization densities

The transverse charge density inside the nucleons is given by

ρch(b) =

∫
d2q⊥
(2π)2

F1(q
2)eiq⊥.b⊥ =

∫ ∞

0

dQ

2π
QJ0(Qb)F1(Q

2), (13)

where b represents the impact parameter and J0 is the cylindrical Bessel function of order zero. One
can define the magnetization density(ρ̃M (b)) in the similar fashion with F1 is replaced by F2, whereas,
ρm(b) = −b(∂ρ̃M (b)/∂b) can be interpreted as anomalous magnetization density. We evaluate the quark
contributions to the nucleon transverse densities using charge and isospin symmetry (see [5; 4]).

For transversely polarized nucleon, the charge density is given by

ρT (b) = ρch − sin(φb − φs)
1

2Mnb
ρm. (14)

The transverse polarization of the nucleon is given by S⊥ = (cosφsx̂+sinφsŷ) and the transverse impact
parameter b⊥ = b(cosφbx̂+sinφbŷ). Without loss of generality, the polarization of the nucleon is taken
along x-axis ie., φs = 0. The second term in Eq.(14), provides the deviation from circular symmetry of
the unpolarized charge density.The nucleon charge and anomalous magnetization densities presented
in Fig.3 suggest that the quark-diquark model agrees with the phenomenological parametrizations [11]
much better than the Model I and the Model II and Model I is better compare to Model II. The
charge densities between unpolarized and transversely polarized nucleon in the quark-diquark model
are compared in Fig.4. The unpolarized densities are axially symmetric in transverse plane while for
the transversely polarized nucleons they become distorted. For nucleon polarized along x direction, the
densities get shifted towards negative y-direction. Due to large anomalous magnetization density, the
distortion in neutron charge density is found to be stronger than that for proton.

Acknowledgements CM thanks the Sciencce and Engineering Research Board (SERB), Gorernment of India
for supporting the travel grant under contract no. ITS/3444/2015-2016 to attend the conference LightCone2015
where the work was presented.
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