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Dynamics of charged matter in the oblique black hole magnetosphere is investigated.
In particular, we adopt a model consisting of a rotating black hole embedded in the
external large-scale magnetic field that is inclined arbitrarily with respect to the rotation
axis. Breaking the axial symmetry appears to have profound consequences regarding
the dynamics of particles and it also poses some methodological difficulties. In this
contribution we discuss the applicability of the method of effective potential for the non-
axisymmetric model and show that it may only be applied in the appropriate reference
frame.
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1. Introduction

We investigate the dynamics of charged particles exposed to the strong gravitational

and electromagnetic fields in the particular model of black hole magnetosphere. Pre-

viously, we studied an axisymmetric version of this model and successfully employed

the method of the effective potential for the analysis.1–3 Nevertheless, if the axial

symmetry breaks, the application of this tool and construction of the effective po-

tential become problematic.4,5 In this paper we further discuss the applicability of

the effective potential in the general non-axisymmetric case. More detailed intro-

duction and astrophysical motivation for the model is given in Refs. (3, 4).

2. Inclined Magnetosphere of Rotating Black Hole

Kerr metric describing the geometry of the spacetime around a rotating black hole of

massM and spin amay be expressed in Boyer-Lindquist coordinates xµ = (t, r, θ, ϕ)

as follows:6

ds2 = −∆

Σ
[dt− a sin θ dϕ]2 +

sin2 θ

Σ
[(r2 + a2)dϕ− a dt]2 +

Σ

∆
dr2 +Σdθ2, (1)

where ∆(r) ≡ r2 − 2Mr + a2 and Σ(r, θ) ≡ r2 + a2 cos2 θ.

Geometrized units are used throughout the paper. Values of basic constants

thus equal unity, G = c = k = kC = 1.

A test-field solution to Maxwell equations corresponding to the aligned magnetic

field (of the asymptotic strength Bz) on the Kerr background was derived by Wald.7

This solution was later generalized by Bičák and Janǐs8 to describe the field which is

arbitrarily inclined with respect to the rotation axis (direction of the magnetic field

is then specified by two independent components, Bz and Bx). Resulting vector
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potential of the electromagnetic field Aµ = (At, Ar, Aθ, Aϕ) is given explicitly by

Eq. (A4) of Ref. (8).

3. Effective Potential in General Relativity

In general relativity we have no clear distinction between the kinetic and potential

energy. Nevertheless, in many cases we may still derive function analogous to the

classical effective potential. Such a function locates the turning points of motion

and represents a boundary (in the extended configuration space) of allowed regions.

Analysis of the effective potential Veff provides valuable overall information about

the dynamics without need of actual integration of particular trajectories and, most

importantly, it allows to locate regions of stable orbits. Searching for the effective

potential in the general case of a charged particle of the rest mass m and charge

q in the spacetime with metric gµν and electromagnetic field Aµ we start from the

Hamiltonian H expressed in canonical variables (xµ, πµ) whose conserved value is

given by the normalization of the kinematic four-momentum pµ:6

2H = gµνpµpν = gµν(πµ − qAµ)(πν − qAν) = −m2. (2)

3.1. Axisymmetric Magnetosphere

In the special case of stationary and axisymmetric Kerr spacetime with additional

electromagnetic test-field obeying the same symmetries (in which case πϕ = L and

πt = −E are constants of motion and system therefore has two degrees of freedom)

we obtain from Eq. (2) by straightforward manipulations

Σ

(

(pr)2

∆
+ (pθ)2

)

= αE2 + βE + γ, (3)

where

α = −gtt, β = 2
[

gtϕ(L− qAϕ)− gttqAt

]

, (4)

γ = −gϕϕ(L − qAϕ)
2 − gttq2A2

t + 2gtϕqAt(L − qAϕ)−m2. (5)

Since both coefficients Σ and ∆ are positive above the outer horizon r = r+ to

which region we restrict our study, the zero point of the left-hand side of Eq. (3)

occurs at the simultaneous turning point of motion in both the radial and latitu-

dinal directions and it defines the boundary of allowed motion. Function which

specifies the value of energy corresponding to the turning point can be regarded as

a generalization of the classical effective potential Veff . We can therefore express the

two-dimensional effective potential as Veff(r, θ) =
(

−β +
√

β2 − 4αγ
)

/2α, where

the positive root of quadratic equation has to be chosen to correspond with the

future-pointing four-momentum.6 Since α > 0 above the horizon the motion is

allowed just if E ≥ Veff .

Method of effective potential has been applied to locate confinements (both

equatorial and off-equatorial) of charged matter in several stationary and axisym-

metric models in our previous works.1–3 Potential Veff was investigated as a function
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of two configuration variables r and θ, angular momentum L of the particle and

parameters of the given system.

3.2. Oblique Magnetosphere

The question arises whether we could also apply the method of effective potential

for the stationary system of three degrees of freedom in which the axial symmetry

is broken and Aµ = Aµ(r, θ, ϕ) but gµν = gµν(r, θ). In this case the trajectory

manifold spans five dimensions out of total eight dimensions of the phase space. The

effective potential reduces the number of dimensions by imposing the constraint of

type (pµ)2 = 0 which locates the turning point in given direction. Here we seek the

simultaneous turning point in all three directions r, θ and ϕ which would result in a

two-dimensional submanifold. For a fixed value of ϕ we should therefore obtain one-

dimensional isopotential curves specifying the allowed region in a given meridional

plane described by coordinates r, θ as we previously did in the case of axisymmetric

systems. Indeed, we can derive the expression formally analogous to Eq. (3):

Σ

(

(pr)2

∆
+ (pθ)2

)

+ gϕϕ(p
ϕ)2 = α⋆E2 + β⋆E + γ⋆, (6)

where the coefficients are now given as

α⋆ = −gtt
(

1 + gtϕgtϕ
)

, β⋆ = 2
[

gtϕ(g
tϕ)2(πϕ − qAϕ)− gttqAt(1 + gtϕgtϕ)

]

(7)

γ⋆ = −gϕϕgtϕgtϕ(πϕ − qAϕ)
2 − gttq2A2

t (1 + gtϕgtϕ) + 2(gtϕ)2gtϕqAt(πϕ − qAϕ)−m2.

Left-hand side of Eq. (6) has the proper form necessary for expressing the ef-

fective potential (gϕϕ is positive). Nevertheless, the coefficients β⋆ and γ⋆ depend

on the azimuthal component of canonical momentum πϕ which used to be the in-

tegral of motion L in the axisymmetric system, however, here it changes along the

trajectory. Evolution of πϕ is not known a priori, and one has to integrate the

equations of motion of given particle to reveal it. Therefore it is not possible to

express the effective potential from the equation (6) as a function of r, θ, ϕ and

parameters of the metric and electromagnetic field. Simultaneous turning points

and the boundaries of allowed regions are actually not captured by this formula.

Nevertheless, it has been recently demonstrated9,10 that in the classical analogue

of the investigated system one may proceed by leaving the coordinate basis and

employing the appropriate reference frame. Indeed, switching from the Cartesian

coordinate grid to the co-rotating frame allowed to express the effective potential

of charged particles in the field of a rigidly rotating inclined magnetic dipole.9,10

In our context this would mean to choose an observer with the orthonormal

tetrad vectors eν(µ) which allow to express the boundaries of allowed motion of

particle with mass m, charge q and kinematical four-momentum p(µ) = eν(µ)pν as

follows:

p2(r) + p2(θ) + p2(ϕ) = α̃E2 + β̃E + γ̃ ≥ 0, (8)
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Fig. 1. Particular trajectory (with parameters E = 1.24, qBz = 1, Bx/Bz = 0.1, a = 0.9, and
the initial condition θ(0) = π/2, ϕ(0) = 0, ur(0) = 0 and πϕ(0) = 5) is observed in both the static
frame (left panel) and Boyer-Lindquist coordinate frame (right panel). The former is bounded
by the corresponding isosurface of effective potential (red) while the inner blue-colored surface
represents the ergosphere of the black hole inside which the static frame becomes unphysical. In
the right panel the ergosphere is marked by the gray surface instead. Asymptotic direction of the
magnetic field is indicated by the green line. Distances are scaled by black hole mass M .

making sure that coefficients α̃, β̃ and γ̃ only depend on configuration variables

r, θ, ϕ and parameters of the system (a, q, Bx and Bz). This relation follows

directly from the covariance of expression (2) and orthonormality of the tetrad (i.e.,

g(µ)(ν) = η(µ)(ν)). Our search for the proper tetrad is naturally restricted to the

class of stationary frames11 characterized by the four-velocity of the form eµ(t) =

uµ = (ut, 0, 0, uϕ). Prominent examples of stationary frames in Kerr spacetime are

those carried by zero angular momentum observer (also denoted as locally non-

rotating frame12) and geodesic frame of Keplerian observer orbiting the black hole

on stable circular orbits in equatorial plane.

In particular, the time component of the canonical four-momentum measured

in a general stationary frame is expressed as π(t) = utπt + uϕπϕ = −utE + uϕπϕ.

It appears, however, that no stationary frame can eliminate πϕ appearing in this

formula from the coefficients β̃ and γ̃, and we end up in the same situation as we

did in the Boyer-Lindquist coordinate basis with coefficients β⋆ and γ⋆ given by the

relation (7). The only solution is to additionally demand uϕ = 0, i.e., to switch to

the static frame with tetrad vectors11

eµ(t) =

[

Σ1/2

χ
, 0, 0, 0

]

, eµ(r) =

[

0,
∆1/2

Σ1/2
, 0, 0

]

, (9)

eµ(θ) =

[

0, 0,
1

Σ1/2
, 0

]

, eµ(ϕ) =
χ

sin θ∆1/2Σ1/2

[

−2aMr sin2 θ

χ2
, 0, 0, 1

]

, (10)

where χ2 ≡ ∆− a2 sin2 θ.
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Fig. 2. Shape of the isosurfaces of the effective potential changes profoundly as the inclination of
the magnetic field (green line) gradually increases. Common parameters of the system are a = 0.9
and qB = q

√

B2
x
+B2

z
= 4 while the inclination angle α ≡ arctan(Bx/Bz) of the magnetic field

gradually rises as α = 0, 3π

8
, 7π

16
and π

2
(top left to bottom right in presented figures). Inner

blue-colored surface corresponds to the ergosphere. Distances are scaled by the central mass M .

This static frame allows to express the effective potential as Veff(r, θ, ϕ) =
(

−β̃ +

√

β̃2 − 4α̃γ̃

)

/2α̃, where the coefficients are defined as

α̃ =
[

et(t)

]2

, β̃ = 2qAte
t
(t), γ̃ = q2

[

et(t)

]2

A2
t −m2. (11)

Nevertheless, in the Kerr spacetime no observer may remain static inside the er-

gosphere whose boundary (corresponding to χ2 = 0) is defined by rs = M +√
M2 − a2 cos θ2. As a result the effective potential constructed in static frame
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is well-defined only outside the ergosphere. However, as demonstrated above, nei-

ther non-static frames with uϕ 6= 0, nor the Boyer-Lindquist coordinate basis itself

allow to express the effective potential in the non-axisymmentric case of oblique

magnetosphere of rotating black hole.

In Fig. 1 we present a particular trajectory of charged particle in a slightly

inclined magnetic field as viewed in the frame of a static observer and we show

its boundary represented by the corresponding isosurface of the effective potential.

This trajectory is also shown in the coordinate frame for comparison. In Fig. 2 we

observe how the shape of isosurfaces evolves as the inclinations of the magnetic field

rises.

4. Conclusions

We have constructed the effective potential for charged particles in the oblique

black hole magnetosphere. In order to do so, the proper reference frame had to be

employed. While in the classical analogue of investigated system the co-rotating

frame was used in this context, we had to switch to the static frame instead. In this

respect, the static frame in the Kerr geometry appears to represent the analogy of

classical co-rotating frame. This is somewhat surprising as the the frame which is

here usually associated with co-rotation is rather the locally non-rotating frame.12
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37086G and acknowledge the bilateral Czech-German cooperation project DAAD

15-14. Private communication with Vladimir Epp is highly appreciated.

References
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8. J. Bičák, J. and V. Janǐs, V. Mon. Not. R. Astron. Soc. 212, 899-915 (1985).

9. V. Epp and M.A. Masterova, Astrophys. Space Sci. 353, 473-483 (2014).

10. V. Epp and M.A. Masterova, Astrophys. Space Sci. 345, 315-324 (2013).

11. O. Semerák, Gen. Relat. Gravit. 25, 1041-1077 (1993).

12. J.M. Bardeen, W.H. Press and S.A. Teukolsky, Astrophys. J. 178, 347-370

(1972).


