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ABSTRACT

We present a novel technique for ranking the relative importance of galaxy properties in
the process of quenching star formation. Specifically, we develop an artificial neural network
(ANN) approach for pattern recognition and apply it to a population of over 400,000 central
galaxies taken from the Sloan Digital Sky Survey Data Release 7. We utilise a variety of phys-
ical galaxy properties for training the pattern recognition algorithm to recognise star forming
and passive systems, for a ‘training set’ of ∼100,000 galaxies. We then apply the ANN model
to a ‘verification set’ of ∼100,000 different galaxies, randomly chosen from the remaining
sample. The success rate of each parameter singly, and in conjunction with other parameters,
is taken as an indication of how important the parameters are to the process(es) of central
galaxy quenching. We find that central velocity dispersion, bulge mass and B/T are excellent
predictors of the passive state of the system, indicating that properties related to the central
mass of the galaxy are most closely linked to the cessation of star formation. Larger scale
galaxy properties (total or disk stellar masses), or those linked to environment (halo masses
or δ5) perform significantly less well. Our results are plausibly explained by AGN feedback
driving the quenching of central galaxies, although we discuss other possibilities as well.

Key words: Galaxies: formation, evolution, star formation, environments, morphologies;
black holes; AGN; astronomical techniques

1 INTRODUCTION

Explaining why galaxies stop forming stars is a challenging prob-
lem in modern astrophysics. The fact that galaxies are observed to
come in two broad ‘types’ in the local Universe is evidenced by
the bimodality of several fundamental galaxy properties, including
star formation rate (SFR), integrated galaxy colour, and morphol-
ogy (e.g. Strateva et al. 2001, Brinchmann et al. 2004, Baldry et
al. 2004, Driver et al. 2006, Baldry et al. 2006, Cameron & Driver
2009, Cameron et al. 2009, Wuyts et al. 2011, Peng et al. 2010,
2012, Wake et al. 2012). A compelling picture of how and why
galaxies form into these distinct classes is emerging from the the-
oretical perspective of hierarchical assembly of dark matter haloes,
and galaxy formation and feedback within these structures (e.g.
Cole et al. 2000, Springel et al. 2005, Bower et al. 2006, Cro-
ton et al. 2006, De Lucia et al. 2006, De Lucia & Blaizot 2007,
Somerville et al. 2008, Bower et al. 2008, Guo et al. 2011, Hen-
riques et al. 2014, Vogelsberger et al. 2014a,b, Schaye et al. 2015).
However, many of the details, including exactly what set of pro-
cesses cause the quenching of galaxies, is still debated (e.g. Bell et
al. 2012, Carollo et al. 2013, Woo et al. 2013, Bluck et al. 2014,

Dekel et al. 2014, Knobel et al. 2014, Bluck et al. 2015, Woo et al.
2015, Tacchella et al. 2015, Peng et al. 2015).

The fraction of passive (non-star forming galaxies) in a given
population has been found to depend strongly on both the stellar
mass of the galaxy and the local density in which it resides (Baldry
et al. 2006, Peng et al. 2010). The natural division of galaxies by
whether or not they are the most massive ‘central’ galaxy or less
massive ‘satellite’ galaxies in a given dark matter halo, has yielded
further insight on this issue, with Peng et al. (2012) finding that
central galaxies have a passive fraction mostly correlated with their
stellar mass and satellites being more affected by local density. In
addition to mass and local density, the structure or morphology of a
galaxy also has a strong impact on the passive fraction (e.g. Driver
et al. 2006, Cameron et al. 2009, Cameron & Driver 2009, Mendel
et al. 2013, Bluck et al. 2014). More recent work has found that
the central density or mass of the galactic bulge can provide a par-
ticularly tight constraint on the passive fraction (e.g. Cheung et al.
2012, Fang et al. 2013, Bluck et al. 2014, Lang et al. 2014, Omand
et al. 2014, Woo et al. 2015). However, there is also evidence that
the mass of the group or cluster dark matter halo, calculated via
indirect abundance matching techniques, is a tighter constraint on
the passive fraction of centrals than stellar mass (Woo et al. 2013),
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2 Teimoorinia, Bluck & Ellison

but not bulge mass or centralised velocity dispersion (Bluck et al.
2014, 2015, Woo et al. 2015).

There are several viable quenching mechanisms suggested
theoretically. Galaxy merging offers an initially tempting expla-
nation because it can, in principle, explain the bimodality in SFR
(or colour) and morphology (or structure) simultaneously. Galaxies
with recent (major) mergers will have their disk components dis-
rupted and diminished and their bulges enhanced (e.g. Toomre &
Toomre 1972, Barnes & Hernquist 1992, Cole et al. 2000), although
if the merger is gas rich disks may reform (e.g. Burkert & Naab
2004, Springel & Hernquist 2005, Hopkins et al. 2013). Addition-
ally, the merging galaxy will initially also have elevated star for-
mation (as seen observationally in, e.g., Ellison et al. 2008, Scud-
der et al. 2012, Hung et al. 2013, Patton et al. 2013, Ellison et al.
2013) and hence presumably gas consumption (although the obser-
vational evidence for this link is mixed, e.g. Ellison et al. 2015 and
references therein), potentially leading to a significant lowering of
SFR due to a lack of further fuel for star formation (as seen in recent
simulations, e.g. Moreno et al. 2015). However, if the galaxy re-
mains connected to the Universe, gas replenishment will inevitably
occur from cooling of the hot gas halo, cold gas streams, and minor
gas rich mergers. Therefore, merging by itself cannot account for
truly (or permanently) passive systems, additional processes will be
needed. This is true generally for any quenching mechanism which
‘strips’ gas from a galaxy but does not prevent further gas inflow,
i.e. ‘strangling’ the galaxy (see Peng et al. 2015 for a discussion).

For centrals, it is clear that a source of heat and/or mechani-
cal disruption will be necessary to prevent cooling or accretion of
gas onto a galaxy in order for it to cease forming stars. This can be
achieved in numerous ways, e.g. through energetic feedback from
active galactic nuclei (AGN) (e.g. McNamara et al. 2000, Nulsen
et al. 2005, Hopkins et al. 2006a,b, Croton et al. 2006, Bower et al.
2008, Hopkins et al. 2008, Dunn et al. 2010, Hopkins et al. 2010,
Fabian 2012), supernovae and stellar winds (e.g. Dalla & Schaye
2008, Guo et al. 2012, Vogelsberger et al. 2014a, Schaye et al.
2015), or by stabilizing virial shocks in haloes above some criti-
cal dark matter mass (e.g. Dekel & Birnboim 2006, Dekel et al.
2009, Woo et al. 2013, Dekel et al. 2014). One other alternative is
that the gas is in fact present and continues to be replenished, but
somehow cannot be generated into new stellar populations, possi-
bly due to stabilizing torques applied across giant molecular clouds
from centrally concentrated mass sources (e.g. Martig et al. 2009).
This latter option, however, does not appear to have strong observa-
tional support since passive galaxies are most frequently found to
lack cold gas reservoirs, which must be explained by other feedback
mechanisms that can by themselves account for the lack of ongo-
ing star formation in massive galaxies (e.g. Catinella et al. 2010,
Saintonge et al. 2011, Genzel et al. 2015).

Due to the relative motion of satellite galaxies through the
dark matter potential of the group or cluster, and across the hot gas
halo, there are several additional routes available for the quenching
of satellite galaxies compared to centrals. Processes such as galaxy
- galaxy and host halo tidal interactions, ram pressure stripping,
removal of the hot gas halo and subsequent stifling of gas supply
from cooling, and pre-processing in groups prior to cluster infall
can all result in the quenching of satellite galaxies (e.g. Balogh et
al. 2004, Cortese et al. 2006, Moran et al. 2007, van den Bosch et
al. 2007,2008, Tasca et al. 2009, Peng et al. 2012, Hirschmann et al.
2013, Wetzel et al. 2013). These environmental processes work in
concert with the mass-correlating central galaxy quenching mech-
anisms outlined above. Thus, the quenching of satellite galaxies is
likely to be a much more complex process than that of centrals. In

this first work on applying ANN techniques to galaxy quenching
we focus on the simpler central galaxy population, with a publica-
tion on satellite galaxy quenching to follow (Bluck et al., in prep.).

We can potentially identify the dominant central galaxy
quenching mechanism, from the contenders outlined above, by in-
vestigating which galaxy properties are most closely correlated
with the passive fraction. For example, the total energy available
for feedback on a galaxy released via an AGN will be roughly pro-
portional to the mass of the central supermassive black hole (Soltan
1982, Silk & Rees 1998, Fabian 1999, Bluck et al. 2011, 2014) and
hence to the central velocity dispersion and bulge mass (Magorrian
et al. 1998, Ferrarese & Merritt 2000, Gebhardt et al. 2000, Haring
& Rix 2004, Hopkins et al. 2007, McConnell & Ma 2013). Alterna-
tively, the total energy released from supernovae over the lifetime
of a galaxy will be roughly proportional to the total stellar mass of
the galaxy, as integrated star formation rate (e.g. Croton et al. 2006,
Guo et al. 2011). Further, the energy available from virial shocks
in dark matter haloes will be proportional to the the gravitational
potential, i.e. the dark matter halo mass, and hence also to the total
stellar mass of the group or cluster (Dekel & Birnboim 2006, Dekel
et al. 2009, Woo et al. 2013, 2015).

Several attempts have been made to identify which galaxy
properties are most closely linked to quenching for central and
satellite galaxies (e.g. Peng et al. 2010, 2012, Woo et al. 2014,
Bluck et al. 2014, 2015, Woo et al. 2015). However, these studies
are typically only able to consider one or two variables at a time,
motivating the need for a more inclusive and sophisticated analy-
sis methodology. Artificial neural networks (ANNs) are a powerful
tool for analysing large and complex datasets and exposing patterns
in non-linear physical systems in industry, engineering and the bio-
logical sciences (see Wichchukit & O’Mahony 2010 and references
therein). Their application to astrophysics has so far been some-
what limited, although there are some noticeable exceptions and
successes (e.g. Andreon et al. 2001, Ball et al. 2004, Teimoorinia
et al. 2012, Teimoorinia & Ellison 2014). In this work we apply
ANN pattern recognition techniques to the multi-variate ranking of
parameters that distinguish star forming from passive galaxies. Our
aim is to use these rankings to provide observational evidence for
or against the dominant quenching mechanisms of central galaxies.

The paper is structured as follows: Section 2 describes our data
and sample selection. Section 3 outlines the details of our ANN
method and analysis methodology as applied to the SDSS. Sec-
tion 4 presents our results for centrals, including single and multi-
variables. We discuss what drives central galaxy quenching in light
of our results in Section 5, and conclude by giving a summary of
our contribution in Section 6. We present an investigation of the po-
tential for sample biases and systematics to affect the results in the
Appendix. Throughout we assume a ΛCDM cosmology with {ΩM ,
ΩΛ, H0} = {0.3, 0.7, 70 km s−1 Mpc−1}, and adopt AB magnitude
units.

2 DATA

2.1 Overview

Our data source is the Sloan Digital Sky Survey Data Release 7
(SDSS DR7, Abazajian et al. 2009) spectroscopic sample. We form
a sub-sample of 414915 central galaxies with stellar masses in the
range 9 < log(M∗/M�) < 12 at zspec < 0.2. Full details of this sam-
ple, and on the stellar masses, morphologies and structures, star
formation rates, and environments of these galaxies are given in
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ANN Quenching 3

Bluck et al. (2014) Section 2, and references therein. What follows
in this sub-section is a brief overview of the most important details.

The star formation rates for our sample are derived in Brinch-
mann et al. (2004), with adaptions made in Salim et al. (2007).
These are based on spectroscopic emission lines for star form-
ing galaxies with strong emission lines which are not identified
as AGN, and via an empirical relationship between the strength
of the 4000 Å break (Dn4000) and the specific star formation
rate of a galaxy (sSFR = SFR/M∗) for non-star forming (weak or
non-emission line) galaxies and AGN. AGN are determined by the
Kauffmann et al. (2003) line cut applied to the Baldwin, Phillips
& Terlevich (BPT, 1981) emission line diagram, at a S/N > 1. For
the strong emission line galaxies which are not AGN, the SFRs are
based on Hα, Hβ, [OIII] and [NII] line strengths. For both methods
for deducing SFRs a fibre correction is applied, based on the colour
and magnitude of light not contained within the spectroscopic fibre.

Rosario et al. (2015) have demonstrated that the Dn4000 SFRs
can be quite inaccurate; however, in this work we only aim to sep-
arate star forming from passive systems. Thus, the high error asso-
ciated with SFRs in passive systems does not significantly impact
our ability to identify them as passive. This is a more complex is-
sue for AGN, where many galaxies could be star forming and still
have their SFRs determined from the Dn4000 method. To combat
this, we test the effect of removing AGN from our sample in §A2.
We find that this does not alter any of our results or conclusions,
and hence that our rankings are stable to possible inaccuracies in
the SFRs.

Stellar masses for our sample, and for the component disks
and spheroids, are computed in Mendel et al. (2014) via fitting the
observed ugriz magnitudes to model spectral energy distributions
(SEDs). For the components, a dual Sérsic (ns = 4 bulge, ns = 1
disk) model is applied in each of the Sloan wave-bands, and com-
bined to form a stellar mass for the bulge and disk components via
SED fitting. Details on the bulge-to-total light fitting can be found
in Simard et al. (2011), which is based on a GIM2D decomposi-
tion (Simard et al. 2002), and details on the mass determination is
provided in Mendel et al. (2014). From this, we define the galaxy
structure to be:

B/T =
Mbulge

M∗
=

Mbulge

Mbulge + Mdisk
(1)

where M∗ is the total stellar mass of the galaxy, taken here as the
sum of the component bulge and disk masses. Note that since this is
a mass ratio, it is not affected by ongoing star formation and hence
provides an independent measure of galaxy structure. This would
not be the case with a B/T parameter by light based on a single
optical wave-band or a classic Sérsic index (also based on a given
wave-band). Bulge effective radius is also taken from the public
catalogues released in Simard et al. (2011).

Halo masses are estimated from an abundance matching tech-
nique applied to the total stellar mass of the group or cluster in
which each central galaxy resides. These are taken from the SDSS
group catalogues of Yang et al. (2007, 2008, 2009). At Mhalo >

1012 M� over 90 % of galaxies are correctly assigned to groups in
model data from the Millennium Simulation (Springel et al. 2005).
Within these groups, the most massive galaxy is defined as the cen-
tral and all other group members are defined as satellites of that
central. This is the same sample of estimated halo masses used in
other recent quenching papers (e.g. Woo et al. 2013, Bluck et al.
2014, 2015, Woo et al. 2015).

Velocity dispersions in our sample are derived from the widths
of absorption lines, made public in Bernardi et al. (2003), with up-

dates to the method added in Bernardi et al. (2007). We discard all
velocity dispersions which are derived from line widths with a S/N
< 3.5. We also remove all cases where σerr > 50 km s−1 (only a
few percent of the sample). Further, for some analyses, we restrict
the sample to σ > 70 km s−1, due to the instrumental resolution of
the SDSS, although this has very little impact on our final results
(see Section A4). This leaves us with ∼ 80 % of our original sam-
ple which pass these data quality cuts. For our main analyses we
include the low velocity dispersions in our sample to avoid biasing
our input data such that only bulge dominated galaxies are included
at low stellar masses. In principle this can lead to a lower predictive
power of velocity dispersion, since measurements with higher un-
certainty are used, but we test for this explicitly in the Appendices
and find that our results and conclusions are unaffected.

We then apply an aperture correction, so that all velocity dis-
persions are computed at the same effective aperture. Specifically,
we use the formula in Jorgensen et al. (1995), defining the central
velocity dispersion as:

CVD ≡ σe/8 =

(Re/8
Rap

)−0.04

σap (2)

where σap is the measured velocity dispersion in the aperture. Re is
the bulge (or elliptical) effective radius and Rap is the radius of the
aperture in the same units. This aperture correction typically only
affects the velocity dispersion by ∼ 10%.

We use three qualitatively different metrics of environment in
this work: 1) group halo masses, 2) central - satellite divisions (both
of which are described above) and 3) local densities. For the lo-
cal densities, we utilise the normalised surface galaxy density eval-
uated at the nth nearest neighbour, based on values computed in
Baldry et al. (2006). The local densities are calculated as:

δn =
Σn

〈Σn(z ± δz)〉
(3)

where

Σn =
n

πr2
p,n

(4)

rp,n is the projected distance (in physical units) to the nth nearest
galaxy neighbour. 〈Σn(z±δz)〉 is the mean value of the local density
parameter at the redshift range in question. This effectively nor-
malises the density parameter accounting for the flux limit of the
SDSS. Thus, a galaxy residing in a perfectly average density of
space (at a given redshift) would have log(δn) = 0, with galaxies
residing in under-densities having negative values and galaxies re-
siding in over-densities having positive values of this parameter. In
this work we set n = 5; however, none of our results are strongly
affected by this choice, with identical rankings achieved for n = 3
& 10.

2.2 Defining ‘Passive’

In order to train the ANN codes to identify passive and star forming
systems, we must first have a clear definition of what constitutes a
passive (or star forming) galaxy. In this work we follow the pre-
scription for defining passive in Bluck et al. (2014) Section 3. We
start by selecting only star forming emission line galaxies, which
are not identified as AGN in the BPT emission line diagnostic di-
agram. Specifically, we select out only those galaxies which are
designated as star forming by the Kauffmann et al. (2003) line cut
on the BPT diagram, and additionally have a S/N > 3 in all of the
relevant emission lines (Hα, Hβ, [OIII] and [NII]). The SFR - M∗
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4 Teimoorinia, Bluck & Ellison

relationship is uni-modal for this sub-sample (see Fig. 5 in Bluck
et al. 2014). We then calculate the distance any given galaxy re-
sides at from this ‘star forming main sequence’. Quantitatively, we
calculate:

∆SFR = log
( SFR(M∗, z)

median(SFRSF(M∗ ± δM∗, z ± δz))

)
(5)

where SFRS F is the the star formation rate of the star forming sub-
sample matched at the redshift and stellar mass of each galaxy. The
matching thresholds are set to 0.005 for redshift and 0.1 dex for
stellar mass and are then increased (in increments of 0.005 and 0.1
dex, respectively) if necessary until a minimum of five star forming
‘control’ galaxies are found for each galaxy, or else the hard limits
of 0.02 and 0.3 dex are reached. In most cases there are > 200
controls available per galaxy and less that one percent of galaxies
are excluded from the sample due to lack of controls.

The distribution of ∆SFR is highly bimodal (as with the more
familiar colour bimodality, e.g. Strateva et al. 2001), and it has a
clear minimum at ∆SFR = -1, i.e. at a SFR a factor of ten below
the star forming main sequence (see Fig. 1). This provides a nat-
ural constraint to separate passive from star forming galaxies. The
minimum of this distribution does not vary as a function of mass,
morphology, or local density, hence it is a very stable and univer-
sally applicable definition for passive (see Fig. 7 in Bluck et al.
2014). Thus, we define passive and star forming galaxies to be:

PA: ∆SFR 6 -1
SF: ∆SFR > -1

In some of the analyses that follow in this paper we consider the
possibility of a third classification, that of the ‘green valley’. The
∆SFR limits for this configuration are given by:

PA: ∆SFR 6 -1.2
GV: -1.2 < ∆SFR < -0.6
SF: ∆SFR > -0.6

None of our conclusions depend critically on whether we adopt
two or three star forming classifications for our sample (see Sec-
tion A3). It is important to stress at the outset that our approach
implicitly assumes that there are only two (or three including the
green valley) star formation states a galaxy can be in. This is a rea-
sonable simplification given the extent of the bimodality of ∆SFR;
however, our approach in this paper will not be sensitive to subtle
trends in sSFR or green valley migration as is evidenced in some
other works (e.g. Schawinski et al. 2014, Woo et al. 2015).

2.3 ANN Input Parameters

There is a wide variety of possible galaxy properties we could in-
clude in our ANN analysis of star forming and passive systems,
however there are a few constraints that must be met. First, it is
crucial to avoid using galaxy parameters which are trivially related
to the SFR or colour of a galaxy. This rules out using magnitudes,
colours, luminosities, as well as SFR variants (e.g. sSFR, ∆SFR) as
input parameters. Also structural parameters based on single mag-
nitudes will be highly biased by ongoing star formation in the op-
tical, hence, we must avoid using B/T or ns parameters, if they are
based on luminosities as opposed to stellar masses.

We choose eight different galaxy parameters, all of which are
not trivially linked to star formation, but are connected to various
proposed theoretical mechanisms for quenching central galaxies.
They represent a wide range in scale and hence may help to resolve
which of the leading theories for galaxy quenching are most likely
to be correct, and to what degree they can be impacting the evo-
lution of central galaxies. The physical parameters of the central

Table 1. The physical parameters of the central galaxies used in this work.

# Symbol Description Scale∗

1 CVD Central Velocity Dispersion ∼ 1 kpc
2 MBulge Bulge Stellar Mass 0.5 – 4 kpc
3 Re Bulge Effective Radius 0.5 - 4 Kpc
4 B/T Bulge-to-Total Stellar Mass Ratio 0.5 – 8 kpc
5 M∗ Total Stellar Mass 2 – 8 kpc
6 MDisk Disk Stellar Mass 4 – 10 kpc
7 MHalo Group Halo Mass 0.1 - 1 Mpc
8 δ5 Local Density Parameter 0.5 - 3 Mpc

∗ Approximate 1 σ range from centre of galaxy. For photometric quantities
half-light radii are used.

galaxies used in this work are shown in Table 1. Note that there
are parameters connected to the galaxy environments (Mhalo, δ5),
the outer regions of galaxies (Mdisk), the whole galaxy (M∗, B/T)
and the inner regions of galaxies (CVD, Mbulge, Re). This should
provide a valuable test as to the scale and range of the quenching
process for centrals.

3 THE METHOD

3.1 ANN

In many situations linear models are not sufficient to capture com-
plex phenomena, and thus non-linear models such as artificial neu-
ral networks (ANNs) are necessary. ANNs are among the most
powerful tools in pattern recognition problems. They consist of
simple mathematical units which are connected to each other in
different layers and in different, often highly complicated, ways.
In a multi-layer network, each layer adds its own level of non-
linearity. So, naturally, a single layer network cannot produce the
non-linearity that can be seen through multiple layers. A two-layer
network is strong enough to handle a multi-parameter problem such
as our classification problem in this paper and is frequently applied
in similar works (e.g. Ellison et al. 2016). The specific configura-
tions are chosen based on the nature of the problem under study,
and in this way ANNs can learn to detect regularities, correlations
and patterns in certain sets of data. Current applications of ANNs
in astronomy include star-galaxy discrimination and galaxy classi-
fication (e.g. Cortiglioni et al. 2001; Andreon et al. 2001; Ball et
al. 2004; Teimoorinia 2012; Teimoorinia & Ellison 2014), but their
power in data analysis has been largely untapped.

Generally, input parameters (e.g. parameters in Table 1) are
connected to the first layer of a network with some mathematical
units (nodes) which are called neurons. The first layer can be con-
nected to a second layer (with some new neurons, in different and
complicated ways) and, at the end, the second layer are connected
to the output layer. In a binary classification, the output layer con-
tains only two nodes. Through iteration between inputs and outputs,
the parameters of the mathematical nodes (weights and biases) can
be fixed to optimise solving the classification problem. In this way
we will have a trained network. In fact, the aim in training steps
is to minimise the difference between the predicted and observed
values by a performance function such as, e.g., a mean square error
function. A trained network should then be validated (during the
training steps or after training) by an independent data set to test
performance of the trained network and also to avoid over-fitting
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problems. Overfitting is then evident by the result for a training set
being good but for a validation set being unacceptable.

An ANN model is generally ‘learned’ from a set of training
data where, in a supervised learning mode, the training data is la-
belled with the ‘correct’ answers. Since the aim of finding a model
is to provide useful predictions in future situations, questions about
choosing a model are important, especially when we do not know
much about the underlying nature of the process being studied.
ANNs offer a powerful solution to this problem by allowing the
analysis algorithm to form its own model ‘organically’ from iter-
ations with the training set. In many cases, we may wish to learn
a mapping from D-dimensional inputs to scalar, or G-dimensional,
outputs. In other words, both the inputs and outputs may be multi-
dimensional. In these complicated situations few techniques in the
machine learning area are as effective as ANN minimisation analy-
ses. These approaches are highly effective for many complex prob-
lems, such as finding a patterns in large datasets and in classifying
non-linear multi-dimensional data between predetermined sets or
classes (as in this work).

In a classification problem the general goal of the ANN is for
the algorithm to ‘learn’ a decision boundary or a threshold. Here,
we have two (or three including the green valley, see Section A3)
predetermined classes for the star forming states of SDSS galax-
ies: passive (PA) and star forming (SF). Generally, once a model is
found by the network we perform a classification by comparing the
posterior class probabilities, i.e. P(SF|x) and P(PA|x), in which x
is our multidimensional input data. Thus, from Bayes theorem, we
have:

P(PA|x) =
P(x|PA)P(PA)

P(x)
=

P(x|PA)P(PA)
P(x|PA)P(PA) + P(x|SF)P(SF)

(6)

The above equation can be written as:

P(PA|x) = f(g(x)) =
1

1 + e−g(x)
(7)

In which f is a sigmoid (or activation) function and g is given by:

g(x) = ln
(P(x|PA)P(PA)

P(x|SF)P(SF)

)
(8)

In an our ANN approach we use a two-layered network, specifically
modelling the data as:

P(PA|x) = f
(∑

j=1

w(2)
j f

(∑
i=1

w(1)
i,j xi + b(1)

i

)
+ b(2)

j

)
(9)

in which w and b are weights and biases of the network in different
layers that are fixed by the training steps. The suffix (1) indicates
the first layer and (2) indicates the second layer. In this way we
construct a model of the class probability given the measurement
(as in Bishop 1995).

Our results are stable to issues of over-fitting because we use a
neural network model with typically ten neurons applied to a train-
ing set of 100,000 galaxies as input data. Moreover, we have many
unused galaxies from training with which we can verify the fit on
an independent ‘validation set’ of ∼ 100,000 different galaxies. The
results from this study are always identical for both of these sets.
We also apply an early stopping technique in which the training set
is itself split into two sub-sets (70% training and 30% validation)
to test the performance of the two sets at an early stage of develop-
ment. If they show different behaviours we can identify issues and
retrain accordingly. Finally, we repeat the training several times and
exclude the worst cases (where a global minimum solution is not
found) from our final analysis. In this manner we always concen-
trate on the ‘best’ possible results from our network model, taking

Figure 1. Distribution of ∆SFR values, defined in equation 5. Top panel:
All the passive galaxies (∆SFR < -1) are labeled by a value of 1 for the
purposes of our ANN minimisation. We assign to all star forming galaxies
(∆SFR > -1) a value 0. The output of the ANN procedure will thus be a
probability (between 0 and 1) for how likely each galaxy is to be passive
or star forming, given the input data. Bottom panel: the same as the top
panel but showing the green valley galaxies as a separate class, which are
excluded from some analyses.

Figure 2. Output ANN probabilities for galaxies being star forming (X = 0)
or passive (X = 1) for two categories: originally determined passive galaxies
(the red line) and star forming galaxies (the blue dashed line). This shows
the perfect case of equation 10 (for α = 0), i.e. where we give the ANN
codes all the relevant information to assign the passive state of each sys-
tem. Unsurprisingly, this yields a 100% accurate classification. The original
classification of the data is shown in Figure 1.

the average over these as our performance indicator. Multiple ap-
plication of our ANN procedure on the same problem also ensures
that our results are converged, and hence have settled in a global
minimum solution. In the next sub-section we give an example of
our ANN approach applied to a simplified dataset to illustrate our
analysis techniques.
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6 Teimoorinia, Bluck & Ellison

3.2 ANN Performance Test and Example

In Figure 1 we show the distribution of ∆SFR for our sample of
central galaxies. A cut at the minimum of this distribution (∆SFR
= -1) cleanly separates the galaxies into two different groups (see
Section 2.2, and Bluck et al. 2014 for full details). This is an exam-
ple of a binary classification. In this kind of problem, a classifier can
classify input data into two desired classes. The input values can be
different physical properties (e.g. the physical galaxy parameters in
Table 1) with different combinations, i.e. single or multiple vari-
ables. However, the target data are always just two different labels:
SF | PA. For statistical purposes, we designate these possibilities by
two real numbers, 0 and 1. In this case, one can associate an output
value of zero to star forming galaxies and an output of value of 1 to
passive galaxies. In practice, the output of the network will be the
estimated probability that the input pattern (from the data) belongs
to one of the two categories.

To test our method (and illustrate our analysis technique) we
use the definition of ‘passive’, from ∆SFR, as an input data to the
ANN. But we distort it in a coherent manner to ascertain the effect
of noise (or randomness) on the pattern recognition. Specifically,
we define the transform:

∆SFR 7−→ ∆SFR + αR (10)

In which R is a random number between -1 and 1. In other words,
with increasing α we add more random ‘noise’ to our input data
‘signal’ (∆SFR).

In a binary classification, the output of a classifier will be two
different probability distributions (i.e. how likely each galaxy is to
belong in each category). A trivial example is when α = 0, i.e.
when we give the ANN training code all of the information it needs
to decide unambiguously whether or not each galaxy belongs in the
passive or star forming sample. In this case a classifier should be
able to classify the data perfectly. Thus, no overlap (or misclassi-
fications) of the two distributions is expected. We show the result
of this test in Figure 2. As expected 100% of the data is correctly
classified into the two categories: star forming (blue line) or passive
(red line).

We increase the value of α to see how the output of the net-
work depends on increased noise, or randomness in the input data.
We train the networks on a ‘training set’ of 50,000 passive and
50,000 star forming galaxies, randomly chosen from our parent
sample. We then apply the newly formed model to an independent
‘validation set’ of 50,000 different passive and 50,000 different star
forming galaxies. We find that our network rankings are converged,
i.e. training or verifying on larger samples or running the codes for
longer leads to no significant changes in the results or rankings.
The output of our trained network on the independent validation
set for different values of α is shown in Figure 3. As can be seen,
with increasing α the ability of the ANN to distinguish between the
two categories becomes diminished. In fact when we increase α by
a factor of ten the two distributions become almost indistinguish-
able. These histograms can be used as a useful comparison to the
real data analysis later on, see Section 4. In each case we can assign
a performance to our classification, which we describe in detail in
the next sub-section.

3.3 Receiver Operating Characteristic (ROC)

A Receiver Operating Characteristic or ROC plot is a statistical
tool used to measure the performance of a binary classifier (e.g.,
Fawcett 2006). To demonstrate how we determine the performance

Figure 3. Output ANN probability distributions for four example cases of
our randomness parameter, α. In each plot the X-axis shows the probabil-
ity that each galaxy is passive based on the best fit minimisation procedure
from the ANN (where 0 = SF, 1 = PA). The red lines are for originally clas-
sified passive galaxies, with the blue lines being for originally classified star
forming galaxies. The ideal case (for α = 0) is shown in Figure 2. The Y-
axis shows the normalised number of galaxies in each probability binning,
summing to one. As can be seen, the distributions become less separated as
we increase α from top to bottom, indicating less success in predicting the
passive fraction by the ANN methods as we increase the noise or random-
ness of the input data. These distributions can be used as a comparison to
the equivalent plots for the science parameters in Figure 8.
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Figure 4. Output ANN probability distribution for α = 0.5 case (where 0
= SF, 1 = PA) for originally classified star forming (blue) and passive (red)
galaxies. The vertical grey dashed line at X = 0.7 shows a randomly selected
threshold. For this threshold, the red shaded area to the right of the line gives
the True Passive Rate (TPR = 0.783), and the blue shaded area to the right
of the line gives the False Passive Rate (FPR = 0.069). Note that in general
FPR + TPR , 1, since the sum of the red area and the sum of the blue area
(from X = 0 - 1) is unity, not the sum of the blue and the red areas across
any given threshold.

of our ANN classifier we re-plot the distribution related to the value
of α = 0.5 in an area format in Figure 4. The red and blue areas
show the probability distributions for passive (PA) and star forming
(SF) galaxies, respectively. Here, we focus on the passive galaxies
which are originally labeled with value 1, although an equivalent
formulation of this statistic based on the star forming sample (orig-
inally labelled as 0) is also possible. These will give equivalent re-
sults because of the binary nature of our experimental setup, i.e.
P(PA) = 1 - P(SF).

On the right hand side of any selected threshold (decision
boundary) we will have two relevant percentage values. For ex-
ample, on the right hand side of the vertical dashed line in Figure
4 (at a threshold at X = 0.7), the fraction of galaxies that are cor-
rectly classified as passive is 0.783. We call this the True Passive
Rate (hereafter TPR), thus, we have TPR = 0.783. However, there
are also some star forming galaxies in this region of the probabil-
ity distribution which are misclassified as passive galaxies. We call
this fraction the False Passive Rate (FPR). For our example thresh-
old at X = 0.7, FPR = 0.069. Thus, for any selected threshold we
will have two values: TPR and FPR. The ROC graph is obtained
by plotting TPR vs. FPR for all possible thresholds (0 – 1). Fig-
ure 5 shows this for α = 0.5. This curve can be used to quantify
the performance of our classification (as in Bradley 1997). Higher
areas under the ROC curve (hereafter AUC) indicate a better per-
formance of the network in determining the correct star forming or
passive state of galaxies.

We plot ROC curves related to different values of α in Fig-
ure 6. The black dashed line is for the perfect classification (where
α = 0), which yields an AUC = 1. A sample of completely ran-
dom numbers (α → ∞) will generate the (diagonal) grey dashed
line, with AUC = 0.5. All other values of α will yield an AUC
performance between these extremes. So, from random to perfect
classification the value of AUC changes from 0.5 to 1, respectively.
In the engineering literature (e.g. Hosmer & Lemeshow 2000) the
AUC values correspond to success ‘labels’, see Table 2.

We obtain all AUC values associated with the different α val-
ues and plot these in Figure 7. As can be seen, the area under the
curve varies from a perfect classification (at α = 0) with a value
of 1 to an almost random result of 0.55 (at α=10). Thus, the AUC
statistic strongly correlates with the true ‘signal’ in the data, in this

Table 2. An interpretation of the AUC parameter in engineering (by Hosmer
& Lameshow 2000)

AUC Range Description

1.0 Perfect Discrimination
0.9 – 1.0 Outstanding Discrimination
0.8 – 0.9 Excellent Discrimination
0.7 – 0.8 Acceptable Discrimination
0.5 – 0.7 Unacceptable Discrimination

0.5 No Discrimination (Random)

Figure 5. A Receiver Operating Characteristic (ROC) plot obtained from
the ANN output probability distribution of Figure 4, for α = 0.5. Specifi-
cally, we plot the True Passive Rate (TPR) vs. the False Passive Rate (FPR),
see Section 3.3. We change the threshold from 1 to 0, systematically obtain-
ing different values for TPR and FPR. As an example, the point [0.20 0.85]
is obtained from threshold X = 0.5. The thresholds are indicated by the
colour of the ROC curve line, labelled by the colour bar. The dashed grey
line indicates the result for a random variable, with area under the ROC
curve, AUC = 0.5.

case ∆SFR. Higher randomness or noise leads to lower AUC val-
ues.

Our analysis techniques are now ready for exploitation on real
data. In order to determine which galaxy properties modulate the
quenching of star formation, we consider each variable from Ta-
ble 1 in turn (and combinations thereof) as input to the ANN, and
quantify how well they discriminate the passive and star forming
populations. As described above, successful discrimination is char-
acterized by a large AUC for that variable (or set of variables). The
AUC results can then be ordered to give a quantitative ranking of
the parameters’ relative importance in determining whether or not
a galaxy is star forming. In the following section we describe our
results for central galaxies.

4 RESULTS

In this section we describe our results for central galaxies, follow-
ing the method outlined in Section 3. ANN pattern recognition
training is performed on 50,000 SF and 50,000 PA galaxies for
each configuration of science variables considered. Once the ANN
model is constructed, it is tested on a new verification set of 50,000
SF and 50,000 PA galaxies. The output probability distributions,
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8 Teimoorinia, Bluck & Ellison

Figure 6. Receiver Operating Characteristic (ROC) curves obtained from
the ANN output probability distributions for varying values of the random-
ness parameter, α, shown in Figure 3. Specifically, we plot the True Passive
Rate (TPR) vs. the False Passive Rate (FPR), see Section 3.3. For α = 0
the performance is perfect with AUC = 1, the AUC then decreases system-
atically with increasing α, up to a theoretical limit of AUC = 0.5 as α →
∞.

Figure 7. Area Under the ROC Curve (AUC) vs. the randomness parame-
ter α. The different values of AUC associated with different values of α are
computed from Figure 6. The area under the curve from a perfect classifi-
cation (α = 0) changes from AUC = 1 to a completely random input data
(α→ ∞) with AUC = 0.5.

ROC curves and AUC parameters are determined for each case.
From this, a ranking of how important different galaxy properties,
and sets of two and three properties, are for determining the passive
state of galaxies is constructed.

4.1 Single Parameters

Here we use the single parameters drawn from Table 1 as input
data to the ANN pattern recognition algorithm. Initially, to show
the maximum potential of our data and the ANN classifier, we per-
form a run in which all of the parameters are used simultaneously
as input data. The distribution of the output probabilities for the two
original classes for this case is shown at the top of Figure 8. Two
simple monotonic distributions are seen, one peaked at zero (for
star formers, shown in blue) and one peaked near unity (for passive
galaxies, shown in red). For example, if we choose a probability
threshold at X = 0.5 we see that there are some misclassifications.

Since we do not have a perfect classification, any single (or multi-
ple) run should be compared to this run, which we hereafter label
as ‘ALL’. However, the success rate of the ALL run is formally
‘outstanding’ (see Table 2, and Hosmer & Lameshow 2000), clas-
sifying > 90% of cases in the validation set correctly.

The rest of the panels in Figure 8 show the distributions of the
ANN probabilities for each galaxy being passive for originally clas-
sified passive (red) and star forming (blue) galaxies, for each of the
parameters in Table 1 treated singly. In general, the histograms in
Fig. 8 for single runs can be compared to the test-data histograms in
Fig. 3 to build some intuition for how the physical parameters per-
form compared to different levels of known degradation of infor-
mation on the passive state. Central velocity dispersion and bulge
mass perform qualitatively well, with simple monotonic distribu-
tions for each class, as with the ALL variables run. This behaviour
is not seen for B/T, however, where there are many uncertain cases
around probability X=0.5, although strong ‘correct’ peaks at the
extremes of the distribution are also present (we consider whether
this could be a result of ambiguous ‘green valley’ galaxies in Sec-
tion A3).

Particularly poorly separated distributions are seen for disk
mass, bulge effective radius and δ5. For the former two parameters,
the poor separation of star-forming and passive distributions is due
to having a discrete value of zero for disk mass related to pure bulge
(elliptical) galaxies. It is useful for the ANN code to know that there
is no disk (this usually indicates a passive galaxy); however, know-
ing that it contains a disk does not determine the passive state with
any kind of accuracy. Similarly, a very small bulge radii almost
always indicates a star forming galaxy, but higher bulge radii can
lead to a variety of masses, due to the underlying structure of the
bulge. We test what impact spurious bulges or disks may have on
our rankings in Appendix A7. When we use the density parameter,
δ5, as the input data the output is very similar to the case where
α = 10 in the previous section. The two distributions are not distin-
guishable indicating that this parameter acts like a random number
and has no connection to passivity.

We show the ROC plot (defined in Section 3.3) associated with
each of the single parameters, as well as the ALL parameter run,
in Figure 9. The black solid line is related to ALL, which has the
best performance and the largest AUC. We estimate the associated
AUC for each of the single variables and show them in Figure 10.
To obtain the errors we perform many ANN runs for each single pa-
rameter and obtain the mean and standard deviation from the best
well trained networks (top 10 results out of 15 total runs, each se-
lecting a random 50,000 PA and 50,000 SF galaxies for training
and a different random 100,000 galaxies for validation), ensuring
an optimal solution has been found. The parameters on the X-axis
of Figure 10 are ordered by their AUC values, i.e. showing most to
least constraining variable. See Table 3 for the rankings and AUC
values for centrals.

The physical galaxy properties are ordered in Table 3 by their
AUC values, and hence by how predictive they are of whether a
galaxy will be forming stars or not. The ordering is largely similar
to Table 1, which is sorted by the scale at which each property is
measured. Thus, there is a broad (but not perfect) trend from inner
to outer regions in terms of quenching predictivity. CVD, Mbulge

and B/T are all ranked as ”excellent” by our performance metric,
with CVD being the single best performing property. This result is
in agreement with previous papers (e.g. Cheung et al. 2012, Fang
et al. 2013, Bluck et al. 2014, Lang et al. 2014, Omand et al. 2014,
Woo et al. 2015) that properties associated with central mass, or
mass density, are the most important for determining the passive
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ANN Quenching 9

Figure 8. Distributions of output probabilities (0 = SF, 1 = PA) from the ANN minimisation procedure for galaxies which are originally classified as star
forming (blue lines) and passive (red lines). The top plot shows the distributions related to the ANN run where all of the parameters in Table 1 are used
simultaneously as input data. The distributions of the eight single runs (single input data) are shown below. The parameters are organised from most predictive
(top left) to least predictive (bottom right). These distributions can be compared to the trial case (for varying randomness, α), shown in Figure 3.
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10 Teimoorinia, Bluck & Ellison

Table 3. ANN AUC ranking of single parameters for central galaxies.

Rank Property AUC Success Label∗

ALL 0.9074 ± 0.0106 Outstanding
1 CVD 0.8559 ± 0.0039 Excellent
2 Mbulge 0.8335± 0.0060 Excellent
3 B/T 0.8267 ± 0.0028 Excellent
4 Mhalo 0.7983 ± 0.0045 Acceptable
5 M∗ 0.7819 ± 0.0025 Acceptable
6 MDisk 0.7124 ±0.0016 Acceptable
7 δ5 0.5894 ± 0.0015 Unacceptable
8 Re 0.5599± 0.0013 Unacceptable

∗ see Table 2 and associated text for definition. The errors are quoted as
the standard deviation across the best 10 (out of 15) ANN runs, ensuring
convergence.

Figure 9. Receiver Operating Characteristic (ROC) curves for each of the
distributions shown in Figure 8, for the galaxy parameters in Table 1, plot-
ting True Passive Rate (TPR) vs. False Passive Rate (FPR), see Section 3.3
for details. The best performance (largest area under the curve, AUC) is
achieved for all variables used together, ‘ALL’, shown as a black solid line.
The next best (and best single variable) is CVD followed by Mbulge, i.e. it
is parameters related to the inner-most regions of galaxies which perform
best. An example random result is shown as the dashed black line, which
performs only slightly worse than the local density (δ5) parameter or bulge
effective radius.

fraction. Parameters associated with the galaxy’s outer region or
environmental metrics perform significantly less well. Such param-
eters include total stellar mass and halo mass which have frequently
been used in the literature to parameterise the quenching of centrals
(e.g. Peng et al. 2010, 2012; Woo et al. 2013, 2015). Interestingly,
the size of the bulge is the worst performing parameter, possibly
suggesting that it is the mass and/or density of the inner region
not its scale that affects star formation quenching. It is also inter-
esting to note that bulge size is a particularly poor correlator to
dynamical measurements of central black hole mass (e.g. Hopkins
et al. 2007), whereas central velocity dispersion and bulge mass
are tightly correlated to black hole mass (e.g. Ferrarese & Merritt
2000, McConnell & Ma 2014). Taken together, Fig. 10 and Table 3
provide compelling evidence for the process that quenches central
galaxies originating in the inner regions of galaxies.

Figure 10. Area Under the Curve (AUC) - single parameter plot. This plot
illustrates the area under each ROC curve (see Figure 9) with respect to
the single galaxy parameters input data, given in Table 1. The parameters
on the X-axis are sorted in terms of their AUC values, from highest (most
predictive of the passive state of galaxies) to the lowest (least predictive of
the passive state of galaxies). The errors are given as the standard deviation
across the best ten runs, with the data points taken as the mean of the set.
The points are colour coded by their success labels, as indicated on the plot
(see Table 2). Clearly, parameters related to the inner regions of galaxies
perform systematically better than parameters related to the whole galaxy,
the outer regions, or environments of galaxies.

4.1.1 Implications of the Single Runs

It is interesting that halo mass performs significantly better at pre-
dicting the passive state of central galaxies than local density, even
though they are both ostensibly environmental parameters. Ellison,
Patton & Hickox (2015) find that halo mass is strongly correlated
with the presence of radio loud AGN, whereas local density is not,
which may offer us an explanation through the AGN driven quench-
ing paradigm. Additionally, there are well known strong correla-
tions between internal galaxy properties (e.g. stellar mass, B/T ra-
tio, MBH) and halo mass which are much weaker for local density
(e.g. Moster et al. 2010). Further, Woo et al. (2013) argue that local
density is a less useful parameter for measuring environment than
halo mass or cluster-centric distance because it can exist in two
distinct modes: inter-halo and trans-halo, and thus its relevance to
a galaxy’s star formation is unclear. In any case, halo mass is cer-
tainly not the most constraining single variable, performing signifi-
cantly worse than properties related to the central regions of galax-
ies. Thus, it is possible that its relative success over local density
(and stellar mass) is a result of ‘reflected glory’ in that it is not a
direct link to quenching but rather a result of its close correlation
with inner galaxy properties.

Our ANN rankings are broadly in agreement with the inter-
nal rankings of parameters made in the literature to date. However,
this is the first attempt to rank the importance of all of these vari-
ables in a fully quantitative and objective manner. Specifically, we
find that stellar mass has a much higher AUC than local density for
centrals, in qualitative agreement with Peng et al. (2012). We also
find that halo mass (derived indirectly from abundance matching)
has a higher AUC than stellar mass, in agreement with Woo et al.
(2013, 2015). Furthermore, we find that bulge mass is superior to
all of the above in determining the passive fraction, as argued for
in Bluck et al. (2014) and Lang et al. (2014). Bulge mass is also,
slightly, superior to B/T structure in constraining the passive state
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of galaxies, as first pointed out in Bluck et al. (2014). However,
bulge mass is not the best single variable found here in the ANN
minimisation procedure: centralised velocity dispersion yields sig-
nificantly higher AUC values (and hence tighter correlations to the
star forming state of galaxies) than bulge mass. This was also ar-
gued for previously through an analysis of the passive fraction -
(estimated) black hole mass relation in Bluck et al. (2015), and is
consistent with the importance of central density or velocity disper-
sion found in several other works (e.g. Cheung et al. 2012, Wake et
al. 2012, Fang et al. 2013, Woo et al. 2015).

Figure 10 may require a reformulation of the classic ‘mass-
quenching’ of Peng et al. (2010, 2012) and even the proposed up-
dates to ‘bulge-mass-quenching’ of Bluck et al. (2014) or ‘halo-
mass-quenching’ of Woo et al. (2013). We suggest that ‘inner-
region-quenching’, or most probably ‘black-hole-quenching’ (i.e.
AGN feedback) might be more appropriate given our results; we
discuss this further in Section 5. Clearly environmental properties,
including those from the halo, are not the most constraining single
variables for regulating quenching of central galaxies, nor is stellar
mass or galaxy morphology (B/T ), all of which have been previ-
ously claimed to be the dominant correlators to the passive fraction
(e.g. Baldry et al. 2006, Cameron et al. 2009, Cameron & Driver
2009, Peng et al. 2010, 2012, Woo et al. 2013). However, our re-
sult does agree with a complementary analysis, based on the area of
the passive fraction relationships, presented in Bluck et al. (2015).
Furthermore, the finding by Bell et al. (2008, 2012) that essentially
all truly passive systems have a high Sérsic index bulge (see also
Wuyts et al. 2011) is in qualitative agreement with our finding that
a high central velocity dispersion and hence central density is the
best predictor that a galaxy will be quenched (out of our chosen list
of physical galaxy parameters). We have not included Sérsic index
in our main parameter set, since it is not strictly a physical quantity,
but we investigate it separately in Section 5.

Finally in this sub-section, it remains interesting that the mass
of the galactic disk is so un-correlated with the passive state of
the system (ranked 7/8), given that in most galaxies undergoing
‘normal’ star formation it is the disk which is the site of gas be-
ing converted into stars. Thus, it seems that, even though disks are
the sites of star formation, they are certainly not the regions from
which quenching takes effect. This fact must present a serious chal-
lenge to models of galaxy quenching utilising feedback from stellar
winds or supernovae in central galaxies. Out of the list of phys-
ically motivated and plausible quenching scenarios considered in
this work (see Section 1), AGN feedback suggests itself as a par-
ticularly attractive explanation since it is expected to originate in
the central-most regions of galaxies, and hence it is a natural (and
obvious) fit to our observed ranking of single galaxy parameters.
In most models which apply AGN feedback, the energy available
to quench central galaxies is directly proportional to the black hole
mass (e.g. Croton et al. 2006, Henriques et al. 2014, Vogelsberger
et al. 2014b, Schaye et al. 2015) and this is known empirically to be
tightly correlated with central velocity dispersion and bulge mass
(e.g. Ferrarese & Merritt 2000, Haring and Rix 2004, Hopkins et
al. 2007, McConnell et al. 2011, McConnel & Ma 2014). However,
other explanations may still exist (e.g. Carollo et al. 2013) and we
examine some possibilities for these in the discussion (Section 5),
alongside the, perhaps more obvious, contender of AGN-feedback.

We consider whether systematics from our initial sample se-
lection can lead to a significant change in the ordering of these
variables in the Appendices (see Sections A1 - A8). Generally, we
find that the exact AUC values can change for the single param-
eters, up or down, as a result of sample selection (e.g. removing

Figure 11. f AUC - parameter plot for multiple runs. The grey line is the
same as in Figure 10 which shows the results for single variables. The red
line shows the result for CVD + each of the rest of the variables in turn, and
the blue line shows CVD + Mdisk + each of the other variables in turn. Note
that CVD is the single best variable and Mdisk is the best secondary variable
in conjunction with CVD. No tertiary variable gives significant improve-
ment over CVD and Mdisk, although Re does perform formally the best.
The black cross represents the AUC performance for all variables used si-
multaneously, shown for comparison. Note that the lines intersect where
there are duplications of variables (i.e. for CVD and Mdisk), as they should.

AGN, excluding green valley galaxies, restricting the sample to
lower redshifts or higher velocity dispersions) but that our rank-
ings are almost entirely unaffected and hence are highly stable to
sample variation. In the next sub-section we consider multiple pa-
rameters acting in concert as predictors of the star forming state of
central galaxies.

4.2 Multiple Parameters

Galaxy formation and evolution is a highly complex and non-linear
problem, hence there is a limited amount of information and ul-
timately insight that can be gleaned from assessing how a single
variable affects another single variable (e.g. the predictivity of the
parameters of Table 1 in determining ∆SFR). To improve on this
picture one must seek to understand how galaxy properties interact
together to constrain other variables, or sets of variables. Much pi-
oneering work has already been attempted in the direction of multi-
variable analysis of galaxy quenching. For example, Baldry et al.
(2006) and Peng et al. (2010, 2012) find that the passive fraction of
galaxies is a function of two variables, M∗ and δN , and that these
are in principle separable. Further work has found that galaxy mor-
phology (e.g. B/T) has a strong influence at fixed M∗ and δN (Bluck
et al. 2014, Lang et al. 2014) and that halo mass and central density
can both affect the passive fraction of galaxies at fixed values of the
other parameter (Woo et al. 2015). However, to date, no systematic
ranking of two variable approaches for parameterizing the passive
fraction exists, and certainly no higher (e.g. three variable) analyses
exist. ANN techniques are ideal for problems of this type.

In this sub-section we perform a systematic analysis of the
predictive power of all unique sets of two and three variables drawn
from Table 1. But before we discuss our results for these 55 ANN
runs, we start by considering a simplified case. Our goal here is to
ascertain what the second, and the third, most important variable
from Table 1 is for predicting the quenching of central galaxies.
We start by always giving the ANN code our estimate for the cen-
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12 Teimoorinia, Bluck & Ellison

Figure 12. AUC - parameter plot for all unique set of multiple runs for central galaxies. The top panel shows all possible unique combinations of two
parameters as input data, and the bottom plot shows all possible unique combinations of three parameters as input data. They are both ordered from most to
least predictive at determining the passive state of galaxies. See Fig. A10 for all variables, regardless of uniqueness (i.e. containing various duplicates).
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tral velocity dispersion (which is found to be the best single case,
see Section 4.1). We then run an ANN minimisation for each pair of
variables {CVD, X}, where X represents each of the remaining vari-
ables in Table 1. We show the results on an AUC plot as a red line
in Figure 11. We find that adding any of the other variables leads to
some incremental improvement in the predictive power over CVD
alone, but this improvement is much smaller than for the other way
around, i.e. adding CVD to any of the other parameters (compare
the difference between the red and grey lines in Figure 11). Disk
mass and B/T are the most successful secondary parameters, with
similarly high AUC results, which amount to more or less the same
thing given the strong relationship between CVD and Mbulge.

This is a surprising result because disk mass was found to be
one of the worst parameters for a single variable and yet in con-
junction with central velocity dispersion it performs better than any
other 2-variable set containing CVD (this is a similar result to what
is found with bulge mass in Bluck et al. 2014). There is no con-
tradiction here, however, it just reflects that having complementary
information about both the central and outer regions of galaxies is
useful. Nonetheless, if one must choose only one region, the in-
ner region is much more important for constraining central galaxy
quenching than the outer. To explore this further, we consider the
directionality of this trend: increasing disk mass at fixed central
velocity dispersion actually decreases the probability of a galaxy
being passive. Thus, it is likely that the inner region (i.e. CVD)
gives us information about the quenching power (most probably
the AGN, given the strong correlations between CVD and MBH)
and the outer region gives us information on what remains to be
quenched (e.g. gas mass or gas fraction, both of which correlate
with disk mass).

We continue by giving the ANN codes {CVD, Mdisk} in con-
junction with each of the other remaining variables (i.e. 1st + 2nd
best + each of the rest). This is shown as a blue line in Figure 11.
Here most of the added variables offer some small improvement
again, but with no clear sign of any single variable giving the high-
est improvement. It is particularly interesting to note that halo mass
and local density (environmental parameters) lead to no significant
improvement over {CVD, Mdisk}. Thus, even as a tertiary parameter
environment is not significantly constraining of the passive state of
central galaxies. This fact suggests that the quenching of galaxies
is not strongly related to their dark matter haloes, once the inter-
correlations with, e.g., black hole mass, central density and B/T are
accounted for. However, it is not necessarily true that the best com-
bination of two variables will contain the best single variable, nor
is it necessary that the best combination of three variables will con-
tain the best single or secondary variables. It is to the full list of
unique possibilities we turn to next.

In Figure 12 we show the AUC results for all unique combina-
tions of 2-variable (top) and 3-variable (bottom) sets of parameters
drawn from Table 1, i.e. we remove sets of variables which are
equivalent (for example, {B/T , M∗} is identical to {Mbulge, Mdisk}).
The interested reader is referred to Fig. A10 in the appendix for
the full rankings of all possible combinations of variables, which
we warn contains repetitious content. The top four pairs of vari-
ables (top panel, Figure 12) all contain central velocity dispersion,
with parameters related to the disk or galaxy morphology being the
best additional combinations. This result is qualitatively similar to
what we found in Figure 11. The worst pairs frequently contain
the local density parameter (δ5), often in conjunction with an outer
region or whole galaxy parameter (e.g. Mdisk). These tend to per-
form significantly worse than variables which include information
on the inner region of galaxies. Halo mass does perform quite well

in combination with galaxy morphology, although it is significantly
less predictive than some sets containing CVD.

We note that the pair of variables {M∗, δ5} ranks very poorly
as 20/23 couplings of variables from Table 1, even though this has
previously been considered the main dual-input for parameterizing
galaxy quenching (Baldry et al. 2006, Peng et al. 2010, 2012). That
said, it is important to emphasize that the use of galaxy density to
constrain quenching is mostly applied to satellites in these prior
works and here we focus solely on central galaxies. Also the set
{M∗, B/T }, which was considered as a possible optimal ranking in
Bluck et al. (2014), performs only near the middle of the possible
sets determined here (8/23). We do not have a central density pa-
rameter in our set of variables, however, it is likely closely coupled
to CVD (as indeed is suggested in Woo et al. 2015). If this is so the
combined variables of the halo and the CVD can be compared to the
result of Woo et al. (2015) for halo plus central density. This com-
bination does not perform particularly well, with a rank of 11/23.
Our brief comparison to the literature should serve as a caution to
anyone planning to model the quenching of galaxies via conven-
tional techniques, these are clearly not optimal. If a two parameter
fitting technique is required, the best choice, out of the variables we
consider, is {CVD, B/T}.

The lower panel of Figure 12 shows our results from 32 ANN
runs for all unique combinations of three variable sets of the pa-
rameters in Table 1. To our knowledge, this is the first attempt to
construct a systematic ranking of three-variable parameterizations
of galaxy quenching. All of the top five sets contain central veloc-
ity dispersion. Thus, parameters related to the centre of galaxies
are essential for predicting quenching even in sets of two and three
parameters. Environmental metrics (δ5, Mhalo) are rare in the top
ten, whereas amongst the lowest ranked sets these are much more
common; the very worst sets often contain two environmental met-
rics, further highlighting their lack of predictivity for central galaxy
quenching. The best three-variable parameterization from our data
is {CVD, B/T , Re}, although it performs comparably well with all
of the top five or so combinations, again containing no evironmen-
tal metric.

The results from these mixed runs point in a similar direction
to the single variable run: whatever quenches central galaxies is
mostly connected with the inner-most regions of galaxies probed in
our dataset. These are the parameters which are most tightly corre-
lated with supermassive black hole mass, and hence AGN feedback
energy (see Section 5). Parameters related to the halo mass (or lo-
cal galaxy density) are significantly less predictive in constraining
the passive state of central galaxies, which must present a serious
challenge to models of central galaxy quenching arising from the
halo, or the environment generally (e.g. Dekel & Birnboim 2006,
Dekel et al. 2009, Woo et al. 2013, Dekel et al. 2014).

5 DISCUSSION – WHAT DRIVES CENTRAL GALAXY
QUENCHING?

From a theoretical perspective, there are numerous physical pro-
cesses associated with galaxy formation and evolution that can lead
to a gradual or more sudden impact on star formation, in some
cases leading to total cessation or quenching. Broadly speaking,
all of these scenarios can be described as varying types and degrees
of ‘baryonic feedback’. There are two essential questions here: 1)
why do galaxies stop forming stars (especially given that there is
plenty of gas remaining in the Universe for them to convert)? and
2) why do so few baryons end up residing in galaxies, i.e. at the
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local gravitational minima (current estimates of ∼ 10%, Shull et al.
2012)? These two questions are highly likely to be related, with a
common (set of) explanation(s). Our aim in this paper has been to
identify the key parameter(s) associated with different quenching
scenarios and assess how effective they are at predicting whether
galaxies will be passive or star forming. From this we can give ev-
idence for or against different models.

In Section 4.1 we find that properties related to the central re-
gions of central galaxies are most predictive of the passive state
of the system, with properties related to the entirety of the galaxy
or the outer regions and environments being significantly less con-
straining (see Figure 10 and Table 3). This immediately suggests
that the source of the energy needed for quenching central galax-
ies might originate (or be closely coupled with) the centre of these
galaxies. This is exactly as expected for the AGN-feedback driven
quenching scenarios (e.g. Croton et al. 2006, Bower et al. 2008,
Hopkins et al. 2008, 2010, Vogelsberger et al. 2014a,b, Schaye et al.
2015). On the other hand, with virial shock heating driven quench-
ing we would anticipate halo mass to be the most significant pa-
rameter (e.g. Dekel & Birnboim 2006, Dekel et al. 2009, Woo et al.
2013, 2015); with supernova feedback driven quenching we would
expect stellar mass to be key (e.g. Dalla & Schaye 2009, Guo et al.
2011); and with environmental quenching we would expect a more
significant dependence on both local density and halo mass (e.g.
van den Bosch et al. 2008, Tasca et al. 2009, Wetzel et al. 2013,
Hirschmann et al. 2013).

Our conclusion that quenching originates in the centre of
galaxies is somewhat different to that reached by several papers
in the field (e.g. Baldry et al. 2006, Cameron et al. 2009, Peng et al.
2010, 2012, Woo et al. 2013) although we do find accord with the
conclusions of several other more recent papers (e.g. Wake et al.
2012, Bell et al. 2012, Bluck et al. 2014, Lang et al. 2014, Omand
et al. 2014, Bluck et al. 2015, Tacchella et al. 2015). In earlier work,
Bell et al. (2008) presented some of the first evidence for the central
bulge component being the most significant indicator of quenching
by noting that a high Sérsic index bulge is ubiquitous in passive
systems. The reason for most of the tension between our results
and some of the literature is that we consider a more complete list
of parameters than these earlier works. The internal rankings seen
in the literature are recovered precisely by our analyses, we just ex-
tend this prior work by including more parameters. We are also the
first to make a systematic ranking of the predictivity of pairs and
triplets of variables (see Section 4.2). Here we find that parameters
related to the central regions of central galaxies are still crucial to
include in the most successful sets, indicating that the importance
of the central region is not an artifact of multiple (other) processes
acting in concert.

Although AGN feedback driven quenching of central galaxies
is a natural explanation of our results, it is not necessarily the only
good explanation. In the remainder of this discussion we will focus
on plausible alternative explanations (our conclusions are only as
good as our input assumptions).

A key assumption we have made in this investigation is that
the quenching of galaxies is binary in nature, i.e. galaxies are either
star forming or they are quenched. We do consider the possibility
of intermediate (green valley) cases in the appendices (see Section
A3), although even here the implicit assumption is that these are
rare or non-representative cases, most probably transitory in nature.
Broadly speaking this same assumption is inherent in any approach
which uses passive fractions (as with much of the literature on the
subject, e.g. Baldry et al. 2008, Peng et al. 2010, 2012, Woo et
al. 2013, Bluck et al. 2014, 2015). However, there is mounting evi-

dence that the specific star formation rates (sSFR) of galaxies might
change as a function of halo mass, without significantly affecting
the passive fraction (Woo et al. 2015) and that different galaxies
can migrate through the green valley at different rates depending on
their morphologies (Schawinski et al. 2014). These types of subtle
effects would not be noticeable in our current ANN analysis, al-
though it would be possible and interesting to additionally train
a network for predicting sSFR values (and green valley transition
times) in addition to the binary quenched : star forming designa-
tion. This notwithstanding, we expect these non-binary extensions
to be only minor perturbations on our general trends since galax-
ies do separate out convincingly into two clearly separable sub-sets
in terms of their star formation rates and colours, suggesting that
successful binary classification is the most important step in under-
standing quenching.

One possibility for further consideration is that the success of
a given variable (or combination of variables) at predicting whether
a central galaxy will be star forming or passive is primarily a func-
tion of how accurately measured that variable is. Thus, in this
scenario, well measured parameters would perform better. This is
certainly true if all physical galaxy parameters are fundamentally
equally predictive of quenching. However, we note that this is un-
likely to be the main driver of our trends here. To illustrate this,
consider bulge and disk mass. These two sub-components of galax-
ies are measured with more or less equal precision in the bulge disk
decompositions of Mendel et al. (2014) and Simard et al. (2011).
However, bulge mass is significantly more predictive of quenching
than disk mass (see Fig. 10 and Table 3). One exception to this is
perhaps halo mass which is inferred indirectly. It is certainly pos-
sible that improved measurements of the masses of central galaxy
haloes in Sloan might improve the overall ranking of halo mass.
That said, our conclusion that AGN feedback is the most proba-
ble explanation of our trends rests on the tight relationship between
CVD and MBH . If we were to estimate MBH from CVD it is un-
likely we would measure this with any greater precision than Mhalo.
If this is true then it is still most likely that black hole quenching
dominates over halo mass quenching for low redshift central galax-
ies. Nonetheless, it would certainly be interesting to revisit these
analyses with dynamically measured halo and black hole masses,
when sufficient numbers of each become available.

Another interesting potential explanation for the apparent
dominance of central velocity dispersion to quenching is that it is
not the current set of galaxy properties which matter for quenching
but the set of parameters at the time (or before) quenching takes
effect (e.g. Carollo et al. 2013). This is unarguably true; however,
estimating the parameters a galaxy had at an earlier epoch is fraught
with difficulty (e.g. Torrey et al. 2015). In this first work on apply-
ing ANN techniques to the problem of galaxy quenching we choose
to focus on directly measurable physical galaxy parameters. That
said, by following a few lines of empirical reasoning we may con-
clude that a galaxy of a given stellar mass which quenched earlier
than another similar mass galaxy would be denser (and hence have
a higher central velocity dispersion). This follows directly from the
assertion that we are looking at a same mass galaxy and a sim-
ple application of the size - mass relation as a function of redshift
(Carollo et al. 2013). Arguments of this type provide an impor-
tant equivocation to our interpretation: correlation does not imply
(nor necessitate) causation. Thus, there are any number of possible
explanations for the observed trends found in this work, of which
the current example is just one possibility. It is therefore neces-
sary to ask the follow-up question: given the observed rankings
of galaxy parameters in quenching, what is the most likely phys-
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ical explanation for this? To aid in answering this question detailed
comparisons to semi-analytic models (e.g. Henriques et al. 2014,
Somerville et al. 2015) and cosmological hydrodynamical simu-
lations (e.g. Vogelsberger et al. 2014a, Schaye et al. 2015) must
be made. Bluck et al. (in prep.) will begin this process for central
galaxies.

It is, of course, also conceivable that some new physical pa-
rameter or set of parameters will do much better than central veloc-
ity dispersion, and may ultimately reveal a link between quench-
ing and some other physical process than considered here. At this
point it is important to reiterate that in this work we have focused
exclusively on physical galaxy parameters, e.g. masses, velocities,
densities and sizes. In this manner we have disregarded other pa-
rameters of potential interest, such as Sérsic indices. Wuyts et al.
(2011) showed that the two peaks of the star formation rate - stel-
lar mass plot are divided cleanly by Sérsic index, with quenched
galaxies having higher values of n than star forming galaxies (a re-
sult previously considered in Bell et al. 2008). In fact, running our
ANN method for n we find that it performs slightly better even than
CVD (with AUC = 0.891 ± 0.003), confirming these prior results.
However, we exclude n from our main analysis in this paper for two
reasons: 1) n is a parameter in a fitting model, not a physical galaxy
parameter, and hence it does not fit within the remit of this paper
to examine which physical parameters are most tightly correlated
with central galaxy quenching; and 2) n is measured in a single op-
tical wave-band and thus can be significantly affected by ongoing
star formation (or absence of star formation) in its measurement.
The second point is very important to highlight, since the excellent
performance of n in predicting quenching could be no more sig-
nificant than attesting that star formation typically happens in disk
structures. Bright blue new stars in a disk lower n and the absence
of these stars in a galaxy in general yields a higher value of n. Thus,
for these reasons we find the Sérsic parameter, n, to be less inter-
esting to focus on than the other (physical) parameters in our study.
Nevertheless, we mention here its excellent performance in AUC,
should this be of use or interest to further research.

Finally, it is interesting that the set of physical galaxy proper-
ties listed in Table 1 is not sufficient, even acting together as inputs
for a sophisticated pattern recognition algorithm, to correctly de-
termine the star forming state of all central galaxies (with ∼ 8%
misclassified). There are a number of possible explanations for this
effect, including, of course, inaccuracies in the measured parame-
ters and observational errors. However, it seems likely that this set
of variables is simply not an exhaustive list of all galaxy properties
relevant to central galaxy quenching. A similar conclusion is made
for a slightly different set of data in Knobel et al. (2015), where they
conclude that galactic conformity (the tendency for passive satel-
lites to orbit passive centrals) is evidence for ‘hidden variables’ in
galaxy formation. Whilst this may well be true, it is also possible
that there is an irreducibly probabilistic nature to whether a given
galaxy will be passive or not, based in part on the chaotic evolution-
ary history of individual galaxies. In any case, this motivates the
need to explore more variables in future statistical studies of the re-
lationship between galactic star formation, quenching, and galaxy
properties. However, global parameters may never be sufficient to
be perfectly predictive of quenching, thus it may be necessary to
consider more complex sets of sub-galactic variables.

6 CONCLUSIONS

In this paper we present a novel technique for assessing which
galaxy properties impact the quenching of central galaxies. We
train an artificial neural network (ANN) non-linear model to
recognise star forming and passive galaxies (for a training and
verification set each containing 100,000 galaxies). The network
is provided with each of the physical galaxy parameters shown
in Table 1 as input data, singly and in groups of two and three.
A higher success rate of predicting whether galaxies will be star
forming or passive from a given variable, or set of variables, is
taken to imply a greater causal link between that parameter (or set)
and the quenching mechanism(s). We quantify the performance
of the network for each parameter and group of parameters by
computing the area under the ROC curve (see Section 3.3),
with higher AUC values signalling greater predictive power. We
summarise our main contributions here:

• For single variables, we find the highest AUC values, and hence
predictive power, for central velocity dispersion, followed by bulge
mass and B/T. All of these parameters formally rank as ‘excellent’
predictors of passivity in galaxies.
• Parameters related to larger scale galaxy properties (e.g. M∗,
Mdisk) or environment (Mhalo, δ5) perform significantly less well.
• The general trend in predictivity from central internal parameters
to outer or external parameters provides evidence for the quenching
of central galaxies originating in the mass concentration of inner
regions, and being largely unrelated to their extended structures or
environments (see Figure 10 and Table 3).
•We suggest that the predictive success of inner-region galaxy pa-
rameters reflects the source of the quenching energy, most probably
originating from black hole accretion and AGN feedback. However,
we do consider other possibilities to this explanation in the discus-
sion (Section 5).
• Bulge effective radius is the worst performing parameter amongst
those tested. This is not inconsistent with AGN-driven quenching,
since bulge size is not strongly correlated with black hole mass,
whereas bulge mass and central velocity dispersion are.
• For dual and triple variable sets, inner-galaxy properties are
very common amongst the best configurations, with environmen-
tal properties being rarely seen. This indicates that the importance
of the inner-region parameters over outer region or environmental
parameters does not diminish with the more inclusive multi-variate
analysis.
• Although we exclude the Sérsic index parameter, n, from our
main analysis since it is not a physical galaxy property per se, we
note that it performs particularly well at predicting whether galax-
ies will be star forming or not. This could, however, just be an arte-
fact of this parameter tracing the light from star formation directly.

We perform many tests and investigations of the effects of
sample variation and potential biases and systematics on our results
in the Appendix (Sections A1 - A8). We find that our rankings
are very stable to issues of this type (including exclusion of green
valley galaxies or AGN, volume weighting or restricting to a
volume limited sample, and additional axis ratio, mass, redshift or
data quality cuts).
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APPENDIX A: SAMPLE VARIATION AND POSSIBLE
SYSTEMATICS

To demonstrate the robustness and stability of our rankings of the
single galaxy parameters to sample variation, we perform different
ANN runs for different carefully selected sub-samples, similar to
what is shown in Figure 10.

A1 Lower Redshift Cut

For the main sample we use a redshift cut of zspec < 0.2 (as in
Bluck et al. 2014, 2015). Here we consider restricting the sample
to zspec < 0.1 where we will have more reliable bulge + disk decom-
positions (due to higher surface brightness features at a given mass)
and a higher S/N of emission lines (used for SFR and AGN deter-
mination) and the spectral continuum aiding absorption line mea-
surements (used in calculating velocity dispersions and estimating
MBH). This sub-sample also has a higher mass/ colour complete-
ness than the higher redshift sample (but see Section A7 for a more
thorough treatment of completeness). We re-run the ANN codes for
ALL and each of the single runs, and go through the methodology
exactly as in Section 4.1.

We show the AUC performance indicator for this more restric-
tive sample in Figure A1 (shown as a blue line), and overplot the
previous result from Figure 10 (shown as a grey line). In general,
the performance of the ANN is improved by the lower redshift cut,
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Figure A1. AUC - single parameter plot. The grey dashed line is the same
as Figure 10 which comprises all redshifts up to our original limit of zspec <

0.2. The blue solid line is for a restrictive sub-sample of galaxies with
zspec < 0.1.

Figure A2. AUC - single parameter plot. The grey dashed line is the same
as Figure 10 which comprises all galaxies including AGNs. The blue solid
line is for the sample in which AGN galaxies are excluded. We define AGN
for this analysis in §A2.

indicated by higher AUC values for ALL and most single cases.
This is as we might expect from increasing the S/N of our aver-
age data. However, importantly, the ranking of single variables (i.e.
their ordering in terms of AUC and thus how effective they are at
constraining the passive state of galaxies) is left completely un-
changed. This implies that our results are robust to changes in the
surface brightness of galaxy components and to the S/N of emission
and absorption lines, lending more confidence to our rankings.

A2 Excluding AGN

We use indirect means for determining the SFRs for AGN based
on the empirical relationship between the strength of the 4000 Å
break and the sSFR of the galaxy (see Section 2). This is necessary
because AGN contribute flux to the emission lines used to deter-
mine SFRs. However, the errors in the SFRs of AGN can be signif-
icant (Rosario et al. 2015), potentially leading to misclassifications
of star forming or passive systems in our training sample. Here we
consider the effect of removing all AGN from our sample. We de-

Figure A3. AUC - single parameter plot. The grey dashed line is the same
as Figure 10 which comprises all galaxies including green valley galaxies.
The blue solid line is for the sample in which green valley galaxies are
excluded, from both training and verification.

fine AGN to be any galaxy which lies above the Kauffmann et al.
(2003) line on the BPT diagram, at a S/N > 1. We then redo our
ANN analysis for single variables and ALL.

We plot the AUC result for the non-AGN sample in Figure
A2 (blue line) and overplot the result for the original sample (grey
line). A significant improvement in performance is seen (AUC val-
ues are generally higher). However, we find no difference in the or-
dering by AUC of these variables. So, whilst removing AGN from
our sample (hence restricting to more reliable SFRs) improves the
ANN performance, it does not affect the results of Section 4.1 in
any way.

A3 Excluding the Green Valley

One possible source of serious systematic error in our ANN anal-
ysis can come from our initial assumption that galaxies can be de-
composed cleanly into just two (binary) states in terms of their star
formation, i.e. passive or star forming. This ignores the possibility
that some galaxies belong in neither of these categories. In particu-
lar, galaxies lying in the ‘valley’ between the two peaks of ∆SFR in
Figure 1 are hard to place in either of these two categories. Here
we follow many authors (e.g. Strateva et al. 2001, Driver et al.
2006, Schawinski et al. 2014) in considering a third case, that of
the ‘Green Valley’. The definition for this class in terms of ∆SFR
is given in Section 2.3.

Figure A3 shows the result in terms of AUC for the sample
with these green valley galaxies excluded (blue line), for compar-
ison we overplot the original result for all galaxies (grey line). As
with restricting the redshift range and excluding AGN, a significant
improvement in the ANN performance is seen. This is as we might
expect, since we are deliberately ‘cleaning’ the sample of ambigui-
ties. However, this restriction does not lead to any difference in the
ordering by AUC of the single variables, and hence does not have
any impact on the ranking of how important these variables are for
quenching.

A4 Restricting the Velocity Dispersions

Velocity dispersions with values less than 70 km/s are intrinsically
less reliable than those with higher values, due to the resolution of
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Figure A4. AUC - single parameter plot. The grey dashed line is the same
as Figure 10 which includes all velocity dispersions. The red line shows
the results for a sample where velocity dispersions with σ < 70 km/s are
excluded. The light cyan line shows the result for galaxies with σ < 70 km/s
having their input values changed to 0 km/s.

the SDSS spectra. However, placing a cut in velocity dispersion (in
addition to the cut in stellar mass) would lead to a highly biased
sample, where only bulge dominated galaxies (presumably more
likely to be passive) are detectable at low stellar masses. So, for
the initial sample we included all velocity dispersions, provided
they pass our basic data quality checks (presented in Section 2).
This could potentially leave us with a bias, and we investigate this
possibility here.

First we restrict our sample to σ > 70 km/s, and redo our
ANN analysis for all single variables. The result of this procedure
in terms of AUC is shown in Figure A4 as a red line, overplotted
in grey is the original result for all σ. It is interesting to note that
restricting the sample by velocity dispersion actually lowers the
performance of the ANN, even for velocity dispersion itself! This
is because a powerful piece of information is lost in this case. It
seems that the presence of a compact (pressure supported) bulge is
essential for a central galaxy to be quenched, and thus the opposite
(where there is no bulge and hence low velocity dispersion) leads
to a near certain classification of star forming. Removing the low σ

cases removes the ability of the ANN code to correctly assign these
cases. Therefore, we suggest that it is better to leave them in even
though this could lead to a higher uncertainty of the ranking of σ.
Nonetheless, the only change to the ranking caused by excluding
the low velocity dispersions is the ordering of B/T and Mbulge (both
of which are independent of the spectral resolution of the SDSS
since they are determined from the photometry alone), everything
else remains unchanged.

Since we are not sure of the exact values of σ < 70 km/s due
to the instrumental resolution of the SDSS, and that we posit that it
is just that these values are low that is useful for the ANN code, we
try setting all low velocity dispersions to zero, i.e.:

σc 7−→ 0 (if σ < 70km/s) || σc (if σ > 70km/s) (A1)

We show the result for this sample in Figure A4 as a light cyan line.
Note that it is almost identically coincident with the original sam-
ple (shown in grey). This demonstrates that no information is being
derived by the ANN codes from the actual values of σ < 70 km/s
velocity dispersions, only that they are low. Thus, we conclude that
including these low values in the sample is not biasing our results,

Figure A5. AUC - single parameter plot. The grey dashed line is the same
as Figure 10 which comprises all galaxies regardless of disk axis ratio. The
blue solid line is for the sample in which late-type galaxies (with B/T < 0.5)
are restricted to being face-on (b/a > 0.9).

and moreover is actually essential to get the most optimal (and reli-
able) performance (given that the grey and cyan lines lie above the
red line).

A5 Restricting LTGs to Face-On

For velocity dispersions there is an ambiguity as to the source of
the kinetic energy when measured via aperture spectroscopy, i.e.
contributions to σ can be made by a pressure supported bulge and/

or from disk rotation into the plane of the sky. Given that the SDSS
fibre is generally centred on the middle of the galaxy light profile,
for cases where the bulge dominates (and/or for very low redshifts)
this effect will be small. However, where the bulge is not the domi-
nant component of the stellar mass budget of the galaxy, significant
kinematic contamination from the rotating disk can affect the mea-
surement of σ, if the disk is inclined relative to Earth. Thus, the
success of σ and MBH (which is based in part on σ) in determining
the passive state of galaxies in Section 4.1 could potentially be par-
tially attributed to measuring the disk rotation in galaxies, i.e. not
actually (solely) associated with the central region. We consider
this possibility in this sub-section.

Here we construct a new sub-sample requiring all late-type
galaxies (LTGs, defined as B/T < 0.5) to be ‘face-on’ with b/a > 0.9
(incdisk < 25o). We take these values from photometric bulge-disk
decompositions performed in Simard et al. (2011). This removes
∼ 90% of LTGs but leaves the bulge dominated early-type galax-
ies (ETGs) unchanged. Since our purpose in this paper is to probe
galaxy quenching we must carefully correct for this new bias be-
fore continuing. For this sub-sample we weight each galaxy in the
ANN code by the inverse of the probability of its inclusion (which
is a function of its structure, B/T), specifically we calculate (as in
Bluck et al. 2015):

wi =
1

1 − frem(B/T )
(A2)

where frem(B/T ) is the fraction of galaxies removed from our sam-
ple due to the b/a cut of LTGs, which varies as a function of galaxy
morphology for LTGs and is of value unity for ETGs (because they
are not removed). This corrects for any bias in the passive : star
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Figure A6. AUC - single parameter plot. The grey dashed line is the same
as Figure 10 which comprises galaxies with M∗ > 109 M�. The blue solid
line is for a restrictive sub-sample with M∗ > 1010 M�.

forming ratio of the sample, but leaves us with only face-on disks,
for which σ is solely a probe of the bulge kinematics.

We show the AUC plot for this sub-sample in Figure A5 as
the blue line, with the original result being shown in grey for com-
parison. The two lines are close to being identical, and the ordering
of the variables is largely the same as well. The performance of
CVD does slightly better, however, indicating that it is indeed the
bulge kinematics (not disk contribution) which yields the predic-
tive power of this variable in assigning the passive state of galax-
ies. Some of the other single variables perform slightly less well for
this sub-sample, which is most probably explained by this dataset
being statistically less rich due to the removed LTGs.

A6 Higher Stellar Mass Cut

Our primary data sample is restricted in stellar mass to M∗ >

109 M�, which is due to the relative scarcity of galaxies with lower
stellar masses in the SDSS volume. For centrals, this cut in mass is
probably low enough to include almost all passive galaxies (see the
1/Vmax weighted passive fraction - stellar mass relation presented
in Fig. 8 of Bluck et al. 2014). However, it is possible that the per-
formance of the galaxy parameters presented in Table 1 vary as a
function of the stellar mass range considered. Obviously, at the ex-
tremes this will be uninteresting because all galaxies will be either
passive or star forming, but at intermediate masses there may be
some additional insights to be found.

In this sub-section we consider the effect on the ANN ranking
of single parameters of a higher mass cut of M∗ > 1010 M�. Our
new result is shown as a blue line in Figure A6, with the original
result (for M∗ > 109 M�) shown in grey for comparison. There are
a few subtle differences between the mass cuts, such as disk mass
performing better than stellar mass and B/T performing better than
bulge mass in this sample. However, the general trend is the same,
with galaxy parameters related to the inner regions of galaxies per-
forming the best, and parameters related to the outer regions of
galaxies or the local environment performing significantly worse.
These changes do not in any way affect our conclusions, but it is
interesting to note that the results from an ANN analysis of this
type can in principle be affected by the range in masses of the input
parameters.

Figure A7. AUC - single parameter plot. The grey dashed line is the same
as our fiducial result, shown in Figure 10, which takes all bulge - disk pa-
rameters at face value. The blue solid line is for a sample with low B/T
galaxies re-categorised to pure disks and high B/T galaxies re-categorised
to pure spheroids. The results for these two samples are identical within the
errors, and thus the rankings remain unchanged.

A7 Pure Disks and Spheroids

Our morphological and structural parameters come from bulge -
disk decompositions performed in Simard et al. (2011) and Mendel
et al. (2014). We define the structure of a galaxy to be the con-
tinuous variable B/T, which is the bulge-to-total stellar mass ratio,
which is equal to one minus the disk-to-total stellar mass ratio (i.e.
B/T = 1 - D/T). In this subsection we consider whether the ranking
by AUC of galaxy properties is affected by the possibility that some
pure disk or pure spheroid galaxies are misclassified as composite
systems. The average error on an individual B/T value is ∼ ± 0.1
(see appendices in Bluck et al. 2014 for their determination from
fitting of model galaxies). Thus, we allow all galaxies with B/T <

0.1 to be set to pure disks and all galaxies with B/T > 0.9 to be set to
pure spheroids, which is permitted within their errors. Specifically,
we define the following two mappings:

If(B/T 6 0.1) 7−→ (B/T = 0)&(Mbulge = 0)&(Mdisk = M∗) (A3)

and

If(B/T > 0.9) 7−→ (B/T = 1)&(Mbulge = M∗)&(Mdisk = 0) (A4)

We compare the AUC results for this new sample to the original
runs in Figure A7. All of the parameters, including Mbulge, Mdisk

and B/T perform identically within the errors to the original run,
and hence there is no change to the ranking by AUC from possible
misclassifications of pure disks or spheroids.

A8 Volume Limits and Weighting

Due to the flux limit of the SDSS, galaxies of different masses and
colours are visible in the survey to different maximum redshifts,
which can lead to a bias on the ANN input sample. The usual way
to deal with these effects is via volume weighting of statistics such
as the passive fraction (as in, e.g., Peng et al. 2010, 2012, Woo et
al. 2013, Bluck et al. 2014, 2015). The dependence of the max-
imum redshift, zmax, each galaxy can be detected at in the SDSS
on both stellar mass and (g-r) colour is presented in Figure 9 of
Mendel et al. (2014). From this a maximum detection volume, Vmax,
can be computed for each galaxy. Weighting any given statistic by
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Figure A8. AUC - single parameter plot. The blue line is for a mass cut of
M∗ > 109.5 M�. This sample is not restricted in redshift and extends out to
zspec < 0.2. The blue dashed line is for volume limited sub-sample (zspec <

0.04).

Figure A9. AUC - single parameter plot. The grey line shows the original
(un-weighted) sample with green valley and AGN galaxies removed (see
Sections A2 and A3). The blue line shows the same sample (no GV or
AGN) but now weighted by 1/Vmax in both the training and verification sets
(see Section A7). The two lines are almost identical, with only very minor
differences.

1/Vmax corrects for the flux limit bias. The alternative to weighting
is, the more familiar approach of, constructing a volume limited
sample, i.e. restricting the survey to a volume at which complete-
ness is achieved for a given stellar mass (and technically colour)
limit. In this sub-section we consider both of these approaches to
test whether our flux limited input sample leads to any bias in the
rankings of variables.

In Figure A8 we consider a slightly higher mass cut to the
fiducial sample considered throughout the rest of this paper, of
M∗ > 109.5 M�, shown in red. This sample is not restricted in red-
shift and extends out to zspec < 0.2. The blue line in Figure A8
shows the AUC results for single variables for a volume limited
sample where we are complete at the stellar mass limit, and at the
average colour (for that mass) of the red sequence. The redshift cut
for this sample is zspec < 0.04. Generally, we find that restricting to
a volume limited sample does not change our results significantly.
The general trend of inner galaxy properties being more predictive

of quenching than outer galaxy or environmental parameters still
holds true for all samples. There are, however, a few small changes.
The most prominent of these is that bulge effective radius performs
significantly better than local density in the volume limited case
but significantly worse in the flux limited case. With this one ex-
ception, the ordering of all of the rest of the parameters is identical
between the flux limited and volume limited sample, thus our rank-
ing of galaxy parameters in quenching is highly stable to issues of
completion in the input sample.

Our restriction to a volume limited sample is imperfect, how-
ever, because 1) we have to assume a colour limit (here taken as the
mean of the red sequence at the lower mass cut) and 2) this process
necessarily reduces our sample size significantly, which impairs the
power of the ANN technique. Volume weighting is a viable alterna-
tive, although there are also some issues with this approach to con-
sider. Since the ANN procedure concentrates on finding patterns in
the data, and is carefully tuned to avoid over-fitting, introducing a
weight (often very large ∼ 100 - 1000 in some cases) can result in
amplifying outliers to the status of significant sub-patterns. Thus,
before weighting we must be careful to use the ‘cleanest’ data set
available, with the fewest ‘bad’ data points. Given the results of
Sections A2 and A3, where we find that excluding the green val-
ley and AGN from our sample improves the ANN performance, we
also remove these galaxies from our sample before volume weight-
ing here.

In Figure A9 we show the result of our ANN minimisation
procedure for un-weighted galaxies with green valley and AGN
cases removed (grey line), and the same sample weighted by 1/Vmax

(blue line). Here weighting indicates the number of times each
galaxy is included in the parent sample, and hence is closely re-
lated to the probability of inclusion in the ANN training and veri-
fication sets. The two samples agree almost identically, giving the
same trend in AUC performance from inner-galaxy properties to
environmental properties, seen throughout the appendix and Sec-
tion 4.1. The biggest difference is a noticeably worse performance
of CVD relative to bulge mass and ratio. This can be explained
by the fact that in the volume weighted sample greater emphasis is
placed on lower values of CVD, which are intrinsically less reliable
(see Section 2 and A4). In the volume limited case (above) we still
see CVD performing best, and this is likely because by restricting
to lower redshifts we can accurately constrain CVD to lower val-
ues. However, the directionality of the trend from inner to outer
regions is left unchanged by weighting, hence we conclude that our
method is not significantly affected by the initial sample setup.

The primary invariance of our method to volume effects is
likely a result of us selecting the same number of PA and SF galax-
ies for both training and verification. This reduces the effect of
colour (or SFR) on our sample selection, and hence also reduces the
impact of stellar mass detection thresholds, due to the strong corre-
lation between M∗ and SFR or (g-r) colour. In any case, the impact
of volume weighting, or restricting to a volume limited sample, is
very minor on our rankings and results.
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Figure A10. AUC - parameter plot for all multiple runs for centrals. The top plot shows all possible combinations of two parameters as input data, and the
bottom plot shows all possible combinations of three parameters as input data. They are both ordered from most to least predictive at determining the passive
state of galaxies.
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