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A “QUANTUM” RAMSEY THEOREM FOR OPERATOR

SYSTEMS

NIK WEAVER

Abstract. Let V be a linear subspace of Mn(C) which contains the identity
matrix and is stable under the formation of Hermitian adjoints. We prove that

if n is sufficiently large then there exists a rank k orthogonal projection P such
that dim(PVP ) = 1 or k

2.

1. Background

An operator system in finite dimensions is a linear subspace V of Mn(C) with
the properties

• In ∈ V
• A ∈ V ⇒ A∗ ∈ V

where In is the n×n identity matrix and A∗ is the Hermitian adjoint of A. In this
paper the scalar field will be complex and we will write Mn = Mn(C).

Operator systems play a role in the theory of quantum error correction. In clas-
sical information theory, the “confusability graph” is a bookkeeping device which
keeps track of possible ambiguity that can result when a message is transmitted
through a noisy channel. It is defined by taking as vertices all possible source mes-
sages, and placing an edge between two messages if they are sufficiently similar that
data corruption could lead to them being indistinguishable on reception. Once the
confusability graph is known, one is able to overcome the problem of information
loss by using an independent subset of the confusability graph, which is known as
a “code”. If it is agreed that only code messages will be sent, then we can be sure
that the intended message is recoverable.

When information is stored in quantum mechanical systems, the problem of error
correction changes radically. The basic theory of quantum error correction was laid
down in [3]. In [2] it was suggested that in this setting the role of the confusability
graph is played by an operator system, and it was shown that for every operator
system a “quantum Lovász number” could be defined, in analogy to the classical
Lovász number of a graph. This is an important parameter in classical information
theory. See also [5] for much more along these lines.

The interpretation of operator systems as “quantum graphs” was also proposed in
[8], based on the more general idea of regarding linear subspaces ofMn as “quantum
relations”, and taking the conditions In ∈ V and A ∈ V ⇒ A∗ ∈ V to respectively
express reflexivity and symmetry conditions. The idea is that the edge structure
of a classical graph can be encoded in an obvious way as a reflexive, symmetric
relation on a set. This point of view was explicitly connected to the quantum error
correction literature in [9].
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Ramsey’s theorem states that for any k there exists n such that every graph
with at least n vertices contains either a k-clique or a k-anticlique, i.e., a set of k
vertices among which either all edges are present or no edges are present. Simone
Severini asked the author whether there is a “quantum” version of this theorem for
operator systems. The natural notion of a quantum k-clique for an operator system
V is an orthogonal projection P ∈ Mn (i.e., a matrix satisfying P = P 2 = P ∗)
whose rank is k, such that PVP = {PAP : A ∈ V} is maximal; that is, such that
PVP = PMnP ∼= Mk, or equivalently, dim(PVP ) = k2. The natural notion of
a quantum k-anticlique is a rank k projection P such that PVP = C · P ∼= M1,
or equivalently, dim(PVP ) = 1. This proposal is supported by the fact that in
quantum error correction a code is taken to be the range of a projection satisfying
just this condition, PVP = C ·P [3]. As mentioned earlier, classical codes are taken
to be independent sets, which is to say, anticliques.

The main result of this paper is a quantum Ramsey theorem which states that for
every k there exists n such that every operator system in Mn has either a quantum
k-clique or a quantum k-anticlique. This answers Severini’s question positively.

I especially thank Michael Jury for stimulating discussions, and in particular for
conjecturing Proposition 2.3 and improving Lemma 4.2.

Part of this work was done at a workshop on Zero-error information, Operators,
and Graphs at the Universitat Autònoma de Barcelona.

2. Examples

If G = (V,E) is any finite simple graph, without loss of generality suppose
V = {1, . . . , n} and define VG to be the operator system

VG = span{Eij : i = j or {i, j} ∈ E} ⊆ Mn.

Here we use the notation Eij for the n× n matrix with a 1 in the (i, j) entry and
0’s elsewhere. Also, let (ei) be the standard basis of Cn, so that Eij = eie

∗
j .

The inclusion of the diagonal Eii matrices corresponds to including a loop at each
vertex. (In the error correction setting this is natural: we place an edge between
any two messages that might be indistinguishable on reception, and this is certainly
true of any message and itself.) Once we adopt the convention that every graph
has a loop at each vertex, an anticlique should no longer be a subset S ⊆ V which
contains no edges, it should be a subset which contains no edges except loops. Such
a set corresponds to the projection PS onto span{ei : i ∈ S} with the property that
PSVGPS = span{Eii : i ∈ S}. Or course this is very different from a quantum
anticlique where PVP is one-dimensional.

To illustrate the dissimilarity between classical and quantum cliques and anti-
cliques, consider the diagonal operator system Dn ⊆ Mn consisting of the diagonal
n× n complex matrices. In the notation used above, this is just the operator sys-
tem VG corresponding to the empty graph on n vertices. It might at first appear
to falsify the desired quantum Ramsey theorem, because of the following fact.

Proposition 2.1. Dn has no quantum k-anticlique for k ≥ 2.

Proof. Let P ∈ Mn be a projection of rank k ≥ 2. Since rank(Eii) = 1 for all
i, it follows that rank(PEiiP ) = 0 or 1 for each i. If PEiiP = 0 for all i then
P =

∑n
i=1 PEiiP = 0, contradiction. Thus we must have rank(PEiiP ) = 1 for

some i, but then PEiiP cannot belong to C ·P = {aP : a ∈ C}, since every matrix
in this set has rank 0 or k. So PDnP 6= C · P . �
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Since every operator system of the form VG contains the diagonal matrices, none
of these operator systems has nontrivial quantum anticliques. The surprising thing
is that for n sufficiently large, they all have quantum k-cliques. This follows from
the next result.

Proposition 2.2. If n ≥ k2+ k− 1 then there is a rank k projection P ∈ Mn such

that dim(PDnP ) = k2.

Proof. Without loss of generality let n = k2 + k − 1. Start by considering Mk

acting on Ck. Find k2 vectors v1, . . . , vk2 in Ck such that the rank 1 matrices
viv

∗
i are linearly independent. (For example, we could take the k standard basis

vectors ei plus the k2−k
2 vectors ei + ej for i 6= j plus the k2−k

2 vectors ei + iej
for i 6= j. The corresponding rank 1 matrices span Mk and thus they must be
independent since dim(Mk) = k2.) Regarding Ck as a subspace of Cn, we can
extend the vi to orthogonal vectors wi ∈ Cn as follows: take w1 = v1⊕ (1, 0, . . . , 0),
w2 = v2 ⊕ (a1, 1, 0, . . . , 0), w3 = v3 ⊕ (b1, b2, 1, 0, . . . , 0), etc., with a1, b1, b2, . . .

successively chosen so that 〈wi, wj〉 = 0 for i 6= j. We need k2− 1 extra dimensions
to accomplish this. Now let P be the rank k projection of Cn onto C

k and let Dn be
the diagonal operator system relative to any orthonormal basis of Cn that contains
the vectors wi

‖wi‖
for 1 ≤ i ≤ k2. Then PDnP contains Pwiw

∗
i P = viv

∗
i for all i, so

dim(PDnP ) = k2. �

A stronger version of this result will be proven in Lemma 4.3. The value n =
k2 + k − 1 may not be optimal, but note that in order for Dn to have a quantum
k-clique n must be at least k2, since dim(Dn) = n and we need dim(PDnP ) = k2.

Next, we show that operator systems of arbitrarily large dimension may lack
quantum 3-cliques.

Proposition 2.3. Let Vn = span{In, E11, E12, . . . , E1n, E21, . . . , En1} ⊆ Mn.

Then Vn has no quantum 3-cliques.

Proof. Let P ∈ Mn be any projection. If Pe1 = 0 then PVnP = C · P , so P

is a quantum anticlique. Otherwise let k = rank(P ) and let f1, . . . , fk be an or-
thonormal basis of ran(P ) with f1 = Pe1

‖Pe1‖
. Then PE1iP = Pe1e

∗
iP = f1v

∗
i where

vi = ‖Pe1‖Pei. The span of these matrices is precisely span{f1f
∗
i }, since the pro-

jections of the ei span ran(P ). So PVnP is just Vk ⊆ Mk
∼= PMnP , relative to the

(fi) basis. If k ≥ 3 then dim(Vk) = 2k < k2, so P cannot be a quantum clique. �

3. Quantum 2-cliques

In contrast to Proposition 2.3, we will show in this section that any operator
system whose dimension is at least four must have a quantum 2-clique. This result
is clearly sharp. It is somewhat analogous to the trivial classical fact that any graph
that contains at least one edge must have a 2-clique.

Define the Hilbert-Schmidt inner product of A,B ∈ Mn to be Tr(AB∗). Denote
the set of Hermitian n × n matrices by Mh

n . Observe that any operator system is
spanned by its Hermitian part since any matrix A satisfies A = Re(A) + iIm(A)
where Re(A) = 1

2 (A+A∗) and Im(A) = 1
2i(A−A∗).

Lemma 3.1. Let V ⊆ Mn be an operator system and suppose dim(V) ≤ 3. Then

its Hilbert-Schmidt orthocomplement is spanned by rank 2 Hermitian matrices.
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Proof. Work in Mh
n . Let V0 = V∩Mh

n and let W0 be the real span of the Hermitian
matrices in V⊥

0 whose rank is 2. We will show that W0 = V⊥
0 ; taking complex spans

then yields the desired result.
Suppose to the contrary that there exists a nonzero Hermitian matrix B ∈ V⊥

0

which is orthogonal to W0. Say V0 = span{In, A1, A2}, where the Ai are not neces-
sarily distinct from In. Since B ∈ V⊥

0 , we have Tr(InB) = Tr(A1B) = Tr(A2B) =
0, but Tr(B2) 6= 0. We will show that there is a rank 2 Hermitian matrix C whose
inner products against In, A1, A2, and B are the same as their inner products
against B. This will be a matrix in W0 which is not orthogonal to B, a contradic-
tion.

Since B is Hermitian, we can choose an orthonormal basis (fi) of Cn with
respect to which it is diagonal, say B = diag(b1, . . . , bn). We may assume
b1, . . . , bj ≥ 0 and bj+1, . . . , bn < 0. Let B+ = diag(b1, . . . , bj , 0, . . . , 0) and
B− = diag(0, . . . , 0,−bj+1, . . . ,−bn) be the positive and negative parts of B,
so that B = B+ − B−. Let α = Tr(B+) = Tr(B−) (they are equal since
Tr(B) = Tr(InB) = 0). Then 1

α
B+ is a convex combination of the rank 1 ma-

trices f1f
∗
1 , . . ., fjf

∗
j ; that is, the linear functional A 7→ 1

α
Tr(AB+) is a convex

combination of the linear functionals A 7→ 〈Afi, fi〉 for 1 ≤ i ≤ j. By the convexity
of the joint numerical range of three Hermitian matrices [1], there exists a unit
vector v ∈ C such that 1

α
Tr(AB+) = 〈Av, v〉 for A = A1, A2, and B. Similarly,

there exists a unit vector w such that 1
α
Tr(AB−) = 〈Aw,w〉 for A = A1, A2, and

B. Then C = α(vv∗ − ww∗) is a rank 2 matrix whose inner products against In,
A1, A2, and B are the same as their inner products against B. So C has the desired
properties. �

Lemma 3.2. Let V ⊆ M3 be an operator system and suppose dim(V ) = 4. Then

V has a quantum 2-clique.

Proof. Let V = span{I3, A1, A2, A3} where the Ai are Hermitian. Denote the set
of unit vectors in C3 by [C3]1. If v ∈ [C3]1 then v and A1v are linearly independent
unless v is an eigenvector of A1. Since A1 is not a scalar multiple of I3, the set of
unit vectors v for which v and A1v are linearly independent constitutes an open,

dense subset of [C3]1. For each such v, the vector ṽ = v×A1v
‖v×A1v‖

∈ [C3]1 (the complex

conjugate of the normalized cross product) is orthogonal to both v and A1v.
Claim 1: the set of v ∈ [C3]1 such that 〈A1v, v〉 6= 〈A1ṽ, ṽ〉 is open and dense.

Claim 2: the set of v ∈ [C3]1 such that 〈A2v, ṽ〉 6= 0 is open and dense. Claim 3:

the set of v ∈ [C3]1 such that 〈A2v, ṽ〉〈A3v, ṽ〉 6∈ R is open and dense. Then for
any v in the intersection of these sets, the projection onto span{v, ṽ} is a quantum
2-clique for V .

[The proofs of the claims are computational; omitted until I find something
better.] �

Theorem 3.3. Let V ⊆ Mn be an operator system and suppose dim(V) ≥ 4. Then

V has a quantum 2-clique.

Proof. Without loss of generality we can suppose that dim(V) = 4. Say V =
span{In, A1, A2, A3} where the Ai are Hermitian.

We first claim that there is a projection P of rank at most 3 such that PInP ,
PA1P , and PA2P are linearly independent. If A1 and A2 are jointly diagonalizable
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(but, together with In, linearly independent) then we can find three common eigen-
vectors v1, v2, and v3 such that the vectors (1, 1, 1), (λ1, λ2, λ3), (µ1, µ2, µ3) ∈ C3

are linearly independent, where λi and µi are the eigenvalues belonging to vi for A1

and A2, respectively. Then the projection onto span{v1, v2, v3} verifies the claim.
If A1 and A2 are not jointly diagonalizable, then we can find two eigenvectors v1
and v2 of A1 such that 〈A2v1, v2〉 6= 0. Letting v3 be a third eigenvector of A1 with
the property that the eigenvalues of A1 belonging to v1, v2, and v3 are not all equal,
we can again use the projection onto span{v1, v2, v3}. This establishes the claim.

Now let P be as in the claim and find B ∈ Mn such that PInP , PA1P , PA2P ,
and PBP are linearly independent. By Lemma 3.2 we can then find a rank 2 pro-
jection Q ≤ P such that QInQ, QA1Q, QA2Q, and QBQ are linearly independent.

If QInQ, QA1Q, QA2Q, and QA3Q are linearly independent then we are done.
Otherwise, let α, β, and γ be the unique scalars such that QA3Q = αQInQ +
βQA1Q + γQA2Q. By Lemma 3.1 we can find a rank 2 Hermitian matrix C such
that Tr(InC) = Tr(A1C) = Tr(A2C) = 0 but Tr(A3C) 6= 0. Then C = vv∗ − ww∗

for some orthogonal vectors v and w. Thus, 〈Av, v〉 = 〈Aw,w〉 for A = In, A1, and
A2, but not for A = A3. It follows that the two conditions

〈A3v, v〉 = α〈Inv, v〉+ β〈A1v, v〉+ γ〈A2v, v〉

and

〈A3w,w〉 = α〈Inw,w〉 + β〈A1w,w〉 + γ〈A2w,w〉

cannot both hold. Without loss of generality suppose the first fails. Then letting Q′

be the projection onto span(ran(Q) ∪ {v}), we cannot have Q′A3Q
′ = αQ′InQ

′ +
βQ′A1Q

′ + γQ′A2Q
′. Thus rank(Q′) = 3 and dim(Q′VQ′) = 4. The theorem now

follows by applying Lemma 3.2 to Q′VQ′. �

4. The main theorem

The proof of our main theorem proceeds through a series of lemmas.

Lemma 4.1. Suppose the operator system V is contained in Dn. If dim(V) ≥
k2 + k− 1 then V has a quantum k-clique. If dim(V) ≤ n−k

k−1 then V has a quantum

k-anticlique. If n ≥ k3 − k+1 then V has either a quantum k-clique or a quantum

k-anticlique.

Proof. If dim(V) ≥ k2 + k− 1 = m then we can find a set of indices S ⊆ {1, . . . , n}
of cardinality m such that dim(PVP ) = m where P is the orthogonal projection
onto span{ei : i ∈ S}. Then PVP ∼= Dm ⊆ Mm

∼= PMnP and Proposition 2.2
yields that PVP , and hence also V , has a quantum k-clique. If dim(V) ≤ n−k

k−1 then

a result of Tverberg [6, 7] can be used to extract a quantum k-anticlique; this is
essentially Theorem 4 of [4]. Thus if k2 + k − 1 ≤ n−k

k−1 then one of the two cases
must obtain, i.e., V must have either a quantum k-clique or a quantum k-anticlique.
A little algebra shows that this inequality is equivalent to n ≥ k3 − k + 1. �

Lemma 4.2. Let v1, . . . , vr be vectors in Cs. Then there are vectors w1, . . . , wr ∈
Cr−1 such that the vectors vi ⊕ wi ∈ Cs+r−1 are pairwise orthogonal and all have

the same norm.

Proof. Let G be the Gramian matrix of the vectors vi and let ‖G‖ be its operator
norm. Then rank(‖G‖Ir − G) ≤ r − 1, so we can find vectors wi ∈ C

r−1 whose
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Grammian matrix is ‖G‖Ir − G. The Grammian matrix of the vectors vi ⊕ wi is
then ‖G‖Ir, as desired. �

Then next lemma improves Proposition 2.2.

Lemma 4.3. Let n = k2 + k − 1 and suppose A1, . . . , Ak2 are Hermitian matrices

in Mn such that for each i we have 〈Aiei, ei〉 = 1, and also 〈Aier, es〉 = 0 whenever

max{r, s} > i. Then V = span{I, A1, . . . , Ak2} has a quantum k-clique.

Proof. Let Ai have matrix entries (airs). The goal is to find vectors v1, . . . , vk2 ∈ Ck

such that the matrices

A′
i =

∑

1≤r,s≤k

airsvrv
∗
s

are linearly independent. Once we have done this, find vectors wi ∈ Ck2−1 as in
Lemma 4.2 and let fi = 1

N
(vi ⊕ wi) ∈ Cn where N is the common norm of the

vi ⊕ wi. Then the fi form an orthonormal set in Cn, so they can be extended to
an orthonormal basis, and the operators whose matrices for this basis are the Ai

compress to the matrices 1
N2A

′
i on the initial Ck, which are linearly independent.

So PVP contains k2 linearly independent matrices, where P is the orthogonal
projection onto Ck, showing that V has a quantum k-clique.

The vectors vi are constructed inductively. Once v1, . . . , vi are chosen so that
A′

1, . . . , A
′
i are independent, future choices of the v’s cannot change this since

A1, . . . , Ai all live on the initial i × i block. We can let v1 be any nonzero vec-
tor in Ck, since A1 = e1e

∗
1, so that A′

1 = v1v
∗
1 and this only has to be nonzero.

Now suppose v1, . . . , vi−1 have been chosen and we need to select vi so that A′
i is

independent of A′
1, . . . , A

′
i−1. After choosing vi we will have A

′
i =

∑
1≤r,s≤i a

i
rsvrv

∗
s .

Let B be this sum restricted to 1 ≤ r, s ≤ i − 1. That part is already determined
since vi does not appear. Also let

u = ai1iv1 + · · ·+ ai(i−1)ivi−1;

then we will have
A′

i = B + uv∗i + viu
∗ + viv

∗
i

(using the assumption that aiii = 1). That is,

A′
i = (B − uu∗) + (u+ vi)(u + vi)

∗ = B′ + ũũ∗

where ũ = u+ vi is arbitrary, and the question is whether ũ can be chosen to make
this matrix independent of A′

1, . . . , A
′
i−1. But the possible choices of A

′
i clearly span

Mk — there is no matrix which is Hilbert-Schmidt orthogonal to B′ + ũũ∗ for all
ũ — so there must be a choice of ũ which makes A′

i independent of A′
1, . . . , A

′
i−1,

as desired. �

Next we prove a technical variation on Lemma 4.3.

Lemma 4.4. Let n = k4 + k3 + k − 1 and let V be an operator system contained

in Mn. Suppose V contains matrices A1, . . . , Ak4+k3 such that for each i we have

〈Aiei, ei+1〉 6= 0, and also 〈Aier, es〉 = 0 whenever max{r, s} > i + 1 and r 6= s.

Then V has a quantum k-clique.

Proof. Let Ai have matrix entries (airs). Observe that for each i the compression
of Ai to span{ei+2, . . . , en} is diagonal. For each r > i + 1 let the r-tail of Ai

be the vector (airr, . . . , a
i
nn). Suppose there exist indices i1, . . . , ik2+k−1 such that
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the r-tails of the Aij , 1 ≤ j ≤ k2 + k − 1, are linearly independent, where r =

maxj{ij + 2}. Then the compression of V to span{er, . . . , en} contains k2 + k − 1
linearly independent diagonal matrices, so it has a quantum k-clique by the first
assertion of Lemma 4.1. Thus, we may assume that for any k2 + k − 1 distinct
indices ij the matrices Aij have linearly dependent r-tails.

We construct an orthonormal sequence of vectors vi and a sequence of Her-
mitian matrices Bi ∈ V , 1 ≤ i ≤ k2, such that the compressions of the Bi to
span{v1, . . . , vk2 , ek4+k3+1, . . . , ek4+k3+k−1} satisfy the hypotheses of Lemma 4.3.
This will ensure the existence of a quantum k-clique.

The first k2+ k− 1 matrices A1, . . . , Ak2+k−1 have linearly dependent r-tails for

r = k2 + k + 1. Thus there is a nontrivial linear combination B′
1 =

∑k2+k−1
i=1 αiAi

whose r-tail is the zero vector. Letting j be the largest index such that αj is
nonzero, we have 〈B′

1ej , ej+1〉 6= 0 because 〈Ajej, ej+1〉 6= 0 but 〈Aiej , ej+1〉 = 0
for i < j. Thus the compression of B′

1 to span{e1, . . . , ek2+k} is nonzero, so there
exists a unit vector v1 in this span such that 〈B′

1v1, v1〉 6= 0. Then let B1 be a scalar
multiple of either the real or imaginary part of B′

1 which satisfies 〈B1v1, v1〉 = 1.
Note that 〈B1er, es〉 = 0 for any r, s with max{r, s} > k2 + k. Apply the same
reasoning to the next block of k2 + k − 1 matrices Ak2+k+1, . . . , A2k2+2k−1 to find
v2 and B2, and proceed inductively. After k2 steps, k2(k2 + k) = k4 + k3 indices
will have been used up and k − 1 (namely, ek4+k3+1, . . . , ek4+k3+k−1) will remain,
as needed. �

Theorem 4.5. For any k there exists n such that any operator system in Mn has

either a quantum k-clique or a quantum k-anticlique.

Proof. Take n = 8k11 and let V be an operator system in Mn. Find a unit vector
v1 ∈ Cn, if one exists, such that the dimension of Vv1 = {Av1 : A ∈ V} is less than
8k8. Then find a unit vector v2 ∈ (Vv1)

⊥, if one exists, such that the dimension of
(Vv1)

⊥ ∩ (Vv2) is less than 8k8. Proceed in this fashion, at the rth step trying to
find a unit vector vr in

(Vv1)
⊥ ∩ · · · ∩ (Vvr−1)

⊥

such that the dimension of

(Vv1)
⊥ ∩ · · · ∩ (Vvr−1)

⊥ ∩ (Vvr)

is less than 8k8. If this construction lasts for k3 steps then the compression of V to
span{v1, . . . , vk3} ∼= Mm is contained in Dk3 , so this compression, and hence also
V , has either a quantum k-clique or a quantum k-anticlique by Lemma 4.1.

Otherwise, the construction fails at some stage d. This means that the compres-
sion V ′ of V to E = (Vv1)

⊥ ∩ · · · ∩ (Vvd)
⊥ has the property that the dimension of

V ′v is at least 8k8, for every unit vector v ∈ E.
Work in E. Choose any nonzero vector w1 ∈ E and find A1 ∈ V ′ such that w2 =

A1w1 is nonzero and orthogonal to w1. Then find A2 ∈ V ′ such that w3 = A2w2 is
nonzero and orthogonal to span{wi, A1wi, A

∗
1wi : i = 1, 2}. Continue in this way,

at the rth step finding Ar ∈ V ′ such that wr+1 = Arwr is nonzero and orthogonal
to span{wj , Aiwj , A

∗
iwj : i < r and j ≤ r}. The dimension of this span is at most

2r2 − r, so as long as r ≤ 2k4 its dimension is less than 8k8 and a vector wr+1

can be found. Compressing to the span of the wi then puts us in the situation of
Lemma 4.4 with n = 2k4, which is more than enough. So there exists a quantum
k-clique by that lemma. �
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The constants in the proof could be improved, but only marginally. Very likely
the problem of determining bounds on quantum Ramsey numbers is open-ended,
just as in the classical case.
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