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Abstract

The evolution of the perturbations in the energy density and the particle number den-
sity in a flat Friedmann-Lemaître-Robertson-Walker universe in the radiation-dominated
era and in the epoch after decoupling of matter and radiation is studied. For large-scale
perturbations the outcome is in accordance with treatments in the literature. For small-
scale perturbations the differences are conspicuous. Firstly, in the radiation-dominated era
small-scale perturbations grew proportional to the square root of time. Secondly, perturba-
tions in the Cold Dark Matter particle number density were, due to gravitation, coupled to
perturbations in the total energy density. This implies that structure formation has com-
menced successfully only after decoupling of matter and radiation. Finally, after decoupling
density perturbations evolved diabatically, i.e., they exchanged heat with their environment.
This heat exchange may have enhanced the growth rate of its mass sufficiently to explain
structure formation in the early universe, a phenomenon which cannot be understood from
adiabatic density perturbations.
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1 Introduction

The global properties of our universe are very well described by a Λcdm model with a flat
Friedmann-Lemaître-Robertson-Walker (flrw) metric within the context of the General Theory
of Relativity. To explain structure formation after decoupling of matter and radiation in this
model, one has to assume that before decoupling Cold Dark Matter (cdm) has already contracted
to form seeds into which the baryons (i.e., ordinary matter) could fall after decoupling. In this
article it will be shown that cdm did not contract faster than baryons before decoupling and
that structure formation started off successfully only after decoupling.

The perturbation equations for flrw universes derived in a companion article [1] will be
applied to a flat flrw universe in its three main phases, namely the radiation-dominated era,
the plasma era, and the epoch after decoupling of matter and radiation. In the derivation of
these equations, an equation of state for the pressure of the form p = p(n, ε) has been taken
into account, as is required by thermodynamics. As a consequence, in addition to a usual
second-order evolution equation (3a) for density perturbations, a first-order evolution equation
(3b) for entropy perturbations follows also from the perturbed Einstein equations. This entropy
evolution equation is absent in former treatments of the subject. Therefore, the system (3) leads
to further reaching conclusions than is possible from treatments in the literature.
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Analytic expressions for the fluctuations in the energy density δε and the particle number
density δn in the radiation-dominated era and the epoch after decoupling will be determined. It
is shown that the evolution equations (3) corroborate the standard perturbation theory in both
eras in the limiting case of infinite scale perturbations. For finite scales, however, the differences
are conspicuous. Therefore, only finite scale perturbations are considered in detail.

A first result is that in the radiation-dominated era oscillating density perturbations with an
increasing amplitude proportional to t1/2 are found, whereas the standard perturbation equation
yields oscillating density perturbations with a constant amplitude. This difference is due to the
fact that in the new perturbation equations (3) the divergence ϑ(1) of the spatial part of the
fluid four-velocity is taken into account, whereas ϑ(1) = 0 in the standard equation (61). In fact,
ϑ(1) = 0 is one of the conditions for the non-relativistic limit, as has been shown in Section 4∗1.
In Section A.1 it is made clear why ϑ(1) may not be omitted.

In the radiation-dominated era and the plasma era baryons were tightly coupled to radiation
via Thomson and Coulomb scattering until decoupling. A second result is that Cold Dark Matter
(cdm) was also tightly coupled to radiation, not through Thomson and Coulomb scattering, but
through gravitation. This implies that before decoupling perturbations in cdm have contracted
as fast as perturbations in the baryon density. As a consequence, cdm could not have triggered
structure formation after decoupling. This result follows from the entropy evolution equation
(3b) since pn ≤ 0, (5), throughout the history of the universe as will be shown in Section 3.

From observations [2] of the Cosmic Microwave Background (cmb) it follows that pertur-
bations were adiabatic at the moment of decoupling, and density fluctuations δε and δn were
of the order of 10−5 or less. Since the growth rate of adiabatic perturbations in the era after
decoupling was too small to explain structure in the universe, there must have been, in addition
to gravitation, some other mechanism which has enhanced the growth rate sufficiently to form
the first stars from small density perturbations. The result of the present study is that after
decoupling such a mechanism did indeed exist in the early universe, as will now be explained.

At the moment of decoupling of matter and radiation, photons could not ionize matter any
more and the two constituents fell out of thermal equilibrium. As a consequence, the pressure
dropped from a very high radiation pressure just before decoupling to a very low gas pressure
after decoupling. This fast and chaotic transition from a high pressure epoch to a very low
pressure era may have resulted in large relative diabatic pressure perturbations due to very
small fluctuations in the kinetic energy density. Consequently, the pressure perturbations did
not vanish in the perturbed universe just after decoupling. It is found that the growth of a
density perturbation has not only been governed by gravitation, but also by heat exchange of a
perturbation with its environment. The growth rate depended strongly on the scale of a pertur-
bation. For perturbations with a scale of 6.5 pc ≈ 21 ly (see the peak value in Figure 1) gravity
and heat exchange worked perfectly together, resulting in a fast growth rate. Perturbations
larger than this scale reached, despite their stronger gravitational field, their non-linear phase
at a later time since heat exchange was slower due to their larger scales. On the other hand,
for perturbations with scales smaller than 6.5 pc gravity was weak and heat exchange was not
sufficient to let perturbations grow. Therefore, density perturbations with scales smaller than
6.5 pc did not reach the non-linear regime within 13.81Gyr. Since there was a sharp decline in

1Section and equation numbers with a ∗ refer to sections and equations in the companion article [1].
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growth rate below a scale of 6.5 pc, this scale will be called the relativistic Jeans scale.
The new evolution equations (3) have solutions which are the relativistic counterparts of the

Newtonian energy density perturbation and particle number density perturbation. Moreover,
their solutions are free of spurious gauge modes. Therefore, these equations describe unam-
biguously, Section 2.6∗, the evolution of cosmological density perturbations. Consequently, the
Λcdm model of the universe and its evolution equations for density perturbations (3) explain
the first structures in the universe, several hundreds of million years after the Big Bang [3, 4].

2 Einstein Equations for a Flat FLRW Universe

In this section the equations needed for the study of the evolution of density perturbations in
the early universe are written down for an equation of state for the pressure, p = p(n, ε).

2.1 Background Equations

The set of zeroth-order Einstein equations and conservation laws for a flat, i.e., R(0) = 0, flrw
universe filled with a perfect fluid with energy-momentum tensor

Tµν = (ε+ p)uµuν − pgµν , p = p(n, ε), (1)

is given by

3H2 = κε(0), κ = 8πGN/c
4, (2a)

ε̇(0) = −3Hε(0)(1 + w), w := p(0)/ε(0), (2b)

ṅ(0) = −3Hn(0). (2c)

The evolution of density perturbations has been taken place in the early universe, when Λ �
κε(0). Therefore, the cosmological constant Λ has been neglected.

2.2 Evolution Equations for Density Perturbations

The complete set of perturbation equations for the two independent density contrast functions
δn and δε is given by [1]

δ̈ε + b1δ̇ε + b2δε = b3

[
δn −

δε
1 + w

]
, (3a)

1

c

d
dt

[
δn −

δε
1 + w

]
=

3Hn(0)pn
ε(0)(1 + w)

[
δn −

δε
1 + w

]
, (3b)

where the coefficients b1, b2 and b3 are, for a flat flrw universe, filled with a perfect fluid
described by an equation of state p = p(n, ε) given by

b1 = H(1− 3w − 3β2)− 2
β̇

β
, (4a)

b2 = κε(0)

[
2β2(2 + 3w)− 1

6(1 + 18w + 9w2)
]

+ 2H
β̇

β
(1 + 3w)− β2∇

2

a2
, (4b)

b3 =

{
−2

1 + w

[
ε(0)pεn(1 + w) +

2pn
3H

β̇

β
+ pn(pε − β2) + n(0)pnn

]
+ pn

}
n(0)

ε(0)

∇2

a2
, (4c)
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where pn(n, ε) and pε(n, ε) are the partial derivatives of the equation of state p(n, ε):

pn :=

(
∂p

∂n

)
ε

, pε :=

(
∂p

∂ε

)
n

. (5)

The symbol ∇2 denotes the Laplace operator. The quantity β(t) is defined by β2 := ṗ(0)/ε̇(0).
Using that ṗ(0) = pnṅ(0) + pεε̇(0) and the conservation laws (2b) and (2c) one gets

β2 = pε +
n(0)pn

ε(0)(1 + w)
. (6)

Using the definitions w := p(0)/ε(0) and β2 := ṗ(0)/ε̇(0) and the energy conservation law (2b), one
finds for the time-derivative of w

ẇ = 3H(1 + w)(w − β2). (7)

This expression is independent of the equation of state.
The pressure perturbation is given by [1]

pgi
(1) = β2ε(0)δε + n(0)pn

[
δn −

δε
1 + w

]
, (8)

where the first term is the adiabatic part and the second term the diabatic part of the pressure
perturbation.

The combined First and Second Law of Thermodynamics reads [1]

T(0)s
gi
(1) = −ε(0)(1 + w)

n(0)

[
δn −

δε
1 + w

]
. (9)

Density perturbations evolve adiabatically if and only if the source term of the evolution equation
(3a) vanishes, so that this equation is homogeneous and describes, therefore, a closed system
that does not exchange heat with its environment. This can only be achieved for pn ≈ 0, or,
equivalently, p ≈ p(ε), i.e., if the particle number density does not contribute to the pressure.
In this case, the coefficient b3, (4c), vanishes.

3 Analytic Solutions

In this section analytic solutions of equations (3) are derived for a flat flrw universe with a
vanishing cosmological constant in its radiation-dominated phase and in the era after decoupling
of matter and radiation. It is shown that pn ≤ 0 throughout the history of the universe. In
this case, the entropy evolution equation (3b) implies that fluctuations in the particle number
density, δn, are coupled to fluctuations in the total energy density, δε, through gravitation,
independent of the nature of the particles. In particular, this holds true for perturbations in
cdm. Consequently, cdm fluctuations have evolved in the same way as perturbations in ordinary
matter. This may rule out cdm as a means to facilitate the formation of structure in the universe
after decoupling. The same conclusion has also been reached by Nieuwenhuizen et al. [5], on
different grounds. Consequently, in the radiation-dominated universe cdm did not contract
faster than baryons, so that structure formation could commence only after decoupling.
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3.1 Radiation-dominated Era

At very high temperatures, radiation and ordinary matter are in thermal equilibrium, coupled via
Thomson scattering with the photons dominating over the nucleons (nγ/np ≈ 109). Therefore
the primordial fluid can be treated as radiation-dominated with equations of state

ε = aBT
4
γ , p = 1

3aBT
4
γ , (10)

where aB is the black body constant and Tγ the radiation temperature. The equations of state
(10) imply the equation of state for the pressure p = 1

3ε, so that, with (5),

pn = 0, pε = 1
3 . (11)

Therefore, one has from (6),
β2 = w = 1

3 . (12)

Using (11) and (12), the perturbation equations (3) reduce to

δ̈ε −Hδ̇ε −
[

1

3

∇2

a2
− 2

3κε(0)

]
δε = 0, (13a)

1

c

d
dt
(
δn − 3

4δε
)

= 0. (13b)

Since pn = 0 the right-hand side of (13a) vanishes, implying that density perturbations evolved
adiabatically: they did not exchange heat with their environment. Moreover, baryons were
tightly coupled to radiation through Thomson and Coulomb scattering, i.e., baryons obey
δn, baryon = 3

4δε. Thus, for baryons (13b) is identically satisfied. In contrast to baryons, cdm is
not coupled to radiation through Thomson and Coulomb scattering. However, equation (13b)
follows from the General Theory of Relativity, as has been shown in Section 2.7∗, equation
(44b∗). As a consequence, equation (13b) should be obeyed by all kinds of particles that inter-
act through gravitation. In other words, equation (13b) holds true for baryons as well as cdm.
Since cdm interacts only via gravity with baryons and radiation, the fluctuations in cdm are
coupled through gravitation to fluctuations in the energy density, so that fluctuations in cdm
also satisfy equation (13b).

In order to solve equation (13a) it will first be rewritten in a form using dimensionless
quantities. The solutions of the background equations (2) are given by

H ∝ t−1, ε(0) ∝ t−2, n(0) ∝ t−3/2, a ∝ t1/2, (14)

implying that T(0)γ ∝ a−1. The dimensionless time τ is defined by τ := t/t0. Since H := ȧ/a,
one finds that

dk

ckdtk
=

[
1

ct0

]k dk

dτk
= [2H(t0)]

k dk

dτk
, k = 1, 2. (15)

Substituting δε(t,x) = δε(t, q) exp(iq · x) into equation (13a) and using (15) yields

δ′′ε −
1

2τ
δ′ε +

[
µ2r
4τ

+
1

2τ2

]
δε = 0, τ ≥ 1, (16)
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where a prime denotes differentiation with respect to τ . The parameter µr is given by

µr :=
2π

λ0

1

H(t0)

1√
3
, λ0 := λa(t0), (17)

with λ0 the physical scale of a perturbation at time t0 (τ = 1), and |q| = 2π/λ. To solve
equation (16), replace τ by x := µr

√
τ . After transforming back to τ , one finds

δε(τ, q) =
[
A1(q) sin

(
µr
√
τ
)

+A2(q) cos
(
µr
√
τ
)]√

τ , (18)

where the ‘constants’ of integration A1(q) and A2(q) are given by

A 1
2
(q) = δε(t0, q)

sinµr

cosµr
∓ 1

µr

cosµr

sinµr

[
δε(t0, q)− δ̇ε(t0, q)

H(t0)

]
. (19)

For large-scale perturbations (λ→∞), it follows from (18) and (19) that

δε(t) = −

[
δε(t0)−

δ̇ε(t0)

H(t0)

]
t

t0
+

[
2δε(t0)−

δ̇ε(t0)

H(t0)

](
t

t0

)1
2
. (20)

The energy density contrast has two contributions to the growth rate, one proportional to t and
one proportional to t1/2. These two solutions have been found, with the exception of the precise
factors of proportionality, by a large number of authors [6–11]. Consequently, the evolution
equations (13) corroborates for large-scale perturbations the results of the literature.

Small-scale perturbations (λ→ 0) oscillate with an increasing amplitude according to

δε(t, q) ≈ δε(t0, q)

(
t

t0

)1
2

cos

µr − µr

(
t

t0

)1
2

 , (21)

as follows from (18) and (19). Thus, the evolution equations (13) yield oscillating density
perturbations with an increasing amplitude, since in these equations ϑ(1) 6= 0, as follows from
their derivation, see Section 2.7∗. In contrast, the standard equation (61), which has ϑ(1) = 0,
yields oscillating density perturbations with a constant amplitude. Note that ϑ(1) → 0 is one of
the requirements of the non-relativistic limit, see Section 4∗.

Finally, the plasma era has begun at time teq, where the energy density of ordinary matter
was equal to the energy density of radiation, (58), and ends at time tdec, the time of decoupling
of matter and radiation. In the plasma era the matter-radiation mixture can be characterized
by the equations of state (Kodama and Sasaki [12], Chapter V)

ε(n, T ) = nmc2 + aBT
4
γ , p(n, T ) = 1

3aBT
4
γ , (22)

where the contributions to the pressure of ordinary matter and cdm have not been taken into
account, since these contributions are negligible with respect to the radiation energy density.
Eliminating Tγ from (22), one finds for the equation of state for the pressure

p(n, ε) = 1
3(ε− nmc2), (23)

so that with (5) one gets
pn = −1

3mc
2, pε = 1

3 . (24)

Since pn < 0, equation (3b) implies that fluctuations in the particle number density, δn, were
coupled to fluctuations in the total energy density, δε, through gravitation, independent of the
nature of the particles.
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3.2 Era after Decoupling of Matter and Radiation

Once protons and electrons combined to yield hydrogen, the radiation pressure was negligible,
and the equations of state have become those of a non-relativistic monatomic perfect gas with
three degrees of freedom

ε(n, T ) = nmc2 + 3
2nkBT, (25a)

p(n, T ) = nkBT, (25b)

where kB is Boltzmann’s constant, m the mean particle mass, and T the temperature of the
matter. For the calculations in this subsection it is only needed that the cdm particle mass
is such that for the mean particle mass m one has mc2 � kBT , so that w := p(0)/ε(0) � 1.
Therefore, as follows from the background equations (2a) and (2b), one may neglect the pressure
nkBT and the kinetic energy density 3

2nkBT with respect to the rest mass energy density nmc2

in the unperturbed universe. However, neglecting the pressure in the perturbed universe yields
non-evolving density perturbations with a static gravitational field, as has been demonstrated
in Section 4∗. Consequently, it is important to take the pressure perturbations into account.

Eliminating T from (25) yields, see Section 2.1∗, the equation of state for the pressure

p(n, ε) = 2
3(ε− nmc2), (26)

so that with (5) one has
pn = −2

3mc
2, pε = 2

3 . (27)

Substituting pn, pε and (25a) into (6) on finds, using that mc2 � kBT ,

β ≈ vs
c

=

√
5

3

kBT(0)

mc2
, (28)

with vs the adiabatic speed of sound and T(0) the matter temperature. Using that β2 ≈ 5
3w and

w � 1, expression (7) reduces to ẇ ≈ −2Hw, so that with H := ȧ/a one has w ∝ a−2. This
implies that the matter temperature decays as

T(0) ∝ a−2. (29)

This, in turn, implies with (28) that β̇/β = −H. The system (3) can now be rewritten as

δ̈ε + 3Hδ̇ε −
[
β2
∇2

a2
+ 5

6κε(0)

]
δε = −2

3

∇2

a2
(δn − δε) , (30a)

1

c

d
dt

(δn − δε) = −2H (δn − δε) , (30b)

where w � 1 and β2 � 1 have been neglected with respect to constants of order unity. From
equation (30b) it follows with H := ȧ/a that

δn − δε ∝ a−2. (31)

Since the system (30) is derived from the General Theory of Relativity, it should be obeyed by
all kinds of particles which interact through gravity, in particular baryons and cdm.

8



It will now be shown that the right-hand side of equation (30a) is proportional to the mean
kinetic energy density fluctuation of the particles of a density perturbation. To that end, an
expression for εgi

(1) will be derived from (25a). Multiplying ε̇(0) by θ(1)/θ̇(0) and subtracting the
result from ε(1), one finds

εgi
(1) = ngi

(1)mc
2 + 3

2n
gi
(1)kBT(0) + 3

2n(0)kBT
gi
(1), (32)

where also the definitions (40a∗) and (52∗) have been used. Dividing the result by ε(0) and using
that kBT(0) � mc2, one finds

δε ≈ δn +
3

2

kBT(0)

mc2
δT , (33)

to a very good approximation. In this expression δε is the relative perturbation in the total
energy density. Since mc2 � 3

2kBT(0), it follows from the derivation of (33) that δn can be
considered as the relative perturbation in the rest energy density. Consequently, the second
term is the fluctuation in the kinetic energy density, i.e., δkin ≈ δε − δn. The relative kinetic
energy density perturbation occurs in the source term of the evolution equation (30a) and is
of the same order of magnitude as the term with β2. That is why the pressure may not be
neglected in the perturbed universe: for p = 0, one has δε = δn.

Combining (29) and (31) one finds from (33) that δT is constant

δT (t,x) ≈ δT (t0,x), (34)

to a very good approximation, so that the kinetic energy density fluctuation is given by

δkin(t,x) ≈ δε(t,x)− δn(t,x) ≈ 3

2

kBT(0)(t)

mc2
δT (t0,x). (35)

In Section 4 it will be shown that the kinetic energy density fluctuation has played, in addition
to gravitation, a role in the evolution of density perturbations. In fact, if a density perturbation
was somewhat cooler than its environment, i.e., δT < 0, its growth rate was, depending on its
scale, enhanced.

Using (27) and (33), one finds from (8)

δp ≈ 5
3δε + δT , (36)

where δp is the relative pressure perturbation defined by δp := pgi
(1)/p(0), with p(0) given by

(25b). The term 5
3δε is the adiabatic part and δT is the diabatic part of the relative pressure

perturbation. The factor 5
3 is the so-called adiabatic index for a monatomic ideal gas with three

degrees of freedom. Thus, relative kinetic energy density perturbations give rise to diabatic
pressure fluctuations.

Finally, the perturbed entropy per particle follows from (9) and (33), i.e.,

sgi
(1) ≈ 3

2kBδT . (37)

The background entropy per particle is independent of time, i.e., ṡ(0) = 0. In a linear per-
turbation theory the perturbed entropy per particle is approximately constant, i.e., ṡgi

(1) ≈ 0.
Therefore, heat exchange of a perturbation with its environment decays proportional to the
temperature, i.e., T(0)s

gi
(1) ∝ a−2, as follows from (29).
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In order to solve equation (30a) it will first be rewritten in a form using dimensionless
quantities. The solutions of the background equations (2) are given by

H ∝ t−1, ε(0) ∝ t−2, n(0) ∝ t−2, a ∝ t2/3, (38)

where the kinetic energy density and pressure have been neglected with respect to the rest mass
energy density. The dimensionless time τ is defined by τ := t/t0. Using that H := ȧ/a, one gets

dk

ckdtk
=

[
1

ct0

]k dk

dτk
=
[
3
2H(t0)

]k dk

dτk
, k = 1, 2. (39)

Substituting δε(t,x) = δε(t, q) exp(iq · x), δn(t,x) = δn(t, q) exp(iq · x), (28) and (35) into
equations (30) and using (29) and (39) one finds that equations (30) can be combined into one
equation

δ′′ε +
2

τ
δ′ε +

[
4

9

µ2m
τ8/3

− 10

9τ2

]
δε = − 4

15

µ2m
τ8/3

δT (t0, q), (40)

where a prime denotes differentiation with respect to τ . The parameter µm is given by

µm :=
2π

λ0

1

H(t0)

vs(t0)

c
, λ0 := λa(t0), (41)

with λ0 the physical scale of a perturbation at time t0 (τ = 1), and |q| = 2π/λ. To solve
equation (40) replace τ by x := 2µmτ

−1/3. After transforming back to τ , one finds for the
general solution of the evolution equation (40)

δε(τ, q) =
[
B1(q)J+ 7

2

(
2µmτ

−1/3)+B2(q)J− 7
2

(
2µmτ

−1/3)]τ−1/2 − 3

5

[
1 +

5τ2/3

2µ2m

]
δT (t0, q),

(42)

where J±7/2(x) are Bessel functions of the first kind and B1(q) and B2(q) are the ‘constants’ of
integration, calculated with the help of Maxima [13]:

B 1
2
(q) =

3
√
π

20µ
3/2
m

[(
4µ2m − 5

)cos 2µm

sin 2µm
∓ 10µm

sin 2µm

cos 2µm

]
δT (t0, q) +

√
π

8µ
7/2
m

[(
8µ4m − 30µ2m + 15

)cos 2µm

sin 2µm
∓
(
20µ3m − 30µm

) sin 2µm

cos 2µm

]
δε(t0, q) +

√
π

8µ
7/2
m

[(
24µ2m − 15

)cos 2µm

sin 2µm
±
(
8µ3m − 30µm

) sin 2µm

cos 2µm

]
δ̇ε(t0, q)

H(t0)
. (43)

The particle number density contrast δn(t, q) follows from equation (33), (34) and (42). In (42)
the first term (i.e., the solution of the homogeneous equation) is the adiabatic part of a density
perturbation, whereas the second term (i.e., the particular solution) is the diabatic part.

In the large-scale limit λ → ∞ terms with ∇2 vanish. Therefore, the general solution of
equation (40) becomes

δε(t) =
1

7

[
5δε(t0) +

2δ̇ε(t0)

H(t0)

](
t

t0

)2
3

+
2

7

[
δε(t0)−

δ̇ε(t0)

H(t0)

](
t

t0

)−5
3
. (44)
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Thus, for large-scale perturbations the diabatic pressure fluctuation δT (t0, q) did not play a
role during the evolution: large-scale perturbations were adiabatic and evolved only under the
influence of gravity. These perturbations were so large that heat exchange did not play a role
during their evolution in the linear phase. For perturbations much larger than the Jeans scale
(i.e., the peak value in Figure 1), gravity alone was insufficient to explain structure formation
within 13.81Gyr, since they grow as δε ∝ t2/3.

The solution proportional to t2/3 is a standard result [6–11]. Since δε is gauge-invariant,
the standard non-physical gauge mode proportional to t−1 is absent from the solution set of the
evolution equations (30). Instead, a physical mode proportional to t−5/3 is found. This mode
follows also from the standard perturbation equations if one does not neglect the divergence
ϑ(1), as is shown in the appendix. Consequently, only the growing mode of (44) is in agreement
with results given in the literature.

In the small-scale limit λ→ 0, one finds from (42) and (43)

δε(t, q) ≈ −3
5δT (t0, q) +

(
t

t0

)−1
3 [
δε(t0, q) + 3

5δT (t0, q)
]

cos

2µm − 2µm

(
t

t0

)−1
3

 , (45a)

δp(t, q) ≈
(
t

t0

)−1
3 [

5
3δε(t0, q) + δT (t0, q)

]
cos

2µm − 2µm

(
t

t0

)−1
3

 , (45b)

where (36) has been used to calculate the fluctuation δp in the pressure. Thus, density per-
turbations with scales smaller than the Jeans scale oscillated with a decaying amplitude which
was smaller than unity: these perturbations were so small that gravity was insufficient to let
perturbations grow. Heat exchange alone was not enough for the growth of density perturba-
tions. Consequently, perturbations with scales smaller than the Jeans scale did never reach the
non-linear regime.

In the next section it is shown that for density perturbations with scales of the order of
the Jeans scale, the action of both gravity and heat exchange together may result in massive
structures several hundred million years after decoupling of matter and radiation.

4 Structure Formation after Decoupling

In this section it is demonstrated that the relativistic evolution equations, which include a
realistic equation of state for the pressure p = p(n, ε) yields that in the era after decoupling of
matter and radiation density perturbations may have grown fast.

Up till now it is only assumed that mc2 � kBT for baryons and cdm, without specifying
the mass of the baryon and cdm particles. From now on it is convenient to assume that the
mass of a cdm particle is of the order of magnitude of the proton mass.

4.1 Introducing Observable Quantities

The parameter µm (41) will be expressed in observable quantities, namely the present values of
the background radiation temperature, T(0)γ(tp), the Hubble parameter, H(tp) = cH(tp), and
the redshift at decoupling, z(tdec). From now on the initial time is taken to be the time at
decoupling of matter and radiation: t0 = tdec, so that τ := t/tdec.
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The redshift z(t) as a function of the scale factor a(t) is given by

z(t) =
a(tp)

a(t)
− 1, (46)

where a(tp) is the present value of the scale factor and z(tp) = 0. For a flat flrw universe one
may take a(tp) = 1. Using the background solutions (38), one finds from (46)

H(t) = H(tp)
[
z(t) + 1

]3/2
, (47a)

t = tp
[
z(t) + 1

]−3/2
, (47b)

T(0)γ(t) = T(0)γ(tp)
[
z(t) + 1

]
, (47c)

where it is used that T(0)γ ∝ a−1 after decoupling, as follows from (10) and (14).
The dimensionless time τ := t/tdec can be expressed in the redshift

τ =

[
z(tdec) + 1)

z(t) + 1

]3/2
, (48)

by using that τ = (t/tp)(tp/tdec) and (47b).
Substituting (28) into (41), one gets

µm =
2π

λdec

1

H(tdec)

√
5

3

kBT(0)(tdec)

mc2
, λdec := λa(tdec), (49)

where tdec is the time when a perturbation starts to contract and λdec the physical scale of a
perturbation at time tdec. From (47) one finds

µm =
2π

λdec

1

H(tp)
[
z(tdec) + 1

]√5

3

kBT(0)γ(tp)

m
, (50)

where it is used that T(0)(tdec) = T(0)γ(tdec). With (50) the parameter µm is expressed in
observable quantities.

4.2 Initial Values from the Planck Satellite

The physical quantities measured by Planck [14] and needed in the parameter µm (50) of the
evolution equation (40) are the redshift at decoupling, the present values of the Hubble function
and the background radiation temperature, the age of the universe and the fluctuations in the
background radiation temperature. The numerical values of these quantities are

z(tdec) = 1090, (51a)

cH(tp) = H(tp) = 67.31 km/sec/Mpc = 2.181× 10−18 sec−1, (51b)

T(0)γ(tp) = 2.725K, (51c)

tp = 13.81Gyr, (51d)

δTγ (tdec) . 10−5. (51e)

Substituting the observed values (51a)–(51c) into (50), one finds

µm =
16.57

λdec
, λdec in pc, (52)
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where it is used that the proton mass is m = mH = 1.6726× 10−27 kg, 1 pc = 3.0857× 1016m =

3.2616 ly, the speed of light c = 2.9979 × 108m/s and Boltzmann’s constant kB = 1.3806 ×
10−23 JK−1.

The Planck observations of the fluctuations δTγ (tdec), (51e), in the background radiation
temperature yield for the initial value of the fluctuations in the energy density

|δε(tdec, q)| . 10−5. (53)

In addition, it is assumed that
δ̇ε(tdec, q) ≈ 0, (54)

i.e., during the transition from the radiation-dominated era to the era after decoupling, pertur-
bations in the energy density were approximately constant with respect to time.

During the linear phase of the evolution, δn(t, q) follows from (33) so that the initial values
δn(tdec, q) and δ̇n(tdec, q) need not be specified.

4.3 Diabatic Pressure Perturbations

At the moment of decoupling of matter and radiation, photons could not ionize matter any more
and the two constituents fell out of thermal equilibrium. As a consequence, the high radiation
pressure p = 1

3aBT
4
γ just before decoupling did go over into the low gas pressure p = nkBT after

decoupling. In fact, from (47c) and (59) it follows that at decoupling one has

n(0)(tdec)kBT(0)(tdec)
1
3aBT

4
(0)γ(tdec)

=
3kBT(0)γ(tp)

mc2
[
z(teq) + 1

]
≈ 2.5× 10−9, (55)

where it is used that at the moment of decoupling the matter temperature was equal to the
radiation temperature. Moreover, it is used that kB = 1.3806 × 10−23 JK−1, and the redshift
at matter-radiation equality z(teq) = 3393, Planck [14]. The fast and chaotic transition from
a high pressure epoch to a very low pressure era may have resulted in large relative diabatic
pressure perturbations δT , (36), due to very small fluctuations δkin, (35), in the kinetic energy
density. It will be shown in Section 4.4 that density perturbations which were cooler than their
environments may have collapsed fast, depending on their scales. In fact, perturbations for
which

δT (tdec, q) . −0.005, (56)

may have resulted in primordial stars, the so-called (hypothetical) Population iii stars, and
larger structures, several hundred million years after the Big Bang.

4.4 Structure Formation in the Early Universe

In this section the evolution equation (40) is solved numerically [15, 16] and the results are
summarized in Figure 1, which is constructed as follows. For each choice of δT (tdec, q) in the
range −0.005, −0.01, −0.02, . . . , −0.1 equation (40) is integrated for a large number of values
for the initial perturbation scale λdec using the initial values (53) and (54). The integration
starts at τ = 1, i.e., at z(tdec) = 1090 and will be halted if either z = 0, i.e., τ = [z(tdec) + 1]3/2,
see (48), or δε(t, q) = 1 for z > 0 has been reached. One integration run yields one point on
the curve for a particular choice of the scale λdec if δε(t, q) = 1 has been reached for z > 0. If
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Structure Formation starting at z = 1090
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Figure 1: The curves give the redshift and time, as a function of λdec, when a linear perturbation
in the energy density with initial values δε(tdec, q) . 10−5 and δ̇ε(tdec, q) ≈ 0 starting to grow
at an initial redshift of z(tdec) = 1090 has become non-linear, i.e., δε(t, q) = 1. The curves are
labeled with the initial values of the relative perturbations δT (tdec, q) in the diabatic part of the
pressure. For each curve, the Jeans scale, i.e., the peak value, is at 6.5 pc.

the integration halts at z = 0 and still δε(tp, q) < 1, then the perturbation pertaining to that
particular scale λdec has not yet reached its non-linear phase today, i.e., at tp = 13.81Gyr. On
the other hand, if the integration is stopped at δε(t, q) = 1 and z > 0, then the perturbation has
become non-linear within 13.81Gyr. Each curve denotes the time and scale for which δε(t, q) = 1

for a particular value of δT (tdec, q).
The growth of a perturbation was governed by both gravity as well as heat exchange.

From Figure 1 one may infer that the optimal scale for growth was around 6.5 pc ≈ 21 ly.
At this scale, which is independent of the initial value of the diabatic pressure perturbation
δT (tdec, q), see (8) and (36), heat exchange and gravity worked together perfectly, resulting in
a fast growth. Perturbations with scales smaller than 6.5 pc reached their non-linear phase at
a much later time, because their internal gravity was weaker than for large-scale perturbations
and heat exchange was insufficient to enhance the growth. On the other hand, perturbations
with scales larger than 6.5 pc exchanged heat at a slower rate due to their large scales, resulting
also in a smaller growth rate. Perturbations larger than 50 pc grew proportional to t2/3, (44), a
well-known result. Since the growth rate decreased rapidly for perturbations with scales below
6.5 pc, this scale will be considered as the relativistic counterpart of the classical Jeans scale.
The relativistic Jeans scale 6.5 pc was much smaller than the horizon size at decoupling, given
by dH(tdec) = 3ctdec ≈ 3.5× 105 pc ≈ 1.1× 106 ly.
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4.5 Relativistic Jeans Mass

The Jeans mass at decoupling, MJ(tdec), can be estimated by assuming that a density pertur-
bation has a spherical symmetry with diameter the relativistic Jeans scale λJ,dec := λJa(tdec).
The relativistic Jeans mass at decoupling is then given by

MJ(tdec) =
4π

3

[
1
2λJ,dec

]3
n(0)(tdec)m. (57)

The particle number density n(0)(tdec) can be calculated from its value n(0)(teq) at the end of the
radiation-dominated era. By definition, at the end of the radiation-domination era the matter
energy density n(0)mc

2 was equal to the energy density of the radiation:

n(0)(teq)mc2 = aBT
4
(0)γ(teq). (58)

Since n(0) ∝ a−3 and T(0)γ ∝ a−1, one finds, using (46), (47c) and (58), for the particle number
density at the time of decoupling tdec

n(0)(tdec) =
aBT

4
(0)γ(tp)

mc2
[
z(teq) + 1

][
z(tdec) + 1

]3
. (59)

Using (51a), the black body constant aB = 7.5657 × 10−16 J/m3/K4, the redshift at matter-
radiation equality, z(teq) = 3393, the redshift at decoupling (51a) Planck [14], and the speed of
light c = 2.9979× 108m/s, one finds for the Jeans mass (57) at decoupling

MJ(tdec) ≈ 4.4× 103M�, (60)

where it is used that one solar mass 1M� = 1.9889 × 1030 kg and the relativistic Jeans scale
λJ,dec = 6.5 pc, the peak value in Figure 1.

A Standard Evolution Equation derived from the
General Theory of Relativity

The standard evolution equation for relative density perturbations δ(t,x) in a flat, R(0) = 0,
flrw universe with vanishing cosmological constant, Λ = 0, reads

δ̈ + 2Hδ̇ −
[
β2
∇2

a2
+ 1

2κε(0)(1 + w)(1 + 3w)

]
δ = 0. (61)

In the radiation-dominated universe one has β2 = w = 1
3 . In the epoch after decoupling of

matter and radiation β2 is given by (28), so that w ≈ 3
5β

2 � 1.
In this appendix it will be shown that the standard equation is inadequate to study the

evolution of density perturbations in the universe. To that end an exact derivation of this
equation will be presented, using the General Theory of Relativity, for a flat flrw universe
filled with a perfect fluid which is described by a barotropic equation of state p = p(ε). This
implies that pn = 0, so that ṗ(0) = pεε̇(0) and p(1) = pεε(1). Therefore, the evolution equations for
the background particle number density n(0), (2c), and its first-order perturbation n(1), (41b∗),
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need not be considered. From (6) one finds that pε = β2 so that p(1) = β2ε(1). Using that
δ := ε(1)/ε(0) equations (41∗) for scalar perturbations can be written in the form

δ̇ + 3Hδ
[
β2 + 1

2(1− w)
]

+ (1 + w)

[
ϑ(1) +

R(1)

4H

]
= 0, (62a)

ϑ̇(1) +H(2− 3β2)ϑ(1) +
β2

1 + w

∇2δ

a2
= 0, (62b)

Ṙ(1) + 2HR(1) − 2κε(0)(1 + w)ϑ(1) = 0, (62c)

where κε(0) = 3H2, (2a), has been used. Differentiating (62a) with respect to time and eliminat-
ing the time-derivatives of H, ϑ(1) and R(1) with the help of the background equations (2) and
perturbation equations (62b) and (62c), respectively, and, subsequently, eliminating R(1) with
the help of (62a), one finds, using Maxima [13], that the set of equations (62) reduces to the
system

δ̈ + 2Hδ̇
[
1 + 3β2 − 3w

]
−
[
β2
∇2

a2
+ 1

2κε(0)

(
(1 + w)(1 + 3w)

+ 4w − 6w2 + 12β2w − 4β2 − 6β4
)
− 6ββ̇H

]
δ = −3Hβ2(1 + w)ϑ(1), (63a)

ϑ̇(1) +H(2− 3β2)ϑ(1) +
β2

1 + w

∇2δ

a2
= 0, (63b)

where ẇ has been eliminated using (7). The system (63) consists of two relativistic equations for
two unknown quantities, namely the density fluctuation δ and the divergence ϑ(1) of the spatial
part of the fluid four-velocity. Thus, the relativistic perturbation equations (41∗) for open, flat
or closed flrw universes and a general equation of state for the pressure p = p(n, ε) reduce for
a flat universe and a barotropic equation of state p = p(ε) to the relativistic system (63).

The gauge modes (39a∗)

δ̂(t,x) =
ψ(x)ε̇(0)(t)

ε(0)(t)
= −3H(t)ψ(x)

[
1 + w(t)

]
, ϑ̂(1)(t,x) = −∇

2ψ(x)

a2(t)
, (64)

are, for all scales, solutions of equations (63), with ẇ given by (7).
The relativistic equations (63) are exact for first-order perturbations. This fact has conse-

quences for the standard evolution equation (61), which will be discussed in detail in the next
two subsections.

A.1 Radiation-dominated Era

In this era, the pressure is given by a linear barotropic equation of state p = wε, so that pn = 0

and pε = w. Since pε = β2, (6), one finds from (7) that β2 = w is constant. In the case of a
radiation-dominated universe this constant is w = β2 = 1

3 . For a linear barotropic equation of
state p = wε equations (63) reduce to

δ̈ + 2Hδ̇ −
[
w
∇2

a2
+ 1

2κε(0)(1 + w)(1 + 3w)

]
δ = −3Hw(1 + w)ϑ(1), (65a)

ϑ̇(1) +H(2− 3w)ϑ(1) +
w

1 + w

∇2δ

a2
= 0. (65b)
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The gauge modes (64) are solutions of the system (65) for ẇ = 0.
For large-scale perturbations, ∇2δ → 0, δ does not influence the evolution of ϑ(1). Using

that w = 1
3 the solutions (14) of the background equations imply that (65b) yields ϑ(1) ∝ t−1/2,

so that with (14) one has Hϑ(1) ∝ t−3/2. Therefore, the particular solution of (65a) is δ ∝ t1/2.
The solutions of the homogeneous part of (65a) are δ ∝ t and the gauge mode δ ∝ t−1. This
explains the physical modes δ ∝ t1/2 and δ ∝ t in (20). The standard equation (61) has only
one physical mode δ ∝ t as solution. The physical mode δ ∝ t1/2 cannot be found since the
standard equation has ϑ(1) = 0. As a consequence, for large-scale perturbations the outcome of
the evolution equations (13) corroborates the outcome of the standard perturbation equation
(61) with the exception of the physical mode δ ∝ t1/2.

For small-scale perturbations, however, the case is entirely different. The standard equation
(61) implies that ϑ(1) = 0, so that (65b) yields ∇2δ = 0. Since ∇2δ can be large for small-scale
perturbations, the standard equation (61) is inadequate to study small-scale density perturba-
tions in the radiation-dominated era. Consequently, ϑ(1) is important for the evolution of density
perturbations.

The evolution equations (3) take ϑ(1) into account, so that the system (13) yields oscillating
density perturbations with an increasing amplitude, given by (18). In contrast, the standard
equation (61) for which ϑ(1) = 0 yields oscillating perturbations with a constant amplitude.

The conclusion must be that the standard equation (61) cannot be used to study the evo-
lution of density perturbations in the radiation-dominated era of the universe.

A.2 Era after Decoupling of Matter and Radiation

In this era one has w � 1, and β2 � 1. Since β2 is given by (28) it follows that β̇/β = −H.
Using that 3H2 = κε(0), (2a), one gets 6ββ̇H = −2κε(0)β

2. Neglecting w and β2 with respect
to constants of order unity, the system (63) reduces to

δ̈ + 2Hδ̇ −
[
β2
∇2

a2
+ 1

2κε(0)

]
δ = −3Hβ2ϑ(1), (66a)

ϑ̇(1) + 2Hϑ(1) + β2
∇2δ

a2
= 0. (66b)

The gauge modes (64) are solutions of the system (66) for w � 1 and ∇2ψ = 0. Consequently,
for the system (66) ψ is an arbitrary infinitesimal constant C so that ϑ(1) is a purely physical
quantity, since its gauge mode (64) vanishes identically. However, δ is still gauge-dependent
with gauge mode δ̂ = −3H(t)C ∝ t−1, (38) and (64), implying that one cannot impose physical
initial conditions δ(t0,x) and δ̇(t0,x). These facts are in accordance with the residual gauge
transformation (64∗)

x0 7→ x0 − C, xi 7→ xi − χi(x), (67)

in the non-relativistic limit, since a cosmological fluid for which w � 1 and β2 � 1 can be
described by a non-relativistic equation of state. Thus, the standard equation (61) yields for all
scales gauge-dependent solutions.

Using the background solutions (38) one finds that for large-scale perturbations, ∇2δ → 0,
equation (66b) yields ϑ(1) ∝ t−4/3, so that with β ∝ a−1 one finds that Hβ2ϑ(1) ∝ t−11/3.
Therefore, the particular solution of (66a) is δ ∝ t−5/3. The solutions of the homogeneous part
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of equation (66a) are δ ∝ t2/3 and the gauge mode δ ∝ t−1. This explains the two physical
modes in (44).

Just as in the radiation-dominated era, the standard equation (61) implies that ϑ(1) = 0 and
∇2δ = 0. However, since β2 � 1, the source term of (66a) is small, so that the influence of ϑ(1)

on the evolution of a density perturbation is, although non-zero, small. This explains the fact
that both the standard equation (61) as well as the homogeneous part of equation (30a) yield
oscillating solutions with a decreasing amplitude, as can be inferred from (42) with δT = 0.

The main disadvantage of the standard equation (61) is that it is only adapted to a
barotropic equation of state p = p(ε). Therefore, the phenomenon of heat exchange of a density
perturbation with its environment is not taken into account by equation (61). As a consequence,
this equation does not explain structure formation in the early universe. In contrast to (61),
the evolution equations (3) are adapted to the more realistic equation of state p = p(n, ε), so
that heat exchange is taken into account. As a consequence, the evolution equations (30) may
explain the existence of the so-called (hypothetical) Population iii stars and larger structures,
as has been demonstrated in Section 4.

It has to be concluded that the standard equation (61) is inadequate to study the evolution
of density perturbations in the universe in the era after decoupling of matter and radiation.
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1 #                  Structure Formation in the Early Universe
2  
3 #                                  P.G.Miedema
4  
5 #                      Program to calculate Figure 1 in the main text
6 #                    The R file will be send to the reader upon request:
7 #                              pieter.miedema@gmail.com
8  
9 #           The R Project for Statistical Computing:  http://www.r-project.org

10  
11 #############################################################################################
12  
13 library(deSolve)  # load package "deSolve" to use the solver "lsodar" at line 109
14  
15 m <- 1.6726e-27  # proton mass in kg
16 c <- 2.9979e8    # speed of light in m/s
17 parsec <- 3.0857e16  # 1 parsec (pc) in m
18 k_B <- 1.3806e-23  # Boltzmann's constant in J/K
19 T_gamma <- 2.725 # present value of the background radiation temperature in K
20 H_p <- 67.31  #  present value of the Hubble parameter in km/s/Mpc
21 H_sec <- H_p * 1000 / (parsec * 1e6) # present value of the Hubble parameter in 1/s
22 H_m <- H_sec / c  # present value of the Hubble parameter in 1/m
23 H_parsec <- H_m * parsec # present value of the Hubble parameter in 1/pc
24 t_p <- 13.81 # years after Big Bang in Gyr
25 delta_e <- 1.0e-5  # (53)
26 dot.delta_e <- 0.0 # (54)
27 z_dec <- 1090 # redshift at decoupling
28 tau_dec <- 1.0 # value of dimensionless time tau at decoupling, start of integration
29 tau_p <- (z_dec+1)^(3/2) # dimensionless time tau at 13.81 Gyr, end of integration (48)
30 t_dec <- t_p / tau_p # time of decoupling in Gyr
31 factor <- 2*pi/(z_dec+1) / H_parsec * sqrt(5/3*k_B*T_gamma/(m*c^2)) # factor in (50) and (52)
32  
33 #############################################################################################
34  
35 equation.40 <- function (tau, y, parms)
36   {
37       ydot <- vector(len=2)
38       aux <- mu_m^2/tau^(8/3)
39       ydot[1] <- y[2]
40       ydot[2] <- (-2/tau)*y[2] - ((4/9) * aux - (10/9)/tau^2) * y[1] - (4/15) * aux * delta_T
41       return(list(ydot))
42   }
43  
44 stop.conditions <- function (tau, y, parms)
45   {
46       stop <- vector(len=2)
47       stop[1] <- 1.0 - y[1]    # delta=1
48       stop[2] <- tau_p - tau   # z=0
49       return(stop)
50   }
51  
52 #############################################################################################
53  
54 #pdf(file="fig1.pdf", family="Times") # open a plotfile in pdf-format
55  
56 par(mar=c(3,3,2,4), cex=1.2, cex.axis=1.2, pty="s")
57 plot.new()
58 plot.window(xlim=c(0, 50), ylim=c(0,24))
59 title(main=expression(paste("Structure Formation starting at ", z==1090)),
60       cex.main = 1.4, font.main=1, col.main="black", line=1.0)
61  
62 pc <- seq(0,50,by=10)
63 axis(1, las=1, at=pc, tick=TRUE, label=pc, tcl=0.4, mgp=c(2, 0.3, 0))
64 tussen <- seq(5,45,by=10)
65 axis(1, las=1, at=tussen, tick=TRUE, label=FALSE, tcl=0.25, mgp=c(2, 0.3, 0))
66 eenheden <- seq(1,50,by=1)
67 axis(1, las=1, at=eenheden, tick=TRUE, label=FALSE, tcl=0.15, mgp=c(2, 0.3, 0))
68 mtext("Perturbation Scale (parsec) at Decoupling", cex=1.6, side=1, line=1.5)
69  
70 zt <- seq(0, 24, by=2);
71 axis(2, at=zt, labels=TRUE, las=1, tcl=0.4, mgp=c(2, 0.3, 0))
72 mtext("Cosmological Redshift",cex=1.6, side=2, line=1.7)
73  
74 axis(4, at=zt, labels=sprintf("%.2f", t_dec * ((z_dec+1)/(zt+1))^(3/2)),

75      las=2, tcl=0.4, mgp=c(2, 0.3, 0))  # (48)
76 mtext("Time in Gyr", cex=1.6, side=4, line=2.5)
77  
78 box()
79  
80 #############################################################################################
81  
82 # perturbations with scales outside the interval [0.5, 60] parsec do not become
83 # non-linear within 13.81 Gyr:
84 scale_min <- 0.5;  scale_max <- 60; increment <- 0.01
85 # initially the increment should be small, since the line is steep:  
86 range.lambda_dec <- 10^(seq(log10(scale_min), log10(scale_max), increment))
87 Jeans.scale <- vector()
88 for (k in 1:11)
89   {
90     if (k==1)  delta_T <- -0.005
91     if (k==2)  delta_T <- -0.01
92     if (k==3)  delta_T <- -0.02
93     if (k==4)  delta_T <- -0.03
94     if (k==5)  delta_T <- -0.04
95     if (k==6)  delta_T <- -0.05
96     if (k==7)  delta_T <- -0.06
97     if (k==8)  delta_T <- -0.07
98     if (k==9)  delta_T <- -0.08
99     if (k==10) delta_T <- -0.09

100     if (k==11) delta_T <- -0.10
101     
102     z <- vector(); lambda.nonlin <- vector()
103     i <- 0
104     for (lambda_dec in range.lambda_dec)
105       {
106         mu_m <- factor/lambda_dec  # see (50) and (52)
107         y <- c(delta_e, dot.delta_e)  # initial values at tau_dec (start of integration)
108         tau.start.end <- c(tau_dec, 1.1*tau_p) # 10% overshoot at the end time
109         result <- lsodar(y, tau.start.end, fun=equation.40, rootfun=stop.conditions, parms)
110  
111 #############################################################################################
112         
113 # Only the end values, i.e., result[2,..], are needed:
114         tau.end <- result[2,1]; delta <- result[2,2]
115         if (round(delta, 6)==1.0)
116           {
117             i <- i+1
118             lambda.nonlin[i] <- lambda_dec
119             z[i] <- (z_dec+1) / tau.end^(2/3)-1.0  # (48)
120           }
121       }
122     
123     z_max <- max(z)
124     lambda.nonlin_max <- lambda.nonlin[z==z_max]; Jeans.scale[k] <- lambda.nonlin_max
125  
126     if (k==1)  text(lambda.nonlin_max, z_max, "-0.005", adj=c(0.5,-0.15))
127     if (k==2)  text(lambda.nonlin_max, z_max, "-0.01", adj=c(0.5,-0.15))
128     if (k==3)  text(lambda.nonlin_max, z_max, "-0.02", adj=c(0.5,-0.15))
129     if (k==4)  text(lambda.nonlin_max, z_max, "-0.03", adj=c(0.5,-0.15))
130     if (k==5)  text(lambda.nonlin_max, z_max, "-0.04", adj=c(0.5,-0.15))
131     if (k==6)  text(lambda.nonlin_max, z_max, "-0.05", adj=c(0.5,-0.15))
132     if (k==7)  text(lambda.nonlin_max, z_max, "-0.06", adj=c(0.5,-0.15))
133     if (k==8)  text(lambda.nonlin_max, z_max, "-0.07", adj=c(0.5,-0.15))
134     if (k==9)  text(lambda.nonlin_max, z_max, "-0.08", adj=c(0.5,-0.15))
135     if (k==10) text(lambda.nonlin_max, z_max, "-0.09", adj=c(0.5,-0.15))
136     if (k==11) text(lambda.nonlin_max, z_max, "-0.10", adj=c(0.5,-0.15))
137  
138     points(z ~ lambda.nonlin, type="l")
139   }
140 #dev.off() # close the plotfile
141  
142 # Calculation of the Jeans mass expressed in sun's mass:
143 z_eq <- 3393 # redshift at matter-radiation equality
144 a_B <- 7.5657e-16 # black-body constant in J/m^3/K^4
145 m_sun <- 1.9889e30 # sun's mass in kg
146 Js <- mean(Jeans.scale) # Jeans scale in pc
147 n_dec <- a_B*T_gamma^4/(m*c^2)*(z_eq+1)*(z_dec+1)^3 # (59)
148 M_J <- (4/3)*pi*((1/2)*Js*parsec)^3*n_dec*m / m_sun  # (57)
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