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Abstract

In this work we show a rational approximation of the Dawson’s
integral that can be implemented for high-accuracy computation of
the complex error function in a rapid algorithm. Specifically, this ap-
proach provides accuracy exceeding ∼ 10−14 in the domain of practical
importance 0 ≤ y < 0.1 ∩ |x+ iy| ≤ 8. A Matlab code for computa-
tion of the complex error function with entire coverage of the complex
plane is presented.

Keywords: Complex error function, Faddeeva function, Dawson’s
integral, rational approximation

1 Introduction

The complex error function also widely known as the Faddeeva function can
be defined as [1, 2, 3, 4, 5, 6]

w (z) = e−z
2

1 +
2i√
π

z∫
0

et
2

dt

 , (1)
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where z = x + iy is the complex argument. It is a solution of the following
differential equation [5]

w′ (z) + 2zw (z) =
2i√
π
,

where the initial condition is given by w (0) = 1.
The complex error function is principal in a family of special functions.

The main functions from this family are the Dawson’s integral, the complex
probability function, the error function, the Fresnel integral and the normal
distribution function.

The Dawson’s integral is defined as [7, 8, 9, 10, 11]

daw (z) = e−z
2

z∫
0

et
2

dt. (2)

It is not difficult to obtain a relation between the complex error function and
the Dawson’s integral. In particular, comparing right sides of equations (1)
and (2) immediately yields

w (z) = e−z
2

+
2i√
π

daw (z) . (3)

Another closely related function is the complex probability function. In
order to emphasize the continuity of the complex probability function at
∀y ∈ R, it may be convenient to define it in form of principal value integral
[4, 5, 6]

W (z) = PV
i

π

∞∫
−∞

e−t
2

z − t
dt (4)

or

W (x, y) = PV
i

π

∞∫
−∞

e−t
2

(x+ iy)− t
dt.

The complex probability function has no discontinuity at y = 0 and x = t
since according to the principal value we can write

limW (x, y → 0) = e−x
2

+
2i√
π

daw (x) , (5)
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where x = Re [z].
There is a direct relationship between the complex error function (1) and

the complex probability function (4). In particular, it can be shown that
these functions are actually same on the upper half of the complex plain
[4, 5]

W (z) = w (z) , Im [z] ≥ 0. (6)

Separating the real and imaginary parts of the complex probability function
(4) leads to

K (x, y) = PV
y

π

∞∫
−∞

e−t
2

y2 + (x− t)2dt,

and

L (x, y) = PV
1

π

∞∫
−∞

e−t
2

(x− t)
y2 + (x− t)2dt, (7)

respectively, where the principal value notations emphasize that these func-
tions have no discontinuity at y = 0 and x = t. In particular, in accordance
with equation (3) we can write

K (x, y = 0) ≡ limK (x, y → 0) = e−x
2

and

L (x, y = 0) ≡ limL (x, y → 0) =
2√
π

daw (x) .

As it follows from the identity (6), for non-negative y we have

w (x, y) = K (x, y) + iL (x, y) , y ≥ 0. (8)

The real part K (x, y) of the complex probability function is commonly
known as the Voigt function that is widely used in many disciplines of Applied
Mathematics [12, 13, 14], Physics [4, 15, 16, 17, 18, 19, 20, 21] and Astronomy
[22]. Mathematically, the Voigt function K (x, y) represents a convolution
integral of the Gaussian and Cauchy distributions [5, 15, 16]. The Voigt
function is widely used in spectroscopy as it describes quite accurately the
line broadening effects [4, 17, 18, 19, 20, 21, 23].

Although the imaginary part L (x, y) of the complex probability function
also finds many practical applications (see for example [24, 25]), it has no a
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specific name. Therefore, further we will regard this function simply as the
L-function.

Other associated functions are the error function of complex argument
[3, 5]

w (z) = e−z
2

erfc (−iz) = e−z
2

[1− erf (−iz)] ⇔ erf (z) = 1− e−z2w (iz) ,

the plasma dispersion function [26]

Z (z) = PV
1√
π

∞∫
−∞

e−t
2

t− z
dt = i

√
πw (z)

the Fresnel integral [3]

F (z) =

z∫
0

ei(π/2)t2dt

= (1 + i)
[
1− ei(π/2)z2w

(√
π (1 + i) z/2

)]
/2

and the normal distribution function [27]

Φ (z) =
1√
2π

z∫
0

e−t
2/2dt =

1

2
erf

(
z√
2

)

=
1

2

[
1− e−z2/2w

(
iz√

2

)]
.

Due to a remarkable identity of the complex error function [28, 29]

w (−z) = 2e−z
2 − w (z) ,

it is sufficient to consider only I and II quadrants in order to cover the entire
complex plane (see Appendix A). This property can be explicitly observed
by rearranging this identity in form

w (±x,− |y|) = 2e−(∓x+i|y|)2 − w (∓x,+ |y|) .

Thus, due to this remarkable identity of the complex error function we can
always avoid computations involving negative argument y by using simply
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the right side of this equation. Therefore, we will always assume further that
y ≥ 0.

Since the integral on right side of the equation (1) has no analytical so-
lution, the computation of the complex error function must be performed
numerically. There are many approximations of the complex error function
have been reported in the scientific literature [6, 29, 30, 31, 32, 33, 34]. How-
ever, approximations based on rational functions may be more advantageous
to gain computational efficiency due to no requirement for nested loop in-
volving decelerating exponential or trigonometric functions dependent upon
input the parameters x and y. Although the rational approximations of the
complex error function are rapid and provide high-accuracy over the most
area of the complex plain, all of them have the same drawback; their accu-
racy deteriorates with decreasing parameter y (in fact, the computation of
the complex error function at small y << 1 is commonly considered prob-
lematic for high-accuracy computation of the Voigt/complex error function
not only in the rational approximations [15, 35, 36]). In this work we propose
a new rational approximation of the Dawson’s integral and show how its al-
gorithmic implementation effectively resolves such a problem in computation
of the complex error function at small y << 1.

2 Derivation

In our recent publication [37] we have shown that a new methodology of the
Fourier transform results in a rational approximation

w (z) ≈ i
2heσ

2

z + iσ
+

N∑
n=1

An − i (z + iσ)Bn

C2
n − (z + iσ)2 , (9)

where the corresponding expansion coefficients are given by

An = 8πh2neσ
2−(2πhn)2 sin (4πhnσ) ,

Bn = 4heσ
2−(2πhn)2 cos (4πhnσ) ,

Cn = 2πhn
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and h is the step. In algorithmic implementation it is convenient to rewrite
the equation above in form

ψ (z) = i
2heσ

2

z
+

N∑
n=1

An − izBn

C2
n − z2

⇒ w (z) ≈ ψ (z + iσ) .

(10)

Using the residue calculus, from approximation (9) we can obtain the
rational approximation for the L-function (see Appendix B)

L (x) ≈ x

[
2eσ

2
h

x2 + σ2
+

N∑
n=1

2Anσ +Bn (x2 + σ2 − C2
n)

C4
n + 2C2

n (σ2 − x2) + (x2 + σ2)2

]
. (11)

As L (x, y = 0) = Im [w (x, y = 0)] from the identity (3) it follows that

daw (x) =

√
π

2
Im [w (x)] =

√
π

2
L (x) .

Consequently, according to this identity and equation (11) we can write

daw (x) ≈
√
πx

2

[
2eσ

2
h

x2 + σ2
+

N∑
n=1

2Anσ +Bn (x2 + σ2 − C2
n)

C4
n + 2C2

n (σ2 − x2) + (x2 + σ2)2

]
. (12)

Since the argument x is real, it would be reasonable to assume that this equa-
tion remains valid for a complex argument z = x+ iy as well if the condition
y << 1 is satisfied. Therefore, substituting the rational approximation of
the Dawson’s integral (12) into identity (3) results in

w (z) ≈ e−z2 + iz

[
2eσ

2
h

z2 + σ2

+
N∑
n=1

2Anσ +Bn
(
z2 + σ2 − C2

n

)
C4
n + 2C2

n (σ2 − z2) + (z2 + σ2)2

]
, Im [z] << 1.

(13)

The representation of the approximation (13) can be significantly simpli-
fied as given by

w (z) ≈ e−z
2

+ 2iheσ
2

zθ
(
z2 + σ2

)
⇒ θ (z)

∆
=

1

z
+

N∑
n=1

αn + βn (z − γn)

4σ2γn + (γn − z)2 , Im [z] << 1,
(14)
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where the expansion coefficients are

αn =
σ

heσ2An = 8πhnσe−(2πhn)2 sin (4πhnσ) ,

βn =
1

2heσ2Bn = 2e−(2πhn)2 cos (4πhnσ)

and
γn = C2

n = (2πhn)2.

As we can see from equation (14) only the θ-function needs a nested loop
in multiple summation. Therefore, most time required for computation of the
complex error function is taken for determination of the θ-function. However,
this approximation is rapid due to its simple rational function representation.
Although the first term e−z

2
in approximation (14) is an exponential function

dependent upon the input parameter z, it does not decelerate the computa-
tion since this term is not nested and calculated only once. Consequently,
the approximation (14) is almost as fast as the rational approximation (10).

3 Implementation and error analysis

The relatively large area at the origin of complex plane is the most difficult
for computation with high-accuracy. According to Karbach et al. [38] the
newest version of the RooFit package, written in C/C++ code, utilizes the
equation (14) from the work [34] in order to cover accurately this area, shaped
as a square with side lengths equal to 2× 8 = 16.

In the algorithm we have developed, instead of the square we apply a
circle with radius 8 centered at the origin. This circle separates the complex
plane into the inner and outer parts. Only three approximations can be
applied to cover the entire complex plain with high-accuracy. The outer part
of the circle is an external domain while the inner part of the circle is an
internal domain consisting of the primary and secondary subdomains. These
domains are schematically shown in Fig. 1.

External domain is determined by boundary |x+ iy| > 8 and represents
the outer area of the circle as shown in Fig. 1. In order to cover this domain
we apply the truncated Laplace continued fraction [2, 39, 40, 41]

w (z) =
µ0

z−
1/2

z−
1

z−
3/2

z−
2

z−
5/2

z−
3

z−
7/2

z−
..., µ0 = i/

√
π.
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Fig. 1. Domains separating the complex plain for high-accuracy
computation of the complex error function.

that provides a rapid computation with high-accuracy. It should be noted,
however, that the accuracy of the Laplace continued fraction deteriorates as
|z| decreases.

The inner part of the circle bounded by |x+ iy| ≤ 8 is divided into two
subdomains. Most area inside the circle is occupied by primary subdomain
bounded by y ≥ 0.1 ∩ |x+ iy| ≤ 8. For this domain we apply the rational
approximation (10) that approaches the limit of double precision when we
take N = 23, σ = 1.5 and h = 6/ (2πN) (see our recent publication [37] for
description in determination of the parameter h).

The secondary subdomain within the circle is bounded by narrow band
0 ≤ y < 0.1∩|x+ iy| ≤ 8 (see Fig. 1 along x-axis). The rational approxima-
tion (10) sustains high-accuracy within all domain 0 ≤ x ≤ 40, 000 ∩ 10−4 ≤
y ≤ 102 required for applications using the HITRAN molecular spectroscopic
database [42]. However, at y < 10−6 its accuracy deteriorates by roughly one
order of the magnitude as y decreases by factor of 10. The proposed approx-
imation (14) perfectly covers the range y << 1. In particular, at N = 23,
σ = 1.5 and h = 6/ (2πN) this approximation also approaches the limit of
double precision as the parameter y tends to zero.

In order to quantify the accuracy of the algorithm we can use the relative
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Fig. 2. The logarithm of the relative error log10∆Re for the real part
of the algorithm over the domain 0 ≤ x ≤ 10 ∩ 0 ≤ y ≤ 10.

errors defined for the real and imaginary parts as follows

∆Re =

∣∣∣∣Re [wref (x, y)]− Re [w (x, y)]

Re [wref (x, y)]

∣∣∣∣
and

∆Im =

∣∣∣∣Im [wref (x, y)]− Im [w (x, y)]

Im [wref (x, y)]

∣∣∣∣ ,
where wref (x, y) is the reference. The highly accurate reference values can
be generated by using, for example, Algorithm 680 [40, 41], Algorithm 916
[29] or a recent C++ code in RooFit package from the CERNs library [38].

Consider Figs. 2 and 3 illustrating logarithms of relative errors of the
considered algorithm for the real and imaginary parts over the domain 0 ≤
x ≤ 10 ∩ 0 ≤ y ≤ 10, respectively. The rough surface of these plots indi-
cates that the computation reaches the limit of double precision ∼ 10−16. In
particular, while y > 0.1 the accuracy can exceed 10−15. However, there is a
narrow domain along the along x axis in Fig. 2 (red color area) where the
accuracy deteriorates by about an order of the magnitude. Apart from this,
we can also see in Fig. 3 a sharp peak located at the origin where accuracy
is ∼ 10−14. Figures 4 and 5 depict these areas of the plots magnified for the
real and imaginary parts, respectively.

It should be noted, however, that the worst accuracy ∼ 10−14 is relatively
close to the limitation at double precision computation. Furthermore, since
the corresponding areas are negligibly small as compared to the entire inner
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Fig. 3. The logarithm of the relative error log10∆Im for the imaginary
part of the algorithm over the domain 0 ≤ x ≤ 10 ∩ 0 ≤ y ≤ 10.

circle area, where the approximations (10) and (14) are applied, their con-
tribution is ignorable and, therefore, does not affect the average accuracy
∼ 10−15. Thus, the computational test reveals that the obtained accuracy
at double precision computation for the complex error function is absolutely
consistent with CERNLIB, libcerf and RooFit packages (see the work [38] for
specific details regarding accuracy of these packages).

A Matlab code for computation of the complex error function is presented
in Appendix C.

Fig. 4. The logarithm of the relative error log10∆Re for the real part
of the algorithm showing the area with worst accuracy ∼ 10−14.
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Fig. 5. The logarithm of the relative error log10∆Im for the imaginary
part of the algorithm showing the area with worst accuracy ∼ 10−14.

4 Conclusion

A rational approximation of the Dawson’s integral is derived and imple-
mented for rapid and highly accurate computation of the complex error
function. The computational test we performed shows the accuracy exceed-
ing ∼ 10−14 in the domain of practical importance 0 ≤ y < 0.1∩|x+ iy| ≤ 8.
A Matlab code for computation of the complex error function covering the
entire complex plane is presented.
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Appendix A

It is not difficult to show that the complex error function (1) can be expressed
alternatively as (see equation (3) in [12] and [13], see also Appendix A in [11]
for derivation)

w (x, y) =
1√
π

∞∫
−∞

exp
(
−t2/4

)
exp (−yt) exp (ixt) dt.
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Consequently, from this equation we have

w (x, y) + w (−x,−y) =
1√
π

∞∫
−∞

e−t
2/4
[
e(−y+ix)t + e(y−ix)t

]
dt

=
1√
π

∞∫
−∞

e−t
2/4
[
ei(x+iy)t + e−i(x+iy)t

]
dt.

(A.1)

Using the Euler’s identity

eiµ + e−iµ

2
= cosµ,

where µ ∈ C, from the equation (A.1) it follows that

w (x, y) + w (−x,−y) =
2√
π

∞∫
−∞

e−t
2/4 cos ([x+ iy] t) dt = 2e−(x+iy)2

or
w (z) + w (−z) = 2e−z

2

.

Appendix B

As we have shown recently in our publication [43], the real part of the complex
error function can be found as

Re [w (x, y)] =
w (x, y) + w (−x, y)

2
(B.1)

and since [15]

Re [w (x, y = 0)] = K (x, y = 0) = e−x
2

,

the substitution of the approximation (9) at y = 0 into equation (B.1) leads
to

e−x
2 ≈ 2eσ

2
hσ

x2 + σ2

+
1

2

N∑
n=1

(
An − i (x+ iσ)Bn

C2
n − (x+ iσ)2 +

An − i (−x+ iσ)Bn

C2
n − (−x+ iσ)2

)
.

(B.2)
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According to the definition of the L-function (7), at y = 0 we can write

L (x, y = 0) = lim
y→0

1

π

∞∫
−∞

e−t
2

(x− t)
y2 + (x− t)2dt. (B.3)

Consequently, substituting the approximation for the exponential function
(B.2) into equation (B.3) yields

L (x, y = 0) ≈ lim
y→0

1

π

∞∫
−∞

x− t
y2 + (x− t)2

[
2eσ

2
hσ

t2 + σ2

+
1

2

N∑
n=1

(
An − i (t+ iσ)Bn

C2
n − (t+ iσ)2 +

An − i (−t+ iσ)Bn

C2
n − (−t+ iσ)2

)]
dt.

(B.4)

The integrand of the integral (B.4) is analytic everywhere except 2 + 2N
isolated points on the upper half plane

tr = {x+ iy, iσ,−Cn + iσ, Cn + iσ} , n ∈ {1, 2, 3, . . . N} .

Therefore, using the Residue Theorem’s formula

1

2πi

∮
Cccw

f (t) dt =
2+2N∑
r=1

Res [f, tr],

where Cccw denotes a contour in counterclockwise direction enclosing the
upper half plain (for example as a semicircle with infinite radius) and

f (t) = 1
π
× integrand of the integral (B.4),

we obtain the rational approximation (11) of the L-function.

Appendix C

function FF = fadfunc(z)

% This program file computes the complex error function, also known as the

% Faddeeva function. It provides high-accuracy and covers the entire

% complex plane. The inner part of the circle |x + i*y| <= 8 is covered by

% the equations (10) and (14). Derivation of the rational approximation

13



% (10) and its detailed description can be found in the paper [1]. The new

% approximation (14) shown in this paper computes the complex error

% function at small Im[z] << 1. The outer part of the circle |x + i*y| > 8

% is covered by the Laplace continued fraction [2]. The accuracy of this

% function file can be verified by using C/C++ code provided in work [3].

%

% REFERENCES

% [1] S. M. Abrarov and B. M. Quine, A new application methodology of the

% Fourier transform for rational approximation of the complex error

% function, arXiv:1511.00774.

% http://arxiv.org/abs/1511.00774

%

% [2] W. Gautschi, Efficient computation of the complex error function,

% SIAM J. Numer. Anal., 7 (1970) 187-198.

% http://www.jstor.org/stable/2949591

%

% [3] T. M. Karbach, G. Raven and M. Schiller, Decay time integrals in

% neutral meson mixing and their efficient evaluation,

% arXiv:1407.0748v1 (2014).

% http://arxiv.org/abs/1407.0748

%

% The code is written by Sanjar M. Abrarov and Brendan M. Quine, York

% University, Canada, December 2015.

% *************************************************************************

% All parameters in this table are global and can be used anywhere inside

% the program body.

% -------------------------------------------------------------------------

n = 1:23; % define a row vector

sigma = 1.5; % the shift constant

h = 6/(2*pi)/23; % this is the step

% -------------------------------------------------------------------------

% Expansion coefficients for eq. (10)

% -------------------------------------------------------------------------

An = 8*pi*h^2*n.*exp(sigma^2 - (2*pi*h*n).^2).*sin(4*pi*h*n*sigma);

Bn = 4*h*exp(sigma^2 - (2*pi*h*n).^2).*cos(4*pi*h*n*sigma);

Cn = 2*pi*h*n;

% -------------------------------------------------------------------------

% Expansion coefficients for eq. (14)

% -------------------------------------------------------------------------

alpha = 8*pi*h*n*sigma.*exp(-(2*pi*h*n).^2).*sin(4*pi*h*n*sigma);

beta = 2*exp(-(2*pi*h*n).^2).*cos(4*pi*h*n*sigma);

gamma = (2*pi*h*n).^2;

% End of the table

% *************************************************************************
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neg = imag(z)<0; % if imag(z) values are negative, then ...

z(neg) = conj(z(neg)); % ... take the complex conjugate

int = abs(z)<=8; % internal indices

FF = zeros(size(z)); % define array

FF(~int) = extD(z(~int)); % external domain

FF(int) = intD(z(int)); % internal domain

function ext_d = extD(z) % the Laplace continued fraction

coeff = 1:11; % define a row vector

coeff = coeff/2;

ext_d = coeff(end)./z; % start computing using the last coeff

for m = 1:length(coeff) - 1

ext_d = coeff(end-m)./(z - ext_d);

end

ext_d = 1i/sqrt(pi)./(z - ext_d);

end

function int_d = intD(z) % internal domain

secD = imag(z)<0.1; % secondary subdomain indices

int_d(secD) = exp(-z(secD).^2) + 2i*h*exp(sigma^2)*z(secD).* ...

theta(z(secD).^2 + sigma^2); % compute using eq. (14)

int_d(~secD) = rAppr(z(~secD)+1i*sigma); % compute using eq. (10)

function r_appr = rAppr(z) % the rational approximation (10)

zz = z.^2; % define repeating array

r_appr = 2i*h*exp(sigma^2)./z;

for m = 1:23

r_appr = r_appr + (An(m) - 1i*z*Bn(m))./ ...

(Cn(m)^2 - zz);

end

end

function ThF = theta(z) % theta function (see the eq. (14))

ThF = 1./z;

for k = 1:23

ThF = ThF + (alpha(k) + beta(k)*(z - gamma(k)))./ ...

15



(4*sigma^2*gamma(k) + (gamma(k) - z).^2);

end

end

end

% For negative imag(z) use the identity w(-z) = 2*exp(-z^2) - w(z)

FF(neg) = conj(2*exp(-z(neg).^2) - FF(neg));

end
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