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ABSTRACT

We present a detailed comparison of several integration schemes applied
to the dynamic system consisting of a charged particle on the Kerr back-
ground endowed with the axisymmetric electromagnetic test field. In partic-
ular, we compare the performance of the symplectic integrator with several
non-symplectic routines and discuss under which circumstances we should
choose the symplectic one and when we should switch to some other scheme.
We are basically concerned with two crucial, yet opposing aspects – accu-
racy of the integration and CPU time consumption. The latter is generally
less critical in our application while the highest possible accuracy is strongly
demanded.

Keywords: black hole physics – test particle dynamics – magnetic fields –
symplectic integrators – deterministic chaos

1 INTRODUCTION

In our recent study of the test particle dynamics (Kopáček et al., 2010; Kovář et al.,
2010) we faced the problem of numerical integration of relativistic dynamic system
described by the non-integrable equations of motion. Such system generally allows
for both regular and chaotic orbits. We first applied several standard ’all-purpose’
integration routines to realize that they are unable to provide sufficiently accurate
results concerning the long-term integration. Seeking for the scheme which would
better fit our problem and provide more reliable results we finally employed sym-
plectic integrators which are specifically designed for the integration of Hamiltonian
systems.
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In this contribution we compare performance of a symplectic routine with several
non-symplectic integrators. We treat separately the case of regular and chaotic
motion because we may expect different results. Particular system which we employ
in the survey consists of a charged test particle orbiting above the outer horizon of
the Kerr black hole which is immersed into the asymptotically uniform magnetic
field aligned with the rotation axis (Wald, 1974). Specification of this system along
with the detailed study of the charged particle dynamics is given by Kopáček et al.
(2010). Current paper is based on the results previously published in the Ph.D.
thesis of one of the authors (Kopáček, 2011).
We recall that in the given system the particle of rest mass m is characterized

by its specific angular momentum L̃ ≡ L/m, specific energy Ẽ ≡ E/m and specific
charge q̃ ≡ q/m. Black hole of mass M is described by the spin parameter a
and specific test charge Q̃ ≡ Q/M . Background magnetic field is specified by its
asymptotic strength B0. Inspecting the equations of motion we reveal that q̃, Q̃ and
B0 are not independent variables and we only need to specify values of products q̃Q̃
and q̃B0 to characterize the system. We use standard Boyer-Lindquist coordinates
xµ = (t, r, θ, ϕ) and denote the canonical four-momentum as πµ = (πt, πr, πθ, πϕ).
Standard kinematical four-momentum pµ and canonical four-momentum are related
as follows pµ = πµ − qAµ where Aµ stands for the electromagnetic four-potential.
Integration variable is affine parameter λ defined as λ ≡ τ/m where τ denotes the
proper time of the particle. We use geometrized units G = c = 1 and scale all
quantities by the mass of the black hole M .
We are dealing with the integration of the autonomous Hamiltonian system1

whose equations of motion form a specific subclass of first order ordinary differential
equations (ODEs). Two fundamental characteristics of the Hamiltonian flow should
be highlighted

• conservation of the net energy (Hamiltonian) of the system
• conservation of the symplectic 2-form ω = dπµ ∧ dxµ.

Here d stands for the exterior derivative and ∧ denotes the wedge product.
In the classical mechanics the natural choice of the generalized coordinates leads

to the Hamiltonian which may be interpreted as a net energy of the system. This
is true even for the system of a charged particle in the external electromagnetic
field where the generalized momenta-dependent potential is introduced (Goldstein
et al., 2002, chap. 8). Time-independance of the Hamiltonian is thus equivalent to
the conservation of the net energy of the system. In the general relativistic version
of this system, however, we employ super-hamiltonian formalism (Misner et al.,
1973, chap. 21) in which the energy of the particle E, as a negatively taken time

1 Equations of motion may be equivalently expressed in terms of Lorentz force (Misner et al.,
1973, p. 898) which leads to the set of four second order ODEs. Numerical experiments, however,
led us to the conclusion that this formulation is computationally less effective compared to the
Hamiltonian formalism. Generally for a given numerical scheme with the same parameters (re-
sulting in similar accuracy of the integration) the integration of Hamilton’s equations was roughly
two times faster. Moreover, the symplectic methods may only be applied in the Hamiltonian
formulation of the problem.
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component of the canonical momentum E ≡ −πt, is conserved by virtue of the
Hamilton’s equations itselves providing that the super-hamiltonian doesn’t depend
on the coordinate time t. On the other hand the value of the super-hamiltonian
H = 1

2
pµp

µ is by construction equal to − 1
2
m2 where m is the rest mass of the

particle. Conservation of the super-hamiltonian in the system is thus equivalent to
the conservation of the rest mass of the particle.
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Figure 1. Regular trajectory of a charged test particle (q̃Q̃ = 1, L̃ = 6 M and Ẽ = 1.6) on
the Kerr background (a = 0.9 M) with Wald magnetic field (q̃B0 = 1M−1). The particle
is launched at r(0) = 3.68M , θ(0) = 1.18 with ur(0) = 0.

By conservation of the symplectic 2-form ω we mean that its components ωαβ in
the basis (dt(λ),dr(λ),dθ(λ),dϕ(λ),dπt(λ),dπr(λ),dπθ(λ),dπϕ(λ)) do not change
during the evolution of the system and for arbitrary value of the affine parameter
λ (i.e. at each point of the phase space trajectory) we obtain

ωαβ =

(

0 −I

I 0

)

, (1)

where I stands for the four-dimensional identity submatrix and 0 is the null sub-
matrix of the same dimension. Conservation of the symplectic structure expresses
in the abstract geometrical language the fact that the evolution of the system is
governed by the Hamilton’s canonical equations. See Arnold (1978) for details on
the geometric formulation of the Hamiltonian dynamics.
It would be highly desirable to use such integration scheme which would conserve

both quantities which are conserved by the original system. It appears, however,
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that this is not possible for non-integrable systems and one has to decide whether
he employs the scheme which conserves energy or rather the integrator which keeps
the symplectic structure. The latter are referred to as symplectic integrators and by
many accounts provide most reliable results in numerical studies involving Hamilto-
nian systems. See Yoshida (1993) for a comprehensive review on symplectic meth-
ods.
We list all the schemes we employ in this survey specifying their basic properties.

We shall actually compare one symplectic method with several standard integrators.
Code names we use for the schemes are those which denote the routines in the
MATLAB system.

• GLS – Gauss-Legendre symplectic solver, s-stage implicit Runge-Kutta (RK)
method, crucial control parameter: stepsize h
• ODE87 – Dormand-Prince 8th - 7th order explicit RK scheme, the most precise
RK method (local error of order O(h8)), adaptive stepsize – RelTol is set to control
the local truncation error
• ODE113 – multistep Adams-Bashforth-Moulton solver, based on the predictor-
corrector method (PECE), RelTol is set
• ODE45 – Dormand-Prince seven stage 5th-4th order method of explicit RK fam-
ily, adaptive stepsize, default integration method in MATLAB and GNU OCTAVE,
error is controlled by RelTol

Apart from ODE113 all other routines are single-step (Runge-Kutta like) methods
which means that they express the value of the solution in the next step in terms
of a single preceding step. They may be related explicitly or implicitly. Multistep
methods in contrast employ more preceding steps to calculate the solution at the
succeeding point. RelTol (relative tolerance) is a parameter which specifies the
highest allowed relative error in each step of integration (local truncation error)
when the adaptive stepsize methods are used. In the case of exceeding the RelTol
the stepsize is reduced automatically to decrease the error.
We comment that for general non-separable Hamiltonians only implicit symplectic

schemes may be found. Explicit methods exist for separable Hamiltonians and for
some special forms of non-separable ones (Chin, 2009). Besides other implications
of the usage of the implicit methods we note that they necessarily involve some type
of iterative scheme which is typically of a Newton’s type and thus requires to supply
Jacobian of the right hand sides of the equations of motion which is the Hessian
matrix of the second derivatives of the super-hamiltonian H in our case.
Another inconvenience connected with the symplectic methods is their failure

to conserve the symplectic structure once the adaptive stepsize method would be
used (Skeel and Gear, 1992). Therefore the stepsize has to be set rigidly for a given
integration segment when using symplectic method. Several workarounds have been
suggested to combine benefits of symplectic solvers and variable stepsize algorithms
– e.g. Hairer’s symplectic meta-algorithm (Hairer, 1997) which is, however, only
applicable to the separable Hamiltonians. In our context one would considerably
suffer from the fixed timestep only in the case of highly eccentric orbits.
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Figure 2. Comparison of the integrators in the case of regular trajectory. Symplectic GLS
provides the most reliable results for λ & 105. Bottom panel shows that besides secular
drift in energy (artificial excitation or dumping of the system; plot shows absolute values,
however) it also oscillates on the short time scale.
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integrator ∆|E|/|E| tcomp[h] RelTol stepsize h

GLS ≈ 10−10 14 N/A 0.25
ODE87 ≈ 10−9 14 10−14 adaptive
ODE113 ≈ 10−3 1/3 10−14 adaptive
ODE113 ≈ 10−3 1/4 10−6 adaptive
ODE45 ≈ 10−3 1/4 10−14 adaptive

Table 1. Comparison of the performance of several integration schemes for the regular
trajectory integrated up to λ = 4 × 105 (see Fig. 2). Quantity tcomp expresses the CPU
time in hours.
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Figure 3. Chaotic trajectory of a charged test particle (q̃Q̃ = 1, L̃ = 6 M and Ẽ = 1.8) on
the Kerr background (a = 0.9 M) with Wald magnetic field (q̃B0 = 1M−1). The particle
is launched at r(0) = 3.68M , θ(0) = 1.18 with ur(0) = 0.

2 PERFORMANCE OF THE INTEGRATORS

First we integrate the cross-equatorial regular trajectory depicted in Fig. 1. Com-
parison of the performance of the integrators is plotted in Fig. 2. We plot relative
deviation of the particle’s specific energy Ẽ from its initial value rather than the
error in super-hamiltonian because the discussion of motion in Kopáček et al. (2010)
was mostly held in terms of Ẽ whose impact upon the trajectory is thus more famil-
iar to us. We calculate the current value of Ẽ from the super-hamiltonian H, while
the value of πt remains truly constant regardless the integrator since the Hamilton’s
equation for its evolution is simply dπt/dλ = 0.
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Figure 4. Comparison of the integrators in the case of chaotic trajectory. For λ & 5×103

the GLS dominates in accuracy over other schemes with the difference rising steadily.
In the upper panel we compare ODE113’s outcome for two distinct values of the RelTol
parameter. ODE45 is not shown to avoid overlapping of its plot with ODE113 curves.
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Stepsize of GLS is set in such a way that the integration consumes roughly the
same amount of the CPU time as it does for ODE87 with RelTol = 10−14 to make
the results comparable. The global accuracy of the GLS solver could be further
increased by reducing the stepsize while decreasing the RelTol hardly improves the
secular accuracy of non-symplectic methods here (we have compared RelTol = 10−6

and RelTol = 10−14 results for ODE113 obtaining global errors of the same orders
in both cases).

integrator |∆E|/|E| tcomp [h] RelTol stepsize h

GLS ≈ 10−9 14 N/A 0.25
ODE87 ≈ 10−6 14 10−14 adaptive
ODE113 ≈ 10−3 1/6 10−14 adaptive
ODE113 ≈ 10−3 1/6 10−6 adaptive
ODE45 ≈ 10−3 1/2 10−14 adaptive

Table 2. Comparison of the performance of several integration schemes for the chaotic
trajectory integrated up to λ = 4× 105 (see Fig. 4).

We observe that the error of GLS rises steeply at the beginning and ODE87
is considerably better for some amount of time. However then the error of GLS
almost saturates while ODE87’s error keeps growing significantly. For λ & 105

which corresponds to ≈ 1000 revolutions around the center2 the GLS scheme
becomes more accurate than ODE87 with the difference further rising steadily. We
conclude that in the case of regular trajectory ODE87 is appropriate for short-term
accurate integration and GLS for any longer accurate integrations. On the other
hand for fast, though inaccurate computations one employs ODE113 on all time
scales. See Table 1 for the summary.
In the case of the chaotic trajectory (depicted in Fig. 3) the dynamics changes in

favor of symplectic solver GLS. In Fig. 4 we observe that in this case the symplectic
scheme is superior to the others in even more convincing manner than it was in
the regular case. Although the initial phase when the error induced by GLS rises
more steeply than that of ODE87 is also present, it turns over very quickly and for
λ & 5 × 103 (≈ 50 azimuthal revolutions) the GLS turns out to be more accurate.
The difference then rises much faster compared to the regular case.
Experiments with ODE113 reveal that here we obtain distinct (though not sharply)

errors by changing the RelTol. Difference of eight orders of magnitude in RelTol
resulted in roughly one order difference in global error. We also note that chaotic
regime induces disorder in short-time oscillations of the global error (see bottom
panel of Fig. 4). We summarize that the chaotic regime accents the supremacy of the
symplectic scheme which is to be applied on all time scale here (except very short
integrations where ODE87 dominates) to obtain the most accurate results. For fast

2 For instance for M = 106M⊙ the azimuthal proper period of a given particle reads Tϕ ≈ 103s
in SI.
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Figure 5. We show how the accuracy of the integration crucially affects the appearance of
the Poincaré surfaces of section of a single regular trajectory with q̃Q̃ = 1.76, L̃ = 4.02 M

and Ẽ = 1.619855 on the Kerr background a = 0.55 M with Wald magnetic field q̃B0 =
1.92 M−1. Particle is launched at r(0) = 2.5012 M , θ(0) = 1.0447 with ur(0) = 0. We
distinguish downward crossing with uθ ≥ 0 (black point) from the upward crossing with
uθ < 0 (red point) in the surfaces of section.

though inaccurate calculation one would switch to ODE113 as before. Results for
the chaotic orbit are summarized in Table 2.
From a practical point of view we demand high accuracy of the long-term inte-

gration when constructing Poincaré surfaces of section. By theory the intersection
points with regular trajectory form one-dimensional curve in the section plane. In
Fig. 5 we observe, however, that the points may be dispersed over the consider-
able area if the global error in energy rises causing artificial excitation/dumping of
the system. Symplectic integrator GLS provides the most reliable outcome, with
ODE87 the curve is blurred significantly but the interpretation remains unambigu-
ous. With ODE113 the curve is further blurred and using ODE45 solver we obtain
completely unreliable outcome which could easily lead to the incorrect interpre-
tation of a trajectory as a chaotic one. We note that we intentionally chose such
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trajectory which is highly sensitive to the relative errors in dynamic quantities since
it itself spans small range of coordinate and momenta values.

3 CONCLUSIONS

We confirm that the symplectic integrators are the method of choice in the case
of long-term integration of the Hamiltonian system which in our case consists of a
charged test particle orbiting around the Kerr black hole with stationary and ax-
isymmetric electromagnetic test field. Its supremacy over non-symplectic methods
is even more apparent in the case of chaotic orbits, where the global accuracy of non-
symplectic methods decreases rapidly. The accuracy of the symplectic integrator
could be further increased by reducing the stepsize (at the cost of the computational
time). On the other hand the performance of the non-symplectic solvers is not con-
siderably affected by reducing the local error (controlled by the RelTol parameter
in our case) across the wide range of the values. Once the integrator does not fit
the problem (= is not symplectic) there is no effective way to control the global
error and even the extremely small local truncation errors do not ensure reliable
outcome on a long time scale.
We suggest that our results are not problem-specific and may be generalized to

the broad class of the systems. In particular, we suppose that symplectic integrators
provide outstanding results in the chaotic regime of any non-integrable Hamiltonian
system.
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