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Abstract

The Hooghly-Matla estuarine complex is the unique estuarine system of the world. Nutrient

from the litterfall enrich the adjacent estuary through tidal influence which in turn regulate the

phytoplankton, zooplankton and fish population dynamics. Environmental factors regulate the

biotic components of the system, among which salinity plays a leading role in the regulation of

phytoplankton, zooplankton and fish dynamics of the estuary. In this article, a PZF model is

considered with Holling type-II response function. The present model considers salinity based

equations on plankton dynamics of the estuary. The interior equilibrium is considered as the most

important equilibrium state of this model. The model equations are solved both analytically and

numerically using the real data base of Hooghly-Matla estuarine system. The essential mathemat-

ical features of the present model have been analyzed thorough local and global stability and the

bifurcations arising in some selected situations. A combination of set of values of the salinity of the

estuary are identified that helped to determine the sustenance of fish population in the system. The

ranges of salinity under which the system undergoes Hopf bifurcation are determined. Numerical

illustrations are performed in order to validate the applicability of the model under consideration.
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1 Introduction

The delta of Hooghly-Matla estuarine system is networked by seven major river along with their

tributaries and creeks. This deltaic system harbours luxuriant mangroves and constitutes Sundarban

mangrove ecosystem. The mangroves are the major resources of detritus and nutrients to the adjacent

estuary that make up favourable habitat for the growth of shell fish and fin fish (cf. Mandal et al.,

(2009)). This estuary act as route and refuge areas for a variety of migratory fish species. The

estuary supports 53 species of pelagic fish belonging to 27 families and 124 species under 49 families

of demersal fish (cf. Hussain and Acharya, (1994)). Fishery in this estuarine water contributes a part

in the economy of the state of West Bengal, India. The organic matter that passes from litterfall to

the adjacent estuary supports both the grazing and detritus food chains of this lotic system.

Among the chemical components studied so far, the salinity plays a crucial role in the abundance (cf.

Bhunia, (1979)) and dynamics of zooplankton of the estuary (cf. Ghosh, (2001), Ketchum, (1951)).

Because, this community lies in the middle of grazing food chain; phytoplankton-zooplankton-fish

(PZF ). In addition, perturbation to this trophic level may trigger imbalance in the food chain which

in turn affect the phytoplankton and fish community. The dynamics of salinity is season dependent.

During monsoon and early post monsoon, huge fresh water enters in the estuary from the upstream

resulting in the lowering of salinity. In the pre-monsoon, fresh water runoff from the upstream becomes

very less and due to tidal influence of the adjacent Bay of Bengal, the salinity increases. Throughout

the year, a gradient of salinity is observed between upstream and downstream area of the estuary (cf.

Mandal et al., (2009)).

The abundance of different species of zooplankton varies according to the salinity of the estuary

throughout the year, as a result the grazing rate also changes with seasons. In PZF system, the

grazing rate of zooplankton is one of the most sensitive parameter in Hooghly-Matla estuarine system

as the dynamics of zooplankton also depends on the lower trophic level of phytoplankton as well

as fish population (cf. Mandal et al., (2009)). Moreover, fish predation exhibits top-down effect on

zooplankton community. Therefore, in the PZF system, two important parameters that shape up

the zooplankton dynamics of the estuary are salinity dependent grazing rate of zooplankton and fish

predation rate (cf. Dube et al., (2010)).

There have been only a few models based on the effects of salinity on plankton dynamics. Few studies

have been done in the relationship between salinity levels to the types of species that can occur in

algal blooms (cf. Griffin et al., (2001), Marcarelli et al., (2006), Quinlan and Phlips, (2007)). Many

PZF model are constructed on estuarine system (cf. Ray et al., (2001); Cottingham, (2004); Dube

and Jayaraman, (2008); Dube et al., (2010)) and top-down effect (cf. Morozov et al., (2005); Irigoien

et al., (2005); Calbet and Saiz, (2007)) but none of the models have considered the salinity dependent

grazing rate of zooplankton which plays an important rule in the zooplankton dynamics of estuary.

The present account deals with a PZF model, where salinity dependent grazing rate of zooplankton

is taken into consideration along with the variation of upstream and downstream salinity.
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1.1 Mathematical model formulation

Let P , Z, F denote the populations of phytoplankton, zooplankton and fish respectively. In this

present PZF model, light and temperature dependant photosynthesis rate of phytoplankton and

salinity induced grazing rate of zooplankton have been incorporated into the model proposed by

Mandal et al., (2011). The modified model under consideration is as follows:











dP
dt

= m1P
(

1− P
kP

)

− gs
PZ

P+kZ
dZ
dt

= ags
PZ

P+kZ
− gf

ZF
Z+kF

−m2Z
dF
dt

= gf
ZF

Z+kF
−m3F.

(1)

The salinity induced grazing of zooplankton is gs = δgZ , where δ = su
su−sd

, the dilution factor and

m1, sd, su, gZ , kZ , kP are net growth rate of phytoplankton, downstream salinity, upstream salinity,

grazing rate of zooplankton, half saturation constant of zooplankton on phytoplankton grazing by

zooplankton and half saturation constant grazing by phytoplankton respectively. Since estuary is a

transition zone of river and sea, so there is always fluctuation of salinity throughout the year, which is

due to dilution by upstream river water and/or mixing by downstream sea tidal water. δ is calculated

by following the equation of Ketchum, (1951). Besides grazing the abundance of zooplankton is also

dependent on loss due to Ezoo = ZEzo, respiration Rzoo = Zrzo, fish predation Fp = Zrrf , and

mortality Mzoo = ZMZ , Rzoo is governed by rzo.

The net mortality rate of zooplankton is m2 = (Ezo+rzo+rfp+MZ). The abundance of F is governed

by many processes in the estuary. Fish predation Fp on Z follows Michaelis-Menten kinetics (Holling

type II) which enriches the fish pool of the estuarine system. Fp depends on kZ and gf . F population

is reduced by mortality rate of fish Mf , respiration Frf , harvest by fishing FHcf and excretion of

fish FEf . FHf are controlled by Rf and Hf respectively. Respiration rate of Fish and Hf Harvest

rate of Carnivorous Fish respectively.

The net mortality rate of fish is m3 = (Ef+Mf+rf+Hf), where rfp, rzo and Mrz are fish predation

rate, zooplankton respiratory rate and mortality rate respectively.

1.2 Existence and positive invariance

Letting X ≡ (P,Z, F )T , f : R3 → R
3, f = (f1, f2, f3)

T , the system (1) can be rewritten as Ẋ = f(X).

Here fi ∈ C∞(R) for i = 1, 2, 3, where f1 = m1P (1 − P
kP

) − gs
PZ

P+kZ
, f2 = ags

PZ
P+kZ

−m2Z − ZF
Z+kF

,

f3 = gf
ZF

Z+kF
−m3F . Since the vector function f is a smooth function of the variables P , Z and F in

the positive octant Ω0 = {(P,Z, F );P > 0, Z > 0, F > 0}, the local existence and uniqueness of the

system hold.

1.3 Boundedness of the system

Boundedness of a system guarantees its biological validity. The following theorem establishes the

uniform boundedness of the system (1).

Theorem 1. All the solutions of the system (1) which start in R
3
+ are uniformly bounded.
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Proof. Let (P (t), Z(t), F (t)) be any solution of the system with positive initial conditions. From the

real ecological field study one can consider max{ m2, m3} < 1.

Now let us we define the function X = aP + Z + F. The time derivative of X gives

dX

dt
= a

dP

dt
+

dZ

dx
+

dF

dt
,

= am1P (1− P

kP
)− ags

PZ

P + kZ
+ ags

PZ

P + kZ
− gf

ZF

Z + kF
−m2Z + gf

ZF

Z + kF
−m3F

= am1P (1− P

kP
)−m2Z −m3F. (2)

Now for each v > 0, we have

dX

dt
+ vX = am1P (1− P

kP
)−m2Z −m3F + v(aP + Z + F )

= am1P (1− P

kP
) + avP + (v −m2)Z + (v −m3)F

≤ am1(1−
P

kP
) + avP, if v ≤ min{ m2, m3},

≤ a(m1 + v)2kP
4

. (3)

Using the theory of differential inequality (cf. Birkoff and Rota, (1982); Sarwardi et al. (2011)), one

can easily obtain

lim sup
t→+∞

X(t) ≤ a(m1 + v)2kP
4

= ρ. (4)

Therefore, all the solutions of the system (1) enter into the compact region B =
{

(P,Z, F ) ∈ R
3
+ :

aP + Z + F ≤ a(m1+v)2kP
4

}

, which completes the proof.

1.4 Equilibria and their feasibility

To determine the equilibrium points of the system of(1) we put Ṗ = Ż = Ḟ = 0. The equilibria of

the system(1) are (i) the null equilibrium E0 = (0, 0, 0);

(ii) the axial equilibrium E1 = (kP , 0, 0);

(iii) the boundary equilibrium E2 = ( m2kZ
(ags−m2)

,
(am1kZ)(akP gs−kPm2−m2kZ)

(ags−m2)2kP
, 0); and

(iv) the interior equilibria Ei
∗ = (P ∗

i , Z
∗, F ∗

i ); i = 1, 2,

where P ∗
i =

−m1(gf−m3)(kP−kZ)±
√

(m1(gf−m3)(kP−kZ))2−4m1(m3−gf )(kP kZm1(gf−m3)−m3kf gskP )

2m1(m3−gf )
,

Z∗
i =

m3kF
(gf−m3)

and F ∗
i = m1kF a(P ∗−kP )

m3kP
+ kF (ags−m2)

(gf−m3)
.

1.5 Existence of planer and interior equilibria and their stability

Equilibria of the model (1) can be obtained by solving Ṗ = Ż = Ḟ = 0. Though the system (1) has

several non-negative steady state but we have mentioned the existence of interior equilibrium point
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only for its biological importance.

The interior equilibrium point E∗ = (P ∗, Z∗, F ∗) of the system (1) exists if (gf − m2) > 0 . When

these conditions are satisfied, we have P ∗ as the positive root of the following quadratic equation:

A0P
∗2 −A1P

∗ −A2 = 0, (5)

where

A0 = −m1(gf −m3), A1 = (gfm1 −m3m1)(kP − kZ), A2 = kP kZm1(gf −m3)−m3kfgsk.

Since gf > m3, A0 is positive. Therefore, one positive root of (5) can be found as

P ∗ =
1

2A0
[A1 +

√

A2
1 + 4A0A2], (6)

which exists if A2 > 0 and A0 > 0. Therefore, the equation (5) has a unique positive solution if

gf > m3. Once we get the unique positive solution of P ∗ from equation (5), it is easy to obtain the

other components of the interior equilibrium E∗.

Feasibility: It is clear that the axial equilibrium is feasible. The interior equilibrium is feasible if

the condition (i) (gf −m3) > 0 and (ii) (kP − kz) < 0 hold good.

1.6 Local stability of equilibrium

In order to find out about the stability of the equilibrium points we need to linearize the system (1).

Since the axial and boundary equilibria are less important on this system (1). That’s why we don’t go

for detailed analysis of the system around the equilibria other than interior equilibrium. The stability

of interior equilibrium, we find the Jacobian matrix. For this purpose we define the system (1) as

follows:
dX

dt
= F (X), (7)

where f(X) =







m1P (1− P
kP

)− gs
PZ

P+kZ

ags
PZ

P+kZ
− gf

ZF
Z+kF

−m2Z

gf
ZF

Z+kF
−m3F






, and Y =







P

Z

F






.

The variational matrix of the system at any arbitrary point ( P̃ ,Z̃,F̃ ) is

J̃ = ∂f
∂X

|(P̃ ,Z̃,F̃ )=



















2gsZ̃

P̃ + kZ
−m1 −

gsZ̃kZ

(P̃ + kZ)2
− gsP̃

(P̃ + kZ)
0

agskZZ̃

(P̃ + kZ)2
gf F̃

(Z̃ + kF )
− gf F̃ kF

(Z̃ + kF )2
− gf Z̃

(Z̃ + kF )

0
gf F̃ kF

(Z̃ + kF )2
0



















.

Therefore, the Jacobian matrix for the system (1) at E∗ is given by

J∗ =







R1 −R2 −m1 −K1 0

R2 K2 −R3 −m3

0 R3 0






,
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where R1 =
2gsZ∗

(P ∗+kZ) , R2 =
gsZ

∗kZ
(P ∗+kZ)2

, R3 =
gfF

∗kF
(Z∗+kF )2

, K1 =
gsP

∗

(P ∗+kZ) , K2 =
gfF

∗

(Z∗+kF ) .

The characteristic equation corresponding to the Jacobian matrix J∗ is

∆(λ) = λ3 +D1λ
2 +D2λ+D3 = 0. (8)

For the stability of the solutions of the system (1) all of the roots of the characteristic equation for the

Jacobian matrix at E∗ ie. J∗ should have negative real parts. This can be achieved without actually

solving for all the roots of the characteristic equation, but by applying the Routh-Hurwitz condition

for negative real parts of the characteristic roots. According to the Routh-Hurwitz conditions, the

solutions of (1) will be asymptotically stable if the conditions D1 > 0, D1D2 > D3, D3 > 0 are

satisfied.

2 Global Stability

Now we examine the global stability issue. Here we describe the general method described by Li and

Muldowney, (1996) to show an n-dimensional autonomous dynamical system f : D → R
n,D ⊂ R

n,

an open and simply connected set and f ∈ C1(D), where the dynamical system is given by

dx

dt
= F (x) (9)

is globally stable under certain parametric conditions (cf. Jin and Haque, (2005); Haque et al., (2009)

and Buonomo et al., (2008))

Now we assume the following incidents:

(A1) The autonomous dynamical system has a unique interior equilibrium point x∗ in D.

(A2) The domain D is simply connected.

(A3) There is a compact absorbing set Ω ⊂ D.

Now we give a definition due to Haque et al., (2005)

Definition 1. The unique equilibrium point x∗ of the dynamical system (9) is globally asymptotically

stable in the domain D if it is locally asymptotically stable and all the trajectories in D converges to

its interior equilibrium point x∗.

Let J=(Jij)3x3 be the variational matrix of the system (9) and J[2] be second additive compound

matrix with order nC2× nC2. In particular for n=3 we can write

J [2] = ∂f [2]

∂X
=







V11 + V22 V23 −V13

V32 V11 + V33 V12

−V31 V21 V22 + V33






Let M(x) ∈ C1(D), be an nC2 × nC2 matrix

valued function. Moreover, we consider B as a matrix such that B=MfM
−1 +MJ [2]M−1 where the

matrix Mf is represented by

(Mij(x))f =

(

∂Mij

∂x

)t

.f(x) = ∇Mij .f(x). (10)

6



Again due to Jr. Martin et al., (1974), we consider the Lozinskǐi measure Γ of B with respect to a

vector norm |.| in R
n . N = nC2, we have

Γ(B) = lim
h→0+

|I + hB| − 1

h
.

Li and Muldowney (1996) showed that the system (9) will be globally stable if the conditions (A1),

(A2) and (A3) together with

lim sup
t→∞

sup
1

t

∫ t

0
Γ(B(x(s, x0)))ds < 0 (11)

hold simultaneously.

The above stated condition not only assures that there are no orbits (i.e., homoclinic orbits, hetero-

clinic cycles and periodic orbits) which gives rise to a simple closed rectifiable curve in D, invariant

for the system (9) but also it is a robust Bendixson criterion for (10) in addition with (11) is sufficient

for local stability the system (9) around E∗. Now we use the above discussion to show that our system

(1) is globally stable around its interior equilibrium. We make the following transformation of the

variables x → P−1, y → Z, z → F , for which the autonomous system (1) is transformed to the

following one:
dX

dt
= f(X), (12)

where f(X) =







m1
x
(1− 1

xkP
)− gsy

1+xkZ
− x2

agsy
1+xkZ

− gfyz

y+kF
−m2y

gfyz

y+kF
−m3z






and X =







x

y

z






. The variational matrix of the

system (12) can be written as

V = ∂f
∂X

=

















xgsy(2 + xkZ)

(1 + xkZ)2
−m1

gsx
2

(1 + xkZ)
0

− agsykZ

(1 + xkZ)2
ags

(1 + xkZ)
− agsy

(1 + xkZ)
+

gfyz

(y + kF )2
− gfy

(y + kF )

0
gfZkF

(y + kF )2
0

















.

If V [2] be the second additive compound matrix of V then due to Buonomo et al. (2008) we can write

V [2] =















a11 − gfy

(y + kF )
0

gfZkF

(y + kF )2
a22

gsx
2

(1 + xkZ)

0 − agsykZ

(1 + xkZ)2
a33















, where

a11 =
xgsy(2 + xkZ)

(1 + xkZ)2
−m1 +

gfyz

(y + kF )2
,

a22 =
xgsy(2 + xkZ)

(1 + xkZ)2
−m1,

a33 =
gfyz

(y + kF )2
.

We consider P (X) in C1(D) in a way that P = diag
(

1, y
z
, yx

2

z

)

then we have P−1 = diag
(

1, z
y
, z
yx2

)

,

7



PfP
−1 = diag{0, ẏ

y
− ż

z
, 2ẋ

x
+ ẏ

y
− ż

z
} and

PV [2]P−1 =







a11 − gfy

(y+kF ) 0
gfkF z

(y+kF )2
a22

gsx
2

(1+xkZ)

0 − agsykZ
(1+xkZ )2

a33






. After some algebraic calculation, we get

B = PfP
−1 + PV [2]P−1 =

[

B11 B12

B21 B22

]

,

where

B11 = a11 =
xgsy(2+xkZ )
(1+xkZ )2

−m1 +
gfyz

(y+kF )2
,

B12 =
[

− gfy

y+kF
0
]

, B21 =
[

gfzkF
(y+kF )2

0
]T

, B22 =

[

a22 +
ẏ
y
− ż

z
gsx

2

(1+xkZ)

− agsykZ
(1+xkZ)2

a33 +
2ẋ
x
+ ẏ

y
− ż

z

]

.

Now let us define the following vector norm in R3 as |(u, v, w)| =max
(

|u|, |v|+ |w|), where |(u, v, w)| is
the vector norm in R3 and it is denoted by Γ, the Loǩinski measure with respect to this norm. There-

fore, Γ(B) ≤sup{l1, l2}, where li = Γ1(Bii)+|Bij| for i=1, 2 and i6= j, here |B12| and |B21| are the matrix

norms with respect to the L1 vector norm and Γ1 is the Loǩinski measure with respect to that norm.

Therefore, we can easily obtain the following terms: Γ1(B11) =
xgsy(2+xkZ )
(1+xkZ)2

−m1 +
gfyz

(y+kF )2
, |B12| =

max{ gfy

y+kF
, 0},

|B21| = max{ gf zkF
(y+kF )2

, 0},
Γ1(B22) =

ẏ
y
− ż

z
+max

{

gsy(2x+x2kZ−akZ)
(1+xkZ)2

, gsx
2

(1+xkZ ) +
gfyz

(y+kF )2
+ 2ẋ

x
)
}

. Using the system equation (12),

we have l1 =
xgsy(2+xkZ)
(1+xkZ)2

−m1 +
gfyz

(y+kF )2
+

gfy

y+kF
, l2 =

ẏ
y
− ż

z
− 2m1(1− 1

xkP
) + gsyx

1+xkZ
+

gfykF
(y+kF )2

.

Now from the expression of l1 and l2 one can obtain

Γ(B) = max

{

xgsy(2+xkZ )
(1+xkZ )2 −m1 +

gfyz

(y+kF )2 +
gfy

y+kF
, ẏ
y
− ż

z
− 2m1(1− 1

xkP
) + gsyx

1+xkZ
+

gfykF
(y+kF )2

}

.

= ẏ
y
− ż

z
− 2m1(1− 1

xkP
) + gsyx

1+xkZ
+

gfykF
(y+kF )2

, if 1 < xkP < 2.

Thus,

Γ(B) ≤ ẏ
y
−
[

2gs
ρ+kF

− ( gs
kZ

+
gf
kF

)ρ− (m1 +m3)

]

≤ ẏ
y
− µ, where µ = 2gs

ρ+kF
− ( gs

kZ
+

gf
kF

)ρ− (m1 +m3) > 0.

Taking average value of Γ(B) within the time scale 0 and t one can have

1

t

∫ t

0
Γ(B)ds ≤ 1

t
log

y(t)

y(0)
− µ,which gives

lim
t→∞

sup sup
1

t

∫ t

0
Γ(B(x(s, x0)))ds < −µ < 0, (13)

whenever 1 > 1
xkP

> 1
2 .

Now we are in a position to state the following theorem:

8



Theorem 2.1 The model system (1) is globally asymptotically stable around its interior equilibrium

if µ > 0, i.e 2gs
ρ+kF

− ( gs
kZ

+
gf
kF

)ρ− (m1 +m3) > 0.

2.1 Numerical simulation

For the purpose of making qualitative analysis, numerical simulations have been carried out by making

use of MATHLAB-R2010a and Maple-18. In Table 1, we summarize the used parameters with their

admissible values and their biological interpretations. All these results have also been verified by

numerical simulations,of which we report some in the figures. In order to compare our model with the

corresponding model. we have run simulations using the standard MATLAB differential equations

integrator for the Runge-Kutta method, i.e, MATLAB routine ODE45. The numerical experiments

performed on the system (1) using the experimental data taken from different sources to confirm

our theoretical findings. Specially we focus here on the following values of the system parameters

as shown in the table-I. The problem described by the system (1) is well posed. The P, Z, F axes

are invariant under the flow of the governing system. In the present system the total environmental

population is bounded above (cf. Subsection 1.3). Therefore, any solution starting in the interior

of the first octant never leaves it. This mathematical fact is consistent with the biologically well

behaved system and is common in the modern research work on mathematical biology. We took a

set of parameter values: m1 = 0.6, m2 = 0.0698, m3 = 0.324, a = 0.8, gs = 0.75, gf = 0.6894, sd =

12.30, su = 8.23, kP = 12, kZ = 38, kF = 10.1. For this set of parameter values the system possessed

a unique equilibrium point E∗(1.809, 8.964, 3.112). We have established the sufficient conditions for

global stability of the coexistence equilibrium. The coexistence coexistence equilibrium point E∗ has

been found through numerical simulations whose global asymptotical stability has been depicted in

Figures 1(a) and Figure 2(a). It is observed from the Figure 1:(b)-(c) and Figure 2(b)-(c) that the

fish population gradually decreases as the upstream salinity increases from su = 8.33 to su = 8.51

while the downstream salinity is keeping fixed at sd = 12.30. For higher upstream salinity (su = 8.51)

Figure 1(c) in the estuary is detrimental to the present zooplankton population. Zooplankton in

this particular region are stenohaline thus the fish population cannot persist in such high salinity

and the population gradually decreased to zero. Therefore, the salinity has an important role on

regulating fish population in the present estuarine system. Representative numerical simulations are

shown in Figures: 3–5. In Figure 3(a), the solutions plots describing the Hopf bifurcation and Figure

3(b) exhibits the corresponding phase space diagram. The present dynamical system confirms the

existence of chaotic nature which has been presented in Figure 4:(a)-(b). Figure 5:(a)-(f) shows

different phase space diagram for different values of upstream salinity within the range 4.50–7.50,

while downstream salinity has been kept fixed at sd = 10.30 and the remaining parameter values are

same as taken in Figure 1. It is observed the catastrophic change in the behaviour of the solution

plots as the parameter su varies from 4.50 to 8.0 (cf. Figure 5:(a)-(f)). More specifically, Figure 5(a)

shows periodic orbit with period 4; Figure 5(b) shows the chaotic orbit; Figure 5(c) shows periodic

orbit with period 6; Figure 5(d) shows the period doubling bifurcation; Figure 5(e) demonstrates a

limit cycle and finally Figure 5(f) ensures the stability of the system around an interior equilibrium

point (2.622, 8.878, 10.12) of the system (1).
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Table 1: The set of parameter values and their biological terminologies

Descriptions Fixed

Parame-

ters

Values Units References

Growth rate of phyto-

plankton

m1 0.6 day−1 Mandal et al., (2012)

Half saturation constant

for nutrient uptake by

phytoplankton

kP 12 dimensionless Mandal et al., (2012)

Grazing rate of zoo-

plankton

gz 0.75 day−1 Ray and Straskraba,

(2001)
Optimal light intensity Ezo 0.04 day−1 Ray et al., (2001)

Respiration rate of zoo-

plankton

rzo 0.0153 day−1 Ray et al., (2001)

Fish predation rfp 0.2 day−1 Ray et al., (2001)

Mortality rate of zoo-

plankton

Mz 0.0145 day−1 Ray et al., (2001)

Excretion of fish Ef 0.049 day−1 Mandal et al., (2012)

Mortality rate of fish Mf 0.021 day−1 Mandal et al., (2012)

Respiration rate of Fish rf 0.0125 day−1 Mandal et al., (2012)

Harvest rate of Carnivo-

rous Fish

Hf 0.1090 day−1 Mandal et al., (2012)

Growth rate of Carnivo-

rous Fish

gf 0.6894 day−1 Mandal et al., (2012)

Half saturation constant

for zooplankton grazing

by Carnivorous Fish

kF 10 dimensionless Mandal et al., (2012)

Half saturation constant

for phytoplankton graz-

ing by zooplankton

kZ 38 dimensionless Mandal et al., (2012)
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Figure 1: Global stability of the PZF dynamical system for different parameter conditions. The graphics

depicted in this Figure are obtained by varying the downstream and upstream salinity effect. (a) salinity of

downstream (sd) = 12.30, salinity of upstream (su) = 8.23; (b) sd = 12.30, su = 8.33; (c) sd = 12.30, su = 8.51.
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Figure 2: 3D view of global stability of the PZF system for different parameter conditions with the same

parameter values used in Figure 1. (a) salinity of downstream (sd) = 12.30, salinity of upstream (su) = 8.23;

(b)sd = 12.17, su = 8.33; (c) sd = 12.30, su = 8.51.
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Figure 3: Limit cycle behaviour of the PZF dynamics for different parameter conditions. (a) 2D view of limit

cycle around E∗ of the system with salinity of downstream sd = 12.30, salinity of upstream su = 6.25; (b) 3D

view of limit cycle with sd = 12.17, su = 6.95, and other parameter are same as in Figure 1.
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Figure 4: (a) Top panel: represents the chaotic nature of the species with downstream salinity sd = 12.30, and

upstream salinity su = 5.25; (b) Bottom panel: represents the same chaotic nature of the species with respect

to the variation of su within the range 5 and 8.5, while sd is fixed at 12.30.
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Figure 5: The PZF system executed different phase diagram starting with a periodic orbit of period 6 to a

stable solution plot around an equilibrium point (2.622, 8.878, 10.12) via a chaotic orbit, a orbit of period 8, a

period doubling and a limit cycle respectively when the salinity of upstream varies fromsu = 4.50 to 8.0 while

downstream salinity sd is fixed at 12.30.
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3 Discussion:

Hooghly-Matla estuarine ecosystem is highly dynamic as the environment changes (change in water

temperature and salinity) and as more new species invade (cf. Rosith, (2013) and Bhaumik, (2013)).

This estuarine system is mixohaline in nature, where the salinity ranges from freshwater condition

(< 2ppt) to 22 ppt at various points along the stretch of the estuary (cf. Mandal et al., (2012)). In

the pre-monsoon, fresh water runoff from the upstream becomes very less and due to tidal influence

of the adjacent Bay of Bengal, the salinity increases. Throughout the year, a gradient of salinity is

observed between upstream and downstream area of the estuary (cf. Mandal et al., (2009)). Previous

studies indicate that changes in the estuarine fish assemblage are regulated by associated changes

in the salinity and estuarine mouth morphology (cf. Gillanders et al., (2011)). The Hooghly-Matla

estuarine system has funnel shaped sea face which is appropriate for optimum tidal flux (cf. Rosith,

(2013) and Bhaumik, (2013)).

Several research works are published on fish depletion in the Hooghly-Matla estuary. It is observed

that there is gradual regime shift of saline water from the upper stretches of estuary to the downstream

of the estuary during the past three decades and it happened when of Farakka Barrage is commissioned

in 1975 (cf. Sinha, (1996)). The shift of estuarine zone towards the downstream is due to the increased

ingress of fresh water to the Hooghly-Matla estuary, which resulted in the extension of freshwater zone.

This leads to disappearance of stenohaline fishes from the system. Barron et al., (2002) reported that

phytoplankton species of estuarine origin are more tolerant to low salinity than oceanic species. This

study suggests the co-existence of euryhaline fishes and estuarine phytoplankton in the Hooghly-Matla

estuarine system. The present study is in agreement with the above findings.

Another study which supports the present research is the ionic balance of zooplankton in estuarine

environment. It is observed that the propensity of invertebrate species richness near the upstream

of the estuary decreases as the salinity reaches the critical values (5 to 8 ppt). It occurs due to the

inability of invertebrates to regulate specific ionic concentrations at and below the critical salinity (cf.

Khlebovich, (1969)). Freshwater ingress in the monsoon period changes the salinity and this in turn

indirectly effects the dynamics of fish population of the estuary.

The present situation of Hooghly-Matla estuarine system represents stressed condition of the fish

species in the estuary. Model shows that the existence of fish in the system is possible only when

the growth rate of carnivorous fish population is greater than cumulative effect of excretion rate,

respiration rate (gf > m3). The growth rate is dependent on predation of zooplankton by carnivorous

fish population. Energy allocation is dependent on the life-history strategy of a fish species. It is widely

accepted that both material and energy are mobilized and reallocated for reproduction in fishes (cf.

Jobling, (1995)). This indicates that there exists energy trade off in physiological processes of the

estuarine species, where most of the energy earned through predation is allocated for reproduction

rather respiration and excretion. Hence, there is growth of fish population in the estuary. We have

also shown that the salinity effect has a prominent role in significantly stabilizing the coexistence

equilibrium in our model (cf. Figure 1 and Figure 2).
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