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Abstract

This paper is principally devoted to revisit the remarkable works of Keller and Osserman and
generalize some previous results related to the those for the class of quasilinear elliptic problem

{

div (φ(|∇u|)∇u) = a(x)f(u) in Ω,
u ≥ 0 in Ω, u = ∞ on ∂Ω,

where either Ω ⊂ R
N with N ≥ 1 is a smooth bounded domain or Ω = R

N . The function
φ includes special cases appearing in mathematical models in nonlinear elasticity, plasticity,
generalized Newtonian fluids, and in quantum physics. The proofs are based on comparison
principle, variational methods and topological arguments on the Orlicz-Sobolev spaces.
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1 Introduction

In this paper, let us consider the problems

{

∆φu = a(x)f(u) in Ω,
u ≥ 0 in Ω, u = ∞ on ∂Ω,

(1.1)
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and
{

∆φu = a(x)f(u) in R
N ,

u > 0 in R
N , u(x)

|x|→∞−→ ∞,
(1.2)

where Ω ⊂ R
N with N ≥ 1 is a smooth bounded domain, f is a continuous function that sat-

isfies f(0) = 0, f(s) > 0 for s > 0, the assumptions on a(x) will be fixed later on, and ∆φu =
div(φ(|∇u|)∇u) is called the φ−Laplacian operator, where the C1-function φ : (0,+∞) → (0,+∞)
satisfies:

(φ)1: (φ(t)t)′ > 0 for all t > 0;

(φ)2: there exist l,m > 1 such that

l ≤ φ(t)t2

Φ(t)
≤ m for all t > 0,

where Φ(t) =
∫ |t|
0 φ(s)sds, t ∈ R;

(φ)3: there exist l1, m1 > 0 such that

l1 ≤
Φ′′(t)t

Φ′(t)
≤ m1 for all t > 0.

Under the (φ)1-(φ)3 hypotheses, we have an wide class of φ−Laplacian operators, for instance:

(1) φ(t) = 2, t > 0. So, ∆φu = ∆u is the Laplacian operator,

(2) φ(t) = p|t|p−2, t > 0 and p > 1. In this case, ∆φu = ∆pu is called the p−Laplacian operator,

(3) φ(t) = p|t|p−2 + q|t|q−2, t > 0 and 1 < p < q. The ∆φu = ∆pu + ∆qu is called as (p&q)−
Laplacian operator and it appears in quantum physics [7],

(4) φ(t) = 2γ(1 + t2)γ−1, t > 0 and γ > 1. With this φ, the ∆φ operator models problems in
nonlinear elasticity problems [12],

(5) φ(t) = γ
(
√

(1 + t2)− 1)γ−1

√
1 + t2

, t > 0 and γ ≥ 1. It appears in models of nonlinear elasticity.

See, for instance, [9] for γ = 1 and [11] for γ > 1,

(6) φ(t) =
ptp−2(1 + t) ln(1 + t) + tp−1

1 + t
, t > 0 and (−1 +

√
1 + 4N )/2 > 1 appears in plasticity

problems [12].

The problems (1.1) (blow-up on the boundary) and (1.2) also model problems that appear in
the theory of automorphic functions, Riemann surfaces, population dynamics, subsonic motion of a
gas, non-Newtonian fluids, non-Newtonian filtration as well as in the theory of the electric potential
in a glowing hollow metal body.

Researches related to Problem (1.1) was initiated with the case φ(t) = 2, a = 1, and f(u) =
exp(u) by Bieberbach [8] (if N = 2) and Rademacher [27] (if N = 3). Problems of this type arise
in Riemannian geometry, namely if a Riemannian metric of the form |ds|2 = exp(2u(x))|dx|2 has
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constant Gaussian curvature −c2, then ∆u = c2exp(2u). Lazer and McKenna [19] extended the
results of Bieberbach and Rademacher for bounded domains in R

N satisfying a uniform external
sphere condition and for exponential-type nonlinearities.

Still for φ(t) ≡ 2, a remarkable development in the study of problem (1.1) is due to Keller
[15] and Osserman [24] that in 1957 established necessary and sufficient conditions for existence of
solutions for the problems

(I) :

{

∆u = f(u) in Ω,
u ≥ 0 in Ω, u = ∞ on ∂Ω,

(II) :

{

∆u = f(u) in R
N ,

u ≥ 0 in Ω, u(x)
|x|→∞−→ ∞,

where f is a non-decreasing continuous function. Keller established that

∫ +∞

1

dt
√

F (t)
< +∞, where F (t) =

∫ t

0
f(s)ds, t > 0 (1.3)

is a sufficient condition for the problem (I) to have a solution and (II) to have no solution. Besides
this, Keller showed that (II) has radially symmetric solutions if, and only if, f does not satisfies
(1.3). In this same year, Osserman proved this same result for sub solutions in (II). After these
works, (1.3) has become well-known as the Keller −Osserman condition for f .

The attention of researchers has turned in considering non-autonomous potentials in (I) and
(II), that is, particular operators of (1.1). One goal has been to enlarge the class of terms a(x) that
still assures existence or nonexistence of solutions for particular cases of (1.1). Another branch of
attention of researchers has been in the direction to extend the class of operators in the problems (I)
or (II). For instance, Mohammed in [23] and Radulescu at all in [1] have considered the problem
(1.1) with φ(t) = p|t|p−2, t > 0 with p > 1 and Ω a bounded domain. Recently, Zhang in [30]
considered the p(x)−Laplacian operator in the problem (1.1). About Ω = R

N , the problem (1.1)
was considered in [6] and references therein with φ(t) = p|t|p−2, t > 0 and 2 ≤ p ≤ N .

Before doing an overview about these classes of problems, we set that a solution of (1.1) (or
(1.2)) is a non-negative function u ∈ C1(Ω) (or a positive function u ∈ C1(RN )) such that u = ∞
on ∂Ω, that is, u(x) → ∞ as d(x) = inf{‖x− y‖ / y ∈ ∂Ω} → 0 (or u→ ∞ as |x| → ∞) and

∫

Ω
φ(|∇u|)∇u∇ψdx +

∫

Ω
a(x)f(u)ψdx = 0,

holds for all ψ ∈ C∞
0 (Ω) (or ψ ∈ C∞

0 (RN )).

Overview about (1.1). For φ(t) ≡ 2, the question of existence of solutions to (1.1) was investigated
in [4, 3] with 0 < a ∈ C(Ω) and f a Keller-Osserman function. In [16], Lair showed that (1.3) is
a necessary and sufficient condition for (1.1) to have a solution under the more general hypothesis
on a than previous paper, namely, a satisfying

(a): a : Ω → [0,+∞) is a cΩ − positive continuous function, that is, if a(x0) = 0 for some x0 ∈ Ω,
then there exists an open set Ox0

⊂ Ω such that x0 ∈ Ox0
and a(x) > 0 for all x ∈ ∂Ox0

.

Now for φ(t) = |t|p−2, t > 0, we believe that the issue of existence of solutions for (1.1) was first
studied in [10]. There the term a was considered equal 1. After this work, a number of important
papers have been considering issues as existence, uniqueness and asymptotic behavior for different
kinds of weight a and nonlinearities f . See, for instance, [21], [23], [13], [1], and references therein.
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Our objective related to the problem (1.1) is two-fold: first, we generalise previous results to
the φ−Laplacian operator whose appropriate setting is the Orlicz-Sobolev space. The lack of
homogeneity of the operator becomes our estimatives very delicate. Another purpose of this work
is to establish necessary and sufficient conditions on the term f for existence of solutions for (1.1) for
a in a class of potentials given satisfying (a). This result is new even for the context of p-Laplacian
operator.

To do this, let us consider

(f): lim inf
s→+∞

(inf{f(t) / t ≥ s}/f(s)) > 0, (f): lim sup
s→+∞

(sup{f(t) / 0 ≤ t ≤ s}/f(s)) <∞

and note that these assumptions are necessary because we require no kind of monotonicity on f ,
that is, if for instance we assume that f is non-decreasing, as is made in the most of the prior
works, the f and f hypotheses immediately are true.

Besides this, let us consider

(F):

∫ +∞

1

dt

Φ−1(F (t))
< +∞

and refer to it as f satisfying the φ−Keller−Osserman condition in reason from the Keller −
Osserman condition as it is known for the particular case φ(t) = 2.

Ou first result is.

Theorem 1.1 Assume that (φ)1 − (φ)3 hold and a satisfies (a). Then:

(i) if f satisfies (f) and (F), then Problem (1.1) admits at least one solution,

(ii) if f satisfies (f) and does not satisfy (F), then Problem (1.1) have no solution.

To highlight the last theorem and emphasize the importance of hypothesis (F ), we state.

Corollary 1.1 Assume that (φ)1 − (φ)3 hold, a satisfies (a), and f is a non-increasing function.

Then Hypothesis (F ) is a necessary and sufficient condition for the problem (1.1) has a solution.

We note that the above Corollary requires that f goes to infinity at infinity in a strong way
when a is bounded in Ω. Yet, if instead of this we permit that a(x) goes to infinity at boundary of
Ω in a strong way, we still can have solutions to (1.1) for f going to infinity at infinity in a slowly
way. These was showed in [2] or in [22] for φ(t) ≡ 2, Ω = B1(0) and a(x) a symmetric radially
function and f does not satisfying the Keller-Osserman condition. So, we can infer that a(x) at
boundary of Ω and f at infinity must behave in a inverse way sense to assure existence of solution.
The exactly way is an interesting open issue.

Overview about (1.2). In R
N , the last researches have showed that the existence of solutions for

(1.2) depends on how a(x) goes to 0 at infinity and f goes to infinity at infinity. In general, it is
known that for either “fast velocities for both” or “slow velocities for both” are sufficient conditions
for (1.2) has solutions. Interesting open issues are “how should behave a(x) and f at infinity in a
inverse way to ensure existence of solutions yet?”.

Besides this, the existence of solutions for (1.2) is sensible to the another measure related to
a(x), more exactly, “how radial is a(x) at infinity?”. To understand this and state our results, let
us introduce

aosc(r) = a(r)− a(r), r ≥ 0,
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where
a(r) = min{a(x) / |x| = r} and a(r) = max{a(x) / |x| = r}, r ≥ 0,

and note that aosc(r) = 0, r ≥ r0 if, and only if, a is symmetric radially in |x| ≥ r0, for some r0 ≥ 0.
For φ(t) ≡ 2, Lair and Wood in [18] considered a being a symmetric radially continuous function

(that is, aosc(r) = 0 for all r ≥ 0), f(u) = uγ , u ≥ 0 with 0 < γ ≤ 1 (that is, f does not satisfies
(F)) and showed that problem (1.1) has a solution if, and only if,

∫ ∞

1
ra(r)dr = ∞. (1.4)

Still in this context, in 2003, Lair [17] enlarged the class of potentials a(x) by permitting aosc
to assume not identically null values, but not too big ones. More exactly, he assumed

∫ ∞

0
raosc(r)exp(A(r))dr <∞, where A(r) =

∫ r

0
sa(s)ds, r ≥ 0 (1.5)

and proved that (1.2) with suitable f that includes uγ , 0 < γ ≤ 1, has a solution if, and only if,
(1.4) holds with a in the place of a.

Keeping us in this context, Mabroux and Hansen in [20] improved the above results by consider

∫ ∞

0
raosc(r)(1 +A(r))γ/(1−γ)dr <∞

in the place of (1.5). In the line of the previous results, recently, Rhouma and Drissi [6] considered
φ(t) = |t|p−2, t ∈ R with 2 ≤ p ≤ N , f a differentiable function that includes uγ with 0 < γ ≤ 1,
and they established necessary and sufficient conditions for existence of solutions for (1.2) around
the term a.

Our objective for the problem (1.2) is a little bit different of the above ones, because we are
principally concerned in establishing necessary and sufficient conditions for existence of solutions
of (1.2) around the function f , once fixed a potential a(x) in a bigger class than above results.
Besides this, we generalise the prior existence results to the context of φ− Laplacian operator.

To do this, first we note that (φ)1 and (φ)2 permit us to consider h−1 : (0,∞) → (0,∞) being
the inverse of h(t) = φ(t)t, t > 0. So, let us assume

(Aρ):

∫ ∞

1
h−1(Aρ(s))dr = ∞, where Aρ(s) = s1−N

∫ s

0
tN−1ρ(t)dt, s > 0

for suitable continuous function ρ : [0,∞) → [0,∞) given, and F : (0,∞) → (0,∞), defined by
F(t) = t

2f(t)
−1/l1 , be a non-increasing and bijective function such that

(F): F is invertible and

0 ≤ H :=

∫ ∞

0
η4(Aaosc(t))h

−1
(

f
(

F−1
(

∫ s

0
h−1(Aa(t))dt

)))

ds <∞.

After this, we state our existence result.
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Theorem 1.2 Assume that (φ)1−(φ)3 hold. Suppose that a(x) is a non-negative function satisfying

(Aa), f is a non-decreasing function that does not satisfies (F) and such that (F) holds. If

h−1(s+ t) ≤ h−1(s) + h−1(t), for all s, t ≥ 0, (1.6)

then there exists a solution u ∈ C1(RN ) of the problem (1.2) satisfying α ≤ u(0) ≤ (α+ ε)+H, for

each α, ε > 0 given.

Remark 1.1 About the above hypotheses, we have:

i) the hypothesis (1.6) is satisfied for ∆p-laplacian operator with 2 ≤ p <∞,

ii) the hypothesis (F) is trivially satisfied for a radial functions a(x) at infinity. In particular, if a
symmetric radially, then H = 0,

iii) as showed in [20] for the particular case φ(t) = 2, we can not ensure that the problem (1.2) has
solution, if we remove the hypothesis (F),

iii) If f(s) = sγ, s > 0 with 0 < γ < l1, then F(s) = s(l1−γ)/l1/2, s > 0.

Our next goal is to establish necessary conditions, around on f , for existence of solutions for
(1.2), once fixed a potential a satisfying (Aa). To do this, let us consider the problem

{

∆φu = a(|x|)f(u) in R
N ,

u ≥ 0 in R
N , u(x)

|x|→∞−→ ∞,
(1.7)

and denote by A = supA, where

A = {α > 0 / (1.7) has a radial solution with u(0) = α}.

So, we have.

Theorem 1.3 Assume that (φ)1 − (φ)3 hold, a(x) is a non-negative continuous function (not nec-
essarily radial) satisfying (Aa), and f is a non-decreasing function. If (1.2) admits a positive

solution, then A > 0 and (0, A) ⊂ A. Moreover, A = ∞ if, and only if, f does not satisfies (F).

To become clearest our two last Theorems, let us restate them as below.

Corollary 1.2 Assume that (φ)1 − (φ)3 hold. Suppose that a(x) is a non-negative symmetric

radially function satisfying (Aa) and f is a non-decreasing function. Then problem (1.2) admits a

sequence of symmetric radial solutions uk(|x|) ∈ C1(RN ) with uk(0) → ∞ as k → ∞ if, and only

if, f does not satisfies (F). Besides this, u′k ≥ 0 in [0,∞).

Remark 1.2 We emphasize that the equivalence stated in above Corollary is sharp in the sense

that we can have solutions for (1.2) with f satisfying (F) and a(x) as in (Aa). In particular, this

shows that A < ∞ may occur as well. We quote Gladkov and Slepchenkov [14], where an example

was build for the case φ(t) = 2, t > 0.

This paper is organized in the following way. In the section 2, we present the Orlicz and
Orlicz-Sobolev spaces where we work variationally some approximated problems. In the section 3,
we present some results of some auxiliary problems. In the section 4, we completed the proof of
Theorems 1.1 and Corollary 1.1 and in section 5 we prove Theorem 1.2 and 1.3.
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2 The Orlicz and Orlicz-Sobolev setting

In this section, we present an overview about Orlicz and Orlicz-Sobolev spaces, that will be the
appropriate settings to deal approximated problems of (1.1) in variational way, and also we give
some technical results which will be need later. For more details about Orlicz and Orlicz-Sobolev
spaces, see for instance [28].

A function M : R → [0,+∞) is called an N -function if it is convex, even, M(t) = 0 if, and only
if, t = 0, M(t)/t→ 0 as t → 0 and M(t)/t→ +∞ as t→ +∞. It is well known that an N -function
M can be rewritten as

M(t) =

∫ |t|

0
m(s)ds, t ∈ R, (1.8)

where m : [0,∞) → [0,∞) is a right derivative of M , non-decreasing, right continuous function,
m(0) = 0, m(s) > 0 for s > 0, and lims→∞m(s) = ∞. Reciprocally, if m satisfies the former
properties, then M defined in (1.8) is an N -function.

For an N -function M and an open set Ω ⊂ R
N , the Orlicz class is the set of function defined

by

KM (Ω) =

{

u : Ω → R / u is measurable and

∫

Ω
M(u(x)) dx <∞

}

and the vector space LM (Ω) generated by KM (Ω) is called Orlicz space. When M satisfies the
∆2-condition, namely, there exists a constant k > 0 such that

M(2t) ≤ kM(t), for all t ≥ 0,

the Orlicz class KM (Ω) is a vector space, and hence equal to LM (Ω).
Defining the following norm (Luxemburg norm) on LM (Ω) by

|u|M = inf

{

λ > 0 /

∫

Ω
M

(

u(x)

λ

)

dx ≤ 1

}

,

we have that the space
(

LM (Ω), | · |M
)

is a Banach space. The complement function ofM is defined
by

M̃(t) = sup
s>0

{ts−M(s)} (note that ˜̃M =M).

In the spaces LM (Ω) and LM̃ (Ω) an extension of Hölder’s inequality holds:

∣

∣

∣

∣

∫

Ω
u(x)v(x) dx

∣

∣

∣

∣

≤ 2|u|M |v|M̃ , for all u ∈ LM (Ω) and v ∈ LM̃(Ω).

As a consequence, to every ũ ∈ LM̃ (Ω) there exists a corresponds fũ ∈ (LM̃ (Ω))∗ such that

fũ(v) =

∫

Ω
ũ(x)v(x) dx, v ∈ LM (Ω).

Thus, we can define the Orlicz norm on the space LM̃(Ω) by

‖ũ‖M̃ = sup
|v|M≤1

∫

Ω
ũ(x)v(x) dx,
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and, in a similar way, we can define the Orlicz norm ‖ · ‖M on LM (Ω). The norms | · |M and ‖ · ‖M
are equivalent and satisfy

|u|M ≤ ‖u‖M ≤ 2|u|M .
It is important to detach that the LM (Ω) is reflexive if and only ifM and M̃ satisfy the ∆2-condition
and that

(

LM (Ω), | · |M
)∗

=
(

LM̃(Ω), ‖ · ‖M̃
)

and
(

LM̃ (Ω), | · |M̃
)∗

=
(

LM (Ω), ‖ · ‖M
)

are true.
Now, setting

W 1,M(Ω) =
{

u ∈ LM / ∃ vi ∈ LM (Ω) ;

∫

u
∂ϕ

∂xi
dx = −

∫

viϕdx, for i = 1, · · · , N and ∀ ϕ ∈ C∞
0 (Ω)

}

,

we have that W 1,M (Ω) = (W 1,M (Ω), | · |1,M ) is a Banach space, where

|u|1,M = |u|M + |∇u|M . (1.9)

Besides this, it is well known that W 1,M
0 (Ω), denoting the completion of C∞

0 (Ω) in the norm (1.9),
is a Banach space as well. It is reflexive if and only if M and M̃ satisfy the ∆2-condition. Still in
this case, we have

∫

Ω
M(u) ≤

∫

Ω
M(2d|∇u|) and |u|M ≤ 2d|∇u|M for all u ∈W 1,M

0 (Ω),

where 0 < d < ∞ is the diameter of Ω. This inequality is well known as Poincaré’s inequality. As
a consequence of this, we have that ‖u‖ := |∇u|M is an equivalent norm to the norm |u|1,M on

W 1,M
0 (Ω). From now on, we consider ‖ · ‖ as the norm on W 1,M

0 (Ω).
Hereafter, let us assume that (φ)1 and (φ)2 hold, that is, Φ is an N -function. We state three

lemmas. Some items of two first ones are due to Fugakai et all [12, Lemma 2.1].

Lemma 2.1 Suppose φ satisfies (φ)1 and (φ)2. Considerer

ξ1(t) = min{tl, tm}, ξ2(t) = max{tl, tm}, η1(t) = min{t1/l, t1/m }, η2(t) = max{t1/l, t1/m}, t ≥ 0.

Then,

(i) ξ1(ρ)Φ(t) ≤ Φ(ρt) ≤ ξ2(ρ)Φ(t), for ρ, t ≥ 0,

(ii) ξ1(|u|Φ) ≤
∫

ΩΦ(|u|) dx ≤ ξ2(|u|Φ), for u ∈ LΦ(Ω),

(iii) η1(ρ)Φ
−1(t) ≤ Φ−1(ρt) ≤ η2(ρ)Φ

−1(t), for ρ, t ≥ 0,

(iv) LΦ(Ω), W 1,Φ(Ω) and W 1,Φ
0 (Ω) are reflexives and separable.

Now, remembering that h denotes h(t) := φ(t)t, t > 0, we can show that.

Lemma 2.2 Suppose φ satisfies (φ)1 − (φ)3. If

ξ3(t) = min{tl1 , tm1}, ξ4(t) = max{tl1 , tm1}, η3(t) = min{t1/l1 , t1/m1 }

and η4(t) = max{t1/l1 , t1/m1}, t ≥ 0,

then
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(i) ξ3(ρ)h(t) ≤ h(ρt) ≤ ξ4(ρ)h(t), for ρ, t ≥ 0,

(ii) η3(ρ)h
−1(t) ≤ h−1(ρt) ≤ η4(ρ)h

−1(t), for ρ, t ≥ 0.

The next Lemma is very important in our approach to control solutions of approximated prob-
lems.

Lemma 2.3 Suppose φ satisfies (φ)1, (φ)2 and B = B(x, t) ∈ L∞
loc(Ω × R) is non-decreasing in

t ∈ R. Considerer u, v ∈ C1(Ω) satisfying

{

∆φu ≥ B(x, u) in Ω,
∆φv ≤ B(x, v) in Ω.

If u ≤ v on ∂Ω (that is, for each δ > 0 given there exists a neighborhood of ∂Ω in what u < v+ δ),
then u ≤ v in Ω.

Proof Since (φ)1 and (φ)2 hold, we able to show that

〈φ(|∇u|)∇u − φ(|∇v|)∇v,∇u−∇v〉 > 0 for all u, v ∈ C1(Ω) with u 6= v (1.10)

holds. So, by Theorem 2.4.1 in [26], it follows the claim.

3 Auxiliary results

Our principal strategy to show existence of solutions for (1.1) and (1.2) is to solve boundary value
problems with finite data, to control these solutions and then to get the solution for (1.1) or (1.2)
by a limit process. To do this, first we prove a variational sub and super solution theorem for the
problem

{

∆φu = g(x, u) in Ω,
u = k on ∂Ω,

(1.11)

where k ≥ 0 is an appropriate real number and g : Ω× R → R is a C(Ω̄× R) function.
We define a sub solution of (1.11) as being a function u ∈ W 1,Φ(Ω) ∩ L∞(Ω) such that u ≤ k

on ∂Ω and
∫

Ω
φ(|∇u|)∇u∇ψdx+

∫

Ω
g(x, u)ψdx ≤ 0

holds for all ψ ∈ W 1,Φ
0 (Ω) with ψ ≥ 0 in Ω. A super solution is a function u ∈ W 1,Φ(Ω) ∩ L∞(Ω)

satisfying the converse above inequalities. So, a solution is a function u ∈ W 1,Φ(Ω) ∩ L∞(Ω) that
is simultaneously a sub and a super solution for (1.11).

Proposition 3.1 Suppose that (φ)1 − (φ)3 hold and u, ū ∈ W 1,Φ(Ω) ∩ L∞(Ω) with u ≤ ū are sub

e super solutions of (1.11), respectively. Then there exists a u ∈W 1,Φ(Ω) ∩ L∞(Ω) with u ≤ u ≤ ū
solution of (1.11). Besides this, if g ∈ L∞(Ω× R), then u ∈ C1,α(Ω̄), for some 0 < α < 1.
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Proof Defining

h(x, t) =







g(x, u(x)), if t ≤ u(x)− k,
g(x, t+ k), if u(x)− k ≤ t ≤ ū(x)− k,
g(x, ū(x)), if t ≥ ū(x)− k,

we have that h ∈ C(Ω̄× R) ∩ L∞(Ω× R). Since, (φ)1 and (φ)2 hold, we have that

I(u) =

∫

Ω
Φ(|∇u|)dx+

∫

Ω
H(x, u)dx, u ∈W 1,Φ

0 (Ω)

is well-defined and I ∈ C1(W 1,Φ
0 (Ω),R), where

H(x, t) =

∫ t

0
h(x, s)ds, t ∈ R.

Besides this, it follows from Poincaré’s inequality and Lemma 2.1 that I is coercive, because

I(u) ≥
∫

Ω
Φ(|∇u|)dx− C

∫

Ω
|u|dx ≥ ξ1(‖u‖) − C|u|L1

≥ ξ1(‖u‖) − C̄‖u‖ → ∞ as ‖u‖ → ∞,

where C, C̄ > 0 are real constants. Finally, as h ∈ L∞(Ω × R), we have that I is weak s.c.i. Since
W 1,Φ

0 (Ω) is a reflexive space, there exists a

u0 ∈W 1,Φ
0 (Ω) such that I ′(u0) = 0 and I(u0) = min

v∈W 1,Φ
0

(Ω)
I(v),

that is, u0 is a weak solution of
{

∆φv = h(x, v) in Ω,
v = 0 on ∂Ω.

(1.12)

Now, we show that u− k ≤ u0 ≤ ū− k a.e. in Ω. In fact, by taking (u0 − (ū− k))+ ∈W 1,Φ
0 (Ω) as

a test function and using that (ū− k) is a super solution of (1.12), we obtain

∫

Ω
φ(|∇u0|)∇u0∇ (u0 − (ū− k))+ dx = −

∫

Ω
h(x, u0) (u0 − (ū− k))+ dx

= −
∫

Ω
g(x, ū) (u0 − (ū− k))+ dx

≤
∫

Ω
φ(|∇ū|)∇ū∇ (u0 − (ū− k))+ dx,

that is,

∫

{u0>ū−k}
〈φ(|∇u0|)∇u0 − φ(|∇ū|)∇ū,∇(u0 − ū)〉dx ≤ 0.

So, by using (1.10) we get the claim. In analogue way, we obtain u − k ≤ u0 in Ω. Setting
u = u0 + k, we have that it is a solution of (1.11) with u ≤ u ≤ ū a.e. in Ω. Finally, the regularity
follows from the Lemma 3.3 in [12]. This ends the proof.
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Now, setting the reflexive Banach space

W 1,Φ
rad (BR(0)) = {u ∈W 1,Φ(BR(0)) / u is symmetric radially},

where BR(x0) stands for the ball in R
N centred at x0 with radius R > 0. So, we have the below

result.

Corollary 3.1 Suppose that (φ)1 − (φ)3 hold and u, ū ∈ W 1,Φ
rad (BR(0)) ∩ L∞(BR(0)), with u ≤ ū,

are sub e super solutions for (1.11), respectively. Then there exists a u ∈W 1,Φ
rad (BR(0))∩L∞(BR(0))

with u ≤ u ≤ ū solution of (1.11).

Proof Following the same arguments as in the above proof, we obtain an u0 ∈W 1,Φ
0,rad(BR(0)), with

u− k ≤ u0 ≤ ū− k, and
I(u0) = min{I(v) / v ∈W 1,Φ

0,rad(BR(0))},
where

W 1,Φ
0,rad(BR(0)) = {u ∈W 1,Φ

0 (BR(0)) / u is symmetric radially}.
So, by the principle of symmetric criticality [25], we obtain that

I ′(u0) = 0 and I(u0) = min
u∈W 1,Φ

0
(BR(0))

I(u).

In analogue way, we show that u = u0 + k is a symmetric radially solution for (1.11), with
u ≤ u ≤ ū.

Now, let us emphasize the solution of problem

{

∆φv = cg(v) in BL(0),
v ≥ 0 in BL(0), v = k on ∂BL(0),

(1.13)

where c, k, L > 0 are real constants given.

Corollary 3.2 Suppose that (φ)1-(φ)3 hold. If g is a non-decreasing and continuous function

on [0,∞) such that g(t) > 0 for t > 0, then there exists a v(|x|) = vk,L(|x|) ∈ W 1,Φ
rad (BL(0)) ∩

C1,α(B̄L(0)), for some 0 < α < 1, satisfying:

(i) 0 ≤ v(0) ≤ v(|x|) ≤ k, v′(0) = 0, and v′ ≥ 0 on [0, L],

(ii) vk,L ≤ vk+1,L and vk,L ≥ vk,L+1 on [0, L],

(iii) the inequalities

η−1
2

(

c

l1

)
∫ r

v(0)

dτ

Φ−1(G(v(0), τ))
≤ r ≤ η−1

1

(

c

m1N

)
∫ r

v(0)

dτ

Φ−1(G(v(0), τ))
(1.14)

hold for all 0 ≤ r ≤ L, where η1 and η2 were defined at Lemma 2.1 and

G(x, y) :=

∫ y

x
g(t)dt for x, y ∈ R with 0 ≤ x < y.
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Proof By applying the Proposition 3.1 and Corollary 3.1 with u = 0 and u = k as sub solution and
super solution, respectively, we obtain a v(|x|) = vk,L(|x|) ∈ W 1,Φ

rad (BL(0)) ∩ C1,α(B̄L(0)) solution
of (1.13). Besides this, by using Lemma 2.3, we prove (ii). To show (i) and (iii), let us set

vr,ǫ(t) =







1 if 0 ≤ t ≤ r,
linear if r ≤ t ≤ r + ǫ,
0 if r + ǫ ≤ t ≤ L,

for each ε > 0 given such that 0 ≤ r < r + ǫ < L.
Now, by taking ψ(x) = vr,ǫ(|x|) as a test function, we have

−
∫

BL(0)
φ(|∇v|)∇v∇ψdx = c

∫

BL(0)
g(v(x))ψdx,

holds. So,
1

ǫ

∫

Ar,r+ǫ

φ(|v′|)v′dx = c

∫

Br(0)
g(v)dx + c

∫

Ar,r+ǫ

g(v)vr,ǫ(|x|)dx,

where Ar,r+ǫ = {x ∈ R
N , r ≤ |x| ≤ r + ǫ}. That is,

1

ǫ

∫ r+ǫ

r
tN−1φ(|v′|)v′dt = c

∫ r

0
tN−1g(v)dt + c

∫ r+ǫ

r
tN−1g(v)vr,ǫdt

and by taking ǫ→ 0, we obtain

rN−1φ(|v′|)v′ = c

∫ r

0
tN−1g(v)dt ≥ 0, 0 < r < L, (1.15)

because g is non-negative, that is, v′ ≥ 0 on [0, L].
Besides this, it follows from (φ)1 and (φ)2 that h(s) = φ(s)s, s > 0, is a C1-increasing homeo-

morphism on [0,∞) such that h(0) = 0. As g is continuous, it follows from (1.15) that

v′ ∈ C1([0, R)) and v′(r) = h−1
(

cr1−N

∫ r

0
tN−1g(v)dt

)

, 0 < r < L, (1.16)

and in particular, we have v′(0) = 0. This ends the proof of (i).
To prove (iii), first we note that (1.15) implies that

(φ(v′)v′)′ +
N − 1

r
φ(v′)v′ = cg(v)

is holds true for all 0 < r < L. As a consequence of these, we have that

[Φ′(v′(r))]′ ≤ cg(v(r)), for all 0 < r < L.

Besides this, by using (1.15), g , and v increasing, we obtain

[Φ′(v′(r))]′ = cg(v) − N − 1

r
φ(v′)v′

≥ cg(v) − N − 1

r

(cr

N
g(v)

)

=
c

N
g(v(r)), for all 0 < r < L,
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that is,
1

N
cg(v(r)) ≤ [Φ′(v′(r))]′ ≤ cg(v(r)), 0 < r < L.

Now, by using of v′(0) = 0 and (φ)3, we have

c

N

∫ v(r)

v(0)
g(t)dt ≤

∫ r

0
[Φ′(v′(t))]′v′(t)dt =

∫ r

0
Φ′′(v′(t))v′(t)v′′(t)dt

≤ m1

∫ r

0
[Φ(v′(t))]′dt = m1Φ(v

′(r)), 0 < r < L

and, in similar way,

c

∫ v(r)

v(0)
g(t)dt ≥ l1Φ(v

′(r)), 0 < r < L,

that is,
c

m1N

∫ v(r)

v(0)
g(t)dt ≤ Φ(v′(r)) ≤ c

l1

∫ v(r)

v(0)
g(t)dt, 0 < r < L. (1.17)

Now by using the definition of G(x, y), we can rewrite (1.17) as

Φ−1
( c

m1N
G(v(0), v(r))

)

≤ v′(r) ≤ Φ−1
( c

l1
G(v(0), v(r))

)

, 0 < r ≤ L,

to obtain

∫ v(r)

v(0)

dτ

Φ−1( c
l1
G(v(0), τ))

≤ r ≤
∫ v(r)

v(0)

dτ

Φ−1( c
m1N

G(v(0), τ))
, 0 < r ≤ L.

So, by using the Lemma 2.1, we obtain (1.14). This completes the proof of the Corollary.

4 On bounded domain

Before proving Theorems 1.1, we need of the next result to help us to control a sequence of solutions
of an approximate problem.

Lemma 4.1 Assume that (φ)1 − (φ)3 hold. If Ω = BR(0), a(x) is a positive symmetric radially

function and f satisfies (f) and (F), then Problem (1.1) admits at least one symmetric radially

solution u(|x|) ∈ C1(BR(0)) such that u′(0) = 0 and u′ ≥ 0 for 0 < r < R.

Proof By applying Corollary 3.1, with u = 0 and u = k − 1, we obtain an uk ∈ W 1,Φ
rad (BR(0)) ∩

C1,α(B̄R(0)), for some α ∈ (0, 1), satisfying

{

∆φuk = a(|x|)f(uk) in BR(0),
uk ≥ 0 in BR(0), uk = k − 1 on ∂BR(0),

(1.18)

for each k ∈ N with k ≥ 2 given. Besides this, it follows from Lemma 2.3, that

0 ≤ u1 ≤ u2 ≤ · · · ≤ uk ≤ · · · in BR(0), (1.19)
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and a consequence of this, it there exists

0 ≤ u(x) := lim
k→∞

uk(x) ≤ ∞, for each x ∈ BR(0).

In the following, let us show that 0 ≤ u(x) <∞, for each x ∈ BR(0), and it is a solution of (1.1).
To do this, given an x0 ∈ BR(0), let us denote by a∞ = min{a(t) / 0 ≤ t = |x− x0| ≤ L} > 0 and
apply Corollary 3.2 with L = R− |x0| > 0, to obtain a vk(|x− x0|) ∈ W 1,Φ

rad (BL(0)) ∩ C1,α(B̄L(0))
that satisfies

{

∆φvk = a∞f(vk) in BL(0),
vk ≥ 0 in BL(0), vk = k on ∂BL(0),

(1.20)

for each k ∈ N given. As another consequence of Corollary 3.2 and Lemma 2.3, we have

0 ≤ u1 ≤ u2 ≤ · · · ≤ uk ≤ vk ≤ vk+1 ≤ · · · in BR(0), (1.21)

that is, there exists
0 ≤ vx0,L := lim

k→∞
vk(x0) ≤ ∞.

We claim that vx0,L < ∞. In fact, assume that there exists a k0 such that vk0(x0) > 0 (on the
contrary, we have nothing to do). Let us assume x0 = 0 to simplify our reasoning. So, given M > 1
and denoting by F (x, y) = F (y)−F (x) for x, y ∈ R, with F defined at (1.3), it follows from Lemma
2.1 and Φ−1 non-decreasing, that

∫ ∞

vk(0)

dτ

Φ−1(F (vk(0), τ))
≤

∫ ∞

0

dτ

Φ−1(F (vk(0), vk(0) + τ))

≤
∫ 1

0

dτ

Φ−1(F (vk(0), vk(0) + τ))
+

∫ M

1

dτ

Φ−1(F (vk(0), vk(0) + τ))

+

∫ ∞

M

dτ

Φ−1(F (vk(0), vk(0) + τ))

≤ 1

Φ−1(f(vk(0)))

∫ 1

0

dτ

τ1/l
+

1

Φ−1(f(vk(0)))

∫ M

1

dτ

τ1/m

+

∫ ∞

M

dτ

Φ−1(F (0, τ))

=
1

Φ−1(f(vk(0)))

[ l

l − 1
− m

m− 1
+

m

m− 1
M

m−1

m

]

+

∫ ∞

M

dτ

Φ−1(F (τ))
,

(1.22)
where we used in the fourth inequality that

F (vk(0), vk(0) + τ) ≥ F (0, τ) = F (τ) and F (vk(0), vk(0) + τ) ≥ f(vk(0))τ for all τ ≥ 0,

because f is non-decreasing.
Now, supposing by contradiction that vx0,L = ∞, it follows from (1.14) and (1.22), that

0 < L ≤ η−1
1

(

a∞
m1N

)

lim
k→∞

∫ k

vk(0)

dτ

Φ−1(F (vk(0), τ))

≤ η−1
1

(

a∞
m1N

)

lim
k→∞

∫ ∞

vk(0)

dτ

Φ−1(F (vk(0), τ))
≤ η−1

1

(

a∞
m1N

)
∫ ∞

M

dτ

Φ−1(F (τ))
.
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for all M > 1 given. So, doing M → ∞, we obtain a contradiction by using the hypothesis (F).
So, we showed that u(x) = limk→∞ uk(x) for each x ∈ BR(0) is well defined and by using

standard arguments we are able to prove that u ∈ C1(BR(0)) is a symmetric radially solution for
(1.1). Besides this, by using similar arguments as those used to show that v′ ≥ 0 in Corollary 3.2,
we can show that u′ ≥ 0 as well. These complete the proof of Theorem 4.1.

Now, we prove the Theorem 1.1, by using the Lemma 4.1.

Proof of (i): By applying the Proposition 3.1, we get a uk ∈ C1,α(Ω̄) for some 0 < α < 1 that
satisfies uk ≤ uk+1 and

{

∆φuk = a(x)f(uk) in Ω,
uk≥0 in Ω, uk = k on ∂Ω,

(1.23)

for all k ∈ N given. Now, given a x0 ∈ Ω, let us consider two cases.
First, assume a(x0) > 0. Then, there exists a neighborhood V ⊂ Ω of x0 such that a(x) > 0

for all x ∈ V̄ , that is, m = minV̄ a > 0. Besides this, it follows from the hypothesis (f) that the
non-increasing function

f(t) = inf{f(s), s ≥ t}, t ≥ 0 (1.24)

is well defined and fulfils: 0 ≤ f ≤ f , f(s) = 0 if, and only if s = 0, satisfies the φ−Keller−Osserman
condition. In fact, let τ = lim inft→+∞{f(t)/f(t)}. It follows from (f), there exists a M > 0 such
that f(t) ≥ τf(t) for all t > M . So,

F (t) =

∫ t

0
f(s)ds =

∫ M

0
f(s)ds +

∫ t

M
f(s)ds ≥ τ

2
F (t), t ≥M,

that is, by Lemma 2.1, we have

Φ−1(F (t)) ≥ Φ−1(
τ

2
F (t)) ≥ η1(τ/2)Φ

−1(F (t)), t ≥M.

These show our claim.
Now, let us consider the problem

{

∆φv = mf(v) in V,

v ≥ 0 in V, v = ∞ on ∂V,
(1.25)

where f is defined at (1.24). So, it follows from Lemmas 4.1 and 2.3 that, there exists a v ∈ C1(Ω)
solution of (1.25) that satisfies 0 ≤ uk ≤ uk+1 ≤ v in V .

Now, if x0 ∈ Ω is such that a(x0) = 0, then it follows from cΩ−positive hypothesis under a that
there exists a neighborhood V ⊂ Ω of x0 such that a(x) > 0 for all x ∈ ∂V . By the compactness
of ∂V , there exist open sets Vi, i = 1, . . . , n such that

∂V ⊂ ∪n
i=1Vi and a(x) > 0, for all x ∈ Vi.

So by above arguments, we obtain that uk ≤ vi in Vi, where vi ∈ C1(Vi) is a solution of

{

∆φv = mif(v) in Vi,

v ≥ 0 in Vi, v = ∞ on ∂Vi,
(1.26)

and mi = minV̄i
a > 0. Hence, there exists a real constant C = CV > 0 such that 0 ≤ uk ≤ C

in ∂V . Again, by the Lemma 2.3, we obtain uk ≤ C in V . That is, in both cases, uk is bounded
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locally on Ω. So, by standard arguments, we can show that uk → u ∈ C1(Ω) and u is a solution of
(1.1).

Proof of (ii): Denoting by

M = max
Ω

a > 0 and f(t) = sup{f(s), 0 ≤ s ≤ t}, t ≥ 0,

it follows from the hypotheses (a) and (f) that: M > 0, f(0) = 0, f(t) > 0 for t > 0, f is
non-decreasing function, and f does not satisfy (F).

Now, assume by contradiction, that problem (1.1) admits a solution u ∈ C1(Ω). So, it follows
from above informations that u satisfies

{

∆φu = a(x)f(u) ≤ Mf(u) in Ω,
u ≥ 0 in Ω, u = ∞ on ∂Ω.

(1.27)

On the other hand, it follows from Proposition 3.1, that there exists a uk ∈ C1(Ω) satisfying
{

∆φuk = Mf(uk) in Ω,
uk ≥ 0 in Ω, uk = k on ∂Ω,

(1.28)

and
0 ≤ u1 ≤ u2 ≤ . . . ≤ uk ≤ . . . ≤ u,

as a consequence of Lemma 2.3. So, there exists an ω ∈ C1(Ω) such that uk → ω in C1(Ω),
0 ≤ ω ≤ u, and

{

∆φω = Mf(ω) in Ω,
ω ≥ 0 in Ω, ω = ∞ on ∂Ω.

(1.29)

Finally, considering R > 0 such that Ω ⊂⊂ BR(0), it follows from Corollary 3.1 and (1.14) that
there exists a wk ∈ C1(BR(0)) with w

′
k ≥ 0 satisfying

{

∆φwk = Mf(wk) in BR(0),
wk ≥ 0 in BR(0), wk = k on ∂BR(0),

(1.30)

and

η−1
2

(

M

l1

)
∫ k

wk(0)

dτ

Φ−1(F (τ))
≤ η−1

2

(

M

l1

)
∫ k

wk(0)

dτ

Φ−1(F (τ)− F (wk(0)))
≤ R,

for each k > 0 given, where F (s) =
∫ s
0 f(t)dt, s ≥ 0.

Since, f does not satisfies (F), there exists a k0 > 0 such that wk0(0) > min{ω(x) / x ∈ Ω}.
This is impossible, because wk0 ≤ ω in Ω, by using the Lemma 2.3. This completes the proof of
Theorem 1.1.

5 On whole RN

We begin this section with the below Lemma which is a radial version of Theorem 1.2. We emphasize
that in it we do not require the hypotheses (F) and (1.6). So, let us consider

{

∆φu = ρ(|x|)f(u) in R
N ,

u > 0 in R
N , u(x)

|x|→∞−→ ∞,
(1.31)

and state our below lemma.
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Lemma 5.1 Assume that (φ)1 − (φ)3 hold, ρ is a non-negative continuous function satisfying

(Aρ), and f is a non-decreasing function such that (F) is not satisfied. Then Aρ = (0,∞), where
Aρ = {α > 0 / (1.31) has a radial solution with u(0) = α}.

Proof Given α > 0, consider the problem
{

(rN−1φ(|u′|u′))′ = rN−1ρ(r)f(u(r)), r > 0
u′(0) = 0, u(0) = α.

(1.32)

Since ρ and f are continuous, we can follow the arguments in [29], to conclude that there exist
a Γ(α) > 0 (maximal extreme to the right for the existence interval of solutions for (1.32) and a
uα ∈ C2(0,Γ(α))∩C1([0,Γ(α))) solution of (1.32) on (0,Γ(α)). If we had Γ(α) <∞ for some α > 0,
then we would have, by ordinary differential equations theory, that uα(r) → ∞ as r → Γ(α)−.

So, uα(|x|) would be a symmetric radially solution of the problem

{

∆φu = ρ(|x|)f(u) in BΓ(α)(0),

u ≥ 0 in BΓ(α)(0), u = ∞ on ∂BΓ(α)(0),

but this is impossible by Theorem 1.1, because f does not satisfy (F).
Besides this, it follows from f non-decreasing, Lemma 2.2 and (Aρ), that

uα(r) ≥ α+

∫ r

0
h−1

(

f(α)s1−N

∫ s

0
tN−1ρ(t)dt

)

ds

≥ α+ η3(f(α))

∫ r

0
h−1

(

s1−N

∫ s

0
tN−1ρ(t)dt

)

ds→ ∞, as r → ∞,

that is, uα(|x|), x ∈ R
N radial solution of

{

∆φu = ρ(|x|)f(u) in R
N ,

u ≥ α in R
N , u(x)

|x|→∞−→ ∞,

with uα(0) = α. That is, α ∈ Aρ. This ends our proof.

Proof of Theorem 1.2. Given β > α > 0, it follows from the Lemma 5.1 that there exist positive
radial solutions uα and uβ of the problems

{

∆φu = a(|x|)f(u) RN ,

uα(0) = α, u(x)
|x|→∞−→ ∞,

and

{

∆φu = a(|x|)f(u) RN ,

uβ(0) = β, u(x)
|x|→∞−→ ∞,

respectively.
Besides this, it follows from uα, f non-decreasing, Lemma 2.2, and (Aa) that

uα(r) ≤ α+

∫ r

0
h−1(Aa(t))f(uα(t))dt ≤ 2η4(f(uα(r)))

∫ r

0
h−1(Aa(t))dt

≤ 2(f(uα(r)))
1/l1

∫ r

0
h−1(Aa(t))dt,

for all r > 0 sufficiently large. That is,

uα(r) ≤ F−1
(

∫ r

0
h−1(Aa(t))dt

)

, for all r >> 0. (1.33)
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Now, setting
0 < S(β) = sup{r > 0 / uα(r) < uβ(r)} ≤ ∞,

for α > 0 given, we claim that S(β) = ∞ for all β > α + H. In fact, by assuming this is not
true, then there exists a β0 > α + H such that uα(S(β0)) = uβ(S(β0)). So, by using that f is
non-increasing and uα ≤ uβ on [0, S(β0)], we obtain that

β0 ≤ α+

∫ S(β0)

0

[

h−1
(

s1−N

∫ s

0
tN−1a(t)f(uα(t))dt

)

−h−1
(

s1−N

∫ s

0
tN−1a(t)f(uα(t))dt

)]

ds (1.34)

holds.
On the other hands, it follows from f , uα non-decreasing, (1.6), and Lemma 2.2, that

0 ≤
[

h−1
(

s1−N
∫ s
0 t

N−1a(t)f(uα(t))dt
)

− h−1
(

s1−N
∫ s
0 t

N−1a(t)f(uα(t))dt
)]

χ[0,S(β)](s)

=
[

h−1
(

s1−N
∫ s
0 t

N−1[a(t)− a(t)]f(uα(t))dt+ h−1
(

s1−N
∫ s
0 t

N−1a(t)f(uα(t))dt
))

− h−1
(

s1−N
∫ s
0 t

N−1a(t)f(uα(t))dt
)]

χ[0,S(β)](s) ≤ h−1
(

s1−N
∫ s
0 t

N−1[a(t)− a(t)]f(uα(t))dt
)

≤ h−1(Aaosc(s)f(uα(s)) ≤ η4(Aaosc(s))h
−1(f(uα(s)))

≤ η4(Aaosc(s))h
−1

(

f
(

F−1
(

∫ r
0 h

−1(Aa(t))dt
)))

:= H(s), s ≥ 0,

where χ[0,S(β)] stands for the characteristic function of [0, S(β)].
So, it follows from the hypothesis (F) and (1.34), that

β0 ≤ α+

∫ ∞

0
H(s)ds ≤ α+H,

but this is impossible.
Now, by setting β = (α+ ǫ) +H, for each α, ǫ > 0 given, and considering the problem

{

∆φu = a(x)f(u) in Bn(0),
u ≥ 0 in Bn(0), u = uα on ∂Bn(0),

(1.35)

we can infer from Proposition 3.1 that there exists a wn = wn,α ∈ C1,ν(Bn), for some 0 < ν < 1,
solution of (1.35) satisfying 0 < α ≤ uα ≤ wn ≤ uβ in Bn for all n ∈ N. So, by compactness, there
exists a w ∈ C1(RN ) such that w(x) = limn→∞wn(x) is a solution of (1.1).

By adjusting the above arguments, we are able to prove the below remark, which generalises
the main result in [5].

Remark 5.1 If we assume the stronger hypothesis

H̃ :=

∫ ∞

0
[η4(a

∗(s))− η3(a∗(s))]h
−1

(

sf
(

F−1
(

∫ s

0
h−1(Aa∗(t))dt

)))

ds <∞,

instead of (F), we obtain the same results of Theorem 1.2 with H̃ in the place of H, without

assuming (1.6), where

a∗(r) = min{a(x); |x| ≤ r}, a∗(r) = max{a(x); |x| ≤ r}, r ≥ 0.
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Proof of Theorem 1.3. Assume that w ∈ C1(RN ) is a positive solution of (1.1). So, given 0 < α <
w(0), it follows by the arguments in the proof of Lemma 5.1 that there exists a radial solution
uα ∈ C1(BΓ(α)(0)) of the problem

{

∆φu = a(|x|)f(u) in BΓ(α)(0),

u ≥ 0 in BΓ(α)(0), u = ∞ on ∂BΓ(α)(0),
(1.36)

if Γ(α) <∞. Yet, this is impossible by Lemma 2.3, that is, Γ(α) = ∞. Besides this, it follows from
(Aa) that uα is a solution of the problem (1.7), that is, α ∈ A. In particular, it follows from the
above arguments that (0, A) ⊂ A.

Finally, if we assume that f satisfies the φ−Keller-Osserman condition, it follows from Theorem
1.1 that the problem

{

∆φu = a(|x|)f(u) in B1(0),
u ≥ 0 in B1(0), u = ∞ on ∂B1(0),

admits a solution. So, it follows from Lemma 2.3 that A < ∞. Reciprocally, if A <∞, then uA+1

is a radial solution of
{

∆φu = a(|x|)f(u) in BΓ(A+1)(0),

u ≥ 0 in BΓ(A+1)(0), u = ∞ on ∂BΓ(A+1)(0),

where 0 < Γ(A+ 1) <∞. So, by Theorem 1.1, we have that f satisfies (F). These ends the proof.
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