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Abstract

We proposed a minimal model to describe the Floquet band structure of two-dimensional materials with

light-induced resonant inter-band transition. We appliedit to graphene to study the band features caused by

the light irradiation. Linearly polarized light induces pseudo gaps (gaps are functions of wavevector), and

circular polarized light causes real gaps on the quasi-energy spectrum. If the polarization of light is linear

and along the longitudinal direction of zigzag ribbons, flatedge bands appear in the pseudo gaps, and if

is in the lateral direction of armchair ribbons, curved edgebands can be found. For the circular polarized

cases, edge bands arise and intersect in the gaps of both types of ribbons. The edge bands induced by the

circular polarized light are helical and those by linear polarized light are topologically trivial ones. The

Chern number of the Floquet band, which reflects the number ofpairs of helical edge bands in graphene

ribbons, can be reduced into the winding number at resonance.

PACS numbers: 73.22.Pr, 72.80.Vp, 73.20.At, 78.67.-nt
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I. INTERODUCTION

Graphene has drawn much attention since it was discovered inlaboratory.1,2 Graphene has a

bundle of interesting physical properties and great potential for application. Pristine graphene is

a gapless Dirac material, while an energy gap is needed for the fabrication of switching devices.

There are a few causes, such as staggered substrate influence3–5 and the spin-orbit coupling,6–8 to

open a gap on the spectrum of graphene. The latter is more attractive because it makes graphene

a topologic insulator and leads to helical edge bands which is topologically protected by the time-

inversion symmetry.6 However, the spin-orbit coupling in graphene is proven to betoo weak to

detect.2 Recent researches implied that the time dependent driving may have the similar effects as

the spin-orbit coupling in graphene: it generates gaps and turn a normal material into a special

topologic insulator called Floquet topologic insulator.9–13 Besides in condensed matters, the inter-

est of the novel effects of driving is increasing in cold atoms14–16 and other fields. Recently, the

Floquet topologic phase was realized in a photonic crystal,17 which indicated the validity of the

theoretical prediction. Light irradiation is an importantperiodically driving source, and the irradi-

ation induced energy gaps in a topological insulator was observed recently.18 These experiments

provide the probability to generate gaps and change the topologic property of graphene by light

irradiation.19–22

Light irradiation generates energy gaps in graphene by two mechanisms. First, under the af-

fection of light, the electron near the Dirac point emits a photon and re-absorbs it to renormalize

the band structure, and a gap is generated at the Dirac point to separate the conduction and va-

lence bands,23–26 which is an effect of second order perturbation. Second, light induces resonant

transition between conduction band and valence band states, and produces dynamic gaps on the

quasi-energy spectrum atE = ±~ω/2, whereω is the angular frequency of light.27–30 The latter is

more attractive because it is a first order process.

Typically, periodically driven system is treated in frequency space,31–33 also called Floquet

space. The whole space is divided into infinite subspaces according to the number of photons

absorbed and emitted. The system is solved by truncating theFloquet space at a finite dimension.

For the weak driven cases, the main physics is determined by the one-photon processes which can

be well understood. It is possible to develop a short theory to handle the driven system by only

taking one-photon processes into account. The theory should simplify the calculation, reproduce

the results of other more complicated methods, and more importantly, give more insight on the
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physics of driven systems.

In this paper, we proposed a minimal model to describe the Floquet band structure of two-

dimensional materials with light-induced resonant inter-band transition and applied the theory

to graphene. Linearly polarized light induced pseudo gaps,and circular polarized light causes

real gaps on the Floquet quasi-energy spectrum of graphene.For the circular polarization cases,

edge bands arise in the gaps and intersect for both zigzag andarmchair ribbons. Interestingly,

linear polarized illumination can also lead to edge bands, depending on the type of ribbon and the

polarization orientation. If the polarization is longitudinal along zigzag ribbons, flat edge bands

appear in the pseudo gaps, and if in the lateral direction of armchair ribbons, curved edge bands

arise. The topologic property of the Floquet bands is reflected by the Chern number, and we found

it can be reduced into the winding number at resonance. The edge bands induced by the circular

polarized light are helical and those by linear polarized light are topologically trivial ones.

II. FLOGUET THEORY OF INTER-BAND OPTIC TRANSITION

We consider a two-band system consisting of one conduction band and one valence band.

When a laser normally irradiates on the graphene sheet, a time-dependent vector potential

A(t) = A cosωt is introduced, whereA is the amplitude vector ofA, ω is the angular fre-

quency, andt is the time. If the system is weakly perturbed, in frame ofA · p approximation,

the time-dependent Hamiltonian reads

H0(t) = Hk −A(t) · p, (1)

whereHk is the Hamiltonian without light irradiating, andp is the momentum operator. The

eigen values ofHk are the conduction and valence band energies denoted byǫc and ǫv, and the

corresponding eigen states are|c〉 and |v〉, respectively. In Eq. (1), the electron chargee and the

electron effective massm are set to be 1. In basis of|c〉 and|v〉, the time-dependent Hamiltonian

(rotating wave approximate is used) can be written as

H(t) =



















ǫc
1
2g∗e−iωt

1
2geiωt ǫv



















, (2)

whereg is the transition element defined by

g = −A · 〈v| p |c〉. (3)
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The time-dependent Schrödinger equationi∂tψ = H(t)ψ, in which the~ is set to be 1, can be

reduced into a static oneHψ = Eψ by introducing the unitary transformation

U =



















e−i(ǫc−δ/2)t 0

0 e−i(ǫv+δ/2)t



















, (4)

whereδ = (ǫc − ǫv) − ω is the detune. The static Hamiltonian is obtained by

H = UHU+ + iU
∂U+

∂t
=

1
2



















δ g∗

g −δ



















. (5)

Solving the eigen problem of the static Hamiltonian, we havethe eigen pairs

E± = ±
1
2

D, ψ± =
1
√

2



















√
| ± 1+ δ/D|

±eiθ
√
| ± 1− δ/D|



















, (6)

whereD =
√

|g|2 + δ2 andθ = arg(g) is the complex angle. Go back to the basis of|c〉 and|v〉, and

we have the quantum states satisfying the time-dependent Shrödinger equation forH(t),

Uψ±e
−iE± t. (7)

According to the Floquet theorem, the solutions of time-dependent Shrödinger equation for pe-

riodic time-dependent Hamiltonian must be of the formψ = e−iEF tψF , whereEF is time indepen-

dent andψF is of the same period asH(t). The quantitiesEF andψF are called as Floquet energy

and Floquet state respectively, which are the solution pairof the Floquet equationHFψF
= EFψF ,

whereHF
= H(t)− i∂t is the Floquet operator. One can verify that, ifEF andψF satisfy the Floquet

equation,EF
+ nω andψFeinωt for arbitrary integern are also a Floquet pair. To eliminate the non-

uniqueness, we choose propern so that the Floquet energies are recovered to the the conduction

and valence band energies for infinitesimal weak driven intensity. After doing so, we have the

Floquet energies

EF
± =

1
2

(ǫc + ǫv) ±
1
2

(ηD + ω) , (8)

whereη is the sign ofδ. The corresponding Floquet states are

ψF
+
= aF |c〉 + bF |v〉eiωt,

ψF
− = b∗F |c〉e−iωt − aF |v〉,

(9)
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FIG. 1: (Color Online) (a-c) Floguet bands, (d-f) density ofstates, and (g-i) winding number for bulk

graphene sheet underx-polarized irradiation withAx = 0.1γ, y-polarized irradiation withAy = 0.1γ, and

circularly polarized irradiation with
√

|Ax|2 + |Ay|2 = 0.1γ, whereγ is the atom-atom hopping energy.

where the coefficientsaF andbF are defined as

aF =
1
√

2

√

1+
∣

∣

∣

∣

∣

δ

D

∣

∣

∣

∣

∣

, bF = eiθ η
√

2

√

1−
∣

∣

∣

∣

∣

δ

D

∣

∣

∣

∣

∣

. (10)

In Eqs. (8) and (9), when we setg → 0, the Floquet energiesEF
± are reduced intoǫc andǫv, and

Floquet statesψF
± are recovered to|c〉 and|v〉, respectively.

The irradiation has two effects. (1) It generates resonant gaps on the Floquet spectrum. (2)

It can change the topologic property of band structure and create new edge bands, depending on

the polarization of irradiation. In the following, we will apply the above theory to graphene and

investigate the how the two effects act on graphene.

III. RESONANT GAPS OF BULK GRAPHENE

There are two non-equivalent valleys in graphene. The low-energy Hamiltonian of valleyK

reads

Hk = σ · k =



















0 kx − iky

kx + iky 0



















, (11)
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whereσ = (σx, σy) is the Pauli matrix set,k = (kx, ky) is the wavevector, and the Fermi velocity

vF is set to be 1. The band energies and band states are

ǫc/v = ±k, |c, v〉 = 1
√

2



















1

±eiϕ



















, (12)

wherek = (k2
x + k2

y )1/2 andϕ = arg(kx + iky) reflect the amplitude and orientation ofk. Because of

p = ∇kHk, and according to Eq. (3), the transition element is calculated as

g = i (Ax sinϕ − Ay cosϕ), (13)

whereAx andAy are the components ofA in x- andy-directions. Substitutingǫc, ǫv, andg into Eq.

(8), we have the Floquet energies of graphene. On the Floquetenergy spectrum, gaps can be found

at resonance occurs, saying,δ = 0 or equivalentlyk = ω/2. Whenk takes the two infinite closed

valuesω/2 + 0+ andω/2 − 0+, EF
+

has two finitely different values, and the difference between

them is the gap. By takingδ = 0+ and 0−, the gap is calculated as

∆ = |g(ϕ)|. (14)

As happens toEF
+
, another identical gap can be found in the spectrum ofEF

− .

If the light is x-polarized, we have the gap profile∆ = |Ax sinϕ|. Figure 1 (a) shows the Floquet

energy band for this case. One can find the two pseudogaps atE = ±ω/2. The gaps reach its

maximum atϕ = π/2 and are closed atϕ = 0. If the light isy-polarized, we have∆ = |Ay cosϕ|.
The gaps have maximum and zeros atϕ = 0 andϕ = π/2, respectively, as shown in Figure 1 (b).

For these linear polarization cases, no real gap opens on thedensity of states of the Floquet energy

bands, as Fig. 1 (d) and (e) demonstrate.

If the light is circularly polarized, the vector potential amplitude can be modeled byAx = A

andAy = iA. According to Eq. (13) and (14), we immediately haveg = Aeiϕ and∆ = A. The

gaps are independent ofϕ and are real gaps. Figures 1 (c) and (f) show the Floquet band and the

density of states. For ellipse circular polarization, the real gap (the minimum of the gap function

∆) is determined by the vector component along the short radius of polarization ellipse, saying,

∆min = |Ashort|. (15)

Letting the short radius to be zero, the case is reduced to thelinear polarization.
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FIG. 2: (Color Online) Sketches of (a) zigzag and (b) armchair graphene ribbons. The recutangulars illus-

trate the translational unit cells. The wavefunction on theatoms represented by the filled circles will be

studied.

IV. ELECTRONIC STRUCTURES OF GRAPHENE RIBBONS UNDER LASER IRRADIATION

We use tight-binding model to investigate the electronic structures of graphene ribbons under

irradiation to check the existence of edge bands in the resonant gaps. The two typical types of

graphene ribbons, the zigzag and armchair ones, and their layout, are demonstrated in Figure 2.

The tight-binding Hamiltonian is

Htb = γ
∑

〈i, j〉
c+i c j, (16)

whereγ = 2.7eV is the carbon-carbon hopping energy,c+i (ci) is the creation (annihilation) op-

erator on atomi, and the summation runs over all adjacent atoms. The vector potential can be

included in the tight-binding Hamiltonian by Piels substitution

γ → γe−iA(t)·rα ≈ γ[1 − iA(t) · rα], (17)

where ra means the position vector form one atom to an adjacent atom. We first calculate the

dispersion energies and the corresponding quantum states of un-irradiated graphene ribbons by

choosing a translational unit cell (see Fig. 2), which includes N atoms supposedly. Second,

we calculate the transition matrixg using the obtained eigen states. (Becauseky is not a good
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FIG. 3: (Color Online) Weighted dispersions of graphene ribbons with 100 lateral atoms under (a-b)x-

polarized irradiation withAx = 0.1γ, (c-d) y-polarized irradiation withAy = 0.1γ, and (e-f) circularly

polarized irradiation with
√

|Ax|2 + |Ay|2 = 0.1γ. The labelling rule of atoms in lateral direction can be

found in Fig. 2.

quantum number, for one longitudinal wavevectorkx, there areN eigen states. One half of them

are conduction band states and the other half are valence band states. The transition elementg,

which is a pure number previously, now have to be treated as a matrix of dimensionN/2× N/2).

Third, we construct the ribbon version of the Hamiltonian inEq. (5) for eachkx, which is a matrix

of the dimensionN×N. Solving the eigen problem and according to Eq. (8), we have theN Floquet

energies (the numbers ofEF
+

and ofEF
− for one value ofkx are bothN/2). Finally, we introduce the

time-averaged state density,29 which can be calculated in the Floquet space. The calculation detail
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will be presented in the Appendix, and here we only list the result without proven as

ρ0 =

∑

EF
+

{

|aF |2 δ(E − EF
+
) + |bF |2 δ[E − (EF

+
− ω)]

}

+

∑

EF
−

{

|bF |2 δ(E − EF
−) + |aF |2 δ[E − (EF

− + ω)]
}

.

(18)

The state density can be viewed as weighted dispersion of thesystem under irradiation. In deed,

Eq. (18) can be understood intuitively without complicatedarithmetics. According to Eq. (9), the

Floquet stateψF
+

consists of two parts with different weights. Correspondingly, the quantum states

of the system,e−iEF
+ tψF
+
, is composed by|c〉 weighted by|aF |2 with the quasi energyEF

+
and |v〉

weighted by|bF |2 with the quasi energyEF
+
−ω, which results in the states density indicated in the

first line of Eq. (18). Similar analysis of statee−iEF
− tψF
− leads to the state density in the second line.

Figure 3 shows the weighted dispersions of zigzag and armchair graphene ribbons under light

irradiation with various polarization configurations. These dispersions are something like front-

view of bulk dispersions showed in Fig. 1 a-c. It is interesting that one can observe Floquet edge

bands within the resonant gaps for both zigzag and armchair ribbons under both linear and circular

polarized illumination. For the linear polarization alongx-direction, flat edge bands can be found

on the zigzag ribbon but cannot on the armchair ribbon. Whilefor the y-polarized irradiation,

edge bands only arise on the armchair ribbon, and the edge bands are not flat but curved ones. For

the case of circular polarization, edge bands can be found for both zigzag and armchair ribbons

and two band-crossings take place in the resonant gaps atE = ±ω/2, reproducing the results

in Refs.[29] and [30]. The edge bands for this case are helical (the quantum states of them go

forward on one edge and comeback on the opposite edge), whichare topologically different from

edge bands for linear polarization. The topologic origination of the helical edge bands will be

discussed later. All the edge bands, for both linear and circular polarizations, are half-weighted.

The dispersion properties are inherited from Eq. (5). Figure 4 shows the dispersions of the

Hamiltonian in Eq. (5) on zigzag and armchair graphene ribbons. The in-gap electronic structures

are similar to those in Fig. 3. Edge bands can be found forx-polarized illumination on zigzag

ribbon, for y-polarized case on armchair ribbon, and for circular polarization on both types of

ribbons. We investigate the wavefunctions of the edge states for the linear polarization cases, and

verify that they are localized at ribbon edges and decay intothe bulk, as Inset 1 and 2 demonstrate.

The curved edge bands close toE = 0 in Fig. 4 (d) are not very clear because of the interference

of other states nearby, which can be improved by doing the calculation on wider ribbons, as Inset

9



3 shows. The wavefunctions of edge bands for the circular polarization case were extensively

studied in Refs.[29] and [30], and so we skip over detailed discussion of them hereafter.

V. CHERN NUMBER AND WINDING NUMBER

The edge bands for circular polarization case have their topologic origin, which can be digged

out from Eq. (5). The static Hamiltonian in the equation has the form ofH = h(k) · σ. Whenk

changes through out the whole Brillouin zone, the endpoint of vectorh maps out a closed surface,

which does or does not contain the origin. The Chern number ofthe upper band is defined by

the number of times of the origin contained by the surface. Ifwe cut the surface using the plane

hz = 0, i.e.,δ = 0, the intersection between the plane and the surface is a closed curve. The number

of times of the origin contained by the surface is just that enclosed by the curve, In other words,

the Chern number is reduced to the winding number at resonance. Settingδ = 0 and recalling

g = |g|eiθ, the azimuthal angle ofh = (hx, hy) is just the complex angle ofg. So, the winding

number reads

C = 1
2π

∮

δ=0
dθ. (19)

For linear polarized light illuminating case, saying,Ax = 0 or Ay = 0 in Eq. (13),g is a pure

imaginary number. Under the constrictionδ = 0, k evolutes as a circle with the radiusk = ω/2,

Letting the azimuthal angleϕ change from 0 to 2π, the endpoint of complex vectorg evolutes as a

vertical line on the complex plane, as indicated in Figs. 1. (g) and (h). Because the line lies across

the origin, the upper part of the dispersion of Eq. (5) and thelower part have degenerate points and

no real gap is formed (see Fig 4). For the circular polarization, we haveg = Aeiϕ. The endpoint of

g is a circle with the radiusA whenϕ change from 0 to 2π and the winding number is 1. Figure 1

(i) shows the winding number picture for this situation.

For the other valleyK′, the bulk Hamiltonian in Eq. (11) should beHk = σ
∗ · k, and In Eqs. (12)

and (13)ϕ is replaced with−ϕ. For the circular polarized irradiation case, we have the transition

elementg = Ae−iϕ. Because of the time-reversal symmetry between the two valleys,k evolutes

reversely with respect to that in valleyK (from 2π to 0),g as a complex vector varies in the same

way as before, and the winding number for valleyK′ is 1 too. In total, the Chern number of the

system described by Eq. (5) is 2, which implies there are two crossings of edge bands (four edge

bands) regardless of the edge type of graphene ribbon and theedge bands are helical ones: the
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forward moving states of the edge bands are localized on one edge and backward on the other

edge. The helicity of the edge bands are controlled by the rotation of the circular polarization. If

reversing the polarization, saying,Ax = A and Ay = −iA, the evolution of the endpoint ofg is

reversed, the Chern number turns to be−2, and the states of the edge bands flow reversely.

For the circular polarization case, the two crossings and four edge bands in the gap atE = 0

in Fig. 4 are shared by two resonant gaps in the Floquet spectrum atE = ±ω/2 in Fig. 3, i.e.,

two edge bands and one crossing in one gap. For the zigzag ribbon, the two valleys are resolved

and the two edge bands in the gapE = ω/2 (or −ω/2) are equally hosted by the two valleys,

saying, one edge band in one valley. The edge band is composedof a half-weighted forward-flow

band and a half-weighted backward-flow band. If the linear conductance for the single spin and

single valley is measured in the resonant gaps of zigzag ribbon under the illumination with circular

polarization, the half integer conductance quanta can be expected.

VI. SUMMARY

A theoretical model was proposed to describe the Floquet band structure of graphene under

irradiation by taking into resonant inter-band transition. Linearly polarized light induces pseudo

gaps, and circular polarized light causes real gaps on the quasi-energy spectrum. If the polarization

of light is linear and along the longitudinal direction of zigzag ribbons, flat edge bands appear in

the pseudo gaps, and if is in the lateral direction of armchair ribbons, curved edge bands can be

found. For the circular polarized cases, edge bands arise and intersect in the gaps of both types

of ribbons. The edge bands induced by the circular polarizedlight are helical and those by linear

polarized light are topologically trivial ones. We reducedthe Chern number of the Floquet band

into the winding number at resonance.
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FIG. 4: (Color Online) Dispersions of Eq. (5) for graphene ribbons with 100 lateral atoms under (a-b)

x-polarized irradiation withAx = 0.1γ, (c-d) y-polarized irradiation withAy = 0.1γ, and (e-f) circularly

polarized irradiation with
√

|Ax|2 + |Ay|2 = 0.1γ. Insets 1 and 2 show the wavefunction maglitude square

on specified atom lines indicated by filled circles in Fig. 2. Inset 3 is the zoom picture of (d) around the

resonant gap of a wider ribbon with 300 lateral atoms.

Appendix A: State density

The Floquet Hamiltonian can be expressed as a static matrix in the Floquet space, the basis of

which are chosen as
{

(|v〉, |c〉)einωt
}

. Because only one-photon processes are considered, the basis

are truncated to be

(|v〉, |c〉)eiωt, (|v〉, |c〉), (|v〉, |c〉)e−iωt.

The matrix element of an arbitrary operatorÔ between the states|µ〉e−imωt and|ν〉e−inωt is defined

by

1
T

∫ T

0
〈µ|Ô|ν〉ei(m−n)ωtdt,

12



whereT = 2π/ω is the period of the time-dependent parameter. The Floquet Hamiltonian in the

Floquet space reads

HF
=















































































ǫv − ω 0

0 ǫc − ω g∗/2

g/2 ǫv 0

0 ǫc g∗/2

g/2 ǫv + ω 0

0 ǫc + ω















































































.

The matrix is is block diagonal and we rewrite the it block-by-block as

HF
=

















































ǫv − ω
H + (ǫA − ω)/2

H + (ǫA + ω)/2

ǫc + ω

















































,

whereǫA = (ǫc + ǫv)/2 is the average band energy andH is the Hamiltonian matrix defined in

Eq. (5). The Floquet Green’s functionGF(E) = (E − HF)−1 can be easily calculated by matrix

inversion block-by-block. The spectrum operator in the Floquet space is defined as

ρ =
1
2π

[GF(E + i0+) −GF(E − i0+)].

The time-averaged state density can be obtained by tracing the spectrum matrix in the zero-photon

subspace,29 saying.

ρ0 =

∑

n=3,4

ρn,n.

The calculation is straight and the result reads

ρ0 = |aF |2 δ(E − EF
+
) + |bF |2 δ[E − (EF

+
− ω)]

+ |bF |2 δ(E − EF
−) + |aF |2 δ[E − (EF

− + ω)].

The equation is derived for bulk graphene, and the ribbon version of it is just Eq. (18).

∗ Electronic address: yang.mou@hotmail.com
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