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Abstract

We proposed a minimal model to describe the Floquet bandtstriof two-dimensional materials with
light-induced resonant inter-band transition. We appii¢o graphene to study the band features caused by
the light irradiation. Linearly polarized light inducesepslo gaps (gaps are functions of wavevector), and
circular polarized light causes real gaps on the quasiggrgwectrum. If the polarization of light is linear
and along the longitudinal direction of zigzag ribbons, #dfje bands appear in the pseudo gaps, and if
is in the lateral direction of armchair ribbons, curved etigads can be found. For the circular polarized
cases, edge bands arise and intersect in the gaps of bothdfygbbons. The edge bands induced by the
circular polarized light are helical and those by lineargpiaked light are topologically trivial ones. The
Chern number of the Floguet band, which reflects the numbeai$é of helical edge bands in graphene

ribbons, can be reduced into the winding number at resonance
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I. INTERODUCTION

Graphene has drawn much attention since it was discoverkdbamatory:? Graphene has a
bundle of interesting physical properties and great pakfdr application. Pristine graphene is
a gapless Dirac material, while an energy gap is needed éofiatbrication of switching devices.
There are a few causes, such as staggered substrate inffdemzethe spin-orbit coupling? to
open a gap on the spectrum of graphene. The latter is moaetate because it makes graphene
a topologic insulator and leads to helical edge bands whkitbpologically protected by the time-
inversion symmetr$.However, the spin-orbit coupling in graphene is proven tddmeweak to
detect Recent researches implied that the time dependent drivinghave the similarféects as
the spin-orbit coupling in graphene: it generates gaps amda normal material into a special
topologic insulator called Floquet topologic insulat@? Besides in condensed matters, the inter-
est of the novel ects of driving is increasing in cold ato#st® and other fields. Recently, the
Floquet topologic phase was realized in a photonic cryétahich indicated the validity of the
theoretical prediction. Light irradiation is an importg@riodically driving source, and the irradi-
ation induced energy gaps in a topological insulator wagesl recently® These experiments
provide the probability to generate gaps and change thddgiegproperty of graphene by light
irradiation1®-22

Light irradiation generates energy gaps in graphene by teohanisms. First, under the af-
fection of light, the electron near the Dirac point emits atoim and re-absorbs it to renormalize
the band structure, and a gap is generated at the Dirac pog@parate the conduction and va-
lence band$3-26 which is an &ect of second order perturbation. Second, light inducesnaast
transition between conduction band and valence band statdsgproduces dynamic gaps on the
quasi-energy spectrum Bt= +7iw/2, wherew is the angular frequency of light=° The latter is
more attractive because it is a first order process.

Typically, periodically driven system is treated in freqog spaceél=22 also called Floquet
space. The whole space is divided into infinite subspacexr@iog to the number of photons
absorbed and emitted. The system is solved by truncatingltugiet space at a finite dimension.
For the weak driven cases, the main physics is determineldebgrie-photon processes which can
be well understood. It is possible to develop a short theotyandle the driven system by only
taking one-photon processes into account. The theory disbmplify the calculation, reproduce

the results of other more complicated methods, and more rigpiby, give more insight on the



physics of driven systems.

In this paper, we proposed a minimal model to describe thgudbband structure of two-
dimensional materials with light-induced resonant irdand transition and applied the theory
to graphene. Linearly polarized light induced pseudo gapsd, circular polarized light causes
real gaps on the Floquet quasi-energy spectrum of graphenrehe circular polarization cases,
edge bands arise in the gaps and intersect for both zigzagramchair ribbons. Interestingly,
linear polarized illumination can also lead to edge bandpedding on the type of ribbon and the
polarization orientation. If the polarization is longiindl along zigzag ribbons, flat edge bands
appear in the pseudo gaps, and if in the lateral directionrathair ribbons, curved edge bands
arise. The topologic property of the Floquet bands is reftkbl the Chern number, and we found
it can be reduced into the winding number at resonance. Tge leands induced by the circular

polarized light are helical and those by linear polarizgtitiare topologically trivial ones.

II. FLOGUET THEORY OF INTER-BAND OPTIC TRANSITION

We consider a two-band system consisting of one conductéod land one valence band.
When a laser normally irradiates on the graphene sheet, edapendent vector potential
A(t) = Acoswt is introduced, wheréA is the amplitude vector afA, w is the angular fre-
guency, and is the time. If the system is weakly perturbed, in frameAof p approximation,

the time-dependent Hamiltonian reads
Ho(t) = Hk—A(t) - p, 1)

where Hy is the Hamiltonian without light irradiating, ang is the momentum operator. The
eigen values oHy are the conduction and valence band energies denotegdnyde,, and the
corresponding eigen states greand|v), respectively. In Eq.[{1), the electron chaeand the
electron #ective massn are set to be 1. In basis @) and|v), the time-dependent Hamiltonian

(rotating wave approximate is used) can be written as

(2)

whereg is the transition element defined by

g=—-A-(vplo. (3)
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The time-dependent Schrodinger equatiégy = H(t)y, in which then is set to be 1, can be

reduced into a static ory = Ey by introducing the unitary transformation

grilec—0/2) 0
U= , (4)

0 a-ilar+o/2)

whered = (& — &) — w is the detune. The static Hamiltonian is obtained by

+ 5 o
#H = UHU* + 100 L0 9] (5)

Solving the eigen problem of the static Hamiltonian, we hifneeeigen pairs

£ —+1D ye = 1 |+1+6/D] (©)
27 7T \2| etz T=9/D] |

whereD = +/|g?2 + 62 andf = arg() is the complex angle. Go back to the basigpaind|v), and

we have the quantum states satisfying the time-dependeddigyer equation foH(t),
Uy.e Bt 7)

According to the Floquet theorem, the solutions of timea&®ent Shrodinger equation for pe-
riodic time-dependent Hamiltonian must be of the fagm: e E 'y, whereEF is time indepen-
dent and)F is of the same period d4(t). The quantitie€" andy"™ are called as Floquet energy
and Floquet state respectively, which are the solutiongfaine Floquet equatioR™y" = EFyF,
whereH" = H(t)-id, is the Floguet operator. One can verify tha&ff andy"™ satisfy the Floquet
equationE" + nw andyFe™! for arbitrary integen are also a Floquet pair. To eliminate the non-
uniqueness, we choose propeso that the Floquet energies are recovered to the the caoduct
and valence band energies for infinitesimal weak drivemsitg. After doing so, we have the
Floquet energies

1 1
El =S(e+6a) =D +w), (8)
=2 2
wheren is the sign ob. The corresponding Floguet states are

y" = aglc) + belvye™,
9)

yF = bElo)e™ - ag|v),
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FIG. 1. (Color Online) (a-c) Floguet bands, (d-f) densitysbates, and (g-i) winding number for bulk

graphene sheet undapolarized irradiation withA, = 0.1y, y-polarized irradiation withA, = 0.1y, and

circularly polarized irradiation with,/|Ac2 + |Ay|2 = 0.1y, wherey is the atom-atom hopping energy.

where the cofficientsag andbg are defined as

1 [0 - ‘5‘
= — by = — - 1= 10
ar 7 1+‘D, be = € 7 1 5 (10)

In Egs. [8) and[{9), when we sgt— 0, the Floquet energiei" are reduced inte, ande,, and

Floquet stateg” are recovered tfe) and|v), respectively.

The irradiation has twofeects. (1) It generates resonant gaps on the Floquet spec@m
It can change the topologic property of band structure aadternew edge bands, depending on
the polarization of irradiation. In the following, we wilpply the above theory to graphene and

investigate the how the twdtfects act on graphene.

1. RESONANT GAPSOF BULK GRAPHENE

There are two non-equivalent valleys in graphene. The loergy Hamiltonian of valleyKk

reads

0 Ke—i
He=0 k= <1k , (11)
ke+ik, 0



whereo = (o, oy) is the Pauli matrix setk = (ky, ky) is the wavevector, and the Fermi velocity
Vg is set to be 1. The band energies and band states are

1 1
Eciv = ik, |C’ V> = ﬁ( étp )3 (12)
+

wherek = (k% + k%)% andy = arg, + ik,) reflect the amplitude and orientation kef Because of

p = ViHy, and according to EqLI3), the transition element is catedlas
g =i (Acsing — A, cosy), (13)

whereA, andA, are the components &f in x- andy-directions. Substituting, &, andg into Eq.
@), we have the Floquet energies of graphene. On the Flegeegy spectrum, gaps can be found
at resonance occurs, sayidg= 0 or equivalenthk = w/2. Whenk takes the two infinite closed
valuesw/2 + 0" andw/2 - 0%, EF has two finitely diferent values, and theftirence between

them is the gap. By taking= 0" and 0, the gap is calculated as

A =19(p)l. (14)

As happens t&F, another identical gap can be found in the spectruiof

If the light is x-polarized, we have the gap profite= |A, sing|. Figure[l (a) shows the Floquet
energy band for this case. One can find the two pseudogdps=at-w/2. The gaps reach its
maximum aty = /2 and are closed gt = 0. If the light isy-polarized, we have = |A, cosy|.
The gaps have maximum and zerogat 0 andy = 7/2, respectively, as shown in Figre 1 (b).
For these linear polarization cases, no real gap opens atetisty of states of the Floquet energy
bands, as Fid.]1 (d) and (e) demonstrate.

If the light is circularly polarized, the vector potentiahplitude can be modeled b, = A
andA, = iA. According to Eq. [(IB) and(14), we immediately haye A€ andA = A. The
gaps are independent gfand are real gaps. Figurlgs 1 (c) and (f) show the Floquet bachthe
density of states. For ellipse circular polarization, teal gap (the minimum of the gap function

A) is determined by the vector component along the short sagfipolarization ellipse, saying,
Amin = |Ashord- (15)

Letting the short radius to be zero, the case is reduced tinge polarization.



FIG. 2. (Color Online) Sketches of (a) zigzag and (b) armchephene ribbons. The recutangulars illus-
trate the translational unit cells. The wavefunction ondkmms represented by the filled circles will be

studied.

IV. ELECTRONIC STRUCTURESOF GRAPHENE RIBBONSUNDER LASER IRRADIATION

We use tight-binding model to investigate the electroniocdtires of graphene ribbons under
irradiation to check the existence of edge bands in the ergagaps. The two typical types of
graphene ribbons, the zigzag and armchair ones, and tlyeiutlaare demonstrated in Figure 2.

The tight-binding Hamiltonian is
Ho =y ) c'c; (16)

wherey = 2.7eV is the carbon-carbon hopping energy,(c;) is the creation (annihilation) op-
erator on atom, and the summation runs over all adjacent atoms. The veotenpal can be

included in the tight-binding Hamiltonian by Piels sulgiibn
y — ye 0T~ y[1 i A) - 1,], (17)

wherer, means the position vector form one atom to an adjacent atoe firdf calculate the
dispersion energies and the corresponding quantum sthtesioadiated graphene ribbons by
choosing a translational unit cell (see Figl 2), which idelsN atoms supposedly. Second,

we calculate the transition matrix using the obtained eigen states. (Becakisis not a good
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FIG. 3: (Color Online) Weighted dispersions of graphendaiis with 100 lateral atoms under (a-b)
polarized irradiation withA, = 0.1y, (c-d) y-polarized irradiation withA, = 0.1y, and (e-f) circularly
polarized irradiation with,/|AX|2 +|Ay]?2 = 0.1y. The labelling rule of atoms in lateral direction can be
found in Fig.[2.

guantum number, for one longitudinal wavevedtgrthere areN eigen states. One half of them
are conduction band states and the other half are valencedtates. The transition elememt
which is a pure number previously, now have to be treated aatexnof dimensionN/2 x N/2).
Third, we construct the ribbon version of the HamiltoniafEop (8) for eactk,, which is a matrix
of the dimensioMNxN. Solving the eigen problem and according to Ed. (8), we haebltFloquet
energies (the numbers Bf and ofEF for one value ok, are bothN/2). Finally, we introduce the

time-averaged state dens#vhich can be calculated in the Floquet space. The calculdetail



will be presented in the Appendix, and here we only list theltewithout proven as
po= D {lacl* 6(E ~ ED) + Ioel* 6[E ~ (EL - )]
Ef

+ 3 {Ibe26(E — EF) + fac o[ — (E7 + )]
EF

(18)

The state density can be viewed as weighted dispersion afystem under irradiation. In deed,
Eq. (I18) can be understood intuitively without complicadeithmetics. According to EqLI9), the
Floquet state/” consists of two parts with fierent weights. Correspondingly, the quantum states
of the systemg E-tyF, is composed byc) weighted bylag|? with the quasi energ§F and |v)
weighted bylbg|? with the quasi energf” — w, which results in the states density indicated in the
first line of Eq. [IB). Similar analysis of stateE 'y leads to the state density in the second line.
Figure[3 shows the weighted dispersions of zigzag and arimgtehene ribbons under light
irradiation with various polarization configurations. Beedispersions are something like front-
view of bulk dispersions showed in Figl 1 a-c. It is intenegtihat one can observe Floquet edge
bands within the resonant gaps for both zigzag and armdbawms under both linear and circular
polarized illumination. For the linear polarization aloxglirection, flat edge bands can be found
on the zigzag ribbon but cannot on the armchair ribbon. Wlaitethe y-polarized irradiation,
edge bands only arise on the armchair ribbon, and the edgks laae not flat but curved ones. For
the case of circular polarization, edge bands can be founddth zigzag and armchair ribbons
and two band-crossings take place in the resonant gaps-at+w/2, reproducing the results
in Refs.] andO]. The edge bands for this case are Hdlica quantum states of them go
forward on one edge and comeback on the opposite edge), wtedbpologically dierent from
edge bands for linear polarization. The topologic origorabf the helical edge bands will be
discussed later. All the edge bands, for both linear andil@rgolarizations, are half-weighted.
The dispersion properties are inherited from Hg. (5). Fgdishows the dispersions of the
Hamiltonian in Eq.[(b) on zigzag and armchair graphene misbd he in-gap electronic structures
are similar to those in Figll3. Edge bands can be foundpolarized illumination on zigzag
ribbon, fory-polarized case on armchair ribbon, and for circular pairon on both types of
ribbons. We investigate the wavefunctions of the edge statehe linear polarization cases, and
verify that they are localized at ribbon edges and decaytih@dulk, as Inset 1 and 2 demonstrate.
The curved edge bands closeHoc= 0 in Fig.[4 (d) are not very clear because of the interference

of other states nearby, which can be improved by doing theutzion on wider ribbons, as Inset
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3 shows. The wavefunctions of edge bands for the circulaarpaltion case were extensively
studied in RefSIEQ] and [30], and so we skip over detailsdwssion of them hereafter.

V. CHERNNUMBER AND WINDING NUMBER

The edge bands for circular polarization case have theglégjic origin, which can be digged
out from Eg. [b). The static Hamiltonian in the equation Hesform of H = h(k) - . Whenk
changes through out the whole Brillouin zone, the endpdiméotor h maps out a closed surface,
which does or does not contain the origin. The Chern numbdénefupper band is defined by
the number of times of the origin contained by the surfacevdfcut the surface using the plane
h, =0, i.e.,6 = 0, the intersection between the plane and the surface isadturve. The number
of times of the origin contained by the surface is just thal@sed by the curve, In other words,
the Chern number is reduced to the winding number at resena®ettingé = 0 and recalling
g = |gl€’, the azimuthal angle ofi = (hy, hy) is just the complex angle af. So, the winding

number reads

1
C==—@ do 19
2 P (19)

For linear polarized light illuminating case, sayiny, = 0 or Ay = 0 in Eq. [13),9is a pure
imaginary number. Under the constrictiér= 0, k evolutes as a circle with the radids= w/2,
Letting the azimuthal angle change from 0 to 2, the endpoint of complex vectgrevolutes as a
vertical line on the complex plane, as indicated in Higs gl afd (h). Because the line lies across
the origin, the upper part of the dispersion of Hd. (5) anddher part have degenerate points and
no real gap is formed (see Hijy 4). For the circular polarirgtive havey = A€¥. The endpoint of
g is a circle with the radiug\ wheng change from 0 to 2and the winding number is 1. Figure 1
(i) shows the winding number picture for this situation.

For the other valleK’, the bulk Hamiltonian in Eq[{(11) should b = o*-k, and In Eqs.[(112)
and [I3)y is replaced with-¢. For the circular polarized irradiation case, we have thpsdition
elementy = Ae'¢. Because of the time-reversal symmetry between the tweyslk evolutes
reversely with respect to that in vallé&y (from 27 to 0), g as a complex vector varies in the same
way as before, and the winding number for vall€yis 1 too. In total, the Chern number of the
system described by Ed.1(5) is 2, which implies there are twesings of edge bands (four edge
bands) regardless of the edge type of graphene ribbon aretitieebands are helical ones: the
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forward moving states of the edge bands are localized on dge and backward on the other
edge. The helicity of the edge bands are controlled by thaiont of the circular polarization. If
reversing the polarization, sayingy = A andA, = —iA, the evolution of the endpoint af is
reversed, the Chern number turns to{# and the states of the edge bands flow reversely.

For the circular polarization case, the two crossings and éolge bands in the gap Bt= 0
in Fig. [4 are shared by two resonant gaps in the Floquet sped@tE = +w/2 in Fig. [3, i.e.,
two edge bands and one crossing in one gap. For the zigzagnrilte two valleys are resolved
and the two edge bands in the gap= w/2 (or —w/2) are equally hosted by the two valleys,
saying, one edge band in one valley. The edge band is compbsaduhlf-weighted forward-flow
band and a half-weighted backward-flow band. If the lineardewtance for the single spin and
single valley is measured in the resonant gaps of zigzagmibinder the illumination with circular

polarization, the half integer conductance quanta can peat&d.

VI. SUMMARY

A theoretical model was proposed to describe the Floqued B&micture of graphene under
irradiation by taking into resonant inter-band transitidumearly polarized light induces pseudo
gaps, and circular polarized light causes real gaps on th&-gumergy spectrum. If the polarization
of light is linear and along the longitudinal direction o§zag ribbons, flat edge bands appear in
the pseudo gaps, and if is in the lateral direction of arnrafilaibons, curved edge bands can be
found. For the circular polarized cases, edge bands argénsersect in the gaps of both types
of ribbons. The edge bands induced by the circular polaligéd are helical and those by linear
polarized light are topologically trivial ones. We redudbd Chern number of the Floquet band

into the winding number at resonance.
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FIG. 4. (Color Online) Dispersions of Eq[](5) for graphengbons with 100 lateral atoms under (a-b)
x-polarized irradiation withA, = 0.1y, (c-d) y-polarized irradiation withA, = 0.1y, and (e-f) circularly
polarized irradiation with,/|Ax2 + |AJ2 = 0.1y. Insets 1 and 2 show the wavefunction maglitude square
on specified atom lines indicated by filled circles in Hif). @sdt 3 is the zoom picture of (d) around the

resonant gap of a wider ribbon with 300 lateral atoms.

Appendix A: State density

The Floquet Hamiltonian can be expressed as a static mattheiFloquet space, the basis of
which are chosen a{$|v>, |c>)ei”‘“‘}. Because only one-photon processes are considered, tise bas

are truncated to be
(|V>, |C>)é‘“t’ (|V>, |C>), (|V>, IC))e‘i“J‘,

The matrix element of an arbitrary operatdbetween the statésye ™! and|v)e"™! is defined

by

1oL
z f O™,
0
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whereT = 2r/w is the period of the time-dependent parameter. The Flogastikbnian in the

Floquet space reads

e—w 0O
0 e-w(g/2
HF = g2 e O
0 e (g9/2
g2 e+w O
0 eg+w

The matrix is is block diagonal and we rewrite the it blockdilgck as

& — W
H + (epn — w)/2
H + (ep + w)/2

€+ w

whereep = (e + &)/2 is the average band energy aniflis the Hamiltonian matrix defined in
Eqg. (8). The Floguet Green’s functi@®f (E) = (E — HF)~! can be easily calculated by matrix
inversion block-by-block. The spectrum operator in thegtket space is defined as

0= %[GF(E +i0%) - GF(E - i0%)].

The time-averaged state density can be obtained by traeggpectrum matrix in the zero-photon

subspacé? saying.

pPo = Z Pn,n-

n=3,4

The calculation is straight and the result reads

po = agl?S(E - EF) + |be P 6[E - (EF - w)]
+ |bel26(E — EF) + |ag|? 6[E — (EF + w)].

The equation is derived for bulk graphene, and the ribbosiorrof it is just Eq.[(1B).

* Electronic address: yang.mou@hotmail.com
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