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Abstract

Recurrent Neural Networks (RNN) have ob-
tained excellent result in many natural lan-
guage processing (NLP) tasks. However, un-
derstanding and interpreting the source of this
success remains a challenge. In this paper, we
propose Recurrent Memory Network (RMN),
a novel RNN architecture, that not only am-
plifies the power of RNN but also facilitates
our understanding of its internal functioning
and allows us to discover underlying patterns
in data. We demonstrate the power of RMN
on language modeling and sentence comple-
tion tasks. On language modeling, RMN out-
performs Long Short-Term Memory (LSTM)
network on three large German, Italian, and
English dataset. Additionally we perform in-
depth analysis of various linguistic dimen-
sions that RMN captures. On Sentence Com-
pletion Challenge, for which it is essential to
capture sentence coherence, our RMN obtains
69.2% accuracy, surpassing the previous state-
of-the-art by a large margin.

1 Introduction

Recurrent Neural Networks (RNNs) (Elman, 1990;
Mikolov et al., 2010) are remarkably powerful mod-
els for sequential data. Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997), a spe-
cific architecture of RNNs, has a track record of suc-
cess in many natural language processing tasks such
as language modeling (Józefowicz et al., 2015), de-
pendency parsing (Dyer et al., 2015), sentence com-
pression (Filippova et al., 2015), and machine trans-
lation (Sutskever et al., 2014).

Within the context of natural language process-
ing, a common assumption is that LSTM is able to
capture certain linguistic phenomena. Evidence sup-
porting this assumption mainly comes from evaluat-
ing LSTMs in downstream applications: Bowman
et al. (2015) carefully design two artificial datasets
where sentences have explicit recursive structures.
They show empirically that while processing the in-
put linearly, LSTMs can implicitly exploit recursive
structures of languages. Filippova et al. (2015) find
that using explicit syntactic features within LSTMs
in their sentence compression model hurts the per-
formance of overall system. They then hypothesize
that a basic LSTM is powerful enough to capture
syntactic aspects which are useful for compression.

To understand and explain which linguistic di-
mensions are captured by an LSTM is non-trivial.
This is due to the fact that the sequences of input his-
tories are compressed into several dense vectors by
LSTM’s components whose purposes with respect
to representing linguistic information is not evident.
To our knowledge, the only attempt to better under-
stand the reasons of an LSTM’s performance and
limitations is the work of Karpathy et al. (2015) by
means of visualization experiments and cell activa-
tion statistics in the context of character-level lan-
guage modeling.

Our work is motivated by the difficulty in un-
derstanding and interpreting existing RNN architec-
tures from a linguistic point of view. We propose Re-
current Memory Network (RMN), a novel RNN ar-
chitecture that combines the strengths of both LSTM
and Memory Network (Sukhbaatar et al., 2015). In
RMN, the Memory Block component—a variant of
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Memory Network—accesses the most recent input
words and selectively attends to words that are rel-
evant for predicting the next word given the current
LSTM state. By looking at the attention distribution
over history words, our RMN allows us not only to
interpret the results but also to discover underlying
dependencies present in the data.

In this paper, we make the following contribu-
tions:

1. We propose a novel RNN architecture that
complements LSTMs in language modeling.
We demonstrate that our RMN outperforms
competitive LSTM baselines in terms of per-
plexity on three large German, Italian, and En-
glish datasets.

2. We perform an analysis along various linguis-
tic dimensions that our model captures. This
is possible only because the Memory Block al-
lows us to look into its internal states and its ex-
plicit use of additional inputs at each time step.

3. We show that, with a simple modification,
our RMN can be successfully applied to NLP
tasks other than language modeling. On the
Sentence Completion Challenge (Zweig and
Burges, 2012), our model achieves an impres-
sive 69.2% accuracy, surpassing the previous
state-of-the-art 58.9% by a large margin.

2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have shown im-
pressive performances on many sequential modeling
tasks due to their ability to encode unbounded input
histories. However, training simple RNNs is diffi-
cult because of the vanishing and exploding gradi-
ent problems (Bengio et al., 1994; Pascanu et al.,
2013). A simple and effective solution for explod-
ing gradients is gradient clipping proposed by Pas-
canu et al. (2013). To deal with the more challeng-
ing problem of vanishing gradients, several variants
of RNNs have been proposed. Among them, Long
Short-Term Memory (Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit (Cho et al., 2014)
are widely regarded as the most successful variants.
In this work, we focus on LSTMs because they have
been shown to outperform GRUs on language mod-
eling tasks (Józefowicz et al., 2015). In the follow-

ing, we will detail the LSTM architecture used in
this work.
Long Short-Term Memory
Notation: Throughout this paper, we denote matri-
ces, vectors, and scalars using bold uppercase (e. g.,
W), bold lowercase (e. g., b) and lowercase (e. g.,
α) letters, respectively.

The LSTM used in this work is specified as fol-
lows:

it = sigm(Wxixt +Whiht−1 + bi)

jt = sigm(Wxjxt +Whjht−1 + bj)

f t = sigm(Wxfxt +Whfht−1 + bf )

ot = tanh(Wxoxt +Whoht−1 + bo)

ct = ct−1 � f t + it � jt

ht = tanh(ct)� ot

where xt is the input vector at time step t, ht−1 is the
LSTM hidden state at the previous time step, W∗
and b∗ are weights and biases. The symbol � de-
notes Hadamard product or element-wise multipli-
cation.

Despite the popularity of LSTM in sequential
modeling, its design is not straightforward to justify
and understanding why it works remains a challenge
(Hermans and Schrauwen, 2013; Chung et al., 2014;
Greff et al., 2015; Józefowicz et al., 2015; Karpa-
thy et al., 2015). There have been few recent at-
tempts to understand the components of an LSTM
from an empirical point of view: Greff et al. (2015)
carry out a large-scale experiment of eight LSTM
variants. The results from their 5,400 experimental
runs suggest that forget gates and output gates are
the most critical components of LSTMs. Józefowicz
et al. (2015) conduct and evaluate over ten thousand
RNN architectures and find that the initialization of
the forget gate bias is crucial to the LSTM’s perfor-
mance. While these findings are important to help
choosing appropriate LSTM architectures, they do
not shed light on what information the hidden states
of an LSTM capture.

Bowman et al. (2015) show that a vanilla LSTM,
such as described above, performs reasonably well
compared to a recursive neural network (Socher et
al., 2011) that explicitly exploits tree structures on
two artificial datasets. They find that LSTMs can ef-
fectively exploit recursive structure in the artificial



datasets. In contrast to these simple datasets con-
taining a few logical operations in their experiments,
languages exhibit highly complex patterns. The ex-
tent to which linguistic assumptions about syntactic
structures and compositional semantics are reflected
in LSTMs is rather poorly understood. Thus it is
desirable to have a more principled mechanism al-
lowing us to inspect recurrent architectures from a
linguistic perspective. In the following section, we
propose such a mechanism.

3 Recurrent Memory Network

It has been demonstrated that RNNs can retain in-
put information over a long period. However, exist-
ing RNN architectures make it difficult to analyze
what information is exactly retained at their hidden
states at each time step, especially when the data has
complex underlying structures, which is common in
natural language. Motivated by this difficulty, we
propose a novel RNN architecture called Recurrent
Memory Network (RMN). On linguistic data, the
RMN allows us not only to qualify which linguistic
information is preserved over time and why this is
the case but also to discover dependencies within the
data (§5). Our RMN consists of two components: an
LSTM and a Memory Block (MB) (§3.1). The MB
takes the hidden state of the LSTM and compares it
to the most recent inputs using an attention mech-
anism (Gregor et al., 2015; Bahdanau et al., 2014;
Graves et al., 2014). Thus, analyzing the attention
weights of a trained model can give us valuable in-
sight into the information that is retained over time
in the LSTM.

In the following, we describe in detail the MB ar-
chitecture and the combination of the MB and the
LSTM to form an RMN.

3.1 Memory Block

The Memory Block (Figure 1) is a variant of Mem-
ory Network (Sukhbaatar et al., 2015) with one hop
(or a single-layer Memory Network). At time step t,
the MB receives two inputs: the hidden state ht of
the LSTM and a set {xi} of n most recent words
including the current word xt. We refer to n as
the memory size. Internally, the MB consists of
two lookup tables M and C of size |V | × d, where
|V | is the size of the vocabulary. With a slight

softmax

{xi}

hm

h
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mi

ci

⇥

f

Figure 1: A graphical representation of the MB.

abuse of notation we denote Mi = M({xi}) and
Ci = C({xi}) as n × d matrices where each row
corresponds to an input memory embedding mi and
an output memory embedding ci of each element of
the set {xi}. We use the matrix Mi to compute an
attention distribution over the set {xi}:

pt = softmax(Miht) (1)

When dealing with data that exhibits a strong tem-
poral relationship, such as natural language, an ad-
ditional temporal matrix Ti ∈ Rn×d can be used to
bias attention with respect to the position of the data
points. In this case, equation 1 becomes

pt = softmax
(
(Mi +Ti)ht

)
(2)

We then use the attention distribution pt to compute
a context vector representation of {xi}

st = CT
i pt (3)

Finally, we combine the context vector st and the
hidden state ht by a function g(·) to obtain the out-
put hm

t of the MB. Instead of using a simple addi-
tion function g(st,ht) = st + ht as in Sukhbaatar
et al. (2015), we propose to use a gating unit that
decides how much it should trust the hidden state
ht and context st at time step t. Our gating unit is
a form of Gated Recurrent Unit (Cho et al., 2014;
Chung et al., 2014)

zt = sigm(Wszst +Uhzht) (4)

rt = sigm(Wsrst +Uhrht) (5)

h̃t = tanh(Wst +U(rt � ht)) (6)

hm
t = (1− zt)� ht + zt � h̃t (7)

where zt is an update gate, rt is a reset gate.



The choice of the composition function g(·) is
crucial for the MB especially when one of its in-
put comes from the LSTM. The simple addition
function might overwrite the information within the
LSTM’s hidden state and therefore prevent the MB
from keeping track of information in the distant past.
The gating function, on the other hand, can control
the degree of information that flows from the LSTM
to the MB’s output.

3.2 RMN Architectures
As explained above, our proposed MB receives the
hidden state of the LSTM as one of its input. This
leads to an intuitive combination of the two units by
stacking the MB on top of the LSTM. We call this
architecture Recurrent-Memory (RM). The RM ar-
chitecture, however, does not allow interaction be-
tween Memory Blocks at different time steps. To
enable this interaction we can stack one more LSTM
layer on top of the RM. We call this architecture
Recurrent-Memory-Recurrent (RMR).

MB

LSTM

LSTMLSTMLSTM

MB

LSTM

LSTM

MBMB

LSTMLSTM

LSTM

LSTM

MB

Figure 2: A graphical illustration of an unfold RMR
with memory size 4. Dashed line indicates con-
catenation. The MB takes the output of the bottom
LSTM layer and the 4-word history as its input. The
output of MB is then passed to the second LSTM
layer on top. There is no direct connection between
MBs of different time steps. The last LSTM layer
carries MB’s outputs recurrently.

4 Language Model Experiments

Language models play a crucial role in many NLP
applications such as machine translation and speech
recognition. Language modeling also serves as
a standard test bed for newly proposed models
(Sukhbaatar et al., 2015; Kalchbrenner et al., 2015).
We conjecture that, by explicitly accessing history
words, RMN will offer better predictive power than
the existing recurrent architectures. We therefore

evaluate our RMN architectures against state-of-the-
art LSTM in term of perplexity.

4.1 Data

We evaluate our models on three languages: En-
glish, German, and Italian. We are especially inter-
ested in German and Italian because of their larger
vocabularies and complex agreement patterns. Ta-
ble 1 summarizes the data used in our experiments.

Lang Train Dev Test |s| |V |
En 26M 223K 228K 26 77K
De 22M 202K 203K 22 111K
It 29M 207K 214K 29 104K

Table 1: Data statistics. |s| denotes the average sen-
tence length and |V | is the size of the vocabulary.

The training data correspond to approximately
1M sentences in each language. For English, we
use all the News Commentary data (8M tokens) and
18M tokens from News Crawl 2014 for training. De-
velopment and test data are randomly drawn from
the concatenation of the WMT 2009-2014 test sets
(Bojar et al., 2015). For German, we use the first 6M
tokens from the News Commentary data and 16M
tokens from News Crawl 2014 for training. For de-
velopment and test data we use the remaining part of
the News Commentary data concatenated with the
WMT 2009-2014 test sets (Bojar et al., 2015). Fi-
nally, for Italian, we use a selection of 29M tokens
from the PAISÀ corpus (Lyding et al., 2014), mainly
including Wikipedia pages and, to a minor extent,
Wikibooks and Wikinews documents. For develop-
ment and test we randomly draw documents from
the same corpus.

4.2 Setup

Our baselines are a 5-gram language model
with Kneser-Ney smoothing, a Memory Network
(MemN), a vanilla single-layer LSTM, and two
stacked LSTMs with two and three layers respec-
tively. N-gram models have been used intensively
in many applications for their excellent performance
and fast training. Chen et al. (2015) show that
n-gram model outperforms a popular feed-forward
language model (Bengio et al., 2003) on a one bil-
lion word benchmark (Chelba et al., 2013). While



taking longer time to train, RNN has been proven
superior to n-gram model.

We compare these baselines with our two model
architectures: RMR and RM. For each of our mod-
els, we experiment with two settings: with or with-
out temporal matrix (+tM or –tM), and linear vs.
gating composition function. In total, we experiment
with eight RMN variants.

For all neural network models, we set the dimen-
sion of word embeddings, the LSTM hidden states,
its gates, the memory input, and output embeddings
to 128. The memory size is set to 15. The bias of the
LSTM’s forget gate is initialized to 1 (Józefowicz
et al., 2015) while all other parameters are initial-
ized uniformly in (−0.05, 0.05). The initial learn-
ing rate is set to 1 and is halved at each epoch after
the forth. All models are trained for 15 epochs with
standard stochastic gradient descent (SGD). During
training, we rescale the gradients whenever their
norm is greater than 5 (Pascanu et al., 2013).

Sentences with the same length are grouped into
buckets. Then, mini-batches of 20 sentences are
drawn from each bucket. We do not use trun-
cated back-propagation through time, instead gradi-
ents are fully back-propagated from the end of each
sentence to its beginning. When feeding in a new
mini-batch, the hidden states of LSTMs are reset to
zeros, which ensures that the data is properly mod-
eled at the sentence level. For our RMN models,
instead of using padding, at time step t < n, we use
a slice Ti = T[1 : t] ∈ Rt×d of the temporal matrix
T ∈ Rn×d. When t ≥ n, we set Ti = T.

4.3 Results
Perplexities on the test data are given in Table 2. The
best results overall are obtained by RM with gating
composition. In general, all our RMN models out-
perform all the competitive baselines. The results
also reflect that gating composition is essential to
our models.

Our results agree with the hypothesis of mitigat-
ing prediction error by explicitly using the last n
words in RNNs (Karpathy et al., 2015). We further
observe that using temporal matrix only benefits RM
architecture. This can be explained by seeing RM as
a principled way to interpolate an LSTM and neu-
ral a n-gram model. By contrast, RMR works better
without temporal matrix but its overall performance

Model De It En
5-gram – 225.82 167.52 218.99

MemN 1 layer 169.32 127.52 188.16

LSTM
1 layer 135.80 108.00 145.11
2 layers 128.57 105.85 139.68
3 layers 125.08 106.51 136.63

RMR

+tM-l 127.47 109.90 133.30
–tM-l 126.43 106.12 134.48

+tM-g 126.16 99.46 135.23
–tM-g 121.97 98.62 131.16

RM

+tM-l 121.45 92.42 127.18
–tM-l 122.85 94.00 130.38

+tM-g 118.64 88.92 128.76
–tM-g 129.70 96.55 135.68

Table 2: Perplexity comparison including RMN
variants with and without temporal matrix (tM) and
linear (l) versus gating (g) combination function.

is not as good as RM. This suggests that we need a
better mechanism to address the interaction between
MBs, which we leave to future work.

5 Attention Analysis

The goal of our RMN design is twofold: (1) to ob-
tain better predictive power and (2) to facilitate un-
derstanding of the model and discovering patterns in
data. In section 4, we have validated the predictive
power of the RMN, now we investigate the source of
this performance based on linguistic assumptions of
word co-occurrences and dependency structures.

5.1 Positional and lexical analysis

As a first step towards understanding RMN, we look
at the average attention weights of each history word
position in the MB (Figure 3). One can see that
the attention mass tends to concentrate at the right-
most position (the current word) and decreases when
moving further to the left (less recent words). This
is not surprising since the success of n-gram lan-
guage model has demonstrated that the most recent
words provide important information for predicting
the next word. Between the two variants, the RMR
average attention mass is more concentrated to the
right. This can be explained by the absence of an



Figure 3: Average attention per position of RMN
history. Top: RMR(–tM-g), bottom: RM(+tM-g).
Rightmost positions represent most recent history.

LSTM layer on top, meaning that the MB in the RM
architecture has to pay more attention to the more
distant words in the past.

Beyond average attention weights, we are inter-
ested in those cases where attention focuses on dis-
tant positions. To this end, we randomly sample 100
words from test data and visualize attention distri-
butions over the last 15 words. Figure 4 shows the
attention distributions for random samples of Ger-
man and Italian. Again, in many cases attention
weights concentrate around the last word (bottom
row), however we observe that many long distance
words also receive noticeable attention mass. In-
terestingly, for many predicted words, attention is
distributed evenly over memory positions, possibly
indicating cases where the LSTM state contained
enough information to predict the next word.

de

it

en

Figure 4: Attention visualization of 100 word sam-
ples. Bottom positions in each plot represent most
recent history. Darker color means higher weight.

To explain the long-distance dependencies, we
first hypothesize that our RMN captures some sort
of co-occurrence frequency. We run our RM(+tM-
g) model on German development and test sentences
and select those pairs of (predicted word, most at-
tended word) where the MB’s attention concentrates
on a word more than six positions to the left. Then
we compute the mean of co-occurrence frequencies
seen in training data per memory location (Table 3).

This shows that our RMN learns co-occurrence im-
plicitly. Moreover, we find that there is no correla-
tion between frequency and memory location. Previ-
ous work (Hermans and Schrauwen, 2013; Karpathy
et al., 2015) studied this property of LSTM by ana-
lyzing simple cases of closing parenthesis and brace.
By contrast RMN allows us to discover more inter-
esting dependencies in the data.

d 7 8 9 10 11 12 13 14 15

µ 54 63 42 67 87 47 67 44 24

Table 3: Mean frequency (µ) per memory location
(d).

We manually inspect those high-frequency pairs
to find out whether they display certain linguis-
tic phenomena. We find that our RMN discov-
ers, for example, separable verbs and fixed expres-
sions in German. Separable verbs are a frequent
phenomenon in German. They typically consist
of preposition+verb constructions, such ab+hängen
(‘to depend’) or aus+schließen (‘to exclude’), and
can be spelled together (abhängen) or apart as in
‘hängen von der Situation ab’ (‘depend on the sit-
uation’), depending on the grammatical construc-
tion. Figure 5a shows a long-dependency exam-
ple for the separable verb abhängen (to depend).
When predicting the verb’s particle ab, the model
correctly attends to the verb’s core hängt occurring
seven words to the left. Figure 5b and 5c show fixed
expression examples from German and Italian, re-
spectively: schlüsselrolle ... spielen (play a key role)
and insignito ... titolo (awarded title). Here too
the model correctly attends to the key word in the
history despite the long distance from the predicted
word. Other interesting examples found by RM in
the test data include:

German: findet statt (takes place), kehrte zurück
(came back), fragen antworten (questions
answers), kämpfen gegen (fight against),
bleibt erhalten (remains intact), verantwortung
übernimmt (takes responsibility);

Italian: sinistra destra (left right), latitudine lon-
gitudine (latitude longitude), collegata tramite
(connected through), sposò figli (got-married
children), insignito titolo (awarded title).



(a)            wie wirksam die daraus resultierende strategie sein wird , hängt daher von der genauigkeit dieser annahmen ab
Gloss:  how effective   the  from-that   resulting        strategy     be     will,  depends therefore on the    accuracy     of-these measures
Translation: how effective the resulting strategy will be, therefore, depends on the accuracy of these measures

         … die lage versetzen werden , eine schlüsselrolle bei der eindämmung der regionalen ambitionen chinas zu spielen
Gloss: … the position place         will,            a       key-role            in   the       curbing      of-the   regional      ambitions      China’s  to    play
Translation:  …which will put him in a position to play a key role in curbing the regional ambitions of China

(b)

        ...  che  fu  insignito  nel  1692  dall'  Imperatore  Leopoldo  I   del   titolo  di  Nobile … 
Gloss: … who was  awarded     in    1962  by-the    Emperor       Leopold      I  of-the   title    of    Noble
Translation:  … who was awarded the title of Noble by Emperor Leopold I in 1962 

(c)

Figure 5: Examples of distant memory positions attended when predicting the next word (bold and green).

5.2 Syntactic analysis

It has been conjectured that RNN, and LSTM in
particular, models text so well because it captures
syntactic structure implicitly. Unfortunately this has
been hard to prove, but with our RMN model we can
get closer to answering this important question.

We produce dependency parses for our test sets
using (Sennrich et al., 2013) for German and (At-
tardi et al., 2009) for Italian. Then we look at how
much attention mass is concentrated on different de-
pendency types. Figure 6 shows, for each language,
a selection of ten dependency types that are often
long-distance.1 Order is marked with an arrow: e.g.
→mod means that the predicted word is a modifier
of the attended word, while mod← means that the
attended word is a modifier of the predicted word.2

While in most of the cases closest positions are
the most attended, we can see that some dependency
types also receive noticeable, if not uniform, atten-
tion on the long-distance positions. In German, this
is mostly visible for the head of separable verb par-
ticles (→avz), which nicely supports our observa-
tions in the lexical analysis (§5.1). Other attended
dependencies include: auxiliary verbs (→aux) when
predicting the second element of a complex tense
(hat . . . gesagt / has said); subordinating conjunc-
tions (konj←) when predicting the clause-final in-
flected verb (dass sie sagen sollten / that they should
say); control verbs (→obji) when predicting the in-
finitive verb (versucht ihr zu helfen / tries to help
her). Out of the Italian dependency types selected
for their frequent long-distance occurrences (bot-

1The full plots are available at http://anonymized.
The German and Italian dependency tag sets are explained in
(Simi et al., 2014) and (Foth, 2006) respectively.

2Some dependency directions, like obj← in Italian, are al-
most never observed due to order constraints of the language.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

subj 
!rel
!obji
!objc
obja 
konj 
!kon
!avz
!aux
adv 

0.0

0.1

0.2

0.3

0.4

0.5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

subj 
!sub
!pred
!obj

mod 
!mod
!con

comp 
!comp
!arg

0.1

0.2

0.3

0.4

0.5

Figure 6: Average attention weights per position,
breakdown by dependency relation between the pre-
dicted word and the attended word, in German (top)
and Italian (bottom). Distant positions are binned as
follows: -15 to -12, -11 to -8, -7 to -4.

tom of Figure 6), the most attended are arguments
(arg), complements (comp), objects (obj) and sub-
jects (subj). This suggests that RMN is mainly cap-
turing predicate argument structure in Italian. No-
tice that syntactic annotation is never used to train
the model, but only to analyze its predictions.

We can also use RMN to discover which complex
dependency paths are important for word prediction.
To mention just a few examples, high attention on
the German path [subj←,→kon,→cj] indicates that
the model captures morphological agreement be-
tween coordinate clauses in non-trivial constructions
of the kind: spielen die Kinder im Garten und singen
/ the children play in the garden and sing. In Italian,
high attention on the path [→obj,→comp,→prep]

http://anonymized


denotes cases where the semantic relatedness be-
tween a verb and its object does not stop at the
object’s head, but percolates down to a preposi-
tional phrase attached to it (passò buona parte della
sua vita / spent a large part of his life). Interest-
ingly, both local n-gram context and local depen-
dency context would have missed these relations.

While much remains to be explored, our analysis
shows that RMN discovers patterns far more com-
plex than pairs of opening and closing parentheses,
and suggests that the network’s hidden state captures
to a large extent the underlying structure of text.

6 Sentence Completion Challenge

Microsoft Research Sentence Completion Challenge
(Zweig and Burges, 2012) has recently become a test
bed for advancing statistical language modeling. We
choose this task to demonstrate the effectiveness of
our RMN in capturing sentence coherence. The test
set consists of 1,040 sentences selected from five
Sherlock Holmes novels by Conan Doyle. For each
sentence, a content word is removed and the task
is to identify the correct missing word among five
given candidates. The task is carefully designed to
be non-solvable for local language models such as
n-gram. The best reported result is 58.9% accuracy
(Mikolov et al., 2013)3 which is far from of the hu-
man performance of 91% (Zweig and Burges, 2012).

Our baseline is a stacked three-layer LSTM. Our
models are two variants of RM(+tM-g), each con-
sisting of three LSTM layers followed by a MB. The
first variant (unidirectional-RM) uses n words pre-
ceding the predicted word, the second (bidirectional-
RM) uses the n words preceding and the n words
following the predicted word as MB input. We in-
clude bidirectional-RM in our experiments to show
the flexibility of utilizing future context in RMN.

We train all models on the standard training data
of the challenge, which consists of 522 novels from
Project Gutenberg, preprocessed similarly to Mnih
and Kavukcuoglu (2013). After sentence splitting,
tokenization and lowercasing, we randomly select
19,000 sentences for validation. Training and val-
idation sets include 47M and 190K tokens respec-
tively. The vocabulary size is about 64,000.

3The authors use a weighted combination of skip-ngram and
RNN without giving any technical details.

We initialize and train all the networks as de-
scribed in § 4.2. Moreover, for regularization, we
place dropout (Srivastava et al., 2014) after each
LSTM layer as suggested in (Pham et al., 2014). The
dropout rate is set to 0.3 in all the experiments.

Model n d Accuracy
LSTM – 256 56.0

unidirectional-RM
15 256 64.3
15 512 69.2

bidirectional-RM
7 256 59.6

10 512 67.0

Table 4: Accuracy on 1,040 test sentences. We use
perplexity to choose the best model. Dimension of
word embeddings, LSTM hidden states, and gate g
parameters are set to d.

Table 4 summarizes the results. It is worth to
mention that our LSTM baseline performs better
than the second best published result (55.5%) of an
inverse log-bilinear model (Mnih and Kavukcuoglu,
2013). The unidirectional-RM sets a new state of
the art for the Sentence Completion Challenge with
69.2% accuracy. Under the same setting of d we
observe that using bidirectional context does not
bring additional advantage to the model. Mnih and
Kavukcuoglu (2013) also report a similar observa-
tion. We believe that RMN can achieve further im-
provements with hyperparameter optimization.

7 Conclusion

We have proposed Recurrent Memory Network
(RMN), a novel recurrent architecture for language
modeling. RMN outperforms LSTM in terms of per-
plexity on three large dataset and allows us to ana-
lyze its behavior from a linguistic perspective. We
find that RMN learns important co-occurrences re-
gardless of their distance. Even more interestingly,
RMN implicitly captures certain dependency types
that are important for word prediction, despite be-
ing trained without any syntactic information. Fi-
nally RMN obtains excellent performance at model-
ing sentence coherence, setting a new state-of-the-
art on a challenging sentence completion task.
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Pascal Vincent, and Christian Janvin. 2003. A neural
probabilistic language model. J. Mach. Learn. Res.,
3:1137–1155, March.
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