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NEF LINE BUNDLES ON CALABI-YAU THREEFOLDS, I

VLADIMIR LAZIĆ, KEIJI OGUISO, AND THOMAS PETERNELL

Abstract. We prove that a nef line bundle L with c1(L)
2 6= 0 on a

Calabi-Yau threefold X with Picard number 2 and with c3(X) 6= 0 is
semiample, i.e. some multiple of L is generated by global sections.
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1. Introduction

The following is a standard conjecture in the theory of simply connected
Ricci-flat compact Kähler manifolds.

Conjecture 1.1. Let X be a simply connected compact Kähler manifold

with c1(X) = 0. Let L be a nef line bundle on X. Then L is semiample,

i.e. there exists a positive integer m such that L⊗m is generated by global

sections.

Recall that a line bundle L on a projective manifold X of dimension n
is nef if c1(L) · C ≥ 0 for every irreducible curve C on X; in the Kähler
setting, L being nef means that c1(L) is in the closure of the Kähler cone.
In this paper we consider the case of dimension three, in which setting X is
automatically projective. Conjecture 1.1, which should be seen as a stronger
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form of log abundance on Calabi-Yau manifolds, is rather mysterious unless
c1(L)

dimX > 0, and almost nothing is known when dimX > 2.
Our result towards Conjecture 1.1 is the following.

Theorem 1.2. Let X be a three-dimensional simply connected projective

manifold with c1(X) = 0 and with Picard number 2. Suppose further that

c3(X) 6= 0. Then any nef line bundle L on X with c1(L)
2 6= 0 is semiample.

Theorem 1.2 has been claimed in [Wil94], even in a more general setting,
but we were unable to follow the proof. However, the general ideas of [Wil94]
are important.

The assumption that ρ(X) = 2 in Theorem 1.2 is essential in the proof,
but we hope that some of the methods can be useful also in the general case.
We also emphasize that there is a wealth of interesting families of Calabi-Yau
threefolds of Picard number ρ(X) = 2; we refer to [LP13, Ogu14] and the
references given therein. Notice also that if L is a semiample line bundle on
a Calabi-Yau threefold with c1(L)

2 6= 0 and c1(L)·c2(X) = 0, then ρ(X) ≥ 3
by [Ogu93]. So the potentially missing case in Theorem 1.2 should not exist.

The semiampleness of a nef line bundle L on a simply connected projective
threefold X with c1(X) = 0 is obvious if c1(L) = 0, and when L is big, it
is a consequence of the basepoint free theorem [Sho85, Kaw85]. However,
if there is no bigness assumption, the existence of sections is notoriously
difficult.

Remarkably, as a consequence of log abundance for threefolds, in order to
show semiampleness of L, by [Ogu93, KMM94, Kaw92], it suffices to show
that

H0(X,L⊗m) 6= 0 for some positive m.

Our results are also related to the Cone conjecture of Morrison and Kawa-
mata. As we discuss in Section 2, a consequence of Kawamata’s formulation
of the Cone conjecture is the following structural prediction.

Conjecture 1.3. Let X be a Q-factorial projective variety with klt singu-

larities and with numerically trivial canonical class KX . Then Nef(X)+ =
Nef(X)e.

Here, Nef(X)+ and Nef(X)e are the parts of the nef cone of X spanned
by rational, respectively effective, classes. It seems to have been unknown
thus far whether one of these cones is a subset of the other, unless X is
an abelian variety or a hyperkähler manifold [Bou04]; see also [CO15] for
results on special Calabi-Yau manifolds in any dimension.

Theorem 2.12 below gives a short proof that in the most general setting
we have Nef(X)e ⊆ Nef(X)+. Thus, our main result Theorem 1.2, together
with Theorem 2.12 can be restated as follows.

Corollary 1.4. Let X be a three-dimensional simply connected projective

manifold with c1(X) = 0 and with Picard number 2. Assume that c3(X) 6= 0
and that X does not carry a non-trivial line bundle L with c1(L)

2 = 0 and

c1(L) · c2(X) = 0. Then Conjecture 1.3 holds.
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Another application concerns the existence of rational curves on Calabi-
Yau threefolds. It is known that rational curves exist on Calabi-Yau three-
folds with Picard number at least 14, cf. [HBW92, Theorem], but almost
nothing is known for smaller Picard number apart from [DF14]. Using
[Pet91, Ogu93], in Section 6 we deduce:

Corollary 1.5. Let X be a three-dimensional simply connected projective

manifold with c1(X) = 0, c3(X) 6= 0 and with Picard number 2. Assume

that not both boundary rays of the cone Nef(X) are irrational. Then X has

a rational curve.

We spend a few words about the method of the proof of Theorem 1.2,
given in Section 5. Suppose that L is a nef line bundle on a Calabi-Yau three-
fold X with Picard number 2 such that c1(L)

2 6= 0 which is not semiample.
Possibly replacing L by a multiple, we first observe that

H0(X,Ω1
X ⊗ L⊗m) = 0 for all m,

cf. [Wil94, 3.1]. Our method is then to study the cohomology of logarithmic
differentials with poles along a carefully chosen smooth very ample divisor
D and with values in L⊗m and its behaviour under deformation of D. As
the final outcome, we show the crucial vanishing

H2(X,Ω1
X ⊗ L⊗m) = 0 for large m.

Then it is not difficult to see that actually

Hq(X,Ωp
X ⊗L⊗m) = 0 for all p and q, and all m with |m| ≫ 0.

Calculating χ(X,Ω1
X ⊗ L⊗m) by the Hirzebruch-Riemann-Roch, we deduce

that c3(X) = 0.

2. Preliminaries

Throughout the paper we work over the field of complex numbers C. For
a variety X, Pic(X) is the Picard group of X and N1(X) is the Néron-Severi
group of X. The Picard number of X is ρ(X) = rkN1(X). If L is a nef
Cartier divisor on X, the numerical dimension of L is

ν(X,L) = max{k ∈ N | Lk 6≡ 0}.

If D =
∑k

i=1Di is a reduced divisor with simple normal crossings on a
smooth variety X, recall that we have the locally free sheaf of logarithmic
differentials Ω1

X(logD) together with the exact residue sequences

(1) 0 → Ω1
X → Ω1

X(logD) →
k

⊕

i=1

ODi
→ 0,

(2) 0 → Ω1
X(log(D −Dk)) → Ω1

X(logD) → ODk
→ 0,
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and

0 → Ω1
X(logD)(−Dk) → Ω1

X(log(D −Dk))(3)

→ Ω1
Dk

(log(D −Dk)|Dk
) → 0,

cf. [EV92, §2].

2.1. Calabi-Yau threefolds. A Calabi-Yau manifold is by definition a
compact Kähler manifoldX which is simply connected and has trivial canon-
ical bundle ωX ≃ OX . A three-dimensional Calabi-Yau manifold is simply
called Calabi-Yau threefold, and thus a Calabi-Yau threefold in this paper is
always smooth and projective. We notice that h1(X,OX ) = h2(X,OX ) = 0
and hence Pic(X) ≃ N1(X).

If E is a vector bundle on a Calabi-Yau threefold X, then by the Hirze-
bruch-Riemann-Roch theorem [Har77, p. 432] we have

(4) χ(X, E) =
1

12
c1(E)c2(X) +

1

6

(

c1(E)
3 − 3c1(E)c2(E) + 3c3(E)

)

.

In particular, for a Cartier divisor L on X this gives

(5) χ(X,L) =
1

6
L3 +

1

12
L · c2(X).

For a vector bundle E of rank 3 and a line bundle L on X, [Ful98, Example
3.2.2] gives

c1(E ⊗ L) = 3c1(L) + c1(E),

c2(E ⊗ L) = 3c1(L)
2 + 2c1(E)c1(L) + c2(E),(6)

c3(E ⊗ L) = c1(L)
3 + c1(E)c1(L)

2 + c2(E)c1(L) + c3(E).

Given a locally free sheaf E , we denote its k-th Segre class by sk(E). The
sign is determined in such a way that if E has rank r and dimX = n, then

sr(E) = c1
(

OP(E)(1)
)n+r−1

.

Here P(E) is defined by taking hyperplanes; in particular, sk(E) differs in
sign from the definition in [Ful98, Chapter 3] in the case when k is odd.

Proposition 2.1. If X is a Calabi-Yau threefold, then c2(X) ∈ NE(X)\{0}.

Proof. We have c2(X) ∈ NE(X) by [Miy87] and c2(X) 6= 0 by Yau’s theo-
rem, see e.g. [Kob87, IV.4.15]. �

Proposition 2.2. Let X be a Calabi-Yau threefold, let L be a nef Cartier

divisor on X which is not semiample, and let D be a smooth divisor on X.

Denote

Em = Ω1
X(logD)⊗OX(mL).

Then

(i) κ(X,L) = −∞,

(ii) L3 = L · c2(X) = 0,
(iii) χ

(

X,OX(mL)
)

= 0 for every m,
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(iv) χ
(

X,Ω1
X ⊗OX(mL)

)

= −1
2c3(X) for every m,

(v) for every m we have

χ(X, Em) =
1

2
m2L2 ·D −

1

2
mL ·D2 +

1

6
D3 +

1

12
D · c2(X) −

1

2
c3(X),

(vi) for every m we have

s3(Em) = 10m2L2 ·D −D · c2(X)− c3(X).

Proof. The statement (i) is [Ogu93], or it can be viewed as a consequence of
log abundance for threefolds [KMM94]. Statement (ii) is the basepoint free
theorem together with [Ogu93, 2.7]. From (ii) and (5) we obtain (iii).

Set Fm = Ω1
X ⊗OX(mL). Using (6) and (ii), we calculate:

c1(Fm) = 3mL, c2(Fm) = 3m2L2 + c2(X), c3(Fm) = −c3(X),

which gives (iv) by (4) and (ii).
Since cj(OD) = Dj for 1 ≤ j ≤ 3, from (1) we obtain

c1
(

Ω1
X(logD)

)

= D, c2
(

Ω1
X(logD)

)

= c2(X) +D2,

c3
(

Ω1
X(logD)

)

= c2(X) ·D − c3(X) +D3.

Using (6) and (ii), we calculate:

c1(Em) = 3mL+D, c2(Em) = 3m2L2 + 2mL ·D + c2(X) +D2,(7)

c3(Em) = m2L2 ·D +mL ·D2 + c2(X) ·D − c3(X) +D3,

which gives (v) by (4) and (ii).
Finally, (vi) follows from the formula

s3(Em) = c1(Em)3 − 2c1(Em) · c2(Em) + c3(Em)

and from (7) and (ii). �

Lemma 2.3. Let X be a Calabi-Yau threefold with ρ(X) = 2, and assume

that there exists a nef Cartier divisor L on X which is not semiample. If

S ⊆ X is an irreducible surface, then S · c2(X) > 0.

Proof. Fix an ample divisor H on X. Since ρ(X) = 2, we can write

S = αL+ βH with α, β ∈ Q.

Notice that β > 0, since otherwise κ(X,L) ≥ 0, which contradicts Proposi-
tion 2.2(i). Hence

S · c2(X) = βH · c2(X) > 0,

by Proposition 2.2(ii) and Proposition 2.1. �

Lemma 2.4. Let X be a Calabi-Yau threefold with ρ(X) = 2, and assume

that there exists a nef Cartier divisor L on X with ν(X,L) = 2 which is not

semiample. Then for every surface S on X we have L2 · S > 0.
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Proof. Assume that S is a surface on X with L2 · S = 0. Since L is not
semiample, S is not proportional to L by Proposition 2.2(i). Therefore, as
ρ(X) = 2, the divisors L and S form a basis of N1(X)R. Since also L3 = 0,
the 1-cycle L2 is orthogonal to L and S, hence L2 = 0, a contradiction. �

Lemma 2.5. Let X be a Calabi-Yau threefold with ρ(X) = 2, and assume

that there exists a nef Cartier divisor L on X with ν(X,L) = 2 which is not

semiample.

(a) There exist only countably many curves Ci on X such that L·Ci = 0.
(b) If A is a basepoint free ample divisor and if D is a very general

member of the linear system |A|, then Ci 6⊆ D for all i, and L|D is

ample.

Proof. Assume (a) does not hold. Then, since the Hilbert scheme of X (for
any fixed polarization) has only countably many components, there exists a
one-dimensional family (Ct)t∈T of generically irreducible curves such that

(8) L · Ct = 0 for all t ∈ T.

Let S be the irreducible surface covered by the curves Ct. Then L|S is a
nef divisor which is not big: otherwise, by Kodaira’s trick we could write
L|S ∼Q H + E for ample, respectively effective, Q-divisors H and E on S.
But then (8) implies E ·Ct < 0 for all t ∈ T , hence Ct ⊆ E, a contradiction.
Therefore (L|S)

2 = 0, a contradiction with Lemma 2.4. This shows (a).
For (b), ifD ∈ |A| is general, then clearly Ci 6⊆ D by (a), and L|D is ample

by the Nakai-Moishezon criterion due to L2 ·D > 0 by Lemma 2.4. �

2.2. Positivity of locally free sheaves. Recall that a locally free sheaf
E on a variety X is nef if the line bundle OP(E)(1) is nef. The following
properties are well known.

Lemma 2.6. Let X be projective manifold.

(a) If E is a nef locally free sheaf on X, then every locally free quotient

sheaf of E is nef.

(b) Let 0 → E → F → G → 0 be an exact sequence of locally free sheaves.

If E and G are nef, then F is nef.

(c) Assume that X is a curve. A locally free sheaf E on X is nef if

and only if all locally free sheaves have non-negative degree, and is

ample if and only if all locally free quotients have positive degree.

A semistable locally free sheaf E on X is nef if and only if it has

a non-negative degree, and is ample if and only if it has a positive

degree.

(d) Assume that X is a curve, and let 0 → E → F → G ⊗ T → 0 be an

exact sequence, where E, F and G are locally free sheaves, E and G
are nef and T is a torsion sheaf. Then F is nef.

Proof. For (a), (b) and (c), see for instance [Laz04, Proposition 6.1.2, Theo-
rem 6.2.12, and the proof of Theorem 6.4.15]. For (d), let E ′ be the saturation
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of E in F , so that we have the exact sequence

0 → E ′ → F → G → 0.

By (b), it suffices to show that E ′ is a nef. Assuming otherwise, by (c) there
exists a quotient E ′ → Q′ → 0 with degQ′ < 0, and it induces a quotient
E → Q → 0 with Q ⊆ Q′. In particular, degQ ≤ degQ′, a contradiction
since E is nef. �

The following result, see [CP11, Theorem 0.1] and [CP15, Theorem 1.2],
will be crucial in the proof of our main theorem.

Theorem 2.7. Let X be a projective manifold, and let (Ω1
X)⊗m → Q be

a torsion free coherent quotient for some m ≥ 1. If KX is pseudoeffective,

then c1(Q) is pseudoeffective.

The following lemma is well known.

Lemma 2.8. Let Y be a projective manifold, let M be a nef line bundle on

Y , and let E be a nef locally free sheaf on Y . If OP(E)(1) is big, then

Hq(Y, ωY ⊗ E ⊗ det E ⊗M) = 0 for q ≥ 1.

Proof. Let π : P(E) → Y be the projection morphism, and let r be the rank
of E . Note that

ωP(E) = π∗(ωY ⊗ det E)⊗OP(E)(−r) and π∗OP(E)(1) = E ,

hence for every q ≥ 1,

Hq(Y, ωY ⊗ E ⊗ det E ⊗M) ≃ Hq
(

P(E), ωP(E) ⊗OP(E)(r + 1)⊗ π∗M
)

= 0

by the Kawamata-Viehweg vanishing theorem. �

We often below use the following result [Fuj83, 6.2], see also [Laz04, The-
orem 1.4.40].

Theorem 2.9. Let X be a projective variety of dimension n and let D be a

nef divisor on X. Then for any coherent sheaf F on X and for every i we
have

hi
(

X,F ⊗OX(mD)
)

= O(mn−i).

2.3. The Cone conjecture. Let V be a real vector space equipped with a
rational structure, let C be a cone in V , and let Γ be a subgroup of GL(V )
which preserves C. A rational polyhedral cone Π ⊆ C is a fundamental

domain for the action of Γ on C if C =
⋃

g∈Γ gΠ and intΠ ∩ int gΠ = ∅ if
g 6= id.

The Cone conjecture (for the nef cone) deals with the action of the au-
tomorphism group of X on Nef(X), where X is a Q-factorial projective
klt variety with KX ≡ 0. According to the original version by Morrison
[Mor93], inspired by Mirror Symmetry, there exists a fundamental domain
of the action of Aut(X) on Nef(X)+, which is the convex hull of the cone
spanned by all rational divisors in Nef(X).
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The version of the conjecture by Kawamata [Kaw97] postulates that there
exists a fundamental domain of the action of Aut(X) on Nef(X)e, which is
the cone spanned by all effective divisors in Nef(X). This version is more
natural from the point of view of birational geometry, especially since it
implies, in its most general form, that the number of minimal models of
terminal varieties is finite [CL14, Theorem 2.14].

On the other hand, we have the following consequence of [Loo14, Theorem
4.1, Application 4.14], which is a result which belongs completely to the
realm of convex geometry.

Lemma 2.10. Let X be a Q-factorial projective klt variety with KX ≡ 0.
Assume that there exists a polyhedral cone Π ⊆ Nef(X)+ such that Aut(X)·Π
contains the ample cone of X. Then Aut(X) · Π = Nef(X)+, and there

exists a rational polyhedral fundamental domain for the action of Aut(X)
on Nef(X)+.

In particular, if we assume that Kawamata’s version of the Cone conjec-
ture holds, then necessarily Conjecture 1.3 holds. In Theorem 2.12 we show
that at least one part of Conjecture 1.3 is true, that

Nef(X)e ⊆ Nef(X)+.

We need the following result of Shokurov and Birkar, [Bir11, Proposition
3.2]; note that it is a careful application of the boundedness of extremal
rays, which is a consequence of Mori’s bend-and-break.

Theorem 2.11. Let X be a Q-factorial projective variety, let D1, . . . ,Dr be

prime divisors on X and denote V =
⊕r

i=1 RDi ⊆ DivR(X). Then the set

N (V ) = {∆ ∈ V | (X,∆) is log canonical and KX +∆ is nef }

is a rational polytope.

Theorem 2.12. Let X be a Q-factorial projective klt variety with KX ≡ 0.
Then

Nef(X)e ⊆ Nef(X)+.

Proof. Let D be an R-divisor whose class is in Nef(X)e, and let V ⊆
DivR(X) be the vector space spanned by all the components D1, . . . ,Dr

of D. Replacing D by εD for 0 < ε ≪ 1, we may assume that (X,D) is a
klt pair, and in particular, with notation from Theorem 2.11, D ∈ N (V ).
On the other hand, clearly D ∈

∑r
i=1 R+Di ⊆ V . By Theorem 2.11, the set

N (V ) ∩
r

∑

i=1

R+Di

is a rational polytope, hence D is spanned by nef Q-divisors. �



NEF LINE BUNDLES ON CALABI-YAU THREEFOLDS, I 9

3. Differentials with coefficients in a line bundle

In this section, we prove several properties of nef line bundles on a Calabi-
Yau threefold. For future applications in Part II to this paper, we mostly
do not restrict ourselves to varieties with Picard number 2 or line bundles
with numerical dimension 2.

Lemma 3.1. Let X be a smooth projective surface and let L and M be

divisors on X such that L is nef and L2 = M2 = L · M = 0. If L and M
are not numerically trivial, then L and M are numerically proportional.

Proof. Let H be an ample divisor on X. By the Hodge index theorem we
have λ = L · H 6= 0 and µ = M · H 6= 0, and set D = λM − µL. Then
D2 = D ·H = 0, hence D ≡ 0 again by the Hodge index theorem. �

Lemma 3.2. Let X be a smooth projective threefold with H1(X,OX ) = 0
and let L be a nef divisor on X with ν(X,L) = 1. Assume that κ(X,L) =
−∞ and let D be a non-zero effective divisor on X. Then the divisor L−D
is not pseudoeffective.

Proof. Denote G = L − D, and assume that G is pseudoeffective. Denote
P = Pσ(G) and N = Nσ(G), see [Nak04, Chapter III]. Let H be a general
very ample divisor on X. Then P |H is nef by [Nak04, paragraph after
Corollary V.1.5], and in particular

(9) (P |H)2 ≥ 0.

On the other hand, we have

0 = (L|H)2 = L|H · P |H + L|H ·N |H + L|H ·D|H ,

hence

L|H · P |H = L|H ·N |H = L|H ·D|H = 0.

Now the Hodge index theorem implies (P |H)2 ≤ 0, and hence (P |H)2 = 0
by (9). Then Lemma 3.1 yields P |H ≡ λL|H for some real number λ ≥ 0,
and hence P ≡ λL by the Lefschetz hyperplane section theorem. Note that
λ < 1 since D is non-zero. Therefore, setting E = 1

1−λ(N +D), we obtain

L ≡ E,

and the Weil R-divisor E is effective. Let E1, . . . , Er be components of E and
let π : DivR(X) → N1(X)R be the standard projection. Then π−1(π(L)) ∩
∑

R+Ei is a rational affine subspace of
∑

REi which contains E, hence
there exists a rational point

E′ ∈ π−1(π(L)) ∩
∑

R+Ei.

Therefore L ≡ E′, and consequently L ∼Q E′, which is a contradiction with
κ(X,L) = −∞. �

Remark 3.3. The assertion of Lemma 3.2 is obviously also true when
ν(X,L) = 2, provided that ρ(X) = 2.
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The following result has been claimed in [Wil94, 3.1] when ν(X,L) = 2.
The method of proof below was already used in [HPR13, Theorem 5.1].

Proposition 3.4. Let X be a Calabi-Yau threefold and let L be a nef divisor

on X such that κ(X,L) = −∞. If ν(X,L) = 2, assume also that ρ(X) = 2.
Then there is a positive integer k such that

H0
(

X,Ωq
X ⊗OX(mkL)

)

= 0 for all m and all q.

Proof. Assume to the contrary that there exists q such that

H0
(

X,Ωq
X ⊗OX(mL)

)

6= 0

for infinitely many m. Every nontrivial section of H0
(

X,Ωq
X ⊗ OX(mL)

)

gives an inclusion OX(−mL) → Ωq
X , and consider the smallest subsheaf

F ⊆ Ωq
X containing the images of all these inclusions. Let r be the generic

rank of F . Then, without loss of generality, we may find infinitely many
r-tuples (m1, . . . ,mr) such that the image of the map

OX(−m1L)⊕ · · · ⊕ OX(−mrL) → F

has rank r. Taking determinants, we obtain infinitely many inclusions
OX(−m′L) → detF . Let F be a Cartier divisor such that OX(−F ) is
the saturation of detF in

∧r Ωq
X . Therefore

(10) H0
(

X,OX (−F )⊗OX(m′L)
)

6= 0 for infinitely many m′.

Consider the exact sequence

0 → OX(−F ) →
r
∧

Ωq
X → Q → 0.

Since OX(−F ) is saturated, it follows that Q is torsion free, and hence c1(Q)
is pseudoeffective by Theorem 2.7. As ωX ≃ OX , we deduce from the exact
sequence above that F = c1(Q), hence the divisor F is pseudoeffective.

From (10), for every such m′ we obtain an effective divisor Nm′ such that

Nm′ + F ∼ m′L.

Now Lemma 3.2 and Remark 3.3 yield Nm′ = 0 for all m′, hence some
multiple of L is linearly equivalent to 0, a contradiction with κ(X,L) =
−∞. �

Corollary 3.5. Let X be a Calabi-Yau threefold with ρ(X) = 2, and let L
be a nef Cartier divisor with ν(X,L) = 2 which is not semiample. Then

there exists a positive integer k such that

hj
(

X,Ωq
X ⊗OX(kmL)

)

= O(m) for all q and j.
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Proof. By Proposition 2.2 and by Serre duality, for all m we have

χ
(

X,OX (mL)
)

= 0,

χ
(

X,Ω1
X ⊗OX(mL)

)

= −
1

2
c3(X),

χ
(

X,Ω2
X ⊗OX(mL)

)

=
1

2
c3(X).

By Proposition 3.4 and by Serre duality,

hj
(

X,Ωq
X ⊗OX(mL)

)

= 0 for m ≫ 0, j ∈ {0, 3}, and all q.

Since

h2
(

X,Ωq
X ⊗OX(mL)

)

= O(m)

by Theorem 2.9, we obtain h1
(

X,Ωq
X ⊗OX(mL)

)

= O(m). �

The following lemma is well known to the experts.

Lemma 3.6. Let X be a projective manifold and let L be a pseudoeffective

Cartier divisor on X. Let h be a singular hermitian metric on OX(L) with
semipositive curvature current and multiplier ideal sheaf I(h). Let D be

an effective Cartier divisor such that I(h) ⊆ OX(−D). Then L − D is

pseudoeffective.

Proof. By [DEL00, Theorem 1.10] there exists an ample line bundle G on X
such that OX(G+mL)⊗I(h⊗m) is globally generated for all m ≥ 1. Since

I(h⊗m) ⊆ I(h)m ⊆ OX(−mD),

where the first inclusion follows from [DEL00, Theorem 2.6], for all m ≥ 1
we have

H0
(

X,G +m(L−D)
)

6= 0.

Hence L−D = lim
m→∞

1
m

(

m(L−D) +G
)

is pseudoeffective. �

Corollary 3.7. Let X be a Calabi-Yau threefold and let L be a nef Cartier

divisor on X with κ(X,L) = −∞. Then there exists a positive integer m0

such that

Hq(X,mL) = 0 for all q and m ≥ m0.

Proof. If ν(X,L) = 2, then Hq(X,mL) = 0 for q ≥ 2 and all m ≥ 1 by the
Kawamata-Viehweg vanishing [Kaw82, Corollary]. Since χ(X,mL) = 0 for
all m by Proposition 2.2(iii), and since H0(X,mL) = 0 by assumption, we
also have H1(X,mL) = 0 for m ≥ 1.

So we may assume that ν(X,L) = 1. Let h be a singular metric on OX(L)
with semipositive curvature current. Let I(h⊗m) be the multiplier ideal of
the associated metric h⊗m on OX(mL) and denote by Vm ⊆ X the subspace
defined by I(h⊗m).

The subspace Vm cannot contain an effective divisor D: otherwise, by
Lemma 3.6, mL − D would be pseudoeffective, which would contradict
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Lemma 3.2. Thus dimVm ≤ 1. The Hard Lefschetz theorem [DPS01, The-
orem 0.1] gives the surjection

H0
(

X,Ω1
X ⊗OX(mL)⊗ I(h⊗m)

)

→ H2
(

X,OX(mL)⊗ I(h⊗m)
)

hence H2
(

X,OX(mL) ⊗ I(h⊗m)
)

= 0 by Proposition 3.4. From the long
cohomology sequence associated to the exact sequence

0 → OX(mL)⊗ I(h⊗m) → OX(mL) → OVm(mL) → 0

we obtain

H2(X,mL) = 0 for m ≥ m0.

Since H3(X,mL) = 0 for m ≥ 1 by Serre duality, we conclude as above. �

In this context, we note

Theorem 3.8. Let X be a Calabi-Yau threefold and let L be a nef divisor

on X with ν(X,L) = 1. Assume that there is a singular metric h on OX(L)
with semipositive curvature current such that the multiplier ideal sheaf I(h)
is different from OX . Then L is semiample.

Proof. Let V ⊆ X be the subspace defined by I(h), and let x be a closed

point in V with ideal sheaf Ix in X. Let π : X̂ → X be the blowup of X
at x and let E = π−1(x) be the exceptional divisor. Let ĥ be the induced
metric on π∗OX(L). By [Dem01, Proposition 14.3], we have

I(ĥ) ⊆ π−1I(h) · OX̂ ⊆ π−1Ix · OX̂ = OX̂(−E).

By Lemma 3.6, the divisor π∗L − E is pseudoeffective, hence π∗L is semi-
ample by Lemma 3.2. �

4. Log differentials

The following result is crucial in the proof of Theorem 1.2.

Lemma 4.1. Let X be a projective manifold and let C ⊆ X be an irreducible

curve on X such that KX · C ≥ 0. Let L be an ample line bundle on X.

Then there exists a positive integer m0 such that for all m ≥ m0 and for a

general element D ∈ |L⊗m|, the sheaf Ω1
X(logD)|C is nef.

Proof. Let ν : C̃ → C be the normalization. If Ω1
X |C is nef, the assertion

follows from the residue sequence and from Lemma 2.6(d). So we may
assume that Ω1

X |C is not nef, or equivalently, that ν∗(Ω1
X |C) is not nef. Since

deg ν∗(Ω1
X |C) ≥ 0 by assumption, the bundle ν∗(Ω1

X |C) is not semistable by
Lemma 2.6(c), and let F be its maximal destabilising subsheaf. Then F has
positive slope, hence is ample by Lemma 2.6(c).

We obtain an exact sequence

0 → F → ν∗(Ω1
X |C) → G → 0,

where G is a locally free sheaf on C̃. Choose a positive integer N and a
very ample line bundle A on C with degA = N , such that G ⊗A is globally
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generated. Then it follows that G ⊗A′ is nef for all ample divisors A′ on C
of degree ≥ N .

Fix smooth points x1, . . . xN ∈ C and let I be the corresponding ideal
sheaf; since ν is an isomorphism around xj, we consider xj also as points on

C̃. For j = 1, . . . , N , fix

vj ∈ ν∗(Ω1
X |C)⊗ C(xj) \ F ⊗ C(xj),

which we also view as elements of Ω1
X |C ⊗ C(xj). Choose a positive integer

m0 ≥ N such that L⊗m is very ample for m ≥ m0 andH1(X,I2⊗L⊗m) = 0.
This implies that the restriction map

H0(X,L⊗m) → H0(X,L⊗m ⊗OX/I2)

is surjective. Since locally OX/I2 ≃ OX/I ⊕ I/I2, there exists a section
s ∈ H0(X,L⊗m) such that

(11) s(xj) = 0 and ds(xj) = vj for every j.

Now, let

M ⊆ H0(X,L⊗m)

be the subspace of all sections s ∈ H0(X,L⊗m) for which there exists points

y1, . . . , yN ∈ C̃ such that for all j we have

s(yj) = 0 and ds(yj) 6∈ F ⊗C(yj).

Then M 6= ∅ by (11), and the set M is clearly open. Therefore, by Bertini,
there exists a smooth element D ∈ |L⊗m| smooth, meeting C transversally
at points z1, . . . , zℓ in the smooth locus of C, and such that D is in M . By
relabelling, we may assume that A = {z1, . . . , zN} ⊆ C is the set of points
such that

(12) dϕ(zi) 6∈ F ⊗ C(zi),

where ϕ is the local equation of D.

We claim that the sheaf F is saturated in ν∗(Ω1
X(logD)|C) at the points

of a subset A′ ⊆ {z1, . . . , zℓ}, where A ⊆ A′. Granting the claim for the
moment, let us see how it implies the lemma. We obtain the exact sequence

0 → F → ν∗(Ω1
X(logD)|C) → G ⊗OC̃

(
∑

zi∈A′ zi
)

⊗ T → 0,

where T is a torsion sheaf whose support is contained in the set (D∩C)\A′.
By our choice of N , the vector bundle G ⊗ OC̃

(
∑

zi∈A′ zi
)

is nef, and since

F is ample, the bundle ν∗(Ω1
X(logD)|C) is nef by Lemma 2.6(d).

Finally, we prove the claim. It is enough to show that for any zi ∈ A, the
linear map

F ⊗ C(zi) → ν∗(Ω1
X(logD)|C)⊗ C(zi)
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has rank rkF . Consider the diagram:

F ⊗ C(zi) //

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
ν∗(Ω1

X |C)⊗ C(zi)

α
��

ν∗(Ω1
X(logD)|C)⊗ C(zi)

and note that kerα = C(zi)dϕ(zi). Therefore,
(

F ⊗ C(zi)
)

∩ kerα = 0 by
(12), and the claim follows. �

5. Proof of the Main Theorem

In this section we prove

Theorem 5.1. Let X be a Calabi-Yau threefold with ρ(X) = 2 and let L be

a nef Cartier divisor on X. Suppose that ν(X,L) = 2 and that c3(X) 6= 0.
Then L is semiample.

In the proof we argue by contradiction. Hence for the remainder of this
section, we assume the following:

Notation 5.2. Let D be a smooth very ample divisor on X.
Denote by B a non-empty Zariski open affine subset of the linear system

P
(

H0(X,OX (D))
)

contained in the locus of smooth elements of that linear
system. Set X = X ×B, let π : X → B be the projection map and let L be
the pullback of L by the projection X → X. Let D ⊆ X be the universal
family of divisors parametrised by B. Note that D is a smooth divisor in X .
We consider the relative logarithmic cotangent sheaf

Ω1
X/B(logD)

with log poles along D, which is a locally free sheaf of rank 3 on X . Denote
by

TX/B(− logD)

its dual. For every point b ∈ B, denote Xb = π−1(b), Db = D ∩ Xb and
Lb = L|Xb

. Note that Xb = X, Lb = L and

Ω1
X/B(logD)|Xb

= Ω1
Xb

(logDb) and TX/B(− logD)|Xb
= TXb

(− logDb).

For each positive integer m, denote

Em = Ω1
X/B(logD)⊗OX (mL) and Em,b = Em|Xb

.

In the remainder of the section, we freely shrink B if necessary.

Lemma 5.3. Let X be a Calabi-Yau threefold with ρ(X) = 2 and let L
be a nef Cartier divisor on X with ν(X,L) = 2 which is not semiample.

Assuming Notation 5.2, the following holds:

(a) there exist a positive integer m0 and a positive constant C, such that

for every b ∈ B and for all m ≥ m0, we have

h0(Xb, Em,b) ≥ Cm2,
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(b) for a general point b ∈ B we have

h0(Xb, Em,b) =
1

2
m2L2 ·D +O(m) and h1(Xb, Em,b) = O(m).

Proof. For (a), Proposition 2.2(v) gives

χ(Xb, Em,b) =
1

2
m2L2 ·D +O(m),

where O(m) does not depend on b. Fix b0 ∈ B, and for each positive integer
m, let

Um =
{

b ∈ B | h2(Xb, Em,b) ≤ h2(Xb0 , Em,b0)
}

.

These sets are Zariski open in B by upper-semicontinuity; denote

U =
⋂

m≥1

Um.

Since
h2(Xb0,Em,b0) = O(m)

by Theorem 2.9, there exists a constant C1 > 0 such that

h2(Xb, Em,b) ≤ C1m for all m and for all b ∈ U.

Therefore, there is a constant C > 0 and a positive integer m0 such that for
all m ≥ m0 and all b ∈ U we have

h0(Xb, Em,b) ≥
1

2
m2L2 ·D +O(m)− C1m ≥ Cm2.

We conclude by upper-semicontinuity, since U is dense in B.
For (b), we have h0

(

Xb,Ω
1
Xb

⊗ OXb
(mLb)

)

= 0 by Proposition 3.4 and

h1
(

Xb,Ω
1
Xb

⊗ OXb
(mLb)

)

= O(m) by Corollary 3.5. Tensoring the residue

sequence (2) associated to Db by OXb
(mLb) and taking the long cohomology

sequence, since Lb|Db
is ample by Lemma 2.5, Serre vanishing gives the exact

sequence

0 → H0(Xb, Em,b) → H0(Db,ODb
(mLb))

→ H1(Xb,Ω
1
Xb

⊗OXb
(mLb)) → H1(Xb, Em,b) → 0.

This immediately implies h1(Xb, Em,b) = O(m) and

h0(Xb, Em,b) = h0(Db,ODb
(mL)) +O(m).

Riemann-Roch and Serre vanishing give

h0(Db,ODb
(mLb)) = χ(Db,ODb

(mLb)) =
1

2
m2(Lb|Db

)2 +O(m),

and (b) follows from the last two equations. �

Proposition 5.4. Let X be a Calabi-Yau threefold with ρ(X) = 2 and let

L be a nef Cartier divisor on X with ν(X,L) = 2 which is not semiample.

Let A be the set of all ample prime divisors on X, and let A ∈ A be an

element such that A ·c2(X) is minimal. If M is an integral divisor such that

M = aA+ bL with a > 0, then a ≥ 1.
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Proof. Assume 0 < a < 1. Replacing M by M − ⌊b⌋L, we may assume that
0 ≤ b < 1, and hence that M is ample. By (5), we have

χ(X,M) =
1

6
M3 +

1

12
M · c2(X).

Since M is ample, by Proposition 2.1 we have χ(X,M) > 0, and hence
h0(X,M) > 0 by Kodaira vanishing. Pick E ∈ |M |. Since L · c2(X) = 0 by
Proposition 2.2(ii), we have

E · c2(X) = (aA+ bL) · c2(X) < A · c2(X),

hence E /∈ A by the choice of A. Write E =
∑

aiEi, where ai are positive
integers and Ei are prime divisors. By Lemma 2.3 we have Ei · c2(X) > 0
for all i, hence

Ei · c2(X) ≤ E · c2(X) < A · c2(X).

However, since ρ(X) = 2 and since L lies on the boundary of the pseudoef-
fective cone, at least one Ei0 must be ample. This contradicts the choice of
A. �

Lemma 5.5. Let X be a Calabi-Yau threefold with ρ(X) = 2 and let L be a

nef Cartier divisor on X with ν(X,L) = 2 which is not semiample. Assume

that

H0(X,Ωq
X ⊗OX(kL)) = 0 for all q and all k.

Assume additionally that

D ∼Q αA+ βL,

where A is as in Proposition 5.4 and α, β ∈ Q>0. Let S ∼ aD + bL be an

effective divisor on X such that

OX(S) ⊆ Ωr
X(logD)⊗OX(mL)

for some r and m. Then:

(i) α ≥ 1 and 0 ≤ a ≤ 1− 1
α , and a > 0 if b 6= 0,

(ii) the divisor (1− a)D + (m− b)L is pseudoeffective.

Proof. Notice that a ≥ 0, since S is effective and L lies on the boundary of
the pseudoeffective cone. If b 6= 0, then additionally a 6= 0 since L is not
effective. The inclusion

OX(S) ⊆ Ωr
X(logD)⊗OX(mL)

implies that

H0
(

X,Ωr
X(logD)(−D)⊗OX((1 − a)D + (m− b)L)

)

6= 0,

so that, via the inclusion Ωr
X(logD)(−D) ⊆ Ωr

X ,

(13) H0
(

X,Ωr
X ⊗OX((1 − a)D + (m− b)L)

)

6= 0.

Hence we obtain an inclusion

OX

(

(a− 1)D + (b−m)L
)

→ Ωr
X .
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Since X is a Calabi-Yau threefold, the divisor

(1− a)D + (m− b)L ∼Q (1− a)αA +
(

m− b− (a− 1)β
)

L

is pseudoeffective by Theorem 2.7. Thus

(14) (1− a)α ≥ 0,

and hence a ≤ 1. If a = 1, then (13) implies

H0
(

X,Ωr
X ⊗OX((m− b)L)

)

6= 0,

which contradicts our assumption. Then from (14) and from Proposition
5.4 we have α ≥ 1 and (1− a)α ≥ 1, and the lemma follows. �

Proposition 5.6. Let X be a Calabi-Yau threefold with ρ(X) = 2 and let

L be a nef Cartier divisor on X with ν(X,L) = 2 which is not semiample.

Assume Notation 5.2, and assume additionally that

D ∼Q αA+ βL,

where A is as in Proposition 5.4 and α, β ∈ Q>0.

Then, possibly after shrinking B, there exists a positive number n1 and

an algebraic set V ( X such that for all irreducible curves C 6⊆ V which are

contracted by π, the restricted bundle En1
|C is nef.

Proof. We note first that by Proposition 3.4, by passing to a multiple of L
we may assume that

(15) H0(X,Ωq
X ⊗OX(kL)) = 0 for all q and all k.

We prove the proposition in several steps.

Step 1. For each m, let Um ⊆ B be the locus of points where the sheaf
π∗Em is locally free and has the base change property, and denote

U =
⋂

m≥1

Um.

Fix b0 ∈ U . By Lemma 5.3(a), there exist a positive constant C and a
positive integer n1 such that

(16) h0(Xb0 , Em,b0) ≥ Cm2 ≥ 2 for m ≥ n1.

Since B is affine, by the definition of U the map

H0(X , Em) → H0(Xb0 , Em,b0)

is surjective for all m, cf. [Har77, III.12]. In particular,

rk Im(π∗π∗(Em) → Em) ≥ 1 for m ≫ 0.

Let Sm be the saturation of Im(π∗π∗(Em) → Em) in Em, and let Sm,b be
the saturation, in Em,b, of the sheaf generated by the global sections of Em,b.
Then

Sm,b = (Sm|Xb
)∗∗,

and in particular, for every b ∈ B we have Sm|Xb
= Sm,b generically. Let

rm = rkSm = rkSm,b.
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By possibly replacing b0, we may assume that

(17) Sm|Xb0
= Sm,b0 for all m,

see for instance [GKP13, Proposition 5.2]. The sheaf detSm,b0 is a line
bundle by [Har80, Proposition 1.9], and notice that detSm,b0 is effective by
(16); say detSm,b0 ≃ OXm,b0

(M) with an effective divisor M. Write

(18) M ∼Q amDb0 + bmLb0

with rational numbers am and bm. Since

detSm,b0 ⊆ Ωrm
Xb0

(logDb0)⊗OXb0
(rmmLb0)

and (15) holds, Lemma 5.5 gives α ≥ 1,

(19) 0 ≤ am ≤ 1−
1

α
for all m,

and that

(20) the divisor (1− am)Db0 + (rmm− bm)Lb0 is pseudoeffective.

Step 2. Suppose rm = 3 for some m, and we set

V = SuppCoker(π∗π∗Em → Em).

Then for every curve C 6⊆ V contracted by π, the restriction Em|C is gener-
ically generated, hence nef.

Step 3. Hence we may assume that rm ≤ 2 for all m. In this step we
assume that rm = 1 for infinitely many m, and in particular, detSm,b0 =
Sm,b0 .

By (5) and (18), together with Proposition 2.2(ii) we have

(21) χ(Xb0 ,Sm,b0) =
1

2
amb2mL2·D+

1

2
a2mbmL·D2+

1

6
a3mD3+

1

12
amD·c2(X).

If bm < 0 for infinitely many m, then these bm are bounded from below, since
am are bounded from above and the divisors amDb0 + bmL are pseudoeffec-
tive. But then all Sm,b0 lie in a compact subset of Pic(X), hence take only
finitely many values, which contradicts the fact that h0(Xb0 ,Sm,b0) grows
quadratically with m by (16).

Therefore,

(22) bm ≥ 0 for m ≫ 0,

and similar argument shows that, by (20), there exists a positive constant c
such that

(23) bm −m < c for all m.

From (23), (16) and by Lemma 5.5 we have am > 0, which implies that
Sm,b0 is ample for m ≫ 0. Hence, by (21), by Kodaira vanishing, and by
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Lemma 5.3(b) we have

h0(Xb0 ,Sm,b0) =
1

2
m2L2 ·D +O(m)

=
1

2
amb2mL2 ·D +

1

2
a2mbmL ·D2 +

1

6
a3mD3 +

1

12
amD · c2(X),

which is a contradiction by (19), (22) and (23).

Step 4. We are now reduced to the case rm = 2 for all large m.
Let pX : X → X be the projection to X and recall that L = p∗XL. Con-

sider the subsheaves

Sm+1 ⊆ Em+1 and Sm ⊗OX (L) ⊆ Em ⊗OX (L) = Em+1.

Introduce the torsion free rank 1 sheaves Qm = Em/Sm and consider the
induced maps

αm : Sm+1 → Em ⊗OX (L) → Qm ⊗OX (L)

and

βm : Sm ⊗OX (L) → Em+1 → Qm+1.

Suppose first that βm is not the zero map for some m, and in particular,
βm is generically surjective since Qm+1 is of rank 1. Then Qm+1 is π-nef
outside of a finite union of subvarieties by Lemma 2.6(a), hence Lemma
2.6(b) and the exact sequence

0 → Sm+1 → Em+1 → Qm+1 → 0

give that Em+1 is π-nef outside of an algebraic set, confirming the claim of
the proposition. We note here for later use, that if Em is not π-nef outside
of an algebraic set for all m, then

(24) h0(X ,Qm) = 0 for all m.

Otherwise there would exist a nontrivial morphism OX → Qm, which would
imply as above that Qm and Em are π-nef outside of an algebraic set.

Thus we may assume that βm is the zero map for all large m, and thus

Sm ⊗OX (L) ⊆ Sm+1 for m ≫ 0.

Therefore Sm⊗OX (L) and Sm+1 are generically equal, thus αm is generically
the zero map, which implies that αm is the zero map since the image of αm

is a torsion free coherent subsheaf of Qm ⊗OX (L). We conclude that there
exists m1 ≫ 0 such that

Sm+1 = Sm ⊗OX (L) for m ≥ m1,

and thus

Sm = Sm1
⊗OX

(

(m−m1)L
)

.

Restricting this last equation to Xb0 , we have

Sm,b0 = Sm1,b0 ⊗OXb0

(

(m−m1)Lb0

)

.
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We claim that

(25) h0
(

Xb0 ,Sm1,b0 ⊗OXb0
(mLb0)

)

=
1

2
m2L2 · c1(Sm1,b0) +O(m).

This immediately implies the proposition: indeed, by (19) we have that
c1(Sm1,b0) = am1

Db0 + bm1
Lb0 , where am1

is bounded away from 1, hence

h0
(

Xb0 ,Sm1,b0 ⊗OXb0
(mLb0)

)

=
1

2
am1

m2L2 ·D +O(m).

Since h0(Xb0 , Em1+m,b0) = h0
(

X,Sm1,b0 ⊗OXb0
(mLb0)

)

, this is a contradic-

tion by Lemma 5.3(b).
It remains to prove (25). First note that the Chern classes c1

(

Sm1,b0 ⊗

OX(mLb0)
)

and c2
(

Sm1,b0 ⊗OX(mLb0)
)

are computed as in the locally free
case, since Sm1,b0 is locally free outside a finite set by [Har80, Corollary 1.4],
whereas

c3
(

Sm1,b0 ⊗OX(mLb0)
)

= c3(Sm1,b0),

cf. [Har80, p. 130]. Thus Riemann-Roch for coherent sheaves [OTT81] gives

(26) χ
(

Xb0 ,Sm1,b0 ⊗OXb0
(mLb0)

)

=
1

2
m2L2 · c1(Sm1,b0) +O(m).

Define sheaves Qm,b0 by the short exact sequences

(27) 0 → Sm,b0 → Em,b0 → Qm,b0 → 0,

and observe that Qm,b0 = Qm|Xb0
by (17). Since B is affine, (24) shows that

the rank of the sheaf π∗Qm is zero for every m, hence by possibly changing
b0, we have h0(Xb0 ,Qm,b0) = 0 for every m. Then (27) and Lemma 5.3(b)
give

h1(Xb0 ,Sm,b0) ≤ h1(Xb0 , Em,b0) = O(m),

and since h2(Xb0 ,Sm,b0) = h3(Xb0 ,Sm,b0) = O(m) by Theorem 2.9, the claim
follows from (26). �

Proposition 5.7. Let X be a Calabi-Yau threefold with ρ(X) = 2 and let

L be a nef Cartier divisor on X with ν(X,L) = 2 which is not semiample.

Assume Notation 5.2, and assume additionally that

D ∼Q αA+ βL,

where A is as in Proposition 5.4 and α, β ∈ Q>0. Then, possibly after

shrinking B, there exists a positive number m2 such that

Em,b = Ω1
Xb

(logDb)⊗OXb
(mLb) is nef

for all m ≥ m2 and for all b ∈ B.

Proof. Step 1. In this step, we show that after possibly shrinking B, there
exist a positive integer n2 and an algebraic set C ⊆ X of codimension ≥ 2,
such that Em|C is nef for every m ≥ n2 and for every curve C 6⊆ C which is
contracted by π.

Indeed, by Proposition 5.6 , we find a positive integer n1 and an algebraic
set V ⊆ X such that En1

|C is nef for all curves C 6⊆ V contracted by π. Let
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V1, . . . ,Vk and W1, . . . ,Wl be the codimension 1, respectively codimension
2 irreducible components of V. Set πj = π|Vj

. By possibly shrinking B, we
may assume that V does not contain any fibre of π, and that each πj is flat.

For each j, the line bundle L|Vj
is clearly πj-nef. Moreover, it is also

πj-big: indeed, for each b ∈ B, the set Vj ∩Xb is a surface in Xb, and since
ν(X,L) = 2, we have (L|Vj∩Xb

)2 > 0 by Lemma 2.4. Therefore, by Kodaira’s
trick, there exist a πj-ample Q-divisor Aj and an effective Q-divisor Bj such
that

L|Vj
∼Q Aj + Bj.

For k sufficiently divisible, the sheaf En1
|Vj

⊗OVj
(kAj) is πj-globally gener-

ated, and we conclude that for every curve C contracted by π which is not
contained in the locus

C =
⋃

SuppBj ∪
⋃

Wi,

the sheaf En1+k|C is nef. We set n2 = n1 + k.

Step 2. In the second step we show that there exist a positive integer
m2 and finitely many curves C1, . . . , Cs on X, such that Em|C is nef for all
m ≥ m2 and for all curves C /∈ {C1, . . . , Cs}. The proposition then follows
immediately from Lemma 4.1.

In order to prove the claim, let C1, . . . , Cs be the irreducible components
of C. Fix j, and consider the normalisation νj : C

ν
j → Cj and the Stein

factorisation αj : C
ν
j → Bj of π|Cj ◦ νj.

Cν
j

αj
��❅

❅❅
❅❅

❅❅
❅

νj
// Cj

π|Cj
// B

Bj

??⑧⑧⑧⑧⑧⑧⑧⑧

After possibly shrinking B, we may assume that αj is a smooth morphism.

Let Bjk be the connected components of Bj and let Cν
jk = α−1

j (Bjk) and

Cjk = νj(C
ν
jk). Then Cν

jk is irreducible since αj has connected fibres and
therefore Cjk is an irreducible component of Cj , which maps onto B. Now,
for fixed k we have that

ν∗jL · α−1
j (b) = L · (νj)∗α

−1
j (b) is constant for b ∈ Bjk.

So if this constant is positive, then L|Cjk is π|Cjk -ample. In particular, in-
creasing m2, we conclude that Em|Cjk is π|Cjk -nef.

Therefore, if Em|C is not nef, then C belongs to a family Cjk on which L
is numerically trivial. Since there are only countably many L-trivial curves
on X by Lemma 2.5, each family Cjk must be constant. This finishes the
proof. �

The following proposition was asserted in [Wil94, p. 697], but we could
not follow the arguments on p. 683, first lines of the proof.
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Proposition 5.8. Let X be a Calabi-Yau threefold with ρ(X) = 2 and let

L be a nef Cartier divisor on X with ν(X,L) = 2 which is not semiample.

Then

H2
(

X,Ω1
X ⊗OX(mL)

)

= 0 for m ≫ 0.

Proof. We assume Notation 5.2, and we assume further that D ∼Q αA+βL,
where A is as in Proposition 5.4 and α, β ∈ Q>0.

Step 1. By Proposition 5.7, possibly after shrinking B, there exists a
positive number m2 such that

(28) Em,b = Ω1
Xb

(logDb)⊗OXb
(mLb) is nef

for all m ≥ m2 and for all b ∈ B. Possibly further shrinking B, by Lemma
2.5 we may assume that

(29) Lb|Db
is ample for every b ∈ B.

Fix b0 ∈ B, and simplifying notation, set X = Xb0 and L = Lb0 . We may
assume that D = Db0 , and we claim that

(30) H2
(

X,Ω1
X(logD)⊗OX(µL)

)

= 0 for µ ≫ 0.

The claim immediately implies the proposition. Indeed, tensoring the residue
sequence (2) with OX(µL) and taking cohomology gives the exact sequence

H1
(

D,OD(µL)
)

→ H2
(

X,Ω1
X ⊗OX(µL)

)

→ H2
(

X,Ω1
X(logD)⊗OX(µL)

)

,

hence it suffices to show H1
(

D,OD(µL)
)

= 0. But this follows by (29) and
by Serre vanishing as soon as µ is sufficiently large.

Step 2. It remains to prove (30). Tensoring the standard exact sequence
associated to D with Ω1

X(logD)⊗OX(µL+D) and taking cohomology, we
get the exact sequence

H1
(

D,Ω1
X(logD)⊗OD(µL+D)

)

→ H2
(

X,Ω1
X(logD)⊗OX(µL)

)

→ H2
(

X,Ω1
X(logD)⊗OX(µL+D)

)

.

Hence, it suffices to show that for µ ≫ 0 we have

(31) H1
(

D,Ω1
X(logD)⊗OD(µL+D)

)

= 0

and

(32) H2
(

X,Ω1
X(logD)⊗OX(µL+D)

)

= 0.

The equation (31) follows from Serre vanishing. For (32), we may further
assume that m2 is so large, so that

(33) 10m2
2D · L2 −D · c2(X)− c3(X) > 0.

Denote E = Ω1
X(logD)⊗OX(m2L). By [Ful98, Chapter 3], by Proposition

2.2(vi) and by (33), we have

c1
(

OP(E)(1)
)5

= s3(E) > 0,
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and therefore, by (28) the line bundle OP(E)(1) is nef and big on P(E).
Noticing that det E = OX(D + 3m2L), we have

Ω1
X(logD)⊗OX(µL+D) = E ⊗ det E ⊗ OX

(

(µ− 4m2)L
)

,

and (32) follows by Lemma 2.8. This finishes the proof. �

Proposition 5.9. Let X be a Calabi-Yau threefold with ρ(X) = 2 and let L
be a nef line bundle on X with ν(X,L) = 2 which is not semiample. Then

H1
(

X,Ω1
X ⊗OX(−mL)

)

= H2
(

X,Ω2
X ⊗OX(mL)

)

= 0 for m ≫ 0.

Proof. Choose a smooth very ample divisor D on X, which is general in
the linear system |D|. Tensoring the residue sequence (3) associated to
Ω1
X(logD) with OX(−mL), and taking cohomology, we obtain the exact

sequence

H1
(

X,Ω1
X(logD)⊗OX(−D −mL)

)

→ H1
(

X,Ω1
X ⊗OX(−mL)

)

(34)

→ H1
(

D,Ω1
D ⊗OD(−mL)

)

.

Now since D +mL is ample, we have

H1
(

X,Ω1
X(logD)⊗OX(−D −mL)

)

= 0

by [EV92, Corollary 6.4], and as L|D is ample by Lemma 2.5, by Serre
duality and Serre vanishing we have

H1
(

D,Ω1
D ⊗OD(−mL)

)

≃ H1
(

D,Ω1
D ⊗OD(mL)

)

= 0 for m ≫ 0.

Therefore, (34) gives H1
(

X,Ω1
X ⊗ OX(−mL)

)

= 0, which together with
Serre duality proves our assertion. �

Corollary 5.10. Let X be a Calabi-Yau threefold with ρ(X) = 2 and let L
be a nef line bundle on X with ν(X,L) = 2 which is not semiample. Then

(i) c3(X) = 0,
(ii) there exists a positive integer k such that for all integers m we have

Hq
(

X,Ωp
X ⊗OX(mkL)

)

= 0 for all p, q.

Proof. By Proposition 3.4 and by Serre duality, there exists a positive integer
k such that for all integers m we have

h0
(

X,Ω1
X ⊗OX(mL)

)

= h3
(

X,Ω1
X ⊗OX(mL)

)

= 0

Therefore, by Propositions 2.2(iv) and 5.8, for m ≫ 0 we have

−
1

2
c3(X) = χ

(

X,Ω1
X ⊗OX(mkL)

)

= −h1
(

X,Ω1
X ⊗OX(mkL)

)

≤ 0,

and by Propositions 2.2(iv) and 5.9, for m ≫ 0 we have

−
1

2
c3(X) = χ

(

X,Ω1
X ⊗OX(−mkL)

)

= h2
(

X,Ω1
X ⊗OX(−mkL)

)

≥ 0.

This shows (i) and

h1
(

X,Ω1
X ⊗OX(mkL)

)

= h2
(

X,Ω1
X ⊗OX(−mkL)

)

= 0 for m ≫ 0.

The other equalities follow from Serre duality. �
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Remark 5.11. Let X be a Calabi-Yau threefold with ρ(X) = 2 and let L
be a nef line bundle on X with ν(X,L) = 2 which is not semiample. Let D
be any smooth divisor. Then from Corollary 5.10 and the standard residue
sequences associated to Ω1

X(logD) and Ω2
X(logD), we deduce that there is

a positive integer k such that for every integer m the residue maps

H0
(

X,Ω1
X(logD)⊗OX(mkL)

)

→ H0
(

D,OD(mkL)
)

and

H0
(

X,Ω2
X(logD)⊗OX(mkL)

)

→ H0
(

D,Ω1
D ⊗OD(mkL)

)

are isomorphisms. We expect that on a simply connected manifold this can
never happen.

6. Proof of Corollary 1.5

In this section we prove Corollary 1.5. We follow the arguments in
[Ogu93]. Choose a rational boundary ray R of Nef(X) and a Cartier di-
visor L such that R = R+L. If L2 6= 0, then L is semiample by Theorem
1.2, and hence produces an elliptic fibration f : X → S. Then X contains a
rational curve by [Pet91, Ogu93]. If L2 = 0, then we claim that the second
ray R′ is also rational. Indeed, fix any divisor L′ such that R′ = R+L

′. If
(L′)3 > 0, then the claim follows from [Wil89] or from the Cone theorem. If
(L′)3 = 0, fix an ample divisor H and consider the cubic polynomial

p(t) = (L+ tH)3 ∈ Z[t].

There is a unique real number t0 < 0 such that −(L + t0H) ∈ R′. Thus
p(t0) = 0. Since p has integer coefficients and a double zero at 0, the number
t0 is rational and hence the ray R′ is rational. Since t0 is a simple zero of p,
we have (L′)2 6= 0, and we conclude as above.
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