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Valley detection using a graphene gradual pn junction with spin-orbit coupling: an analytical
conductance calculation
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Graphene pn junction is the brick to build up variety of grapé nano-structures. The analytical formula
of the conductance of graphene gradual pn junctions in th@embipolar region has been absent up to now.
In this paper, we analytically calculated that pn condu¢anith the spin-orbit coupling and stagger potential
taken into account. Our analytical expression indicates tte energy gap causes the conductance to drop a
constant value with respect to that without gap in a certanameter region, and manifests that the curve of the
conductance versus the stagger potential consists of twesgm peaks — one valley contributes one peak. The
latter feature allows one to detect the valley polarizatigihout using double-interface resonant devices.

PACS numbers: 72.80.Vp, 73.22.-f, 73.23.-b, 85.30.Mn

I. INTRODUCTION 0 e

Since graphene was discovered, many interesting phys-
ical effects were predicted and some were experimentally
confirmed}? Graphene nowadays is regarded as the new-
generation material and draws extensive attentions. The pn
junction is the simplest structure in graphene system and is
the brick to build up more complicated structures such as pn
superlatticé’ quantum dof, and point contact.Lots of in-
triguing dfects are induced by the pn junction, for examples,
Klein tunneling for normally injected electroRs)egative re- )
fraction and Veselago lens for electron beéMssnake-Hall '
states around the interface under strong magnetic&ildnd
non-integer conductance quantization due to the mix of-elec
tron and hole Landau edge modes near the pn intetfade.

In Ref. [12], an analytical formula for the graphene pn
conductance was proposed for the special case that the Fermi
energy lies at the middle point between the potentials at two x(A1)  x(By, Ba) x4 x
ends. However, the analytical calculation of pn junctioms f
the whole bipolar “?9‘0” h?S been lacked for a_Iong “m‘?- FurFIG. 1: (Color Online) (a) Sketch of the tunneling when alecs
thermore, spin-orbit coupling (SOC) was not included in thep,sg the pn junction. (b) The area of enclosed by the x-« plane

caIcuIatiQn of Ref. @2]: WhiCh plgys more and more impor-in the process of an electron transmiting through the prtjonc
tant role in nowadays physics society. It is well known that t

SOC is too weak to be observed in pristine grapreHew-
ever, the SOC o!e_serves to be considered because it can be dé@'gradual graphene pn junctions with the SOC considered,
matically magnified to measurable scale by a few meti#dds. \yhich induces a energy gap and drives graphene to be a
Moreover, a family of graphene-like materials such as S”'topologic insulator. By means of the subband tunneling
icene, germanene, and stanene (single layer of silicon, gepogef®, we derived an analytical conductance expression of
manium, and stannum) were recently reported to have thge graphene pn junction in the whole interval of the bipo-
same honeycomb lattice as graphene but two types of sulsr region. To check the validity of our analytical result,
lattices buckled up and downlgut of plane. The lattice buckyye numerically calculated the pn conductance using the non-
ling leads to observable Sdéh’— which make these graphene gqilibrium Green’s function (NEGF) method, and found the
and graphene-like materials be topological insulatdBy in- _ conductances obtained by the two methods fit each other strik
cluding the SOC and stagger potential, the graphene latticgyq|y well. According to the analytical result, there esist
model is not a problem for gr_aphezqe itself, but a platformgy harameter interval, in which the conductance drops a con-
to study diferent types of junctiod$-2* and varies phases of stant value with respect to that without gap. When the stag-
two-dimensional topologic insulatof&:2° ger potential is present, the energy gaps for vall€yndK’
Motivated by these reasons, we studied the conductandeecome dierent. The analytical expression allows us to de-
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composes the conductance into valleyandK’ components. 8 2
The conductance is always governed by the valley having the @) i £ b
smaller gap. The conductance versus the stagger potential /7 4=0 ™ 2
consists of two Gaussian peaks, which are contributed by the 6 J,r’ \\ E
two valleys. This ect can be used for valley detection in the [ |- NEGF .
graphene-like materials without using double-interfaesor G 4 f —Eg(9) 11 6y
nant devices. S
| 7 a=010 7 |
: J :’f \ lll
I1. SUBBAND TRANSMISSION JJ j‘E ,1 l
The dis : T . [-JD.S 0 06 0 1
persion of graphene or graphene-like lattice around = PR
one valley with a uniform background potentiareads Er "© B (in units of 4)
NEFG
RAVE(KG + K9) + A% = (E - V)2, (1) & (©) ! _NEFG
. . . NEFG - A=0).025¢
wherer is the reduced Plank constaw, is the Fermi veloc- 10 | [—4=0
ity, andk = (ks ky), 2A, E andV are the wave-vector, en- G ~4=0.025¢ \
ergy gap, energy of electron, and background potentiale Her 5 y
we has not specified the physical origin of the energy gap, it
can be induced by stagger potential, SOC, or the combinaton o = e
of both. For the electrons in a ribbon alomedirection, x- ¢ R ae ek SR 89
component wave-vector is a good quantum number, and the L (100a) L (100a) L (100a)
motion in y-direction is described by lateral mode index
The dispersion relation of a graphene ribbon is FIG. 2: (Color Online) (a) Conductané (in units ofe?/h) for L =
30a versusEg, wherea is the in-plane atom-atom distance. (&)
€ + h?VEk? = (E - V)2, (2) (GatEr = 0)inEqg. [11) versug. (c)-(e) Numerical calculated

) o - Go (in units of €2/h) versusL (in units of 10@&). Parameters are
whereeg, is the lateral energy of mode which is positive for W = 100v3a andV, = 0.5t with t the nearest hopping energy in
electrons and negative for holes, dgds longitudinal wave-  tight-binding model.

vector of electron of subbamd In the equationA does not
appear because itsfect is absorbed ig,. The minimum or
maximum energies of the electron or hole dispersions for &/KB theory, the transmission is determined by the evanes-
given moden is regarded as the subband edge, which is obeent transport part as
tained by letting, = 0 as
Tn = e—ZSn, (4)
En = en+ V. 3)

_ ) ) ) ) ] whereS,, stands for the area enclosed gyx) and«_,(X) in
When the ribbon is subjected by a pn junction potefiad),  the x-« plane. We can approximate the curvesefndx _,
the uniform potentiaV in Eqgs. [2) and[(B) is replaced by on the x-« plane as two quarters of two fiirent ellipse¥
V(x), and the subband edges are modulated by the pn pote8naring one principle radius= |e,|. The other radius of each
tial, as illustrated in Figll (a). In this cakgis no longer a  quarter is determined by the explicit form ¥{x). The two
good quantum number and varies when electron propagatingjiipse quarters are shown in Fi§l 1 (b). Lettidgbe the

saying ky = Kn(x). _ distance betweeA,, and A_, in x-direction, the area of the
Now we track the physics when the electron goes throughyo quarters reads

the pn junction with the help of Fid.] 1 (a). We consider an

electron-like particle of lateral mode(n = 1 in the figure) 7 dnlen

starts fromx = —co. Before it is injected in the pn region, it Sn = 4 hve® ®)

has a real wave-vectdy. After it enters the pn area, the sub-

band edgdE, increasesk, decrease and goes into zero at theThe conductance of the pn junction is thus the summation of
turning pointA,,. After it moves beyond the poirk, becomes the contributions of all the subband involved into the prtun
imaginary (the electron goes evanescently with the evamesc neling.

wave-vectoik, = |ky|), andk? becomes more and more neg-

ative. This indicatesH — V)? in Eq. [2) decreases contin-

uously, and runs into zero at poiBh. The electron can no !l ANALYTICAL CALCULATION OF CONDUCTION
longer travel on of mode and has to transit to subbard as

a hole, i.e., from poinB, to B_,,. The evanescent wave prop-  The theory of the transmission for a pn junction of a ribbon
agation continues until the electron reaches the turnirigtpo can be applied to the bulk system. Given an electron injected
A_ on the curve of subband edg®, the wave-vector recov- with the wave-vectok, the lateral energy, should be re-
ers to a real value, and propagates away. According to thelaced with+(7*VZkZ + A?)"2, where plus for electrons and
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minus for holes. The distance between the turning padts t = 2.7eV,a = 1.4A, so we haveF. = 5 x 10°V/um, and
andA_, (see Fig.[1l) depends on not only the lateral energysimilar values ofF; for other graphene-like materials, much

but the potential slope at the incident energy greater than the experimentally achieved value, which ig on
several Vum:28:2° |n realistic situations, the slope of pn po-
(= d_V’ (6) tentials always allow the WKB approximation to be applied

dx safely.

o 2202 o A2\L/2 Particularly, if the Fermi energy is aligned at the middle
After substitutingd, by d ~ 2(h°veky + A%)7</F, we have the  energy between the potentials of two ends, sayig= 0,

transmission the conductance reaches its maximum
2 vek 2
T~ exp(—A—z) exp[—( VFZ y) } , (7) A2 Vi - A2
B B Go = ,Bexp(—ﬁ) erf —5 | (10)

whereg is a parameter of dimension of energy

; In the equation and from here on, we omit the constant
B = (hi : vE 8) pre-factore?W/(2+/zh) for simplicity. Because the poten-
’ tial varies slowly alongx, we consider the situatiof <

T
_ (V2 — A%)Y2. For this case the error function gives 1, and
The left and right end (n-end and p-end) are assumed to b@e conductance is reduced to

lifted by —Vy andV, respectively. If we seh = 0 andE =
0, by defining the fective lengthl = Vo/F = hvek/F and Go :ﬁexp(—A—z) (11)
the incident angl® = arctank,/kx), we recover the formula 2]
appearing in Ref[ [12]T = eIsi?0,

By counting all the transmission offtierentky, we have the
conductance across the pn juntion,

When no bulk gap exists, saying, = 0, it is interesting to
note the conductance is simply proportionagbtd=igure2 (b)
shows the conductancelt = 0 as a function of the junction
2 W 2 W length. The conductance remains almost non-changed gvthen
G = H f Tzdky W= X below a threshold, and then changes linearly \Withcreases.
K 2\r In this special linear region, the conductance reads

A? V(Vo — |Eg[)? — A?
pexpl-— erf( ] 9) a_ A) A
(ﬁ) B Go (ﬁ 7B \/E<,B<\/§A. (12)

whereW is the width of the sample and erf represents th
error function. In the equation, it has to bear in mind ihét
a function of energy, saying,= B(E).

To examine the validation of EqL](9), we numerically cal-
culated conductance of graphene pn junctions for compariso
The pn potential is modeled by a half period of sinusoidal
function of the lengtiL. connecting the two ends. The nu- value in the parameter region specified in the equation. This
merical conductance is obtained by the NEGF method basqgﬁerval ofp cgn be transla?ed to 2 scope of the 'u?]ction Ién th
on the tight-bonding Hamiltonian including the Kane-MeIea P J 9
SOC. The SOC induces an energy gapg Asp, WhereAso '
is a parameter to characterize the SOC amplitude in the tight
binding Hamiltonian. To eliminate the boundarffext and
simulate the infinite system, the periodical edge conditson
adopted. The details of numerical NEGF calculation and thavhereL. = Vo/A2. Figured® (c) through (e) show numer-
tight-binding Hamiltonian are not shown here but presentedcally calculatedGo versusL for both the casea = 0 and
in the Appendix for completeness. Figlre 2 (a) shows theéd # 0. For the case 0¥, = 0.5t andA = 0.02%, we have
conductances calculated from numerical and analyticahmet Lc = 120Q. In the interval ofL from 600Ca through 2408,
ods. As one can see, they are consistent very well. Thedée diference between the two conductances is almost a con-
conductance curves are peaked and center&g at 0 with  stant, as illustrated in Fil 2 (d).
peak width 2{/o — A). Larger energy gap means larger area
of ellipses shown in Fig]1 (b), and leads to smaller conduc-
tance. Eq.[(9) is obtained from the WKB approximation, so IV. VALLEY FEATURED TRANSPORT
the consistency will break down for the potential slopedarg
than a criterion valud-.. By comparison the conductance If there is a stagger potential present, saying, potentials
for many choices of., we estimate the criterion slope to be A-type and B-type atoms are lifted ldyand -6 respectively.

Fc. ~ 0.25t/a, wheret is the nearest hopping energy aad The stagger potential leads to the electron dispersiontand t
is the in-plane atom-atom distance. For the graphenedattic hole dispersion come closer for one valley and leave apart fo

E\VVhen/%’ is out of the region, say, when much smaller than
the lower limit, no conductance can be observed, and when
much larger than the upper limit, the exponential term in Eq.
(I7) tends to unity and the conductance is proportiongl to
Equation[(TR) means that the conductance of a system with an
energy gap is smaller than that of gapless system by a canstan

%Lc <L<2L, (13)
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valleys is calculated numerically, and the conductance-com

(h) ponent of each valley is analytically. In Fil 3 (a), it can be
clearly seen that the conductance consists of two peaks with
—NEGF different peak widths. The two peaks are contributed by val-
- Eq(9) leysK andK’, and the valley with the smaller gap leads to the

wider and higher peak. For a longer pn junction, the decrease
of the conductance component of vallky is more notably
than that of valleyK, as shown in Fid.13 (b). The conductance
is always dominated by the transport of the valley with the

05 -05 smaller gap. In Fig13 (c), the conductance curve shows a peak
with maximum ats = 0, but it indeed consists of two peaks of
() ' Gaussian type. For the parameters in Elg. 3 (c), the halfhwid
is about 26t, greater than the peak separatiaksg = 0.2t,
— NEGE and the two peaks cannot be distinguished on the conductance
-~ Eq (15) curve. FigurdB (d) shows the conductance and components

for a longer pn junction. Since longermeans smalleg and
thus narrower peaks (half-width is aboui8&, smaller than
the peak separatiom2p), the resolved peaks appear on the
P g e N N total conductance curve. One can choose a lohgsy as to
0.5 0 05 -05 0 0.5 the two peaks are totally resolved. All the above discussion
& 8 are based on single spin. Indeed The conductance for the othe
spinis the same, i.eG" = G!. Because flipping the spin leads
FIG. 3: (Color Online) Conductance and its valley composéirt to the interchange of the gaps of \_/aIIEK(sandK’, the conduc-
units ofe?/h) as functions of (in units oft) for (a)L = 30aand (b) ~ t&nce component of valley for spin-up and that of vallei’
L = 60a. Conductance and its valley components (in unite’gh)  fOr spin-down are equivalent, i.&5/¢T = G*..
atEg = 0 as functions of (in units oft) for (c) L = 3Caand (d)L = The peak-behavior of the conductance can be used to de-
?hog'czzﬁSé'gffeogonﬂfr?grizcé?nvﬁ :;: Z?Lcﬁgtceuc:ar:g;“mm tect valley index of electric current and to measure theeyalll
: olarization by combining a pn junction with a spin-filter.
Other parameters al¥/ = 100V3aandVo = 0.5t lEreer tuning %he stagge? pofentjial may be a chffllenge for
graphene, but is easy for other graphene-like materiatsasic
licene, germanene and stanene, due to the lattice bgcklin
any schemes of valley detection proposals in other litera-
tures rely on valley-dependent resonance of double-auterf
Ak = |6 F Asol. (14) spattering, wh_ich n_eeds accurate parameter control anft is d
' ficult to result in reliable observation.
The valley dependent energy gap results in that the conduc-
tances aEr = O for different valley are

the other valley. Thus, the energy gaps of the two valleys ari%/'I
driven to be dfferent, say,

(6 F Aso)?
,32

The total conductance @ = G +Gf'. This equationreveals  We obtained an analytical expression of the conductance of

that when we treat the stagger potential as a tunable pa@ametgraphene pn junctions in the bipolar region with the SOC in-

the conductance component of a single valley as a function afluded and verified its validity by comparing it and the numer

the stagger potential is a Gaussian peak, which is centéred @ally calculated conductance. Our analytical resultdatis

d = Aso Or —Aso, depending on the valley, and the full width that the conductance as a function of stagger potentialstsns

at half maximum (half-width) of which is2vin 2. of two Gaussian peaks, which are contributed by the tunnel-
The peak phenomenon of the conductance has two impoing of electrons in two valleys respectively. Thi$ext can be

tant features. First, the maximum conductance is propmatio used for valley detection.

to B, and for a given pn potential heigh, it is proportional

to 1/ VL. So the peak will survive for super long pn junctions

and one need not to worry about the conductance signal fades

out. Second, the peak feature is not a reson@iete and need

not tune the parameters to meet the resonant condition.
Figurd3 (a) through (d) shows the conductance and the con-

ductance components of valleiisandK’ of pn junctions as This work was supported by NSF of China Grant No.

functions of the Fermi energy and as functions of of staggefi1274124, No. 11474106, No. 11174088, and Hebei NSF

potential amplitudeS. The conductance contributed by both Grant No. A2012205062.

. (15) V. SUMMARY

G =p exp[—
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Appendix A: Tight-binding Hamiltonian and numerical wheres is the stagger potential amplitude, gmd= 1 when

calculation of conductance i represents an A-type atom apd= -1 for a B-type atom.

The stagger potential itself means a ¢g&@pThe combination

The tight-binding Hamiltonian of a perfect graphene ribbonof the stagger gap and the SOC gap results in twiemint
including the SOC reads gaps for valleyK andK’, as in Eq. [(I#). When the ribbon is
subjected by a space-varying potential, the Hamiltonian is
Ho = -t Z CiCijo + 1y Z VijCiTYO'iBCLg, (A1)
(ia «iap

wherec! (ci,) is the creation (annihilation) operator for an _ S

electrorll with spiny on sitei, 0% is thez-component of Pauli H=Ha+ ZV'C'”C"” (A4)
matrix, and the summations with the brackéts and ({..))

run over all the nearest and next-nearest neighbor sites, re

spectively. The first term is the Hamiltonian of the nearest

neighbor hopping with hopping enertjyThe second term is
the SOC Hamiltonian which involves the next-nearest neigh
bor hopping with amplitudg and a path dependent facigy.
For the electron couples form atommediated by a nearest
neighbor site and to a next-nearest neighbor ajpme have

vij = 1if it makes a left turn ane; = -1 if goes a right turn.

i

whereV; is the space-varying potential on sitéThe conduc-
tance can be calculated by the NEGF method as

The SOC term results in an energy gap as G = Tr(FL.G'TRGY), (AS)
Aso = 3V3y. (A2)
The Hamiltonian including the stagger potential, if it is where G'® andI'*® are the retarded (advanced) Green’s
present, reads function of the area covered by the pn potential and the
linewidth function of the left (right) lead. All these funahs
Hi = Ho+ 52’““ Ci\,Cias (A3) are obtained through the tight-binding Hamiltonian.
la
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