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Valley detection using a graphene gradual pn junction with spin-orbit coupling: an analytical
conductance calculation

Mou Yang,1, ∗ Rui-Qiang Wang,1 and Yan-Kui Bai2

1Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,
School of Physics and Telecommunication Engineering,

South China Normal University, Guangzhou 510006, China
2College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory,

Hebei Normal university, Shijiazhuang, Hebei 050024, China

Graphene pn junction is the brick to build up variety of graphene nano-structures. The analytical formula
of the conductance of graphene gradual pn junctions in the whole bipolar region has been absent up to now.
In this paper, we analytically calculated that pn conductance with the spin-orbit coupling and stagger potential
taken into account. Our analytical expression indicates that the energy gap causes the conductance to drop a
constant value with respect to that without gap in a certain parameter region, and manifests that the curve of the
conductance versus the stagger potential consists of two Gaussian peaks – one valley contributes one peak. The
latter feature allows one to detect the valley polarizationwithout using double-interface resonant devices.

PACS numbers: 72.80.Vp, 73.22.-f, 73.23.-b, 85.30.Mn

I. INTRODUCTION

Since graphene was discovered, many interesting phys-
ical effects were predicted and some were experimentally
confirmed.1,2 Graphene nowadays is regarded as the new-
generation material and draws extensive attentions. The pn
junction is the simplest structure in graphene system and is
the brick to build up more complicated structures such as pn
superlattice,3 quantum dot,4 and point contact.5 Lots of in-
triguing effects are induced by the pn junction, for examples,
Klein tunneling for normally injected electrons,2 negative re-
fraction and Veselago lens for electron beams,6,7, snake-Hall
states around the interface under strong magnetic field,8,9, and
non-integer conductance quantization due to the mix of elec-
tron and hole Landau edge modes near the pn interface.10,11

In Ref. [12], an analytical formula for the graphene pn
conductance was proposed for the special case that the Fermi
energy lies at the middle point between the potentials at two
ends. However, the analytical calculation of pn junctions for
the whole bipolar region has been lacked for a long time. Fur-
thermore, spin-orbit coupling (SOC) was not included in the
calculation of Ref. [12], which plays more and more impor-
tant role in nowadays physics society. It is well known that the
SOC is too weak to be observed in pristine graphene.2 How-
ever, the SOC deserves to be considered because it can be dra-
matically magnified to measurable scale by a few methods.13

Moreover, a family of graphene-like materials such as sil-
icene, germanene, and stanene (single layer of silicon, ger-
manium, and stannum) were recently reported to have the
same honeycomb lattice as graphene but two types of sub-
lattices buckled up and down out of plane. The lattice buck-
ling leads to observable SOC,14–17which make these graphene
and graphene-like materials be topological insulators.18 By in-
cluding the SOC and stagger potential, the graphene lattice
model is not a problem for graphene itself, but a platform
to study different types of junctions19–21 and varies phases of
two-dimensional topologic insulators.22–25

Motivated by these reasons, we studied the conductance

FIG. 1: (Color Online) (a) Sketch of the tunneling when electrons
pass the pn junction. (b) The area of enclosed byκ in the x-κ plane
in the process of an electron transmiting through the pn junction.

of gradual graphene pn junctions with the SOC considered,
which induces a energy gap and drives graphene to be a
topologic insulator. By means of the subband tunneling
model26, we derived an analytical conductance expression of
the graphene pn junction in the whole interval of the bipo-
lar region. To check the validity of our analytical result,
we numerically calculated the pn conductance using the non-
equilibrium Green’s function (NEGF) method, and found the
conductances obtained by the two methods fit each other strik-
ingly well. According to the analytical result, there exists
a parameter interval, in which the conductance drops a con-
stant value with respect to that without gap. When the stag-
ger potential is present, the energy gaps for valleysK andK′

become different. The analytical expression allows us to de-
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composes the conductance into valleyK andK′ components.
The conductance is always governed by the valley having the
smaller gap. The conductance versus the stagger potential
consists of two Gaussian peaks, which are contributed by the
two valleys. This effect can be used for valley detection in the
graphene-like materials without using double-interface reso-
nant devices.

II. SUBBAND TRANSMISSION

The dispersion of graphene or graphene-like lattice around
one valley with a uniform background potentialV reads

~
2v2

F(k2
x + k2

y ) + ∆2 = (E − V)2, (1)

where~ is the reduced Plank constant,vF is the Fermi veloc-
ity, and k = (kx, ky), 2∆, E andV are the wave-vector, en-
ergy gap, energy of electron, and background potential. Here
we has not specified the physical origin of the energy gap, it
can be induced by stagger potential, SOC, or the combination
of both. For the electrons in a ribbon alongx-direction, x-
component wave-vector is a good quantum number, and the
motion in y-direction is described by lateral mode indexn.
The dispersion relation of a graphene ribbon is

ǫ2n + ~
2v2

Fk2
n = (E − V)2, (2)

whereǫn is the lateral energy of moden, which is positive for
electrons and negative for holes, andkn is longitudinal wave-
vector of electron of subbandn. In the equation,∆ does not
appear because its effect is absorbed inǫn. The minimum or
maximum energies of the electron or hole dispersions for a
given moden is regarded as the subband edge, which is ob-
tained by lettingkn = 0 as

En = ǫn + V. (3)

When the ribbon is subjected by a pn junction potentialV(x),
the uniform potentialV in Eqs. (2) and (3) is replaced by
V(x), and the subband edges are modulated by the pn poten-
tial, as illustrated in Fig 1 (a). In this casekn is no longer a
good quantum number and varies when electron propagating,
saying,kn = kn(x).

Now we track the physics when the electron goes through
the pn junction with the help of Fig. 1 (a). We consider an
electron-like particle of lateral moden (n = 1 in the figure)
starts fromx = −∞. Before it is injected in the pn region, it
has a real wave-vectorkn. After it enters the pn area, the sub-
band edgeEn increases,kn decrease and goes into zero at the
turning pointAn. After it moves beyond the point,kn becomes
imaginary (the electron goes evanescently with the evanescent
wave-vectorκn = |kn|), andk2

n becomes more and more neg-
ative. This indicates (E − V)2 in Eq. (2) decreases contin-
uously, and runs into zero at pointBn. The electron can no
longer travel on of moden and has to transit to subband−n as
a hole, i.e., from pointBn to B−n. The evanescent wave prop-
agation continues until the electron reaches the turning point
A−n on the curve of subband edge−n, the wave-vector recov-
ers to a real value, and propagates away. According to the

FIG. 2: (Color Online) (a) ConductanceG (in units ofe2/h) for L =
30a versusEF , wherea is the in-plane atom-atom distance. (b)G0

(G at EF = 0) in Eq. (11) versusβ. (c)-(e) Numerical calculated
G0 (in units of e2/h) versusL (in units of 100a). Parameters are
W = 100

√
3a and V0 = 0.5t with t the nearest hopping energy in

tight-binding model.

WKB theory, the transmission is determined by the evanes-
cent transport part as

Tn = e−2S n , (4)

whereS n stands for the area enclosed byκn(x) andκ−n(x) in
the x-κ plane. We can approximate the curves ofκn andκ−n

on the x-κ plane as two quarters of two different ellipses27

sharing one principle radiusb = |ǫn|. The other radius of each
quarter is determined by the explicit form ofV(x). The two
ellipse quarters are shown in Fig. 1 (b). Lettingdn be the
distance betweenAn and A−n in x-direction, the area of the
two quarters reads

S n =
π

4
dn|ǫn|
~vF
, (5)

The conductance of the pn junction is thus the summation of
the contributions of all the subband involved into the pn tun-
neling.

III. ANALYTICAL CALCULATION OF CONDUCTION

The theory of the transmission for a pn junction of a ribbon
can be applied to the bulk system. Given an electron injected
with the wave-vectork, the lateral energyǫn should be re-
placed with±(~2v2

Fk2
y + ∆

2)1/2, where plus for electrons and
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minus for holes. The distance between the turning pointsAn

andA−n (see Fig. 1) depends on not only the lateral energy
but the potential slope at the incident energy

F =
∣

∣

∣

∣

∣

dV
dx

∣

∣

∣

∣

∣

. (6)

After substitutingdn by d ≈ 2(~2v2
Fk2

y +∆
2)1/2/F, we have the

transmission

T ≈ exp

(

−∆
2

β2

)

exp

[

−
(~vFky)2

β2

]

, (7)

whereβ is a parameter of dimension of energy

β =

(

~vF

π

)
1
2

·
√

F. (8)

The left and right end (n-end and p-end) are assumed to be
lifted by −V0 andV0 respectively. If we set∆ = 0 andE =
0, by defining the effective lengthl = V0/F = ~vFk/F and
the incident angleθ = arctan(ky/kx), we recover the formula
appearing in Ref. [12],T = e−πkl sin2 θ.

By counting all the transmission of differentky, we have the
conductance across the pn juntion,

G =
e2

h

∫

kF

T
W
2π

dky =
e2

h
W

2
√
π
×

βexp

(

−∆
2

β2

)

erf















√

(V0 − |EF |)2 − ∆2

β















, (9)

whereW is the width of the sample and erf represents the
error function. In the equation, it has to bear in mind thatβ is
a function of energy, saying,β = β(E).

To examine the validation of Eq. (9), we numerically cal-
culated conductance of graphene pn junctions for comparison.
The pn potential is modeled by a half period of sinusoidal
function of the lengthL connecting the two ends. The nu-
merical conductance is obtained by the NEGF method based
on the tight-bonding Hamiltonian including the Kane-Mele
SOC. The SOC induces an energy gap∆ = ∆S O, where∆S O

is a parameter to characterize the SOC amplitude in the tight-
binding Hamiltonian. To eliminate the boundary effect and
simulate the infinite system, the periodical edge conditionis
adopted. The details of numerical NEGF calculation and the
tight-binding Hamiltonian are not shown here but presented
in the Appendix for completeness. Figure 2 (a) shows the
conductances calculated from numerical and analytical meth-
ods. As one can see, they are consistent very well. These
conductance curves are peaked and centered atEF = 0 with
peak width 2(V0 − ∆). Larger energy gap means larger area
of ellipses shown in Fig. 1 (b), and leads to smaller conduc-
tance. Eq. (9) is obtained from the WKB approximation, so
the consistency will break down for the potential slope larger
than a criterion valueFc. By comparison the conductance
for many choices ofL, we estimate the criterion slope to be
Fc ≈ 0.25t/a, wheret is the nearest hopping energy anda
is the in-plane atom-atom distance. For the graphene lattice,

t = 2.7eV, a = 1.4Å, so we haveFc = 5 × 103V/µm, and
similar values ofFc for other graphene-like materials, much
greater than the experimentally achieved value, which is only
several V/µm.28,29 In realistic situations, the slope of pn po-
tentials always allow the WKB approximation to be applied
safely.

Particularly, if the Fermi energy is aligned at the middle
energy between the potentials of two ends, saying,EF = 0,
the conductance reaches its maximum

G0 = βexp

(

−∆
2

β2

)

erf

























√

V2
0 − ∆2

β

























. (10)

In the equation and from here on, we omit the constant
pre-factore2W/(2

√
πh) for simplicity. Because the poten-

tial varies slowly alongx, we consider the situationβ ≪
(V2

0 − ∆
2)1/2. For this case the error function gives 1, and

the conductance is reduced to

G0 = βexp

(

−∆
2

β2

)

. (11)

When no bulk gap exists, saying,∆ = 0, it is interesting to
note the conductance is simply proportional toβ. Figure 2 (b)
shows the conductance atEF = 0 as a function of the junction
length. The conductance remains almost non-changed whenβ

below a threshold, and then changes linearly withβ increases.
In this special linear region, the conductance reads

G0 ∼
(

β − ∆√
2

)

,
∆
√

2
< β <

√
2∆. (12)

When β is out of the region, say, when much smaller than
the lower limit, no conductance can be observed, and when
much larger than the upper limit, the exponential term in Eq.
(11) tends to unity and the conductance is proportional toβ.
Equation (12) means that the conductance of a system with an
energy gap is smaller than that of gapless system by a constant
value in the parameter region specified in the equation. This
interval ofβ can be translated to a scope of the junction length
as,

1
2

Lc < L < 2Lc, (13)

whereLc = V0/∆
2. Figures 2 (c) through (e) show numer-

ically calculatedG0 versusL for both the cases∆ = 0 and
∆ , 0. For the case ofV0 = 0.5t and∆ = 0.025t, we have
Lc = 1200a. In the interval ofL from 600a through 2400a,
the difference between the two conductances is almost a con-
stant, as illustrated in Fig. 2 (d).

IV. VALLEY FEATURED TRANSPORT

If there is a stagger potential present, saying, potentialson
A-type and B-type atoms are lifted byδ and−δ respectively.
The stagger potential leads to the electron dispersion and the
hole dispersion come closer for one valley and leave apart for



4

FIG. 3: (Color Online) Conductance and its valley components (in
units ofe2/h) as functions ofEF (in units oft) for (a)L = 30a and (b)
L = 60a. Conductance and its valley components (in units ofe2/h)
at EF = 0 as functions ofδ (in units of t) for (c) L = 30a and (d)L =
60a. The curves of total conductance are calculated numerically and
the conductance components of valleys are calculated analytically.
Other parameters areW = 100

√
3a andV0 = 0.5t.

the other valley. Thus, the energy gaps of the two valleys are
driven to be different, say,

∆K,K′ = |δ ∓ ∆S O |. (14)

The valley dependent energy gap results in that the conduc-
tances atEF = 0 for different valley are

GK,K′

0 = βexp

[

−
(δ ∓ ∆S O)2

β2

]

. (15)

The total conductance isG0 = GK
0 +GK′

0 . This equation reveals
that when we treat the stagger potential as a tunable parameter,
the conductance component of a single valley as a function of
the stagger potential is a Gaussian peak, which is centered at
δ = ∆S O or−∆S O, depending on the valley, and the full width
at half maximum (half-width) of which is 2β

√
ln 2.

The peak phenomenon of the conductance has two impor-
tant features. First, the maximum conductance is proportional
to β, and for a given pn potential heightV0, it is proportional
to 1/

√
L. So the peak will survive for super long pn junctions

and one need not to worry about the conductance signal fades
out. Second, the peak feature is not a resonant effect, and need
not tune the parameters to meet the resonant condition.

Figure 3 (a) through (d) shows the conductance and the con-
ductance components of valleysK andK′ of pn junctions as
functions of the Fermi energy and as functions of of stagger
potential amplitudeδ. The conductance contributed by both

valleys is calculated numerically, and the conductance com-
ponent of each valley is analytically. In Fig. 3 (a), it can be
clearly seen that the conductance consists of two peaks with
different peak widths. The two peaks are contributed by val-
leysK andK′, and the valley with the smaller gap leads to the
wider and higher peak. For a longer pn junction, the decrease
of the conductance component of valleyK′ is more notably
than that of valleyK, as shown in Fig. 3 (b). The conductance
is always dominated by the transport of the valley with the
smaller gap. In Fig. 3 (c), the conductance curve shows a peak
with maximum atδ = 0, but it indeed consists of two peaks of
Gaussian type. For the parameters in Fig. 3 (c), the half-width
is about 0.26t, greater than the peak separation 2∆S O = 0.2t,
and the two peaks cannot be distinguished on the conductance
curve. Figure 3 (d) shows the conductance and components
for a longer pn junction. Since longerL means smallerβ and
thus narrower peaks (half-width is about 0.186t, smaller than
the peak separation 2∆S O), the resolved peaks appear on the
total conductance curve. One can choose a longerL so as to
the two peaks are totally resolved. All the above discussions
are based on single spin. Indeed The conductance for the other
spin is the same, i.e.,G↑ = G↓. Because flipping the spin leads
to the interchange of the gaps of valleysK andK′, the conduc-
tance component of valleyK for spin-up and that of valleyK′

for spin-down are equivalent, i.e.,GK,↑ = GK′ ,↓.

The peak-behavior of the conductance can be used to de-
tect valley index of electric current and to measure the valley-
polarization by combining a pn junction with a spin-filter.
Freely tuning the stagger potential may be a challenge for
graphene, but is easy for other graphene-like materials such as
silicene, germanene and stanene, due to the lattice buckling.
Many schemes of valley detection proposals in other litera-
tures rely on valley-dependent resonance of double-interface
scattering, which needs accurate parameter control and is dif-
ficult to result in reliable observation.

V. SUMMARY

We obtained an analytical expression of the conductance of
graphene pn junctions in the bipolar region with the SOC in-
cluded and verified its validity by comparing it and the numer-
ically calculated conductance. Our analytical result indicates
that the conductance as a function of stagger potential consists
of two Gaussian peaks, which are contributed by the tunnel-
ing of electrons in two valleys respectively. This effect can be
used for valley detection.
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Appendix A: Tight-binding Hamiltonian and numerical
calculation of conductance

The tight-binding Hamiltonian of a perfect graphene ribbon
including the SOC reads

H0 = −t
∑

〈i j〉α
c+iαc jα + iγ

∑

〈〈i j〉〉αβ
νi jc

+
iασ

z
αβ

c jβ, (A1)

wherec+iα (ciα) is the creation (annihilation) operator for an
electron with spinα on sitei, σz is thez-component of Pauli
matrix, and the summations with the brackets〈..〉 and 〈〈..〉〉
run over all the nearest and next-nearest neighbor sites, re-
spectively. The first term is the Hamiltonian of the nearest
neighbor hopping with hopping energyt. The second term is
the SOC Hamiltonian which involves the next-nearest neigh-
bor hopping with amplitudeγ and a path dependent factorνi j.
For the electron couples form atomi, mediated by a nearest
neighbor site and to a next-nearest neighbor atomj, we have
νi j = 1 if it makes a left turn andνi j = −1 if goes a right turn.
The SOC term results in an energy gap as

∆S O = 3
√

3γ. (A2)

The Hamiltonian including the stagger potential, if it is
present, reads

H1 = H0 + δ
∑

iα

µic
+
iαciα, (A3)

whereδ is the stagger potential amplitude, andµi = 1 when
i represents an A-type atom andµi = −1 for a B-type atom.
The stagger potential itself means a gap|δ|. The combination
of the stagger gap and the SOC gap results in two different
gaps for valleysK andK′, as in Eq. (14). When the ribbon is
subjected by a space-varying potential, the Hamiltonian is

H = H1 +
∑

iα

Vic
+
iαciα, (A4)

whereVi is the space-varying potential on sitei. The conduc-
tance can be calculated by the NEGF method as

G = Tr(ΓLGrΓRGa), (A5)

where Gr(a) and ΓL(R) are the retarded (advanced) Green’s
function of the area covered by the pn potential and the
linewidth function of the left (right) lead. All these functions
are obtained through the tight-binding Hamiltonian.
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11 B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S.
Levitov, and P. Kim, Phys. Rev. Lett. 99 (2007) 166804.

12 V. V. Cheianov and V. I Fal’ko, Physical Review B 74 (2006)
041403(R).

13 J. Balakrishnan, G. K. Koon, M. Jaiswal, A. H. Castro Neto, and
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