arXiv:1601.01277v1l [cond-mat.mes-hall] 6 Jan 2016

Spin helical statesand spin transport of the line defect in silicene lattice
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Abstract
We investigated the electronic structure of a silicene-ldttice with a line defect under the consideration
of spin-orbit coupling. In the bulk energy gap, there areedefelated bands corresponding to spin helical
states localized beside the defect line: spin-up electitomsforward on one side near to the line defect and
move backward on the other side, and vice verse for spin-dgectrons. When the system is subjected
to random distribution of spin-flipping scatterers, elent sdifer much less spin-flipped scattering when
they transport along the line defect than in the bulk. Antelegate above the line defect can tune the

spin-flipped transmission, which makes the line defect g@racontrollable waveguide.
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. INTRODUCTION

A variety of two-dimensional materials of the similar la#istructure as graphene have drawn
intensive attention in recent years. Silicene, germarmme stanene have the buckled honeycomb
lattice, and Dirac points were found in their electroniustureslﬂl] Comparing to graphene, there
are advantages of these materials stemming from the l&iticiding. A normally applied electri-
cal field induces a stagger potential and causes a band pajih is essential for the applica-
tion. The buckling dramatically increases the spin-orbiting (SOC)/[3] while it is too weak
to induce observableftect in graphene.[4] The SOC in a honeycomb lattice materadas it a
topologic insulator and spin helical edge states existérettiges.|5] The combination of the stag-
ger potential and the SOC results in valle polarizatﬂ;r@l]ﬁand various spin and valley related
physics can be found in junction syste ié—lO] Recergbgarchers successfully fabricated line
defects in honeycomb Iatticel;bm 12] which has spurrégl dd discussions on their electronic
properties. A tight-binding investigation reveals thag gystem is gapleslgliﬂ and can be re-
garded as a quantum wavegui.[14] When a magnetic fieldeappbdcalized states arise beside
the defect line, like the edge states on the edges. The quastaies around the line defect can be
described by the low energy continuum model with a properena@nnection conditior[LJLEllG]
A efficient valley filter €fect can be caused by Multiple defect lines due to the valegeddent
resonanc ﬂ8] The studies on the defect line are aicbas graphene lattice, in which no
SOC needed to be considered. Duo to the new features causatids/buckling, we expect more
physics can be found in the silicene-like lattice with thé&deline.

In this paper, we investigate the band structure of a siédée lattice with a line defect under
the consideration of spin-orbit coupling. Figure 1 (a) shalex-y projection of the investigated
lattice, the defect atoms lie on the liye= 0 and the buckling amplitude for the defect atoms
is assumed to be the same as that of the bulk lattice. We find #Hre two bands related with
the line defect for each spin electrons between the bulkedsspns. The states of one band are
most localized on the defect atoms themselves and the otbetrlotalized on the atoms nearest
to the defect line (we refer these atoms closest to the lifectias the defect edge atoms). The
spin-up defect edge states propagate along one defect adgeraback along the other defect
edge, and the spin-down ones behave reversely, i.e., tieegpan helical states. The stagger
potential makes the bands asymmetric and alters the latializ properties of the defect edge

states. We study the spin-flipped transport when the latisabjected by random distribution of



FIG. 1. (Color Online) (a)-y projection of a silicene-like lattice with a line defect. &filled and empty
circles represent atoms buckled-up and buckled-down césply. (b) DispersiorE(K) (in units oft) versus
wavevectoik (in units ofr/a). The lateral atom number is 40. (c) The probability disttibn of the eigen
state marked by poinA in the dispersion. Larger atom circle radius means largaeaduility on the atom.
(d) The probability distribution of the eigen states markggoint B. (e) pg of the curve-1 (solid line) and

curve-2 (dashed line) as functionslof

spin-flipped impurities. There always exist an energy wdkwithin the bulk gap, in which the
spin-flipped transmission is much smaller than that of thk électrons. This property stems from

the separation in real space between the stategfefeint spins.

Il. CALCULATIONSAND DISCUSSIONS
A. TheHamiltonian

The tight-binding Hamiltonian including the SOC reads
H = 52 ViCh,Cig — tZ Ci,Cia
ia (ijya

+i)/ Z Vijcityo-czyﬁciﬁ (1)
«ijnap

wherec; (c,) is the creation (annihilation) operator for an electrothv@pina on sitei, o is
the zcomponent of Pauli matrix, and the summations with the ketsg..) and({..)) run over

all the nearest and next-nearest neighbor sites, resphctiThe first term is the Hamiltonian

3



FIG. 2: (Color Online) The first row: The dispersi&tk) (in units oft) versusk (in units ofr/a) for spin-up
electrons. The second rowj of the curve-1 (solid line) and curve-2 (dashed line) astions ofk. The

third row: p, of the curve-1 (solid line) and curve-2 (dashed line) asfions ofk.

related with the stagger on-site potential, in whigh= 1 wheni represents a buckled up atom
andv; = -1 for buckled down atom, andlis the stagger potential amplitude. The second term
is the Hamiltonian of the nearest neighbor hopping with hiogenergyt. The third term is the
SOC Hamiltonian which involves the next-nearest neighlogping with amplitude and a path
dependent amplitude;. For the electron couples form atopmediated by a nearest neighbor site
and to a next-nearest neighbor atpmve havey;; = 1 if it makes a left turn and;; = -1 if goes a
right turn. Since the line defect lies alomgdirection, and the wavevector idirection is a good
guantum number. The calculation is conducted in a trawsiaticell. Iny-direction, the periodical

edge condition is adopted to avoid the distraction of theeesdgtes, which are not our targets.

B. TheBasicCase 6 =0andy =0

Firstly, we investigate the electronic structure of theayswhen both the stagger potential and
the SOC are turnedi(i.e.,s = 0 andy = 0). The dispersion is shown as Fig. 1 (b). It can be seen
that the dispersion is quite similar to that of a grapheneaity except that there are two additional
curves lacking of electron-hole symmetry. The two banddalreled by curve-1 and curve-2 in
the figure and we will conduct detailed investigation onitpedperties for a variety of parameters.

There is a flat part on curve-1, which implies that these sthéar analogous properties of edge



(a) y=0.05t, 5=0

FIG. 3: (Color Online) (a) A zoom picture of the dispersiom pin-up electrons (the dispersion for the
spin-down electrons is exactly the same). (b) and (c) Thbaltity distribution of states labeled by point
B andC in (a) for the spin-up band respectively. (d) and (e) The abiliiy distribution of states labeled by

point D andE for the spin-down band respectively.

states. Figure. 1 (c) shows the electron probability digtion of the eigen state represented by
point A on curve-1, and one can see that the density is most localiz¢lte defect edge atoms. If
we choose another point on the flat band apart from pd{atpoint betwee andC) to study, we
find the density decays away from the defect edge atoms taulkeobeither side, and the decay
rate depends on the deviation of the point studied from p&ifrtot shown in the figure). These
features are just those of edge states for a zigzag graphdyway which is not strange because
the defect edge atoms are just the real edge ones if the debens are removed. For this reason,
we call these defect-nearest atoms as defect edge oneslethrere density of poinB on curve-2

is shown in Fig. 1 (d). The density is most localized on theedeftoms and slightly scattered on
nearby atoms. For other points on the same curve near Bpihé densities are more scattered on
more atoms around the defect atoms, and decay away into thénotd shown in the figure). We
also examine the properties of other parts of curve-1 angeer The states dEC andFD are
distributed on both the defect atoms and the defect edgesatmsihe states of palB of curve-2,

while, DC represents bulk states, which is result of the band croskatgoccurs at poind. The



density distributions of the two bands are symmetric wikpeet to the defect line.

To describe the localization on the defect atoms, we defiaatify

po =p(y=0), 2)

wherep is the probability distribution. Figure 1 (e) showsof curve-1 and curve-2 as functions
of k. FromE to C, pg decreases continuously, abrupt change happens at@diatause of the
band crossing, and it vanishes for p@a (the flat part) since it represent defect edge staigs.
of curve-2 experiences one more abrupt change becausadlaradditional crossing at poibt
besides of the crossing at poidt partFD of it is almost overlap withpg curve for curve-1 since
they have similar localization properties; for pB, po is zero, which reflects the properties of
the bulk states and the electron probability on the defexrhatis infinitesimal; and frort to B,

the density on defect atoms is continuously increased.

C. TheGeneral Cases

Now we turn the SOC term on to a small value. For this case thiegyis spin-dependent, we
only study the properties for the spin-up electrons for renvg discuss spin-down electrons later.
The SOC induces a gap\go at each valley for a perfect bulk silicene-like lattice, eindepends
on the SOC by

Aso = 3V3y. 3)

The small gap can be found between curve-1 and curve-2 nkkey ¥ain Fig. 2 (a), and it causes
slightly smearing of the abrupt changesogfversusk for both curve-1 and curve-2, as illustrated
in Fig. 2 (f). When we increase the SOC amplitude, the gapleywK increases correspondingly,
the smearing opg is more apparently, the defect states around p@ioh curve-1 and the bulk
states around the point on curve-2 are mixed with each adhdrthepog = 0 part disappears. The
bulk gap at valleyK or K’ is not the real gap between curve-1 and curve-2, becausettoerbof
curve-1 remains almost unchangedeat 0 wheny changes.

In the energy gap, the SOC drives spin-up electrons piledt yme edge if edges exist, and
spin-down electrons at the other edge. Because the defiectdin be regarded as another type
of edge, we expect electrons withfdirent spins accumulate neaftdrent defect edges even no

real edge exist (periodic edge conditionyxalirection is adopted, so no real edge exists) and the
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electron probability distribution exhibits asymmetry kvitespect to the defect line. To describe

the asymmetry, we define the quantity

Pa = fy>0 pdy — J};<Opdy. (4)

Figure 2 (k) showgp, of curve-1 and curve-2 as functions kf A small SOC can induces a
remarkable asymmetry of, (i.e.,p, # 0) near valleyK, and a larger SO@ = 0.05t results in the
asymmetry of the whole interval & Around valleyK the electron probability corresponding to
curve-1 is localized near the upper defect eggex 0) and near the lower defect edgeg & 0)
around the other valley, and for the curve-2 situation igreed.

Next we switch on the stagger potential amplitédd he combination of the stagger potential
and SOC term causes twdl@irent energy gapsA% and 2\, for valleysK andK’ for a perfect
silicene-like lattice, respectively, which is called aieyapolarization &ect and only happens for
Asod # 0. The two gaps are determined by

Ak =6 — Asol,

©))
Axr =16 + Asol.

For small stagger potentiél < Asp, the gap of valleyK shrinks and that of valle)X’ enlarges,
which makes the bulk dispersions around vall&ysnd K’ not identical, breaks the left-right
symmetry ofpg, and spoils the anti-left-right symmetry pf, as illustrated in Fig. 2 (c), (h), and
(m). When¢ is increased té = Aso, We haveAx = 0, saying, the gap of vallel¢ vanishes and
the crossing between curve-1 and curve-2 returns. The abhnapge of, at the crossing point
is revivified. The asymmetry of the electron probabilityand valleyK is almost unobservable
while remains apparent around vall&y. These features can be seen in Fig. 2 (d), (i), and (n).
When we increasé so as tod > Aso, we have two nonidentical gaps for twofdrent valleys
again. Fig. 2 (e), (j), and (o) show the dispersiaf,andp, for this case. The bulk dispersion and
thepo curve are quite similar to those for the case af Aso, but the bottom of curve-1 is above
E = 0 and no morgg = 0 point can be found on the curve@f for curve-1. In the whole interval
of k, pa < 0 for curve-1, which is very dierent from the casé < Aso.

If we only consider the spin-down electrons, all the curvepearing in Fig. 2 are flipped
left-to-right with these symmetric curves keep intact.

Fig 3 (a) shows the energy dispersions for both spin-up amddgavn forAso # 0 ands = 0.
The curves for spin-up and spin-down overlap completel/tioel probability distribution for the



(a) ¥=0.051, 5=1.54s0

FIG. 4: (Color Online) (a) A zoom picture of the dispersioasgpin-up (solid lines) and spin-down (dashed
lines) electrons. (b), (c), (d), and (e) The probabilitytidlimtion of states labeled by poing C, D, andE

in (a), respectively.

two defect edge bands arefférent. We study the states represented by four points atthe s
energy, say, pointB andC on curve-1 for spin-up anB® andE for spin-down. The probability
distribution corresponding to the four point is illustrai@ Fig. 3 (b) through (e). At the energy,
the spin-up electrons go right along the lower defect edgkflanv left along the upper defect
edge, in other words, run anti-clockwise around the defeet Wwhile the spin-up electrons go
clockwise.

When both SOC and stagger potential are present, the enispggrsions for spin-up and spin-
down electrons are not identical, as shown in Fig 4 (a). Thbaility distribution of four poinB
throughE labeled in Fig. 4 (a) are illustrated in Fig. 4 (b) through (&) the energy represented
by the horizontal line, electrons with both spins move altimg lower defect edge leaving the
upper defect edge almost empty. This can be understood bgttiras belong to dierent defect
edges are buckled reversely and a electric field across thetdime. Becausé > Asp is adopted
in the figure, the electric field is dominate and drives thetede probability on one side of the

defect line.



D. Spin Dependent Transport

The spacial separation of the electrons witlfetent spins is helpful for the suppression of
spin flip when electrons propagating. A small bias along #fect line drives electrons from the
left going to the right. If the electron is injected at the myyewithin the bulk energy gap and
above the bottom of curve-1, the transport is supported dyéfect edge states. When no stagger
potential is applied, the spin-up and spin-down electras fightward alone the lower and upper
defect edges, respectively (see Fig. 3). We consider tmergome spin-flipping scatterers random
distributed on the plane, and the scatterers are assumexrlddtiziently weak, microscopically
large but macroscopically small, and identical with eadteot The electrons cannot be scattered
back because back scattering needs l&yansfer, but the spin can be flipped without change of
k. This type of scatterers can be regarded as a simple modwet ¢ddal lattice distortion induced
by alien atom absorptio&llQ] The local distortion, for exade, a bump, leads to spin-dependent

rliEO] Besides

the lattice distortion, the on-site energy of the alien aisna short-ranged scatterer, which is

scattering and is relaxed within the area of the dimensiaems of lattice consta

spin-independent and not our aim. In frame of first orderysbetion theory, the spin-flipped

transmission (the detailed derivation is given in the Agpenis

Tt = 4n°n° - p(Ex)) |<¢kl|¢kT>|zp(EkT)

= V2ol (6)

wherep(E) is density of states at ener§yv = 0E,/ok = (2rp)~tis the velocity & = 1 is adopted),
anda = (¢x l¢x) is the overlap of lateral eigen states of the spin-up anddpwn electrons, and
n = Vns/S is a parameter to characterize 2D disorder witts andV being the number, area,
and potential of scatterer ar®lthe area of the sample. For the bulk electrons going parallel
the x-direction, the spin-flipped transmission is describedh®/same equation. The dispersion
relation of bulk electrons iE? = A?+Vv2k?, so we have the velocity squarefs= v2-(E*-A?)/E?,
wherevg is the Fermi velocity of perfect silicene, and= 1 for bulk electrons. Figurel 5 shows
the spin-flipped transmission as a function of energy fohltlé defect line guided transport and
x-direction propagation for bulk electrons. Above the gap,ftipped transmission decreases with
increasing energy and tends to a stabilized value becauser whenE > A. However, within
the bulk gap, there exists an interval in which the spin-gighpransmission is smaller than that for

the bulk state, this is becaugevanishes at some wavevectors near valkkyendK’, as shown in
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FIG. 5: (Color Online) Spin-flipped transmissidni (in arbitrary units) as a function of energy for both the
defect line guided transport (solid line) ametlirection propagation for bulk electrons (dashed linehe T

inset shows the curve aff? = (¢ |k )I? as a function ok.

the inset of Figl b, and thus= 0 occurs a certain energy.

The spin-flipped feature of the line defect results in ind&ng spin transportféects. If we tune
the system that the Fermi energy is aligned at the flip-freetpthe line defect works as an ideal
spin guide; when we place a top gate (the gate length alonignndefect must be limited within
the coherence length) to push the Fermi energy away fromifitérdle point, we have the out-
coming electrons with the spin being a superposition of-sjpirand spin-down, and the weights
of different spins depends on the length and potential of the gaf@edsion prediction of the
weights beyond the first order perturbation, but the quatgaghysics can be expected as that.

To our knowledge, silicene can now only be grown on metakbs@s$|[211] which is an obstacle
to perform transport measurement, and long and regulactdife in silicene has not being re-
ported experimentally yet. However, our calculation fa fipin transport is also applicable for the
graphene defect line if the SOC cannot be neglected, whishr@gently successfully to enhanced
to a few meV by weak hydrogenating.[22]

. SUMMARY

We studied the electronic structure of silicene with a lieéedt. Spin helical states was found
around the line defect. These states belong to energy baritie ibulk energy gap. When the
lattice is subjected by a distribution of spin-flipping seagrs, within the bulk gap the spin-flipped

transmission is much smaller that of the bulk electrons @mdbe controlled by a gate above the
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defect line.
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Appendix A: Derivation of Equation (B)

Supposing the initial wavefunction is denotedygs in frame of first perturbation theory, the

scattered wavefunction can be written as
Y = GoVipo (A1)

whereGy is the Green'’s function of scattering free system¥nslthe scattering potential operator.

If the wavefunction is initialized as a plane was', the scattered wavefunction is

dk, k/
Y = f e E Ek Vik (A2)

whereEy ) is the energy of the wavefunction with waveveckgk’ for the unperturbed system.
In the first Brillouin zone, we can find even number of polesq@iutions ofk’) on the real axis

of k' by solving the equatiok(k’) = Ex, and we denote the solutions corresponding to positive
velocity as«* and those corresponding to negativecasThe integration ovek’ can be transform

into contour integration around these poles,

s Zggdk’
2 ng‘dk’

For both casex > 0 andx < 0, each contour integration oEf — E,)~! leads to the result

(A3)

|dk’/dE|-, = V.1, so the scattered wavefunction is
v, = =iVt e MV (A4)

wherek’ means the final wavevector which satisfyiBg = Ei, saying, the energy conservation.

The codficient of the scattered plane wave is
— iV Viek (A5)
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The process is initialized with the flux v, and scattered into the state of the flux,,. The reflec-
tion or transmission component (if the final velocity is aode with the initial one, transmission,

otherwise, reflection) frork to k' is associated with the process is

-1 21 _ 1 2,1
Tek = Vi |Vk’ Vk’k| Vi© =V, [Viewl Vi

27p(Ewe) - [Vice|” - 270(BW) (A6)

wherep = dn/dE = dn/dk - dk/dE = (27v)~! is the density of states at the eneigy

The derivation is based on one-dimension spinless systenit @an be extended straightfor-
ward to multidimensional spinful system by regarding theevactor as a new compaosite quantum
numberk — (k, o), whereo =1, |. For one-dimensional spinless systkim k must be met to
ensure that the final state is not identical to the initiadestbut for the spinful system, this restric-
tion is not necessary. By setting the st&tsf and K, |) be the initial and final states, respectively,
we have Eq.[(6).
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