
Language to Logical Form with Neural Attention

Li Dong and Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
li.dong@ed.ac.uk mlap@inf.ed.ac.uk

Abstract

Semantic parsing aims at mapping natural
language to machine interpretable meaning
representations. Traditional approaches rely
on high-quality lexicons, manually-built tem-
plates, and linguistic features which are either
domain- or representation-specific. In this pa-
per, we present a general method based on
an attention-enhanced sequence-to-sequence
model. We encode input sentences into vec-
tor representations using recurrent neural net-
works, and generate their logical forms by
conditioning the output on the encoding vec-
tors. The model is trained in an end-to-end
fashion to maximize the likelihood of target
logical forms given the natural language in-
puts. Experimental results on four datasets
show that our approach performs competi-
tively without using hand-engineered features
and is easy to adapt across domains and mean-
ing representations.

1 Introduction

Semantic parsing is the task of translating text to a
formal meaning representation such as logical forms
or structured queries. There has recently been a
surge of interest in developing machine learning
methods for semantic parsing (see the references in
Section 2), due in part to the existence of corpora
containing utterances annotated with formal mean-
ing representations. Figure 1 shows an example of
a question (left hand-side) and its annotated logi-
cal form (right hand-side), taken from JOBS (Tang
and Mooney, 2001), a well-known semantic pars-
ing benchmark. In order to predict the correct log-
ical form for a given input utterance, most previ-
ous systems rely on predefined templates and man-
ually designed features, which often render parsers
domain- or representation-specific. In this work, we
aim to use a simple yet effective method to bridge

Sequence
Encoder

Sequence
Decoder

LST
M

answer(J,(company(J,
'microsoft'),job(J),not
((req_deg(J,'bscs')))))

Attention Layer
LSTM

what microsoft jobs
do not require a bscs?

Input
Utterance

Logical
Form

Figure 1: We treat both input utterances and their
logical forms as sequences which are encoded and
decoded with different recurrent neural networks.
The attention layer is used to learn soft alignments
between natural language and logical form.

the gap between natural language and logical form
with minimal domain knowledge.

Sequence transduction architectures based on re-
current neural networks have been successfully ap-
plied to a variety of NLP tasks ranging from syntac-
tic parsing (Vinyals et al., 2015a), to machine trans-
lation (Kalchbrenner and Blunsom, 2013; Cho et al.,
2014; Sutskever et al., 2014), and image description
generation (Karpathy and Fei-Fei, 2015; Vinyals et
al., 2015b). An attention mechanism is often used
to improve performance for long sequences (Bah-
danau et al., 2015; Vinyals et al., 2015a). We
adapt the general sequence-to-sequence modeling
paradigm to the semantic parsing task. As shown
in Figure 1, our model learns from natural language
descriptions paired with meaning representations; it
encodes sentences and decodes logical forms us-
ing recurrent neural networks with long short-term
memory (LSTM) units. We also introduce an atten-
tion mechanism (Bahdanau et al., 2015; Luong et al.,
2015b) which allows the model to learn soft align-
ments between natural language and logical forms.
Rare words present a problem to sequence transduc-
tion models, and semantic parsing is no exception.
In order to handle rare words, we mask entities and
numbers with their types and recover them in a post-

ar
X

iv
:1

60
1.

01
28

0v
1

 [
cs

.C
L

]
 6

 J
an

 2
01

6

processing step. Evaluation results demonstrate that
our model achieves similar or better performance
when compared to previous methods across different
domains and meaning representations, despite using
no hand-engineered features, templates, domain or
linguistic knowledge.

The contributions of our work are three-fold:
(1) we present a general-purpose sequence-to-
sequence model for semantic parsing; (2) propose
a method to address the rare word problem for our
neural model; and (3) conduct extensive experi-
ments on several benchmark datasets providing de-
tailed analysis on what our model learns.

2 Related Work

Our work synthesizes two strands of research,
namely semantic parsing and the encoder-decoder
architecture with neural networks.

The problem of learning semantic parsers has re-
ceived significant attention, dating back to Woods
(1973). A large number of approaches learn from
sentences paired with logical forms following dif-
ferent modeling strategies. Examples include the
use of parsing models (Miller et al., 1996; Ge
and Mooney, 2005; Lu et al., 2008; Zhao and
Huang, 2015), inductive logic programming (Zelle
and Mooney, 1996; Tang and Mooney, 2000; Thom-
spon and Mooney, 2003), probabilistic automata (He
and Young, 2006), string/tree-to-tree transformation
rules (Kate et al., 2005), classifiers based on string
kernels (Kate and Mooney, 2006), machine transla-
tion (Wong and Mooney, 2006; Wong and Mooney,
2007; Andreas et al., 2013), and combinatory cat-
egorial grammar induction techniques (Zettlemoyer
and Collins, 2005; Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2010; Kwiatkowski et al., 2011).
Other work learns semantic parsers without rely-
ing on logical-from annotations, e.g., from sen-
tences paired with conversational logs (Artzi and
Zettlemoyer, 2011), system demonstrations (Chen
and Mooney, 2011; Goldwasser and Roth, 2011;
Artzi and Zettlemoyer, 2013), question-answer pairs
(Clarke et al., 2010; Liang et al., 2013), and distant
supervision (Krishnamurthy and Mitchell, 2012; Cai
and Yates, 2013; Reddy et al., 2014).

Our model learns from natural language descrip-
tions paired with meaning representations. Most

previous systems rely on high-quality lexicons,
manually-built templates, and features which are ei-
ther domain- or representation-specific. We instead
present a general method that can be easily adapted
to different domains and meaning representations.
We adopt the general encoder-decoder framework
based on neural networks which has been recently
repurposed for various NLP tasks such as syntac-
tic parsing (Vinyals et al., 2015a), machine transla-
tion (Kalchbrenner and Blunsom, 2013; Cho et al.,
2014; Sutskever et al., 2014), image description gen-
eration (Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015b), question answering (Hermann et al., 2015),
and summarization (Rush et al., 2015).

Mei et al. (2016) use a sequence-to-sequence
model to map navigational instructions to actions.
Our model works on more well-defined meaning
representations (such as Prolog and lambda calcu-
lus) and is conceptually simpler; it does not employ
bidirectionality or multi-level alignments. Grefen-
stette et al. (2014) propose a different architec-
ture for semantic parsing based on the combina-
tion of two neural network models. The first model
learns shared representations from pairs of questions
and their translations into knowledge base queries,
whereas the second model generates the queries con-
ditioned on the learned representations. However,
they do not report empirical evaluation results.

3 Model

Our goal is to learn a model which maps natural lan-
guage input q =

(
x1, · · · , x|q|

)
to a logical form

representation of its meaning a =
(
y1, · · · , y|a|

)
.

We regard both input q and output a as sequences
and wish to estimate the conditional probabil-
ity p (a|q) which is decomposed as follows:

p (a|q) =
|a|∏
t=1

p (yt|y<t, q) (1)

where y<t = (y1, · · · , yt−1). In the following we
describe the details of how p (a|q) is computed.

3.1 Sequence-to-Sequence Model
Our model consists of an encoder which encodes
natural language input q into a vector representation
and a decoder which learns to generate y1, · · · , y|a|
conditioned on the encoding vector.

LSTM
LSTM

LSTM
LSTM

LSTM
LSTM

LSTM
LSTM

LSTM
LSTM

LSTM
LSTM

Figure 2: A sequence-to-sequence model with two-
layer recurrent neural networks.

As shown in Figure 2, the encoder and decoder are
two different L-layer recurrent neural networks with
Long Short-Term Memory (LSTM) units which re-
cursively process tokens one by one. The first |q|
time steps belong to the encoder, while the fol-
lowing |a| time steps belong to the decoder. Let
hl
t ∈ Rn denote an n-dimensional hidden vector in

time step t and layer l. hl
t is computed by:

hl
t = f

(
hl
t−1,h

l−1
t

)
(2)

where h0
t is the word vector of the current token for

the encoder or the previously predicted word for the
decoder. Specifically, we follow the definition of the
LSTM unit used in Zaremba et al. (2015) to recur-
sively compute the hidden vectors:

i
f
o
g

 =

sigm
sigm
sigm
tanh

W l

(
hl−1
t

hl
t−1

)

ml
t = f �ml

t−1 + i� g

hl
t = o� tanh

(
ml

t

)
(3)

where tanh and sigm are applied element-wise,� is
element-wise multiplication, and W l ∈ R4n×2n is a
parameter matrix for the l-th layer. Notice that the
encoder and decoder have different parameters.

Once the tokens of the input sequence
x1, · · · , x|q| are encoded into vectors, they are
used to initialize the hidden states of the first time
step in the decoder. Next, the hidden vector of
the topmost LSTM hL

|q|+t is used to predict the

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Attention
Scores

Figure 3: Attention scores are computed using the
current hidden vector of the decoder and all hid-
den vectors of the encoder obtained in the form of
a weighted sum. The new hidden vector hatt

|q|+3 is
used to predict y3 for the current time step.

t-th output token as:

p (yt|y<t, q) = softmax
(
Wph

L
|q|+t

)ᵀ
e (yt) (4)

where Wp ∈ R|Va|×n is a parameter matrix, and
e (yt) ∈ {0, 1}|Va| is a one-hot vector used to ob-
tain yt’s probability from the predicted distribution.

We augment every sequence with a “start-of-
sequence” <s> and “end-of-sequence” <e> token.
The generation process terminates once <e> is pre-
dicted. Then, the conditional probability of gener-
ating the whole sequence p (a|q) is computed using
Equation (1).

3.2 Attention Mechanism
As shown in Equation (4), the hidden vectors of the
input sequence are not directly used in the decod-
ing process. However, it makes intuitively sense to
consider relevant information from the input to bet-
ter predict the current token. Following this idea,
various techniques have been proposed to integrate
encoder-side information (in the form of a context
vector) into each time step of the decoder (Bahdanau
et al., 2015; Luong et al., 2015b; Xu et al., 2015;
Hermann et al., 2015). We use the global attention
architecture described in Luong et al. (2015b).

As shown in Figure 3, in order to find rele-
vant encoder-side context for the current hidden
state hL

|q|+t, we compute its attention score with the
k-th hidden state in the encoder as:

s
|q|+t
k =

exp{(hL
k)

ᵀ
hL
|q|+t}∑|q|

j=1 exp{(hL
j)

ᵀ
hL
|q|+t}

(5)

where only the top-layer hidden vectors are utilized.
Then, the context vector is the weighted sum of the
hidden vectors in the encoder:

c|q|+t =

|q|∑
k=1

s
|q|+t
k hL

k (6)

In lieu of Equation (4), we further use this context
vector which acts as a summary of the encoder to
compute the probability of generating yt as:

hatt
|q|+t = tanh

(
W1h

L
|q|+t +W2c

|q|+t
)

(7)

p (yt|y<t, q) = softmax
(
Wph

att
|q|+t

)ᵀ
e (yt) (8)

where Wp ∈ R|Va|×n and W1,W2 ∈ Rn×n are three
parameter matrices, and e (yt) is a one-hot vector
used to obtain yt’s probability.

3.3 Model Training
Our goal is to maximize the likelihood of generated
logical forms given natural language utterances as
input. So the objective function is defined as:

min−
∑

(q,a)∈D

log p (a|q) (9)

where D is the set of all natural language-logical
form training pairs, and p (a|q) is computed as
shown in Equation (1). The RMSProp algo-
rithm (Tieleman and Hinton, 2012) is employed to
solve this non-convex optimization problem. More-
over, dropout is used for regularizing the model as
suggested in Zaremba et al. (2015). Specifically,
dropout operators are used between different LSTM
layers and for the hidden layers before the softmax
classifiers. This technique can substantially reduce
overfitting, especially on datasets of small size.

3.4 Inference
At test time, the model predicts the logical form
for an input utterance q maximizing the conditional
probability:

â = argmax
a′

p
(
a′|q
)

(10)

where a′ represents a candidate logical form se-
quence. However, it is not practical to iterate over

all possible sequences to obtain the optimal predic-
tion. According to Equation (1), we decompose the
probability p (a|q) so that we can use beam search
or greedy search to predict tokens one by one. We
add special tokens <s> and <e> to the beginning
and end of every sequence. The generation process
terminates once token <e> is predicted.

3.5 Handling Rare Words

Some entities and numbers are rare or even do not
appear in the training set at all, especially on small-
scale datasets. Conventional sequence-to-sequence
models replace rare words with the unknown word
symbol (Luong et al., 2015a; Jean et al., 2015).
This strategy, however, would adversely affect our
model’s accuracy, because a prediction result is cor-
rect only if all tokens are parsed correctly.

Our solution is to link entities and numbers in
utterances to their corresponding logical constants,
and replace them with their type names and unique
IDs. For instance, we pre-process the training exam-
ple “jobs with a salary of 40000” and its logical form
“job(ANS), salary greater than(ANS, 40000, year)”
as “jobs with a salary of num0” and “job(ANS),
salary greater than(ANS, num0, year)”. We use the
pre-processed examples as training data. At infer-
ence time, we also mask entities and numbers with
their types and IDs. Once we obtain the decoding re-
sult, a post-processing step recovers all the markers
typei to their corresponding logical constants.

4 Experiments

We compare our method against multiple previous
systems on four datasets. We describe these datasets
below, and present our experimental settings and re-
sults. Finally, we conduct model analysis in order to
understand what the model learns.

4.1 Datasets

Our model was trained on the following datasets,
covering different domains and using different
meaning representations. Examples for each domain
are shown in Table 1.

JOBS This benchmark dataset contains 640
queries to a database of job listings. Specifically,
questions are paired with Prolog-style queries. We
used the same training-test split as Zettlemoyer

Dataset Length Example

JOBS
9.80

22.90
what microsoft jobs do not require a bscs?
answer(company(J,’microsoft’),job(J),not((req deg(J,’bscs’))))

GEO
7.60

19.10
what is the population of the state with the largest area?
(population:i (argmax $0 (state:t $0) (area:i $0)))

ATIS
11.10
28.10

dallas to san francisco leaving after 4 in the afternoon please
(lambda $0 e (and (>(departure time $0) 1600:ti) (from $0 dallas:ci) (to $0 san francisco:ci)))

IFTTT
6.95

21.80

Turn on heater when temperature drops below 58 degree
TRIGGER: Weather - Current temperature drops below - ((Temperature (58)) (Degrees in (f)))
ACTION: WeMo Insight Switch - Turn on - ((Which switch? (””)))

Table 1: Examples of natural language descriptions and their meaning representations from four datasets.
The average length of input and output sequences is shown in the second column.

and Collins (2005) which contains 500 training
and 140 test instances. Values for the variables
company, degree, language, platform, location, job
area, and number are considered as rare words.

GEO This is a standard semantic parsing bench-
mark which contains 880 queries to a database of
U.S. geography. GEO has 880 sentence logical-
form pairs split into a training set of 680 training
examples and 200 test examples (Zettlemoyer and
Collins, 2005). We used the same meaning repre-
sentation based on lambda-calculus as Kwiatkowski
et al. (2011). Values for the varibles city, state, coun-
try, river, and number are handled as rare words.

ATIS This dataset has 5, 410 queries to a flight
booking system. The standard split (Kwiatkowski et
al., 2011) has 4, 480 training instances, 480 devel-
opment instances, and 450 test instances. Sentences
are paired with lambda-calculus expressions. Values
for the variables date, time, city, aircraft code, air-
port, airline, and number are treated as rare words.

IFTTT Quirk et al. (2015) created this dataset by
extracting a large number of if-this-then-that recipes
from the IFTTT website1. Recipes are simple pro-
grams with exactly one trigger and one action which
users specify on the site. Whenever the condi-
tions of the trigger are satisfied, the action is per-
formed. Actions typically revolve around home se-
curity (e.g., “turn on my lights when I arrive home”),
automation (e.g., “text me if the door opens”), well-
being (e.g., “remind me to drink water if I’ve been at
a bar for more than two hours”), and so on. Triggers
and actions are selected from different channels (160

1http://www.ifttt.com

in total) representing various types of services, de-
vices (e.g., Android), and knowledge sources (such
as ESPN or Gmail). In the dataset, there are 552 trig-
ger functions from 128 channels, and 229 action
functions from 99 channels. We used Quirk et al.’s
(2015) original split which contains 77, 495 training,
5, 171 development, and 4, 294 test examples. The
IFTTT programs are represented as abstract syntax
trees and are paired with natural language descrip-
tions provided by users (see Table 1). Here, numbers
and URLs are handled as rare words.

4.2 Settings

We converted natural language sentences to lower-
case and corrected misspelled words using a dictio-
nary based on the Wikipedia list of common mis-
spellings. To reduce sparsity, words were stemmed
using the Snowball Stemmer within NLTK (Bird et
al., 2009). For IFTTT, we filtered tokens, channels
and functions which appeared less than five times in
the training set. For the other datasets, we filtered
input words which did not occur at least two times
in the training set, but kept all tokens in the logical
forms. Plain string matching was employed to iden-
tify entities for handling rare words as described in
Section 3.5. More sophisticated approaches could
be used, however we leave this future work.

Model hyper-parameters were cross-validated on
the training set for JOBS and GEO. We used the
standard development sets for ATIS and IFTTT. Our
model was trained with mini-batch stochastic gra-
dient descent using the RMSProp algorithm (with
batch size set to 20). The smoothing constant of
RMSProp was set to 0.95. The base learning rate
was 0.002 for IFTTT and 0.01 for the other do-

Method Accuracy
COCKTAIL (Tang and Mooney, 2001) 79.4
PRECISE (Popescu et al., 2003) 88.0
ZC05 (Zettlemoyer and Collins, 2005) 79.3
DCS+L (Liang et al., 2013) 90.7
TISP (Zhao and Huang, 2015) 85.0
seq2seq − rare 70.7
seq2seq − attention 77.9
seq2seq (ours) 87.1

Table 2: Evaluation results on JOBS.

mains. After 5 epochs, the learning rate was de-
creased by a factor of 0.95 at every epoch as sug-
gested in Karpathy et al. (2015). Gradients were
clipped at 5 to alleviate the exploding gradient prob-
lem (Pascanu et al., 2013). Parameters were initial-
ized by randomly sampling values from a uniform
distribution U (−0.08, 0.08). A two-layer LSTM
was used for IFTTT, while a one-layer LSTM was
employed for the other domains. We also used
dropout regularization; the dropout rate was selected
from {0.2, 0.3, 0.4, 0.5}. Dimensions of the hidden
vector and the word embedding were the same, and
selected from {150, 200, 250}. Early stopping was
employed to determine the number of epochs. The
input sentences were reversed before feeding into
the sequence encoder as suggested by Sutskever et
al. (2014). Greedy search was used to generate logi-
cal forms during inference. Notice that two decoders
with shared word embeddings were used to predict
triggers and actions for IFTTT. All experiments were
conducted on a single GTX 980 GPU device.

4.3 Results

We first discuss the performance of our model on
JOBS, GEO, and ATIS, and then examine our results
on IFTTT. Tables 2–4 compare our results against a
variety of systems previously described in the litera-
ture. In addition to our model (seq2seq), we present
two ablation variants, namely without using an at-
tention mechanism (−attention) and without hand-
ing rare words (−rare). We report accuracy which is
defined as the proportion of input sentences that are
correctly parsed to their gold standard logical forms.
Notice that DCS+L, KCAZ13 and GUSP output an-
swers directly, so accuracy in this setting is defined
as the percentage of correct answers.

We find that adding attention substantially im-

Method Accuracy
SCISSOR (Ge and Mooney, 2005) 72.3
SILT (Kate et al., 2005) 54.1
KRISP (Kate and Mooney, 2006) 71.7
WASP (Wong and Mooney, 2006) 74.8
λ-WASP (Wong and Mooney, 2007) 86.6
LNLZ08 (Lu et al., 2008) 81.8
ZC05 (Zettlemoyer and Collins, 2005) 79.3
ZC07 (Zettlemoyer and Collins, 2007) 86.1
UBL (Kwiatkowski et al., 2010) 87.9
FUBL (Kwiatkowski et al., 2011) 88.6
KCAZ13 (Kwiatkowski et al., 2013) 89.0
DCS+L (Liang et al., 2013) 87.9
TISP (Zhao and Huang, 2015) 88.9
seq2seq − rare 68.6
seq2seq − attention 72.9
seq2seq (ours) 84.6

Table 3: Evaluation results on GEO. 10-fold cross-
validation is used for the systems shown in the top
half of the table. The standard split of ZC05 is used
for all other systems.

Method Accuracy
ZC07 (Zettlemoyer and Collins, 2007) 84.6
UBL (Kwiatkowski et al., 2010) 71.4
FUBL (Kwiatkowski et al., 2011) 82.8
GUSP-FULL (Poon, 2013) 74.8
GUSP++ (Poon, 2013) 83.5
TISP (Zhao and Huang, 2015) 84.2
seq2seq − rare 74.1
seq2seq − attention 78.5
seq2seq (ours) 84.2

Table 4: Evaluation results on ATIS.

proves performance on all three datasets. This un-
derlines the importance of utilizing soft alignments
between inputs and outputs. We further analyze
what the attention layer learns in Section 4.4. More-
over, the results show that handling rare words is
critical for small-scale datasets. For example, about
92% of city names appear less than 4 times in the
GEO training set, so it is difficult to learn reliable
parameters for these words. In relation to previous
models, the seq2seq framework achieves compara-
ble or better performance without relying on manu-
ally defined templates or language/domain specific
features. Importantly, we use the same model across
datasets and meaning representations (Prolog-style
logical forms in JOBS and lambda calculus in the

Method Channel +Func F1
retrieval 28.9 20.2 41.7
phrasal 19.3 11.3 35.3
sync 18.1 10.6 35.1
classifier 48.8 35.2 48.4
posclass 50.0 36.9 49.3
seq2seq − rare 53.9 38.6 49.7
seq2seq − attention 54.0 37.9 49.8
seq2seq (ours) 54.3 39.2 50.1

(a) Omit non-English.

Method Channel +Func F1
retrieval 36.8 25.4 49.0
phrasal 27.8 16.4 39.9
sync 26.7 15.5 37.6
classifier 64.8 47.2 56.5
posclass 67.2 50.4 57.7
seq2seq − rare 68.8 50.4 59.7
seq2seq − attention 68.7 48.9 59.5
seq2seq (ours) 68.8 50.5 60.3

(b) Omit non-English & unintelligible.

Method Channel +Func F1
retrieval 43.3 32.3 56.2
phrasal 37.2 23.5 45.5
sync 36.5 24.1 42.8
classifier 79.3 66.2 65.0
posclass 81.4 71.0 66.5
seq2seq − rare 86.8 74.9 70.8
seq2seq − attention 88.3 73.8 72.9
seq2seq (ours) 87.8 75.2 73.7

(c) ≥ 3 turkers agree with gold.

Table 5: Evaluation results on IFTTT.

other two datasets), without modification. Despite
this relatively simple approach, we observe that
seq2seq ranks third on JOBS, and second on ATIS.

For IFTTT, we follow the same evaluation proto-
col introduced in Quirk et al. (2015). The dataset is
extremely noisy and measuring accuracy is problem-
atic since predicted abstract syntax trees (ASTs) al-
most never exactly match the gold standard. Quirk et
al. view an AST as a set of productions and compute
balanced F1 instead which we also adopt. The first
column in Table 5 shows the percentage of channels
selected correctly for both triggers and actions. The
second column measures accuracy for both chan-
nels and functions. The last column shows balanced
F1-measure against the gold tree over all produc-

0-4 4-8 8-12 12-16 >16
Length of Input

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

-attention

seq2seq

(a)

0-9 9-18 18-27 27-36 >36
Length of Logical Form

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

-attention

seq2seq

(b)

Figure 5: Accuracy as a function of (a) input and
(b) output length (ATIS, development set).

tions in the proposed derivation. We compare our
model against posclass, the method introduced in
Quirk et al. and several of their baselines. posclass
is reminiscent of KRISP (Kate and Mooney, 2006),
it learns distributions over productions given input
sentences represented as a bag of linguistic fea-
tures. The retrieval baseline searches for the clos-
est description in the training data based on charac-
ter string-edit-distance and returns the recipe for that
training program. The phrasal method uses phrase-
based machine translation to generate the recipe,
whereas sync extracts synchronous grammar rules
from the data, essentially recreating WASP (Wong
and Mooney, 2006). Finally, the classifier approach
uses a binary classifier to predict whether a produc-
tion should be present in the derivation tree corre-
sponding to the description.

Quirk et al. (2015) report results on the full
test data and smaller subsets after noise filtering,
e.g., when non-English and unintelligible descrip-
tions are removed (Tables 5a and 5b). They also ran
their system on a high-quality subset of description-
program pairs which were found in the gold standard
and at least three humans managed to independently
reproduce (Table 5c). As can be seen, across all sub-
sets seq2seq outperforms posclass and related base-
lines. Compared to the previous datasets, the atten-
tion mechanism and the method used to handle rare
words yield less of an improvement here. This may
be due to the size of Quirk et al. (2015) and the way
it was created – user curated descriptions are often
of low quality, and thus align very loosely to their
corresponding ASTs.

<
/s
>

d
e
g
id
0 a

re
q
u
ir

n
o
t

d
o

th
a
t

n
u
m
0

p
a
y

jo
b

w
h
ic
h

<
s>

job
(

ANS
)
,

salary_greater_than
(

ANS
,

num0
,

year
)
,

\+
(
(

req_deg
(

ANS
,

degid0
)
)
)

</s>

(a) which jobs pay num0 that do not
require a degid0

<
/s
>

ci
1 to ci
0

fr
o
m

tr
ip

ro
u
n
d

fa
re

cl
a
ss

fi
rs
t

w
h
a
t

<
s>

(
lambda

$0
e
(

exists
$1
(

and
(

round_trip
$1
)
(

class_type
$1

first:cl
)
(

from
$1
ci0
)
(

to
$1
ci1
)
(
=
(

fare
$1
)

$0
)
)
)
)

</s>

(b) what’s first class fare
round trip from ci0 to ci1

<
/s
>

ci
1 to ci
0

fr
o
m

a
v
a
il

a
re

fl
ig
h
t

a
ft
e
rn
o
o
n

w
h
a
t

<
s>

(
lambda

$0
e
(

and
(

flight
$0
)
(

during_day
$0

afternoon:pd
)
(

from
$0
ci0
)
(

to
$0
ci1
)
)
)

</s>

(c) what afternoon flights
are available from ci0 to ci1

<
/s
>

co
0

th
e in

e
le
v

h
ig
h
e
st

th
e is

w
h
a
t

<
s>

(
argmax

$0
(

and
(

place:t
$0
)
(

loc:t
$0
co0

)
)
(

elevation:i
$0
)
)

</s>

(d) what is the highest elevation
in the co0

Figure 4: Examples of alignments (same color rectangles) produced by the model’s attention mechanism
(darker color represents higher attention score). Input sentences are reversed and stemmed.

4.4 Model Analysis

Figure 4 illustrates examples of alignments pro-
duced by our model. Matrices of attention scores
are computed using Equation (5) and are repre-
sented in grayscale. Aligned input words and logical
form predicates are enclosed in (same color) rect-
angles whose overlapping areas contain the atten-
tion scores. Input sentences are reversed (Sutskever
et al., 2014) for better performance. Also notice
that attention scores are computed by LSTM hid-
den vectors which encode context information rather
than just the words in their current positions. The
examples demonstrate that the attention mechanism
learns soft alignments between input sentences and
output logical forms, performing surprisingly well,
even in cases of reordering (Figure 4b, 4c and 4d)
and one-to-many alignments (Figure 4c).

We also explore whether the length of natural
language descriptions and logical forms influences
performance. Figure 5 shows how accuracy varies
with different length ranges on the ATIS develop-
ment set. Overall, we observe that accuracy drops
as sequence length becomes larger, because longer
sequences tend to have more complex meanings and
be more compositional. We also find that the at-
tention mechanism consistently boosts performance

across all ranges of length. Moreover, adding atten-
tion allows the system to better cope with longer se-
quences compared to the vanilla seq2seq method.

5 Conclusions

In this paper we presented a sequence-to-sequence
model for semantic parsing. Given natural lan-
guage descriptions as input our model predicts
meaning representations as output. Both input sen-
tences and output logical forms are regarded as
sequences, and are encoded and decoded by dif-
ferent recurrent neural networks. Our experimen-
tal results show that enhancing the model with an
attention mechanism improves performance across
the board, especially for long sequences. We also
show that our method of handling rare words (via
masking and post-processing) is effective and boosts
performance. Extensive comparisons with previ-
ous approaches demonstrate that our model per-
forms competitively, without recourse to domain- or
representation-specific features. Directions for fu-
ture work are many and varied. For example, it
would be interesting to learn a model from question-
answer pairs without access to target logical forms.
We would also like to use the model for question
answering over a knowledge base, e.g., by ranking

the predicate paths between entities (figuring in the
queries) and candidate answers.

References
Jacob Andreas, Andreas Vlachos, and Stephen Clark.

2013. Semantic parsing as machine translation. In
ACL, pages 47–52, Sofia, Bulgaria.

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrapping
semantic parsers from conversations. In Proceedings
of the 2011 EMNLP, pages 421–432, Edinburgh, Scot-
land, UK.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping in-
structions to actions. TACL, 1(1):49–62.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
ICLR, San Diego, CA.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural Language Processing with Python. O’Reilly Me-
dia.

Qingqing Cai and Alexander Yates. 2013. Seman-
tic parsing freebase: Towards open-domain semantic
parsing. In 2nd Joint Conference on Lexical and Com-
putational Semantics, pages 328–338, Atlanta, GA.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the 15th
AAAI, pages 859–865, San Francisco, CA.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder–decoder for statistical ma-
chine translation. In Proceedings of the 2014 EMNLP,
pages 1724–1734, Doha, Qatar.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from the
world’s response. In Proceedings of CONLL, pages
18–27, Uppsala, Sweden.

Ruifang Ge and Raymond J. Mooney. 2005. A statistical
semantic parser that integrates syntax and semantics.
In Proceedings of CoNLL, pages 9–16, Ann Arbor, MI.

Dan Goldwasser and Dan Roth. 2011. Learning from
natural instructions. In Proceedings of the 22nd IJCAI,
pages 1794–1800, Barcelona, Spain.

Edward Grefenstette, Phil Blunsom, Nando de Freitas,
and Karl Moritz Hermann. 2014. A deep architecture
for semantic parsing. In Proceedings of the ACL 2014
Workshop on Semantic Parsing, Atlanta, GA.

Yulan He and Steve Young. 2006. Semantic processing
using the hidden vector state model. Speech Commu-
nication, 48(3-4):262–275.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems 28, pages 1684–1692. Curran As-
sociates, Inc.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015. On using very large target vo-
cabulary for neural machine translation. In Proceed-
ings of 53rd ACL and 7th IJCNLP, pages 1–10, Bei-
jing, China.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of the
2013 EMNLP, pages 1700–1709, Seattle, WA.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of CVPR, pages 3128–3137,
Boston, MA.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Rohit J. Kate and Raymond J. Mooney. 2006. Using
string-kernels for learning semantic parsers. In Pro-
ceedings of the 21st COLING and 44th ACL, pages
913–920, Sydney, Australia.

Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney.
2005. Learning to transform natural to formal lan-
guages. In Proceedings of the 20th AAAI, pages 1062–
1068, Pittsburgh, PA.

Jayant Krishnamurthy and Tom Mitchell. 2012. Weakly
supervised training of semantic parsers. In Proceed-
ings of the 2012 EMNLP, pages 754–765, Jeju Island,
Korea.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilistic
CCG grammars from logical form with higher-order
unification. In Proceedings of the 2010 EMNLP, pages
1223–1233, Cambridge, MA.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generalization
in CCG grammar induction for semantic parsing. In
Proceedings of the 2011 EMNLP, pages 1512–1523,
Edinburgh, United Kingdom.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with on-
the-fly ontology matching. In Proceedings of the 2013
EMNLP, pages 1545–1556, Seattle, WA.

Percy Liang, Michael I. Jordan, and Dan Klein. 2013.
Learning dependency-based compositional semantics.
Computational Linguistics, 39(2):389–446.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S. Zettle-
moyer. 2008. A generative model for parsing natu-
ral language to meaning representations. In Proceed-

ings of the 2008 EMNLP, pages 783–792, Honolulu,
Hawaii.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2015a. Addressing
the rare word problem in neural machine translation.
In Proceedings of the 53rd ACL and 7th IJCNLP, Bei-
jing, China.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015b. Effective approaches to attention-based neu-
ral machine translation. In Proceedings of the 2015
EMNLP, pages 1412–1421, Lisbon, Portugal.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2016. Listen, attend, and walk: Neural mapping of
navigational instructions to action sequences. In Pro-
ceedings of the 30th AAAI, Phoenix, AZ. to appear.

Scott Miller, David Stallard, Robert Bobrow, and Richard
Schwartz. 1996. A fully statistical approach to natural
language interfaces. In ACL, pages 55–61.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th ICML, pages
1310–1318, Atlanta, GA.

Hoifung Poon. 2013. Grounded unsupervised semantic
parsing. In Proceedings of the 51st ACL, pages 933–
943, Sofia, Bulgaria.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language interfaces
to databases. In Proceedings of the 8th International
Conference on Intelligent User Interfaces, pages 149–
157, Miami, FL.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In ACL, pages 878–888,
Beijing, China, July.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-answer
pairs. TACL, 2(Oct):377–392.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
EMNLP, pages 379–389, Lisbon, Portugal.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems
27, pages 3104–3112.

Lappoon R. Tang and Raymond J. Mooney. 2000. Auto-
mated construction of database interfaces: Intergrating
statistical and relational learning for semantic parsing.
In EMNLP, pages 133–141, Hong Kong, China.

Lappoon R. Tang and Raymond J. Mooney. 2001. Us-
ing multiple clause constructors in inductive logic pro-
gramming for semantic parsing. In ECML, pages 466–
477, Freiburg, Germany.

Cynthia A. Thomspon and Raymond J. Mooney. 2003.
Acquiring word-meaning mappings for natural lan-
guage interfaces. JAIR, 18:1–44.

T. Tieleman and G. Hinton. 2012. Lecture 6.5—
RmsProp: Divide the gradient by a running average
of its recent magnitude. Technical report.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015a. Gram-
mar as a foreign language. In Advances in Neural In-
formation Processing Systems 28, pages 2755–2763.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2015b. Show and tell: A neural im-
age caption generator. In Proceedings of CVPR, pages
3156–3164, Boston, MA.

Yuk Wah Wong and Raymond J. Mooney. 2006. Learn-
ing for semantic parsing with statistical machine trans-
lation. In Proceedings of NAACL, pages 439–446,
New York, NY.

Yuk Wah Wong and Raymond J. Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing with
lambda calculus. In Proceedings of the 45th ACL,
pages 960–967, Prague, Czech Republic.

W. A. Woods. 1973. Progress in natural language under-
standing: An application to lunar geology. In Proceed-
ings of the June 4-8, 1973, National Computer Confer-
ence and Exposition, pages 441–450, New York, NY.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention.
In Proceedings of the 32nd ICML, pages 2048–2057,
Lille, France.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2015. Recurrent neural network regularization. In
Proceedings of the ICLR, San Diego, CA.

John M. Zelle and Raymond J. Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the 19th AAAI, pages
1050–1055, Portland, Oregon.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured clas-
sification with probabilistic categorial grammars. In
Proceedings of the 21st UAI, pages 658–666, Toronto,
ON.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to log-
ical form. In In Proceedings of the EMNLP-CoNLL,
pages 678–687, Prague, Czech Republic.

Kai Zhao and Liang Huang. 2015. Type-driven incre-
mental semantic parsing with polymorphism. In Pro-
ceedings of NAACL, pages 1416–1421, Denver, CO.

