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Abstract
In this paper, we focus on the existence of the density for the law of the solutions to
parabolic stochastic partial differential equations with two reflecting walls. The main tool
is Malliavin Calculus.
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1 Introduction

Parabolic SPDEs with reflection are natural extension of the widely studied deterministic
parabolic obstacle problems. They also can be used to model fluctuations of an interface near
a wall, see Funaki and Olla [7]. In recent years, there is a growing interest on the study
of SPDEs with reflection. Several works are devoted to the existence and uniqueness of the
solutions. In the case of a constant diffusion coefficient and a single reflecting barrier hy = 0,
Naulart and Pardoux [9] proved the existence and uniqueness of the solutions. In the case
of a non-constant diffusion coefficient and a single reflecting barrier h;y = 0, the existence
of a minimal solution was obtained by Donati-Martin and Pardoux [5]. The existence and
particularly the uniqueness of the solutions for a fully non-linear SPDE with reflecting barrier
0 have been established by Xu and Zhang [I1]. In the case of double reflecting barriers, Otobe
[14] obtained the existence and uniqueness of the solutions of a SPDE driven by an additive
white noise.

The existence and uniqueness of the solution to a fully non-linear SPDE with two reflecting
walls was proved as well by Yang and Zhang [12]. We focus here on the existence of the density
of the law of the solution, using Malliavin calculus. Malliavin calculus associated with white
noise was also used by Pardoux and Zhang [10], Bally and Pardoux [3] to establish the existence
of the density of the law of the solution to parabolic SPDE. The case of parabolic stochastic
partial differential equation with one reflecting wall was studied by Donati-martin and Pardoux
[6]. For parabolic SPDEs with two reflecting walls, we construct a convergent sequence u’
with two indices, based on the case of one reflecting wall. It is more demanding to prove the
convergence of u“% and identify the limit as the solution of the original equation. To prove the
positivity of the Malliavin derivative of the solution, we need more delicate partition of sample
spaces.

This paper is organized as follows: Section 2 is devoted to fundamental knowledge of
parabolic stochastic partial differential equations with two reflecting walls and Malliavin cal-
culus associated with white noise. In Section 3, we recall some results obtained by Yang and
Zhang [12] about the existence and uniqueness of the solution to parabolic SPDEs with two
reflecting walls and we prove the Malliavin differentiability of the solution. Finally, we give
the existence of the density of the law of the solution.
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2 Preliminaries

Notation: Let Q = [0,1] x Ry, Qr = [0,1] x [0,T], V = {u € H*([0,1]),u(0) = u(1) = 0}
where H'([0,1]) denotes the usual Sobolev space of absolutely continuous funcitons defined on
[0, 1] whose derivative belongs to L?([0,1]), and A = amZ

Consider the following stochastic partial differential equation with two reflecting walls:

2
% = % + f(x, t,u) + oz, t,u)W(x,t) +n— ¢,
u(0,t) = 0,u(1,t) =0, fort>0, (2.1)
u(a;,O) = U()(x) € C([()? 1])7

ht(z,t) < u(z,t) < h%(x,t), for(x,t) € Q,a.s.

where W denotes the space-time white noise defined on a complete probability space
(Q, F,{Fi}t>0,P), where F; = o(W(z,s) : x € [0,1],0 < s < t), up is a continuous function
on [0, 1], which vanishes at 0 and 1.

We assume that the reflecting walls h'(z,t),h?(x,t) are continuous functions satisfying
h(0,t), ht(1,t) <0, R%(0,t), h%(1,t) > 0, and

(H1 )hl(x t) < h%(z,t) for x € (0,1) and ¢ e R.;
(Hz)aa}:: + %zhl € L*([0,1] x [0, T]), where 2 and are interpreted in a distributional sense;
(H?’)athl(o t) = gthl(l t) =0 for t > 0;

(H4) 57 (h* — h') > 0.

We also assume that the coefficients: f,o(x,t,u(z,t)) : [0,1] X Ry x R — R are measurable
and satisfy:

(F): f,o are of class of C! with bounded derivatives with respect to the third element and o
is bounded.

The following is the definition of the solution to a parabolic SPDE with two reflecting walls
h', h2.

Definition 2.1 A triplet (u,n,§) defined on a filtered probability space

(Q, P, F;{F:}) is a solution to the SPDE(Z1]), denoted by (ug;0,0; f,o;ht, h?), if

(i) u = {u(x,t); (z,t) € Q} is a continuous, adapted random field (i.e. u(x,t) is Fi-measuralbe
Yt >0, x € [0,1]) satisfying h'(x,t) < u(z,t) < h%(z,t), u(0,t) =0 and u(1,t) =0, a.s.;

(i) n(dz,dt) and &(dx,dt) are positive and adapted (i.e. n(B) and £(B) are F;-measurable if
B c (0,1) x [0,t]) random measures on (0,1) x R, satisfying

n((0,1—0) x [0,7]) < 00,£((0,1 —0) x [0,T]) < o0 a.s. (2.2)

f0r0<9<% and T > 0;
(iit) for all t > 0 and ¢ € C°((0,1) x (0,00)) (the set of smooth functions with compact
supports) we have

w(t.0)~ [ (w6 2ds — [ (s, [ g0y, 5, u) W (de, ds)



(ug, ¢ //qﬁn (dzds) //¢§ (dzds)a

(iv) o (ul — hY(z,t))n(dz, dt) = fQ(hQ(a:,t) —u(z,t))¢(dz,dt) =0 a.s..

(2.3)

Remarks: We note that the stochastic integral in ([2.3]) is an Ito integral with respect to the
Brownian sheet {W(z,t); (z,t) € [0,1] x R4} defined on the canonical space = Cy([0, 1] x
R.,) (the space of continuous functions on [0,1] x Ry which are zero whenever one of their
arguments is zero). The Brownian sheet is equipped with its Borel o-field F, the filtration
Fi ={oc(W(x,s)),z € [0,1],s <t} and the Wiener measure P.
Next, we recall Malliavin calculus associated with white noise:
Let S denote the set of ”simple random variables” of the form

F = f(W(hy),.... W(hyn)),n € N,

where h; € H := L*([0,1] x Ry) and W (h;) represent the Wiener integral of h;, f € C2°(R™).
For such a variable F, we define its derivative DF, a random variable with values in L2([0, 1] x
Ry) by

D, F =37 of

, ’_18—xi(W(h1)’ oy W(hy)) - hi(z,t).

We denote by D2 the closure of S with respect to the norm:
1 1
1Fl2 = (BOF))} + [BOIDF|a o111
D12 is a Hilbert space. It is the domain of the closure of derivation operator D.

We go back to consider the following parabolic SPDE:

ou  9%u
i 82—1—f(xtu)—|—a(mtu)W

u(0,t) = 0,u(1,t) =0, fort>0,
u(x,0) = up(z) € C([0,1]),

where f, o satisfy (F).
According to [11], we know u also satisfies the integral equation:

1 t 1
/0 Gy, y)uo(y)dy + /0 /0 Gr_o( ) f(uly, 5))dyds
t 1
" /0 /0 Gr_al,y)o (uly, )W (dyds)

And we have the following result from [10].



Proposition 2.1 [10] For all (z,t) € (0,1)x R, u(x,t) is the solution to (2-4]), Then u(z,t) €

DY2 and Dy su(x,t) is the solution of SPDE:

Dy su(z,t) = Gi—s(x,y)o( / / Gi—r(x,2) f' (u(z,7)) Dy su(z, r)dzdr

+ / /0 o (2, 2)0" (w2, 7)) Dy s (w2, 7))V (ddlr).

3 The Main Result and The Proof

We consider the penalized SPDE as follows:

( us,é T 2u5,6 T .
. a(t 02 a$(2 2 + f(u(2,t) = o(u (2, )W (z,1t)
%(“ (z,8) = Al (2,1))” — %(u (2, t) — B2(2, 1)),
“9(0,t) = u°(1,t) = 0,t > 0,

) u(z,0) = uo(x),

and we can get the following proposition.

(3.1)

Proposition 3.1 If we have (H1),(H2), (H3), (H4) and (F). Then for any p > 1,T > 0,

supe,s B(][u’|[%

u,u® are the solutions of SPDE (Z1) and the penalized SPDE ([31)).

PROOF. Let u° be the solution to the penalized SPDE (B.1]).
Step 1: we prove that there exists u(z,t) such that

u = limuf = lim lim u*°a.s.
)0 €l0 610

First fix ¢,
let v be the solution of equation:

o0 (x,t) B 0?v0(z,1)
ot 0z

+ f (0 (2,t)) = o (u (2, )W (2, 1)
1
__(u675(x7 t) - h2($, t))+7
€
09 (x,0) = ug(x),v°(0,1) = v*°(1,t) = 0.
Then 249 = v9 — u%? is the unique solution in L2((0,T) x (0,1)) of
azfé €,0 €,0 €,0 1 € 1 _
o L) — ) =~ (1) — W)
299(x,0) = 0,29%(0,t) = 25°(1,t) = 0.

T) < 0o and u® converges uniformly on [0,1] x [0,T] to u as €,0 — 0, where

(3.3)



Multiplying Eq(3.4]) by (22’5)Jr and integrating it to obtain:

t 929 (x, s) . t 0299z, s) O(29°(x,s))*
/O(T,(z 5(:E,s))+)d8—|—/0( ) SEE A g

+/ (f( (2, 5)) = f(u(z,9)), (= (x,5)) " )ds
0

= o (@)~ W) () s, (3:5)
0

According to Bensoussan and Lions [2] (Lemma 6.1, P132), (22’5)Jr € L?(0,T;V)NC([0,T); H)
a.s.

t
8 € € €
Gt s = 1

t t
0 .5 0 0 (eiyep
— _ ) >
| Gt et s = [ty pas >

and by Lipschitz continuity of f, we have

and similarly

/ (W (@, 8) = f(u(2,9)), (= (2, 5))")ds > —0/ (259 (x, )" [fds,
0 0

and we deduce that

0 >t y(f%t 2, 4 /y des—c/y (29 (2, 8))* s

1
z;@“mwﬁ%—géud@ﬁﬁ%@.

Hence,
t
1
[ 1 ) s = g1y (36
From Gronwall’s Lemma: |(2%(z,t))*|% = 0, Vt > 0.a.s.
Then,
u®d(z,t) > v (x,t), Yo € [0,1],t > 0.a.5. (3.7)

From Theorem 3.1 in [5], we get that the following equation has a unique solution {w%(z,t);z €
[0,1],¢ > 0}

awe,cS a:,t a2we,5 x,t _
(t) L 00D | pueda,t) + sup (w50 (g,s) — b (g 5)))
ot Ox s<t,ye[0,1]

(D ()W (2, 1) — %(uﬁ"s(x,t) Rz, ),
w (-, 0) = ug, w°(0,t) = w°(1,t) = 0.



We set

0w, t) = wl(z, )+ sup (w(y,s) = Bl (y,s))” = w(a,t) + 270 (38)
s>t,y€[0,1]

w0 (z,t) — hl(x,t) > 0 and @:’6 is an increasing process.
For any T > 0, 2% = u®% — w"° is the unique solution in L?((0,7); H'(0,1)) of

=€ €,0
D) | Az, 1) + 10 1) — (1) +
= 1) — )

z°(,,0) =0,

z99(0,t) = 29°(1, 1) = —B%°.

Multiplying this equation by (z© (a: s))T, we obtain by the same arguments as above:

Loz (z,s) t 9z9%(x,5) Az (x,s))t
]ﬁ(-——zgr——3(z<%$,s»+jds4-]€( ) GEEA g

+/ (f(u(z,8)) = f@(2,5)), (2% (2, 5)")ds
0

—I—/t /1(36’5(x,8))+dxd<1>§’5
5/ (W (2, 8) — W (@, 8)) (5% (2, 8)) Vs (3.9)

The right-hand side of the above equality is zero because (Z°°(z,s))* > 0 implies u®(z,s) —
hl(x,s) > w*°(x,s) — h'(x,s) > 0.
Hence we again deduce from Gronwall’s Lemma:

ud(z,t) < W (x,t) (3.10)
By (.1),E10),
(@, )] < o2, )] + [w (e, )+ sup (w(y,s) — By, )"
s<t,y€(0,1]
< +2 sup [y, )] + By, 5)]). (3.11)
s<t,y€[0,t]

From Lemma 6.1 in [5], for arbitrarily large p and any T' > 0, consider that f'(v¥%(z,t)) =
fe(z,t))+1 (u O(x,t)—h%(x,t))" is Lipschitz continuous with respect to v and f'(w® (x,t)+
Sups>t ,y€[0, 1](’[0 ’ ( ) hl(y7 )) ) =

Fwd(x,t) + SUP > yefo,1] (WS Oy, ) —h'(y,s))7) + L (u(z,t) — h*(x,t))T is Lipschitz contin-
uous with respect to w®(x,t) + SUPg>¢ ye(0,1] (w°(y, s) — h'(y,s))”, we have that



SUDgs E[Sup(x,t)eaT ’U€75(‘T7 t)‘p] < o0 and Supgs E[Sup(mﬂf)e@T ’w675('x7 t) ’p] < o0,
which imply

sup B[ sup |u(z,t)|P] < oo. (3.12)
s (Z‘,t)E@T
So uf = sup; u®? is a.s. bounded on Q.
- (5 1) = 1 (2, 1)
. o (u(x,t) — hi(z,t)”
n° = lim 5 (3.13)
Similar as the proof of Th4.1 in [5], u¢ is continuous and u€ is the solution to:
du’ € € A € 1 € 2 +
5 + Auf + f(u) = o(u)W(x,t) + n(x,t) — E(u (x,t) — h*(z,1)) (3.14)

In addition, by the definition of u€, u¢ > h'and using Theorem 1.2.6 (Comparison Theorem), u
decreases when € — 0.
Hence, there exists u(x,t) such that

u = limu = lim lim u*’a.s. (3.15)
€0 el0 00

Step 2: Next we prove u(z,t) is continuous.
Let 999 be the solution of

86576 ~¢,0 €,0\ T4
BT + A° = o(u)W, (3.16)
and let © be the solution of 95
-£+A@:dww. (3.17)

Remember
oud(z,t) B O*u (x,t)
ot Oz2
(1) = (1)) — <, 1) = 1, 1),

+ f(u(x, 1) = o(u(x, t))W (x, )

Sl

Let 299 = 49 — 99 then 3¢9 is the solution of

8~e,5
gt + AEE’(; + f(25’6 + @5,6)
1 1
= 5(257‘5 + 090 — BT — Z(299 + 99 — BT, (3.18)
€

Let 29 be the solution of

2€,0 1
8& (Z94o—hY " =23 + 0 — KD . (3.19)

+ A2 4 f(290 4 0) = -

| =



We have

1299 = 2|I7,00 < 11090 = lI7,00- (3.20)

0 6

29° is continuous. According to proof of Theorem 2.1 in [14] , 2
It means

— 2 (continuous).

2 = lim 2¢ = lim lim 2°°.
e—0 e—05—0
Fix €, 299 1 3¢(continuous), and from Dini theorem, 29° uniformly converges to 2. i.e.||290 —
2700 = 0, 6 —0.
Since 2¢ | 2, and from Dini theorem, £¢ uniformly converges to 2. i.e.||2¢ — Z||7,00c — 0.
Then we get

1299 = Zllmoo = 1297 = 29+ 2 = 2lI7,00 < 112%° = 2I100 + [|12° — £lIT00 — 0
(0 = 0,e —0). (3.21)

% — % uniformly.

ie. 29
Next we prove 9% — © uniformly with respect to s,t as e — 0,6 — 0:
Let I(x,t) = 09%(x,t) — 0(z,t) = fg fol Gi_s(x,9)(o(u®) — o(u))W (dyds), from the proof of

Corollary 3.4 in [?],

t\/s rl N
E|I(x,t) — I(y,5)|) < CrE /O /0 (o (u) — o(w))Pdzdr|(z 1) — (3, 5)|5 >,

and following the same calculation as in the proof of Theorem 2.1 in Xu and Zhang [I1], we
deduce

T 1
B( sup W@MVgﬁﬂ/)/ﬂdm%—deWﬁ
x€[0,1],t€[0,T) 0 Jo

Again according to u := lim._,olims_,ou®® and o(x,t,u(z,t)) is Lipschitz continuous and
bounded, we can have

T 1
B sup Iz )])P g@@/’/qdw%—dmwam
2€[0,1],t€[0,T] o Jo
—0

Then we have that 7¢° — ¢ uniformly a.s. and again from (3:20) and B21) we deduce that
369 — 2 uniformly a.s..

So
lim lim u®® = u = 2 40
e—00—0
is continuous.
Step 3: Next we prove u(z,t) is the solution of
ou .
5 TAut fw) = oW (z,t) +0(z,t) — (@, 1). (3.22)



For ¢ € C5°((0,1) x [0,00)),

t

- [y vatonds — [ o), avyis + / (F (), 0)ds
/ / W (dz,ds) / / Y(z,t)(n(dz, dt) — £ (dx, dt))

( 5,6_h1)— . (ue_h2)+
U —(%1_% ) &= €

(3.23)

Let € — 0,

[t vas = [ ey, avas+ [ (s

/Ot/ol(a(u),w) (dz, ds) +513%/ / Y(x,t)(n(da, dt) — £ (dx, dt)).

Then it is clear that, under the limit € — 0, lim._o(n° — £°) exists in the sense of Schwartz
distribution a.s..

Because uf uniformly converges to u, similarly as Theorem 3.1 in [12] we get n° — 71 and
€° — &. Let € — 0 to see that (u,n,§) satisfies condition (iii) of Def 3.2.1.

Multiplying both sides of Eq(3.23]) by € and letting ¢ — 0,

t pl (ue,é _ hl)—
lim / / o, ) (e tim YT e B2y ) (day dt) = 0 (3.24)
then fg fol Y(z,t)(u — h?) T (dz,dt) = 0, and we can get v < h%. And since u¢ > h!, then
u > h'. Combining these two inequalities, we have h! < u < h2.

Finally, we can show that fQ u—h')dn = fQT(h2 —u)d¢ = 0.

For e < €, uf > ut , therefore supp(n®) C Supp(nel), we get supp(n) C supp(n®). we know
u¢ —ht <0 on suppne. So [, (uf — hY)dn < 0. Then [, (u — hY)dn = 0. Because &€ =
L(u¢ — h%)*, then 0 > Jo, (u€ = h?)d¢€ > 0. And since €€ — €, then Jo,(u— h?)d¢ = 0.

By taking 1 € C§°((0,1) x (0,00)) such that ¢» =1 on (suppn) N ((§,1 —3) x [0,7]) and p =0
on supp. Hence, in view of (23],

T 1 T
(16,1 — 6] x [0,T]) = /O /0 (@, t)n(da, dt) — /0 b, )(dx, dt) < oo

for all 0 < § < 4 and 7 > 0. Similarly we can get £([6,1 — 6] x [0,T]) < co for all 0 < § < 3
and 7' > 0. O



Set k1 (u¢®—h'(x,t)) = arctan[(u®°—h'(z,t))A0)? and ko (u?—h2(x,t)) = arctan|(h?(z,t)—
u®%) A 0]2. Consider the following penalized SPDE:

9 €,8 52 €,0 ;
: a(tx’t) B uax(zx’t) + f(u(2,1) = o (u (2, 1) W (2, 1)

P — @, 1)) — Lha(u® — (a1))
u(xz,0) = ug(x).

Notice that the corresponding penalized elements in Proposition 3.3.1 are (u®® — h'(z,t))~
and(u®® — h?(z,t))*. It was shown in [4](also in [6]) that the choice of ki1, ko does not change
the limit of u®?, but makes ki, ko differentiable with respect to u®°.

(3.25)

Proposition 3.2 For all (z,t) € [0,1] x R, u(x,t) € D1, and there exists a subsequence of
Du%(z,t) that converges to Du(z,t) in the weak topology of LP(%; H) and H = L*([0,1]x RT).

PROOF. Let u® be the solution to the following SPDE:

u576 z 2u5,6 T .
0 ( 7t) _ 9 ( ’t) _|_f(u€75(;1;7t)) = 0(u6’5(l‘,t))W(l‘,t)

ot Ox?
1 1
k(U — b (2,8) = Cha(u? = h(z.1), (3:26)
u(x,0) = ug(x).
Then it can be expressed as,
t t 1
wat) = [ Glaguwiy+ [ [ Geegota o)W dyds)
0 0 Jo
t 1 1 1
[ ] Grslal 1) + 5k~ Chaldyds,
0 Jo €
where Gy¢(z,y) is the heat kernel.
And we also know from Section 3.2 that:
Dy’suE’é(x,t) = Gt s 33 y ( (yv ))
/ / Gi—r(z,2)0 (U0 (2,7)) Dy s (u (2, 7)) W (dzdr)
i ! 1 !
t [ [ Gueste s+ 5 = Dy zan
Let
Dy, su’(z,t) = a(u°(y, s))S;’g(aj,t) (3.27)

and then S;:g(a:, t) is the solution of
Szig(x,t) = Gi—s(z,9) / / Gi_r(z,2)0 (u(z, r))S“S(z r)W (dzdr)

10



t 1 e 1 5
[ Gt S )+ 5 = RIS s

According to Theorem 1.2.6 (the comparison theorem of SPDE), we have the following
properties:
(1)Sys > 0,
()0 < S;g(a: t) < S5%(x,t) and Sy (x,t) is the solution of SPDE:

89 = Gy_y(ny) / / G (. 2)0 (u (2, 7)) 550 (2, 7 W (dzdr)
—l—//o Gi—r(z,2)[—f (u6’5(z,T))]S;’g(z,r)dzdr. (3.28)
Consequently,
| Dy,su (e, 6)] = |o(u(y, 5))|Sy2 (x,1) < [o(u™(y, )| 552 (@, ). (3.29)

According to Proposition 2.1 in [I3], we already have the following:

sup E| sup [u (y, 5)[P] < oc. (3.30)
&8 (y,5)€[0,1]x[0,T]

We just need to prove

supE// \555]2dyds) < 00,Vp > 1, (3.31)

according to Theorem 1.2.2 (Lemma 1.2.3 in [§]).
We know from (3.28)):

S0 (1)
< {|Gis(z,y) +|/ / Gip(2,7)0 (U (2,7)) S50 (2, 1) W (dzdr)|?
+] / /0 Grorl,2) -~ f (u (2, )] 850 (2. )dzdr ).
Then,
y/ / 1S5 (2, 1) |2 dyds|P
<

el / / Gos () Pdyds)?
/ / / / Grer (2, 2)0" (S (2, 1)) 558 (2, r)W (dzdr) Pdyds)?
o /O /O | / /0 Grr (2, 2)[— f (D (2, 1))]858 (2, ) dzdr Pdyds )P}

11



We shall use Burkholder’s inequality for Hilbert space (see [3] Inequality(4.18) P41) to get
the following:

Ey/ / 199 () Pyds|P

< ep{M
/ / / / Gir(2,2)0 (™ (2,1)) S5 (2, )W (dzdr) *dyds)?
+E(/0 /0 | / /0 Gip (3, 2)[= f (" (2,7))1855 (2, r)dzdr |2 dyds)"}
< ep{M
+HEE( /Ot /01( /0 r /0 1 G7_(x,2) (0 (u(2,7))2 (8532, 7)) dyds)dzdr)P
2 /0 /01 | / t /0 G (0, ) (e ) P(BGE o7)Pdrldyd)
: CP{MJFKE'/Ot/Ol(/T/l G2, (2, 2)(55 (2, 7)) dyds)d=dr |}

= cp{M—I—KE(/t/lG (2,2 // (S5 (=, 7)) dyds)dzdr)?}

< cpM—l—cpKE{//Ggﬁqrdzdr // G2 // Sg‘szr ))2dyds|Pdzdr},

whereee(l—%,%—z—p),q:ﬁ,
Then,
Ey// yseéxt dyds|?

< oM AcKM G2(1epE S“Szr 2dyds]?

= 6 P yds|Pdzdr

< cpM+cpKM/ supE// S“Szr dyds /G2(1 epdz

< CpM+CpKM/ supE// 56527» V2dyds)P(t — r)dr
Wherea———(l—e)

It’s equivalent to

supE// S“sxt ))2dyds]P

< cpM+cpKM/ SupE/ / 565 (z,7))2dyds]P(t — r)*dr (3.32)

12



Let
= supE/ / 565 (z,t))*dyds]P. (3.33)
Then,
f(t) <M +c, KM /Ot(t —r)*f(r)dr (3.34)
According to Gronwall’s Inequality, we have,

t t
ft) < M +/ epMep KM (t — r)“exp(/ (t — s)*ds)dr
0

t
= C+/ Ot —r)te w1t gy

= C+C (e 1)
< oQ.
It shows that
€ 6 / Lta+1
supE S (z,t))%dyds]P < C + C (ea+T —1). (3.35)

We can deduce from (3.35) that:

supE// Sﬁ5a:t ))2dyds)P < oo,Vp > 1
O

Theorem 3.1 If u is the solution of SPDE with two walls (ug;0,0; f,o;h, h?) and o > 0 on
[RY, h%). Then, for all (zo,ty) € (0,1) x RT*, the restriction on (h'(zo,to), h%(z0,t0)) of the
law of u(xg,ty) is absolutely continuous.

we will show that, for all a > 0, the restriction on [h!(zq,to) + a, h?(xq,to) — b, the law of
u(zo,to) is absolute continuous. From Proposition 2.2 in [I] and Proposition 3.3 in [6], it
remains to prove if o > 0, then, ||Du(xo,t0)|[r2(j0,1)xr+) > 0 on

Qap = {ulzo,t0) — h' (z0,t0) > a,h*(x0,t0) — u(wo, to) > b}.
And,
to 1
[[Du(zo,t0)l|r2(r+ x[0,17) > 0 & / / | Dy s(u(zo,t0))|dyds > 0 a.s. (3.36)
o Jo

if ¢ > 0, then D, qu®®(wg,to) > 0 by Eq@2T). By weak limit, Dy su(zq,t9) > 0, for (y,s) €
[0,1] x [0,]. Inequality (B.30]) is equivalent to

to 1
/ / Dy su(zo, to)dyds > 0 on Qqp (3.37)
0 0
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To demonstrate ([B.37), we will give a lower bound of Dy su(zo, o).

(zo,t0) € (0,1) x R, for y < ¢ and s < to, we note {w(y, s;x,t);x € [,y = (29 —y)A1],t >

s} is the solution of SPDE:

ow(z,t)  Pw(x,t) . /
0.0 TULY o (e )yl W (,0)+ (), 1),

w(z,s) =o(u(z,s)),y <z <y,
w(y,t) = w(y,t) =0,t > s.

(We have omitted the dependence of w of y, s for abbreviation.)

(3.38)

Proposition 3.3 Suppose a > 0 and (xq,ty) € (0,1) x R™*. Fory < xy and s < to, we define

Bys={weQ, inf (u(z,s) —h'(z,s)) > g and inf (h%(z,s) —u(z,s)) > g},

z€[y,7] z€[y,Y]

B, s is Fs-measurable. If 7, s is stopping time defined by

. . a ) b
Ty,s = inf{t > s,mfze[y@](u(z,t) — hl(z,t)) =3 or mfze[y,m(iﬁ(z,t) —u(z,t)) = 5} (3.39)

Then,

v

/ D, su(zo, to)dz > w(y, s;20,t0) (1, ,>1,}a-5.

y
w(y, s;x,t) is the solution of (3:38) and w(y, s;xo,to) > 0 a.s.
Lemma 3.1 v“%(y, s;z,t) > w0 (y, s;z,t),Yt > s,z € [y,7]. a.s.
Lemma 3.2 There exists a subsequence of w*’ (we still note it w*’) such that

w® (y, 55 20,0 A Tys)IB, . — w(y,s;20,t0 ATy s)IB, .,

and w(y, s;x,t) is solution of SPDE(3.38) which can be written as integral:
v__
w(y, s;x,t) = / Gi—s(x,2)o(u(z, s))dz
y

t o /
+ /s/yGt_r(a:,z)a (u(z,r))w(y, s; z,r)W (dzdr)

tory ,
+ / / Gir(z,2)f (u(z,r))w(y, s; z,7)dzdr,t > s,y <z < 7.
s Jy

We leave the proofs of Lemma 3.3.1 and 3.3.2 to the end of this section.

(3.40)

Demonstration of Proposition 3.3.1: Observe first that B, ; = {7, s > s} by continuity

of u and

Tys >t = {w, inf u(z,r) — h'(z,r >9and
(rya>t} = _ inf (uer) = () > 5
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b
inf h2 2r) —u(zr)) > 2},
Ze[y@],re[s,to]( (z,7) (z,1)) 2}

fix (y,s) € [0,20) x [0,tp). According to Proposition 3.3.2, fszvsu(xo,to)dz is the weak limit
in LP(Q) of the subsequence of fl7 D, su(zq,to)dz.

Note v(y, s;x,t) fy D, su(w,t)dz, and v (y, s; x,t) fy D, sud(z,t)dz, for s < t.
v®9 is the solution of linear SPDE:

v (y, 532, t)

= /y Gi—s(z, 2)o(u (2, 5))dz
/ / Gon(, )0 (U (2,10 (5 2, 1) W (ddr)

+ / /0 Gr s, 2) (0, )Py, 552, ) drdz,t >
£ 5 (z,1)
= L () + 5k — okl

Introduce w°(y, s; x,t) to be the solution of the same SPDE as v®(y, s; z,t) restricted in the
interval [y, y] with Dirichlet conditions at y, 3.

( 8w€76(x,t) 82w5,5($,t) 1S s .
ot N o2 = o (u(z,t)w’(z,t)W(z,1)
+fe (e (@, 1) (x, 1); (3.41)
w(z,5) = o(u(z,5)),y <z < J;
w(y,t) = wl(F,t) = 0,¢ > s.

(We have omitted the dependence of w° of y,s for abbreviation.)
We have the integral form:

wysan) =[G 0 )
i / / Gir(w,2)0 (u (2, 7)w (y, 552, 7) W (dzdr)

T / / G 2) g (u (2 ) (g, 51 2, )l
s Jy

t>sy<x<y,

where f! y(u(z,r)) = [F(u (2, ) + Yk — ko'

G denotes the fundamental solution of the heat equation with Dirichlet conditions on y and
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7(G depends on v).
Next we will use Lemma 3.3.1 and Lemma 3.3.2 to get our result:
Note: U(Z/) 8;$07t0) = f; Dz,su(x07t0)dz > 07

U(y7s;x07t0) 2 'U(y7s;x07t0)‘[{7'y,s>to}

= limove76(y7s;x07t0)I{Ty,s>to}

67
Ueﬁ(y) S0, tO)I{Ty,s >to} > ws,é(y’ S50, 750)[{7'y,3>t0}
and
w€75(y7 5520, tO)I{Tyys>to} - w(y, 8520, 750)[{7'%3>to}a-5- (342)

w(y, s;xo,tg) > 0 is a consequence of the result in Pardoux and Zhang [10](Proposition 3.1).
g

Demonstration of Theorem 3.3.1: By Proposition 3.3.3, for all s < tg and y < =z,
there exists a measurable set {1, ; of probability 1 such that Vw € €, ;, we have:

U(yv 5520, to)(&)) > ’lU(y, 5520, tO)ITy,s>t0 (W) (343)
and w(y, s; xg,tg) > 0. (3.44)

We define Q, = Nye[0,20)nQ¢y,s and then P(ﬁ;) = 1. In order to prove (337), we need the
following estimate.

By continuity of u, there exist two random variables Sy and Y[ such that Yy < zg, and Sy < tg
on 2,5 and

u(z,s) — hl(z,s) > g, h%(z,8) — u(z,s) > g Vr € [So, to], z € [Yo, Yo] a.s. on Qap  (3.45)

A sufficient condition to prove ([B.37)) is
to 1
/ ds/ D, su(xg,to)dz > 0 on Qg (3.46)
So 0

Note k(s) = fol D, su(xg,tp)dz, (346]) can be verified if we show k(s) > 0 a.s. on g4,
VSy < s §/t\(_)/
On Qap N 9,

k(s) v(y, s;z0,t0) Yy €Q (3.47)

w(y78;$07t0)1{7y,5>t0}- (3.48)

AVARLY}

Take y € [Yp, z9) N Q, then
Tirys>to) = 1

and
k(s) > w(y, s;z0,t0) > 0
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according to (3.44).0
Demonstration of Lemma 3.3.1:

The proof of Lemma 3.3.1 is the same as Proposition 5.1 and Corollary 5.1 in Appendix of [6].
Demonstration of Lemma 3.3.2:
Step 1: we introduce the intermediate solution @%° of SPDE which is similar as w

67(5:
v
e siat) = [ G2 0)ds
y
¢ /
+ //Gt_r(a:,z)a( Oz, r)w(y, s; z,7)W (dzdr)
s Jy

t y__ ,
+ //Gt_r(a:,z)f( Oz, rN@(y, 8; 2, 7)dzdr,t > s,y <x <7
s Jy

so that w6’5(y, s;x,t) — u’)e";(y, s;x,t) satisfies the following PDE with random coefficients:

Oy, s;x,t) — 0 (y, 53, 1)
/ / Gy, 25 0 (o) (g, 5 2,7) = f (0 (2,1)) 0 3, .2, d
(3.49)
Next we will show that for t > s,z € (y,7),
[w6’5(y, STt ATy ) — w6’5(y, s;z,t A1ys)llp,, — 0. (3.50)

Fix a trajectory w € B, s and consider the previous equation (3.49) at t A 7 s(w),

Y(z,7) € [y, 7] x [5,t A Tys(w)], we have u(z,r) — h(z,7) > &, h2(2,7) — u(z,r) > 5.

Since u%% uniformly converges to u on [0, 7] x [0, 1], then there exists eg(w) > 0 such that € < ¢,
u®(z,1) — ht(z,7) > 4; and there exists 6y(w) > 0 such that § < &y, h%(z,7) — u(z,7r) > L.
Then for (z,7) € [y,y] % [s,t A Tys], we have f;(;(ue"s(z,r)) = f (u9(z,7)), for € < €9, < .

For t > s,z € [y,y],

Wy, 52,8 Ay s (w)) — @ (y, 82,8 A Ty (w)) ()

tATy, s Yy
= / / Gt—T(‘TaZ)[fl(ueﬁ(zar))(wg’é(ya3327T) - weﬁ(yas;zvr))]dZdT'
S Y

Then,
‘we,(S(y, s;x, A Ty,S(w)) - we,é(% s;x, A Ty,S(w))(w)’2
tATy,s Yy ,
= | / ' / Goor (@, ) (4 (2, ) (W, 53 2,7) — (g, 51 2,7)]ddr?
<

tATy,s U tATy, s g
K/ / Gt - (:E,z)dzdr/ / W (y, 532,1) — @ (y, s; 2, 7)|*dzdr.
s y
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We deduce that

sup \wf"s(y, syt ATy s(w)) — wg’é(y, s;x,t A 7'y75(w))(w)\2
X

tATy, s
< KMt/ sup [w (y, 53 2,7) — @ (y, 55.2,7)|*(§ — y)dr.
S 4
According to Gronwall’s Lemma:

sup [w (y, 832, A Ty s(w)) — @ (y, 832, t ATy s(w))(w)|? = 0.a.5.
€T

Then,
|w5’6(y, s;2,t ATy s(w))(w) — we"s(y, $;2,t ATy s(w))(w)] =0 for € < €, < .
We have proved (B.50]).

Step 2: w0 — w
Note that the sequence of w®® and @w*° are bounded in LP(Q; LP([y, 7] x [s,1])) i.e.

supE/ / 65 (y,s;z,7r))Pdrdz] < oo,

tory
sup E[/ / (@ (y, 53 2,7))Pdzdr] < oo,
s Jy

€,0

(3.51)

(3.52)

(3.53)

(3.54)

The convergence a.s. obtained in ([B50]) together with Inequalities (:53]) and (3.54]) obtained

for p, ensuring the convergence of

[we"s(y, S5 N Tys) — wE’é(y, 83+ NTys)IB, , to 0

in LP(Q; LP([y,y] x [s,T7])), that is to say

TATy,s Y
E[/ / (wE"S(y, S;z,1) — wE’é(y, s;z,7))Pdzdr] — 0, €, =0
s y

w(z,t) — 0 (x, t)
/ G, (z,2)[o(u(z,8)) — o(u(z,5))|dz

G, ' —0 u“szr ST zdr
4 / / Gir (2, 2)[0 (e, )w(z, ) — o (0 (2, r))w (g, 53 2, 1) W (dzdr)

/ / Gt r(x, 2) ( (z,m)w(z,r) — f/(ug"s(z,r))we"s(y,s;z,r)]dzdr,

for t>sy<zx<y
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Let
F>t) = sup Eljw(z,t A7ys) — 0% (z,t A 7y.s)|P 1B, ], t > s (3.55)
z€[y,y]

Following the similar steps as P.417 in [6], we can show

t
FeO(t) < K, (C9° + / FeO(r)dr) and C%° — 0 (3.56)

S

From Gronwall Lemma: F%(t) — 0, €,6 — 0
So we have a subsequence of @ (still denote it @w"°) such that

lw(z,t ATys) — @ (x,t A Tys)[PIB,, — 0 (¢,0 — 0). (3.57)
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