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The fourth post-Newtonian (4PN) two-body dynamics has been recently tackled by several differ-
ent approaches: effective field theory, Arnowitt-Deser-Misner Hamiltonian, action-angle-Delaunay
averaging, effective-one-body, gravitational self-force, first law of dynamics, and Fokker action. We
review the achievements of these approaches and discuss the complementarity of their results. Our
main conclusions are: (i) the results of the first complete derivation of the 4PN dynamics [T. Damour,
P. Jaranowski, and G. Schäfer, Phys. Rev. D 89, 064058 (2014)] have been, piecewise, fully con-
firmed by several subsequent works; (ii) the results of the Delaunay-averaging technique [T. Damour,
P. Jaranowski, and G. Schäfer, Phys. Rev. D 91, 084024 (2015)] have been confirmed by several
independent works; and (iii) several claims in a recent Fokker-action computation [L. Bernard et al.,
arXiv:1512.02876v2 [gr-qc]] are incorrect, but can be corrected by the addition of a couple of ambi-

guity parameters linked to subtleties in the regularization of infra-red and ultra-violet divergences.

I. INTRODUCTION

The general relativistic two-body problem has acquired
a renewed importance in view of the impending prospect
of detecting the gravitational wave signals emitted by
inspiralling and coalescing compact binaries. After the
successful completion, fifteen years ago, of the derivation
of the third post-Newtonian (3PN) two-body dynamics
[1] (see [2–5] for later rederivations), a natural challenge
was to tackle the (conservative) fourth post-Newtonian
(4PN) dynamics. Several partial steps in the derivation
of the 4PN dynamics have been performed [6–14]1, and
culminated in the recent first full derivation, within the
Arnowitt-Deser-Misner (ADM) Hamiltonian formulation
of General Relativity, of the 4PN dynamics in Ref. [16],
completed by an action-angle-Delaunay averaging study
in Ref. [17]. A remarkable feature of the conservative
4PN dynamics of Ref. [16] is the presence of a time-
symmetric nonlocal-in-time interaction, which is directly
related to the 4PN-level tail-transported (retarded) inter-
action first discussed in Ref. [18] (see also Refs. [19, 20]
for recent rediscussions).
In a recent preprint [21] Bernard et al. reported the

computation of the Fokker action describing the 4PN
dynamics in harmonic coordinates. They make several
claims in (the version 2 of) their preprint, notably: (i)
the presence of a unique ambiguity, of infra-red (IR) ori-
gin, parametrized by the parameter α; and (ii) the need
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1 See also [15] for the O(G1) interaction, valid to all PN-orders.

to choose the value α = αB3FM = 811/672 to repro-
duce the analytically known [13] 4PN interaction energy
for circular orbits. Moreover, they state that their 4PN
dynamics disagrees with the one recently derived by us
[14, 16, 17] and that part of the discrepancy comes from
our treatment of the nonlocal contribution to the dynam-
ics.

The first aims of the present paper will be: (1) to show
that the claims, denoted (i) and (ii) above, of [21] are
wrong; (2) to suggest that the discrepancies between their
result and ours is due both to their incorrect evaluation
of the conserved energy of the nonlocal 4PN dynamics
and to the need to complete their result by at least one
further contribution parametrized by an additional am-
biguity parameter, denoted a below. The other aims of
our paper will be: (3) to explain in more detail than in
our original paper [17] the logical basis and consistency
of our reduction of the nonlocal 4PN dynamics to a for-
mally local action-angle Hamiltonian; and (4) to summa-
rize the many independent results that have confirmed,
piecemeal, all the elements of our 4PN dynamics [16, 17].

Regarding the last item, we wish to emphasize that, be-
sides the straightforward PN (or, equivalently, effective-
field-theory) calculations of the two-body dynamics, cru-
cial information about the two-body dynamics has been
acquired (as will be detailed below) through combining
(in various ways) several other approaches : the effective-
one-body (EOB) formalism [22–25], the first law of bi-
nary mechanics [26–28], and gravitational self-force (SF)
theory, especially when combined with the Mano-Suzuki-
Takasugi (MST) [29, 30] hypergeometric-expansion ap-
proach to Regge-Wheeler-Zerilli theory. We shall point
out when needed the multi-way consistency checks be-
tween these appproaches that have been obtained at the
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4PN level.
Our notation for two-body systems will follow the one

used in our previous works: the two masses are de-
noted m1, m2, and we then denote M ≡ m1 + m2,
µ ≡ m1m2/(m1 +m2), ν ≡ µ/M = m1m2/(m1 +m2)

2.
We indicate powers of G and c when it is pedagogically
useful, but we sometimes set G = c = 1 when it is more
convenient.

II. EXTANT PIECEWISE CONFIRMATIONS
OF THE 4PN ADM-DELAUNAY DYNAMICS
AND LIMITS ON POSSIBLE DEVIATIONS

Let us start by recalling the structure of the 4PN re-
sults of Refs. [16, 17]. First, the ADM action derived in
[16] has the following form (using the notation of [16])

SDJS =

∫ [∑

a

pai dx
i
a −H loc

DJS(xa,pa; s) dt
]

+ Snonloc (s), (2.1)

where the nonlocal piece of the ADM action2 is (Iij de-
noting the quadrupole moment of the binary system; and

I
(3)
ij ≡ d3Iij/dt

3)

Snonloc (s) =
1

5

G2M

c8
Pf2s/c

∫∫
dt dt′

|t− t′|I
(3)
ij (t)I

(3)
ij (t′) ,

(2.2)
(Pf ≡ Partie finie) and where the local piece of the ADM
action has the structure

H loc
DJS(xa,pa; s) = H loc

DJS(xa,pa; r12)

+ F [xa,pa] ln
r12
s
, (2.3)

with

F [xa,pa] =
2

5

G2M

c8
(I

(3)
ij )2. (2.4)

The length scale s entering the action above3 is arbitrary
because (as shown in [16]) the s-dependence of the non-
local action (2.2) cancels against the s-dependence of the
local action (2.3).
In our second paper, Ref. [17], we combined different

techniques (which will be explained in detail below) for
transforming the (center-of-mass-frame reduction of the)

2 In Ref. [16] the necessity of adding the nonlocal contribution
Snonloc (s) was derived by combining the structure of the IR
divergence of the local ADM action [14] with the known exis-
tence of a 4PN-level, long-range tail-transported interaction [18].
Prompted by an argument in [21], we discuss in Appendix A the
(limited) extent to which Snonloc (s) can be (formally) directly
derived from the ADM action.

3 For clarity, we do not use here the formulation where s is replaced
by r12 = |x1 − x2|.

nonlocal ADM action (2.1) into an equivalent ordinary
action, say

SDJS′ =

∫ [
pi dq

i −HDJS′(q, p) dt
]
, (2.5)

where HDJS′(q, p) is formally given by an expansion in
(even) powers of qipi. [Ref. [17] gave an exact formula
for the action-angle version of Snonloc, and the explicit
form of the expansion of HDJS′(q, p) in powers of qipi
through (qipi)

6.] The ordinary action (2.5) is equivalent
to (the center-of-mass-frame reduction of) (2.1) modulo
some shifts of the phase-space coordinates that are im-
plicitly defined by the Delaunay-like reduction procedure
of [17]. These shifts do not affect the gauge-invariant ob-
servables deduced from either (2.1) or (2.5) which we
shall focus on in the following. Note also in passing
that the use of the EOB formalism in [17] is essentially
a technical convenience, while the essential conceptual
step used there is the reduction of a nonlocal action to
a local form by using Delaunay-like averaging techniques
(see below).
The aim of this Section is to summarize the current

existing confirmations of the correctness of the 4PN ac-
tions (2.1) or (2.5). First, we wish to recall that the full
Poincaré invariance of (2.1) (in a general frame) was ex-
plicitly checked in [16] (see also [14]). This is a highly
nontrivial check because the ADM derivation of the ac-
tion (contrary to the harmonic-coordinates Fokker one)
is far from being manifestly Lorentz invariant.
To organize the other confirmations of (2.1) or (2.5),

let us note that, in the center-of-mass frame, and when
using suitably scaled4 dynamical variables [e.g. r =
rphys/GM , p = p1/µ = −p2/µ, S = Sphys/(GMµ),

Ĥ = (H − Mc2)/µ] the rescaled Hamiltonian Ĥ has a
polynomial structure in the symmetric mass ratio ν

Ĥ = Ĥ0 + νĤ1 + ν2Ĥ2 + ν3Ĥ3 + ν4Ĥ4, (2.6)

where Ĥ0 = 1
2p

2−1/r+c−2(· · · )+· · ·+O(c−10) describes
the 4PN dynamics of a test particle in the field generated
by the mass M = m1 +m2.

The contribution νĤ1 to the 4PN dynamics describes
the 4PN approximation to the first-order self-force (1SF)
dynamical effects. Over the recent years, many works
have been devoted to both the numerical and the analyt-
ical computation of 1SF dynamical effects. To compare
these results to the predictions following from our 4PN
dynamics (2.1) or (2.5) we need bridges between PN re-
sults and SF results. Two such PN-SF bridges have been
particularly useful over the last years: the EOB formal-
ism [22–25], and the first law of binary mechanics [26–28].
The first example of PN-EOB-SF bridge was the

derivation of the functional relation between the peri-
astron precession of small-eccentricity orbits and the ra-
dial potentials entering the EOB Hamiltonian [6]. At

4 Beware that we will often oscillate between using scaled or un-
scaled dynamical variables.
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the 1SF level, this relation (see Eqs. (5.21)–(5.25) in
[6]) yields the precession function ρ(u) as a linear com-
bination of a(u), a′(u), a′′(u) and d̄(u), where a(u) is
the 1SF correction to the main EOB radial potential
A(u; ν) = 1 − 2u + νa(u) + O(ν2) (which generalizes

ASchwarzschild(u) = 1 − 2GM/c2r ≡ 1 − 2u), and d̄(u)
the 1SF correction to the second EOB radial potential
D̄(u) ≡ (A(u)B(u))−1 = 1+νd̄(u)+O(ν2). Let us apply
this relation to the 4PN-level values of the EOB poten-
tials parametrizing the 4PN dynamics (2.5), as derived
in [17], namely (adding the third EOB potential Q):

A(u) = 1− 2u+ 2ν u3 +

(
94

3
− 41π2

32

)
ν u4

+

((((
2275π2

512
− 4237

60
+

128

5
γE +

256

5
ln 2

)
ν +

(
41π2

32
− 221

6

)
ν2 +

64

5
ν lnu

)))
u5, (2.7a)

D̄(u) = 1 + 6ν u2 +
(
52ν − 6ν2

)
u3

+

((((
−533

45
− 23761π2

1536
+

1184

15
γE − 6496

15
ln 2 +

2916

5
ln 3

)
ν +

(
123π2

16
− 260

)
ν2 +

592

15
ν lnu

)))
u4,

(2.7b)

Q̂(r′,p′) =

(((
2(4− 3ν)ν u2 +

((
−5308

15
+

496256

45
ln 2− 33048

5
ln 3

)
ν − 83ν2 + 10ν3

)
u3

)))
(n′ · p′)4

+

((((
−827

3
− 2358912

25
ln 2 +

1399437

50
ln 3 +

390625

18
ln 5

)
ν − 27

5
ν2 + 6ν3

)))
u2 (n′ · p′)6 +O[νu(n′ · p′)8].

(2.7c)

This yields

ρ(x) = 14x2 +

(
397

2
− 123

16
π2

)
x3

+

(
58265

1536
π2 − 215729

180
+

5024

15
γE +

1184

15
ln 2 +

2916

5
ln 3 +

2512

15
lnx

)
x4 +O(x5 lnx). (2.8)

The 4PN-level contribution to the precession function
ρ(x) is of the form ρ4PN(x) = (ρc4 + ρln4 lnx)x4, with
the rational logarithmic coefficient ρln4 = 2512

15 [8], and
the transcendental non-logarithmic 4PN coefficient

ρc,DJS
4 =

58265

1536
π2 − 215729

180

+
5024

15
γE +

1184

15
ln 2 +

2916

5
ln 3. (2.9)

The analytical values of the 4PN-level functions A, D̄,
Q have been recently independently confirmed by two
self-force computations (based on the recently derived
eccentric-extension of the first law [28]), see Refs. [31]
and [32]. [Note also that the coefficients of higher powers
of n′ · p′ in Q were recently provided: the powers 8 and
10 in [32]; and the powers 12 to 20 in [33].]
In addition to analytical confirmations, there are also

numerical self-force confirmations of the 4PN-level values
of ρ(x) and ρc,DJS

4 based on direct dynamical computa-
tions of the precession of slightly eccentric orbits.

The first numerical SF determination of the precession
function ρ(u) was made in [34]. In particular, the lat-
ter work confirmed the value ρln4 = 2512

15 and derived an
estimate of the value of the non-logarithmic coefficient,
namely

ρ
c,num[34]
4 = 69+7

−4. (2.10)

We were informed by Maarten van de Meent that he has
very recently obtained a much more accurate determina-
tion of ρc4 with preliminary results yielding [35]

ρ
c,num[35]
4 = 64.640566(2), (2.11)

where the number in parentheses indicates a preliminary
estimate of the uncertainty on the last digit. Note that
both numerical estimates of ρc4 assume the analytical val-
ues of the 4PN and 5PN logarithmic contributions to
ρ(u). [There is no doubt about the (1SF) 4PN and 5PN
logarithmic contributions to the dynamics: the 4PN ones
can be straightforwardly deduced from the tail-related
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4PN logarithmic term written in Eq. (6.39) of [18] (equiv-
alent to the F [xa,pa] ln

r12
s logarithmic contribution in

(2.3)), while the 5PN ones are straightforwardly deriv-
able from the higher-tail results of Refs. [7] and [17] (Sec.
IXA).] Both numerical SF results (2.10), (2.11) confirm,
within their respective error bars, the numerical value

ρc,DJS
4 = 64.64056 47571 19378 19014 84255 · · · (2.12)

of the result, (2.9), predicted by our 4PN dynamics. The
numerical result (2.10) differs from the analytical value
(2.9) by

∆ρc4 ≡ ρ
c,num[34]
4 − ρc,DJS

4 = 4+7
−4, (2.13)

while the more recent numerical value (2.11) differs from
the analytical value (2.9) only by

∆ρc4 ≡ ρ
c,num[35]
4 − ρc,DJS

4 = (1± 2)× 10−6. (2.14)

What is especially important in such a numerical check is
that we are talking here about a direct dynamical check
of the 4PN dynamics derived in [16] and [17]. Indeed,
no use is made here of the first-law-of-mechanics bridge
to go from SF computations of the Detweiler-Barack-
Sago redshift invariant to 4PN dynamical functions. The
SF computations done in [34] and [35] directly estimate
the effect of the nonlocal gravitational self-force Fµ on
slightly eccentric orbits to extract the precession func-
tion ρ(u) and, then, its PN expansion coefficients. One
has therefore here a direct confirmation of the way Refs.
[16, 17] computed (via well established EOB results [6])
the precession effect of the nonlocal 4PN dynamics.
Let us now summarize the numerical SF confirmations

of the other 1SF predictions one can draw from the 4PN
results (2.7). The 4PN-level coefficients of the three EOB
potentials A, D̄ and Q (the latter being considered at
O(p4r), i.e. at the level of the fourth power of the eccen-
tricity) are of the form A4PN(u) = ν(ac5+aln5 lnu+νa′5)u

5,
D̄4PN(u) = ν(d̄c4 + d̄ln4 lnu + νd̄′4)u

4, and Q4PN(u, pr) =
νq4,3(ν)u

3p4r+νq6,2(ν)u
2p6r+O(p8r), with q4,3(ν) = q4,3+

νq′4,3 + ν2q′′4,3 and q6,2(ν) = q6,2 + νq′6,2 + ν2q′′6,2. Among
the 4PN coefficients, the 1SF contributions are the ones
at order O(ν), i.e. the unprimed ones in our notation,
namely

ac5 =
2275π2

512
− 4237

60
+

128

5
γE +

256

5
ln 2, (2.15a)

aln5 =
64

5
, (2.15b)

d̄c4 = −533

45
− 23761π2

1536
+

1184

15
γE

− 6496

15
ln 2 +

2916

5
ln 3, (2.15c)

d̄ln4 =
592

15
, (2.15d)

q4,3 = −5308

15
+

496256

45
ln 2− 33048

5
ln 3, (2.15e)

q6,2 = −827

3
− 2358912

25
ln 2

+
1399437

50
ln 3 +

390625

18
ln 5. (2.15f)

The numerical values of the non-logarithmic coefficients
are

ac5 = 23.50338 92426 03436 23875 76146 · · · , (2.16a)

d̄c4 = 221.57199 11921 48164 02323 37716 · · · , (2.16b)

q4,3 = 28.71104 42849 55949 75749 69412 · · · , (2.16c)

q6,2 = −2.78300 76369 52232 48902 84545 · · · . (2.16d)

All these 1SF-order coefficients have been indepen-
dently checked, either analytically, or numerically, by
various SF computations (which used the first law of
binary dynamics as a bridge). We have already men-
tioned above the theoretical consensus on the 4PN loga-
rithmic contributions aln5 and d̄ln4 . [Note the absence of
any logarithmic contribution to Q4PN(u, pr).] The non-
logarithmic contribution ac5 to the main EOB radial po-
tential A(u) is actually not a deep check of the ADM
results (2.1), (2.5) because Ref. [16] used the analytical
SF result of Bini and Damour [13] to calibrate their sin-
gle IR ambiguity constant C. Let us, however, note two
things. First, all the transcendental contributions to ac5
have been reproduced by the local ADM computation
[12, 14], the needed calibration of C using only a rational
shift. Second, the analytical determination of ac5 in Ref.
[13] (which was preceded by accurate numerical estima-
tions [7, 9]) has been later analytically confirmed in [36]
and [37], as well as numerically confirmed by extremely
high accuracy self-force results [38].
The non-logarithmic 1SF 4PN contribution d̄c4 to the

second EOB potential D̄(u) has been fully confirmed
(again using the first law of mechanics) by recent SF
works, both analytically and numerically. As already
mentioned, direct analytical checks have been obtained
in Refs. [31], and [32]. In addition, Ref. [31] has pointed
out that the recent numerical SF results of Ref. [39] pro-
vide a numerical check on the value d̄c4 at the accuracy
level ± 0.05. [The latter error level takes into account the
fact that the a5 terms have been fully confirmed.]
The 1SF 4PN contributions to Q(r, pr) have also been

recently confirmed, both analytically [32] and numeri-
cally, with an uncertainty δq4,3 = ±4 [39] (see also the
recent numerical determination of the coefficient q4(u) of
νp4r in the EOB Q potential [40]).
Let us finally note that the terms proportional to

higher powers of ν in (2.6) are much less sensitive than
the terms of order ν to subtle regularization ambiguities.
Actually, as shown in Refs. [10, 12] the regularization
subtleties are in direct correspondence with the power
of ν. The terms of order ν3 and ν4 are not ambigu-
ous at all (and have been independently derived, in the
effective-field-theory approach, for the relation between
energy and orbital frequency for circular orbits, in Ref.
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[11]), while the terms of order ν2 are delicate, but can
be unambiguously derived when using dimensional regu-
larization for treating the UV divergences [12]. Actually,
as explicitly shown in [21] (see also next section), the re-
cent harmonic-coordinates Fokker-action computation of
Ref. [21] agrees (modulo some contact transformation)
with the action (2.1) for all powers of ν, except for the
first power. We think that this is related to the fact that
the most delicate IR effects are linked with the nonlo-
cal contribution (2.2), which is easily seen to be purely
of order ν1 (in S/Mµ). [This is also explicitly displayed
in Eqs. (7.5)–(7.7) of [17].] As we shall further discuss
below, physical effects mixing local and nonlocal effects,
and thereby being sensitive to IR divergences, are very
delicate to determine unambiguously. We can, however,
conclude that the non IR-sensitive part of the results of
[21] provide an independent confirmation of all the terms
in the action (2.1) which are of order νn with n ≥ 2.
Summarizing this Section: Many independent SF re-

sults have confirmed all the (IR-sensitive) terms linear
in ν , while the other PN calculations at the 4PN level,
Refs. [11] and, especially, Ref. [21], have confirmed all
the terms nonlinear in ν (i.e. ∝ ν2, ν3, and ν4). We con-
clude that all the results of [16, 17] have been (piecewise)
confirmed.

III. INCOMPATIBILITIES BETWEEN THE 4PN
FOKKER ACTION RESULTS OF [21] AND

SELF-FORCE RESULTS

The simplest way to compare the results of the recent
Fokker action computation [21] to self-force data is to
compute the SF effects induced by the difference between
the dynamics of Ref. [21], and that of Refs. [16, 17]. This
difference has been worked out in [21].
Reference [21] obtained, after applying a suitable con-

tact transformation (alluded to, though not explicitly
presented, at the beginning of their Sec. V B) to their
original harmonic-coordinates result an action of the
same form as the ADM results (2.1), namely

SB3FM =

∫ [∑

a

paidx
i
a −H loc

B3FM
(xa,pa; s)dt

]

+ Snonloc (s), (3.1)

with the same nonlocal (or “tail”) action5, but with a
different local Hamiltonian.

H loc
B3FM

(xa,pa; s) = H loc
B3FM

(xa,pa; r12)

+ F [xa,pa] ln
r12
s
, (3.2)

5 We use here the fact that, at the 4PN level, MB3FM = MDJS +
O(1/c2) with MDJS ≡ Mhere = m1 +m2.

[Ref. [21] does not explicitly display the ln s dependence
of the local Hamiltonian but agrees with [16] on the can-
cellation of that dependence.] For simplicity, we do not
discuss here the issue of the order-reduction of the deriva-
tives of xa and pa entering (via I

(3)
ij ) both the nonlocal

action (2.2) and the coefficient F of the logarithm, Eq.
(2.4). Indeed, there is complete agreement, at the level
of the action, between [16] and [21] for what concerns the
nonlocal piece of the action. [As said in [16], the order

reduction of I
(3)
ij (i.e. its on-shell replacement by a local

function of xa(t) and pa(t)) entails a suitable nonlocal
shift of the dynamical variables (which was explicated
in Eqs. (5.14), (5.15) of [21]).] The important issue is
the difference between the two local Hamiltonians which,
according to Eq. (5.19) of [21], is

H loc
B3FM

−H loc
DJS =

G4Mm2
1m

2
2

c8r412

×
[
aB3FM

((n12 · p1)

m1
− (n12 · p2)

m2

)2

+ bB3FM

(
p1

m1
− p2

m2

)2
+ cB3FM

GM

r12

]
,

(3.3)

with

(a, b, c)B3FM =

(
1429

315
,
826

315
,
902

315

)
. (3.4)

Before discussing further the origin of the discrep-
ancy [i.e. the fact that (a, b, c)B3FM 6= (0, 0, 0)], we wish
to emphasize two things: (i) the discrepant terms in
Eq. (3.3) represent only three (Galileo-invariant) terms
among the hundreds (exactly 219) of contributions to the
(non center-of-mass) two-body Hamiltonian, as displayed
in the Appendix of [16], or in Sec. VIII E of [14]; and (ii)
the three discrepant terms (3.3) (when expressed in the
center of mass, and in reduced variables, i.e. in the sense
of (2.6)) are linear in the symmetric mass ratio ν, i.e.
there are of 1SF order.
The discrepancy Eq. (3.3) therefore implies 1SF-

detectable effects away from all the 1SF checks of the
ADM dynamics (2.1) reviewed in the previous Section.
Let us now quantify the corresponding 1SF differences.
To do that it is convenient to transcribe the 4PN-level
Hamiltonian difference (3.3) in terms of corresponding
differences in the three EOB potentials A, D̄, Q. [We
recall in passing that the EOB parametrization of the
dynamics in terms of A, D̄,Q is completely gauge-fixed,
and therefore directly linked to gauge-invariant quanti-
ties.]
Considering, for more generality, a 4PN-level Hamil-

tonian difference with general coefficients (a, b, c) in Eq.
(3.3), the corresponding additional contributions to A,
D̄, Q are easily found to be

δa,b,cA = (2b+ 2c) ν u5, (3.5a)
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δa,b,cD̄ = (2a+ 8b) ν u4, (3.5b)

δa,b,cQ = 0. (3.5c)

Note in passing that those contributions are invariant
under the “gauge transformation”

δg(a, b, c) = g(4,−1, 1), (3.6)

which corresponds to the most general canonical trans-
formation respecting the structure (3.3) (with generating
function ∝ g ν pr/r

3). Inserting the values (3.4) in Eqs.
(3.5) leads to changes in A and D̄ (with respect to the
values computed in [17])

δB
3FM

4PN A =
384

35
ν u5, (3.7)

δB
3FM

4PN D̄ =
9466

315
ν u4. (3.8)

In other words, the only 1SF 4PN-level coefficients that
are different are ac5 and d̄44 with

δB
3FMac5 =

384

35
≈ 10.97143, (3.9)

δB
3FMd̄c4 =

9466

315
≈ 30.05079. (3.10)

Such large, 4PN-level deviations away from the results
of [17] are in violent contradiction with the many SF con-
firmations of the ADM 4PN dynamics reviewed in the
previous section. They have been obtained here by us-
ing the Delaunay-like reduction used in [17] to convert
the nonlocal dynamics (2.1) into the (formally) local one
(2.5). The authors of [21] express doubts about some
aspects of the results of [17]. We shall address their con-
cerns in the following Sections and conclude that their
concerns are unsubstantiated. Therefore we conclude
that taking the results of [21] at face value does lead to
the large changes (3.9), (3.10) above, and are therefore
strictly incompatible with extant SF knowledge.
We wish to go further and point out an even more

blatant contradiction with SF tests of periapsis preces-
sion. First, we note (using, e.g. Eq. (8.3) in [17]) that the
changes above entail a corresponding change in the 4PN-
level precession coefficient ρc4 given by δρc4 = 10δac5+δd̄c4,
i.e.

δB
3FMρc4 = (2a+ 28b+ 20c)B3FM, (3.11)

i.e.

δB
3FMρc4 =

44026

315
≈ 139.7650794. (3.12)

As we recalled above, SF computations [34, 35] of the
precession function ρ(u) [6], and of its PN coefficients,
does not rely on the first law of binary mechanics, but
involve direct computations of the additional precession
induced by the nonlocal self-force. The difference (3.12)
is therefore (assuming the correctness of the Delaunay

reduction of [17]) a direct dynamical consequence of the
Fokker-action result of [21]. It would be interesting to
confirm this result by a purely dynamical computation
of the (nonlocal) 4PN precession. We note here that the
difference is already excluded by the “old” result (2.13),
and even more so (by 108 standard deviations!) by the
recent one (2.14).

IV. LOGICAL BASIS OF THE ACTION-ANGLE
DELAUNAY-LIKE METHOD OF [17]

Independently of the above SF confirmations of the
4PN results of [16, 17], let us reassess the logical basis and
the consistency of the methodology used in our Delaunay-
EOB derivation, and indicate, by contrast, where, in our
opinion, lie the flaws of Ref. [21] that have led to the non
zero values (3.4), which are incompatible with many SF
results. Our framework is the action-angle formulation of
(planar) Hamiltonian dynamics. In [17] we used the stan-
dard Delaunay notation (modulo the use of calligraphic
letters L → L, G → G). Namely, (L, ℓ;G, g) are the two
planar action-angle canonical pairs: L =

√
a is conjugate

to the mean anomaly angle ℓ, while G =
√
a(1− e2) is

conjugate to the argument of the periastron g = ω. In or-
der to better exhibit the meaning (and consistency) of our
approach in the circular limit, we shall use here the com-
bination of Delaunay variables introduced by Poincaré,
namely, the two action-angle pairs (Λ, λ; Ir, ̟) where
(using suitably scaled variables as in [17])

Λ = L = Ir + Iϕ, (4.1a)

λ = ℓ+ g, (4.1b)

Ir = L − G = L− Iϕ, (4.1c)

̟ = −g = −ω. (4.1d)

Here, Iϕ = G is the angular momentum (Iϕ =
1
2π

∮
pϕ dϕ = pϕ) and Ir the radial action (Ir =

1
2π

∮
pr dr). The sum Λ = Ir + Iϕ is conjugate to

the mean longitude λ = ℓ + g, while Ir is conjugate
to (minus) the argument of the periastron ̟ = −ω.
The latter (surprising) minus sign is necessary to have
dL ∧ dℓ + dG ∧ dg = dΛ ∧ dλ + dIr ∧ d̟ with Ir =
L − G =

√
a −

√
a(1− e2) > 0. In the circular limit,

λ becomes the usual polar angle ϕ in the orbital plane
and Ir → 0, so that the action variable Λ becomes equal
to the angular momentum Iϕ = pϕ. In this limit, the

general Hamilton equation λ̇ = ∂H/∂Λ gives back the
usual circular link between the orbital frequency Ω = ϕ̇
and the derivative of the energy with respect to the an-
gular momentum pϕ. However, when dealing with non-
circular orbits, and tackling the nonlocal action (2.2), it
is important to work with the clearly defined canonical
action-angle pairs (Λ, λ; Ir, ̟). In principle, it would be
better, when discussing the circular limit, to replace the
second pair (Ir , ̟) by the associated Poincaré variables
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ξ =
√
2Ir cos̟, η =

√
2Ir sin̟, because they are canon-

ical (dξ∧dη = dIr∧d̟) and regular in the circular limit
(while̟ becomes ill-defined as Ir → 0). Keeping in mind
such an additional change of variables, we shall, however,
find simpler to express our methodology in terms of Ir
and ̟.
The basic methodology we used in [17] for dealing with

the nonlocal 4PN dynamics, Eqs. (2.1), (2.2), consists of
four steps: (a) we reexpress the action (2.1) as a nonlo-
cal action in the action-angle variables (Λ, λ; Ir, ̟); (b)
we expand it (formally to infinite order) in powers of the
eccentricity, i.e. in powers of

√
Ir ; (c) we “order-reduce”

the nonlocal dependence on the action-angle variables by
using the on-shell equations of motion6; and (d) we elim-
inate, à la Delaunay, the periodic terms in the order-
reduced Hamiltonian by a canonical transformation of
the action-angle variables. After these four steps, we
end up with an Hamiltonian which is an ordinary (local)
function of the (transformed) action variables alone.
In order not to get distracted by irrelevant technicali-

ties, let us illustrate this methodology [which was applied
in [17] to the full 4PN action (2.1)–(2.2)] on a simpler toy
example which contains some of the key ingredients of the
action (2.1)–(2.2), namely the action

Stoy =

∫
[p(t) · dr(t)−Htoy(t)dt], (4.2)

Htoy(t) =
1

2
p(t)2 − 1

r(t)

+ ε

∫ +∞

−∞

dt′µ(t′ − t)
r(t′) · r(t)

|r(t′)|3|r(t)|3 , (4.3)

where µ(τ) is an even function of the time difference
τ ≡ t′ − t. In the real case (2.1)–(2.2), µ(τ) = 1/|τ |
with an additional partie finie Pf prescription. The sub-
tleties linked to the Pf prescription and to the slow decay
of 1/|τ | for |τ | → +∞ are only of technical nature. For

instance, the oscillatory nature of the integrand I
′(3)
ij I

(3)
ij

(mimicked as x′
i xi/(r

′3r3) in our toy example) ensures
the large |τ | convergence7 of the nonlocal integral (2.2)

without having to assume that I
(3)
ij tends to zero when

|τ | → +∞. [Indeed, the fact that −xi/r
3 is the on-

shell value of the second time-derivative of xi, and I
(3)
ij

the third time-derivative of Iij , ensure that their large-
time averages both vanish for conservative bound mo-
tions. Note that our toy model is the “electromagnetic”
(dipolar) analog of the gravitational (quadrupolar) tail
action.] For simplicity, as we wish here to emphasize
issues of principle without getting bogged down by sec-
ondary technical issues, we will not specify the weight

6 As discussed in detail below, this is equivalent to applying suit-
able nonlocal shifts of the phase-space variables.

7 We have convergence both at τ → +∞ and τ → −∞, without
having absolute convergence.

µ(τ) used in our toy model, but proceed as if it were a
smooth, integrable even function of τ .
The first two steps, (a) and (b), of our procedure yield

(when considered, for illustration, at linear order in the
eccentricity e)

Htoy(t) = − 1

2Λ2
+ ε

∫ +∞

−∞

dτ µ(τ)
1

Λ4Λ′4

[
cos(λ′ − λ)

+ 2e cos(2λ− λ′ +̟) + 2e′ cos(2λ′ − λ+̟′)

+O(e2)
]
. (4.4)

Here and below f ′ denotes the variable f taken at time
t′ = t+ τ , while f denotes its value at time t.
Step (c) consists in writing, for any variable f , its value

f ′ at the shifted time t′ in terms of canonical variables at
time t and of an integral over intermediate times involv-
ing the rhs of the (Hamiltonian) equations of motion. For
a nonlocal action, the latter read Sλ(t) = 0, SΛ(t) = 0,
etc., with

Sλ(t) ≡
δS

δλ(t)
≡ −Λ̇(t)− δH

δλ(t)
, (4.5a)

SΛ(t) ≡
δS

δΛ(t)
≡ λ̇(t)− δH

δΛ(t)
, etc., (4.5b)

where δ/δf(t) denotes a functional derivative (acting on
the action S or on

∫
dtHnonlocal(t)). In the normal case

of local actions [44, 45], the use of the identities (4.5a),
(4.5b) is the main tool allowing one to show how the re-
placement of the equations of motion within an action is
equivalent to a suitable shift of the dynamical variables (a
“field redefinition”). In the case of nonlocal actions, one
must integrate the identities (4.5a), (4.5b) before replac-
ing λ′ ≡ λ(t+τ),Λ′ ≡ Λ(t+τ), · · · in the nonlocal piece of
the action. In this integration, the terms Sλ(t), SΛ(t), · · ·
are treated as additional terms, which would be zero on-
shell, but which are now considered as “source terms”
on the rhs of the usual Hamilton equations of motion,
λ̇(t)−δH/δΛ(t) = SΛ, · · · . In view of the well-known pos-
sibility of neglecting “double-zero terms”, it is enough to
work linearly in these (simple-zero) source terms. More-
over, as we are working within a PN-expanded scheme
(and as the nonlocality enters only at order ε = 1/c8),
it is actually enough (modulo terms of order O(c−2ε)),
for the purpose of replacing λ′,Λ′, · · · in the nonlocal
piece of the action, to compute them as solutions of the
(sourced) Newtonian-level equations of motion, i.e. so-
lutions of the differential equations (4.5a), (4.5b) with
δH/δΛ, · · · → δH0/δΛ, · · · , where H0 = −1/(2Λ2). The
explicit form of these sourced equations of motion are

Λ̇(t) = −Sλ(t), (4.6a)

λ̇(t) =
1

Λ3(t)
+ SΛ(t), etc. (4.6b)

Viewing these equations as differential equations with re-
spect to t′ = t+τ (or τ) for the unknowns Λ′ ≡ Λ(t′) and



8

λ′ ≡ λ(t′), and imposing the initial conditions at t′ = t
(i.e. τ = 0), Λ′(t′ = t) = Λ, λ(t′ = t) = λ, yields as
unique solution (to linear order in the source terms)

Λ′ = Λ−
∫ t′

t

dt1Sλ(t1), (4.7a)

λ′ = λ+
t′ − t

Λ3
+

3

Λ4

∫ t′

t

dt1(t
′ − t1)Sλ(t1)

+

∫ t′

t

dt1SΛ(t1). (4.7b)

[We do not assume here t < t′ but use the convention

that
∫ t′

t = −
∫ t

t′ .] When replacing the identities (4.7)

in a nonlocal action S =
∫
dt dt′µ(t′ − t)S(Λ,Λ′, λ′ −

λ, · · · ) (keeping only the terms linear in the source
terms, which is allowed modulo “double-zero” terms),
the extra terms involving the source contributions will
have the form

∫
dt1 [ξΛ(t1)SΛ(t1) + ξλ(t1)Sλ(t1) + · · · ],

where the quantities ξΛ(t1), ξλ(t1), · · · are given by inte-
grals over t and t′ of a function of dynamical variables:
ξΛ(t1) =

∫∫
dt dt′µ(t′ − t)A(t′ − t, t1 − t,Λ(t), λ(t)), · · · .

[Note that, because of the inequalities t < t1 < t′ or
t′ < t1 < t, for given values of t1 and τ = t′ − t, t
and t′ both range over a bounded interval.] The ex-
tra terms involving the source contributions can then be
“field-redefined away” by corresponding shifts of the dy-
namical variables: δΛ(t1) = ξΛ(t1), δλ(t1) = ξλ(t1), · · · .
[These shifts have, in general, nonlocal structures of
the type δΛ(t1) =

∫
dtKΛ(t − t1,Λ(t), λ(t)), δλ(t1) =∫

dtKλ(t− t1,Λ(t), λ(t)), etc.]

After performing these (nonlocal) shifts, we are left
with an action obtained by replacing λ′,Λ′, · · · by the
rhs of (4.7) in which one has set to zero the terms
Sλ(t1), SΛ(t1), · · · . In other words, the use of these shifts
justifies the naive replacement of λ′,Λ′, · · · by the solu-
tion of the (Newtonian) equations of motion, namely

λ′ = λ+
τ

Λ3
, (4.8a)

Λ′ = Λ. (4.8b)

Note that the very simple time structure of the unper-
turbed solution in action-angle variables plays a very use-
ful role in our Delaunay-based reduction procedure.

With the replacements (4.8a), (4.8b) [i.e. after steps
(a), (b), and (c)] we have an Hamiltonian of the form

H ′
toy(t) = − 1

2Λ2
+ ε

∫ +∞

−∞

dτ µ(τ)
1

Λ8

{
cos
( τ

Λ3

)

+ 2e

[
cos
( τ

Λ3
− λ−̟

)

+ cos

(
2τ

Λ3
+ λ+̟

)]
+O(e2)

}
, (4.9)

where we recall that e is the function of Ir/Λ defined so

that 1−
√
1− e2 = Ir/Λ, i.e.

e =

√

1−
(
1− Ir

Λ

)2

. (4.10)

At this stage, Eq. (4.9) defines an ordinary Hamil-
tonian, expressed in terms of action-angle variables
(Λ, λ; Ir, ̟). [Strictly speaking, the variables Λ, λ, etc.
at the stage of Eq. (4.9) differ from the ones entering the
original action by the shifts ξΛ, ξλ, etc. mentioned above.
They should be denoted as Λshifted, λshifted, etc., but, for
simplicity, we do not indicate the shifted nature of Λ, λ,
. . .]
As we are now dealing with an ordinary, local Hamil-

tonian, our fourth step (d), i.e. the Delaunay elimination
of periodic terms by suitable canonical transformations
is standard. For instance, a generating function propor-
tional to

ε

∫ +∞

−∞

dτ µ(τ)
1

Λ5
sin
( τ

Λ3
− λ−̟

)
(4.11)

will eliminate the contribution +2e cos(τ/Λ3−λ−̟) on
the rhs of Eq. (4.9).
After completing step (d) (formally to all orders in the

eccentricity) we end up with an ordinary (local) Hamil-
tonian that depends only on (shifted) action variables.
E.g., for our toy model

H ′′
toy(Λ, Ir) = − 1

2Λ2
+ ε

∫ +∞

−∞

dτ µ(τ)
1

Λ8

×
[
cos
( τ

Λ3

)
+O(e2)

]
. (4.12)

Let us emphasize that our procedure allows one, in
particular, to construct (formally to all orders in eccen-
tricity) a strictly conserved energy that consistently in-
cludes the nonlocal tails at the 4PN level. [The nonlocal
effects are recognizable through their integral nature, e.g.

the integral ε
∫ +∞

−∞
dτ µ(τ)(· · · ) in (4.12).] Namely, our

final, Delaunay Hamiltonian is strictly conserved. This
shows that the contrary statement below Eq. (5.17) in
[21] is incorrect (at least when allowing for an expansion
in powers of Ir/Λ ∼ e2).
In addition, our construction also gives two conserved

action variables: Λ and Ir. These conserved quanti-
ties are such that the difference, Λ − Ir is conserved
and reduces to the usual orbital angular momentum
Iϕ = 1

2π

∮
pϕ dϕ = pϕ in the local case. We can then

consider that Iϕ := Λ − Ir defines a strictly conserved
angular momentum that consistenly includes the 4PN
nonlocal dynamical effects. [Indeed, one easily checks
that the rotational symmetry ϕ′ = ϕ + const remains
a symmetry at all stages of our construction so that Iϕ
is indeed the Nœther conserved quantity associated with
this symmetry.]
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Let us also emphasize another consistency feature of
our final (reduced, local, Delaunay) Hamiltonian. As the
above detailed derivation clearly shows, our final Hamil-
tonian action (in terms of Λshifted, λshifted, . . . but without
explicitly indicating the shifts) is simply

S′′ =

∫ [
Λdλ+ Ird̟ −H ′′(Λ, Ir)dt

]
, (4.13)

and the corresponding equations of motion are the usual
ones:

λ̇ =
∂H ′′(Λ, Ir)

∂Λ
, ˙̟ =

∂H ′′(Λ, Ir)

∂Ir
, Λ̇ = 0, İr = 0.

(4.14)
We said above that, in the circular limit, the mean
anomaly λ = ℓ + g = ℓ + ω reduces to a usual polar
angle ϕ. [Indeed, this is true in the Newtonian case, and,
as all the Delaunay shifts are periodic in the unique fast
angular variable λ, we have that ϕ = λ+ terms periodic
in λ that vanish with e.] Therefore our derivation shows,

among other things, that the orbital frequency Ω (= λ̇)
of a circular (Ir = 0) binary (with conserved angular
momentum Λ = Iϕ) is given by the usual formula

Ω = λ̇ =
∂H ′′(Λ, Ir)

∂Λ

∣∣∣∣
Ir=0

=
∂H ′′(Ir + Iϕ, Ir)

∂Iϕ

∣∣∣∣
Ir=0

.

(4.15)
In particular, this means, in our toy example, that the
circular angular frequency is of the form

Ωtoy =
∂H ′′

toy(Λ, 0)

∂Λ

=
1

Λ3
+ ε

∂

∂Λ

(∫ +∞

−∞

dτ µ(τ)
1

Λ8
cos
( τ

Λ3

))
.

(4.16)

One sees that the computation of the rhs will involve
two type of contributions coming from the tail term: a
“normal” contribution where the Λ-differentiation of the
second term acts on the prefactor 1/Λ8 of the tail inte-
gral, and a “new” contribution where ∂/∂Λ acts on the
argument of cos(τ/Λ3).
We recall that, in the full 4PN case, the analog of our

final result (4.12) (say, for simplicity, at the O(e0) level)
is the one discussed in Sec. V of [16], which leads to (with
J now denoting Iϕ ≡ Λ− Ir)

Ecirc
4PN(J) = H loc

DJS(r,p; s) + F (r,p) ln
r

s

− 1

5

G2M

c8
Pf2s/c

∫ +∞

−∞

dτ

|τ |f(τ), (4.17)

where f(τ) :=
[
I
(3)
ij (t+ τ) I

(3)
ij (t)

]circ
, as in Sec. V of [16].

[In the circular limit f(τ) does not depend on t.] The
explicit value of the last, tail term8 is given, in view of

8 Here, we find convenient to work with a tail term defined with

Eqs. (5.7)–(5.9) in [16] by

[Htail (s)]circ(J) =
64

5

G2M

c8
(µΩ3r212)

2 ln

(
4eγE

Ω(J)s

c

)

=
64

5
µc2

ν

j10
ln

(
4eγE ŝ

j3

)
, (4.18)

where j ≡ cJ/(GMµ), and ŝ ≡ s/m with m ≡ GM/c2.
If we alternatively decide to define the tail contribution

to the reduced Hamiltonian by incorporating the term
F ln(r/s) in it, we must simply replace the scale s by
r = r12, so that (using the fact that along Newtonian
circular orbits rcirc = mj2)

[Htail (s = r12)]circ(J) =
64

5
µc2

ν

j10
ln

(
4eγE

j

)
. (4.19)

Evidently, we must keep in mind that the meaning of
the two quantities (4.18) and (4.19) is different and that
their J-derivative will differ by a term involving the J-
derivative of rcirc = mj2. But the latter difference
has a conceptually trivial origin (in view of the local
nature of the F ln(r/s) term in the Hamiltonian) and
does not interfere with the issue we wish to empha-
size here, namely the existence, in the orbital frequency,
Ωcirc = dHcirc/dJ , of a contribution coming from differ-
entiating the J-dependence of the argument 4eγE Ω(J)s/c
of the logarithm in the first (or second) Eq. (4.18).
As clearly pointed out already in [16], the computation

of the tail contribution to the (circular, Delaunay) func-
tion H(J) = E(J) “involves the evaluation of the non-

local piece
[
H

tail (s)
4PN

]
along circular motion (without any

differentiation)”. This lack of any differentiation in the

evaluation of
[
Htail

]circ
(J) distinguishes it among the

other gauge-invariant functions one can associate with
the sequence of circular orbits, and rendered very clear9

that this necessarily led to the correct value of the func-

tion
[
Htail

]circ
(J). Our discussion above has confirmed

the consistency of this result and has shown that, indeed,
when computing the orbital frequency it is correct to J-
differentiate the argument of the tail log.
Let us now show that part of the difference between

our results and those of [21] has its origin in the fact that
Bernard et al. [21] effectively treat the orbital frequency
Ω entering the tail contribution (4.18) as a constant un-
der differentiation (instead of treating Ω as a function of
the angular momentum J). To see this, let us start by de-
riving a useful general result about the functional relation

some given, constant scale s. Such a scale is not a dynamical
variable and is not affected by the Λ-differentiation above, i.e.
the f -differentiation in the present circular case.

9 In view, e.g., of the result of Ref. [46] about the consistency of
the order-reduction of higher-order Hamiltonians, see also Sec.
III in [17] and below.
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between energy and orbital frequency, E(Ω), or equiva-
lently the function E(x) (where x ≡ (GMΩ/c3)2/3). Let
us first consider the case an ordinary Hamiltonian dy-
namics of the type (with J ≡ pϕ)

Hord(r, pr, J) = H0(r, pr, J) + εH1(r, pr, J). (4.20)

When considering the sequence of circular orbits, it is
well known10 that, modulo O(ε2), one can replace from
the start the radius r on the rhs by its unperturbed cir-
cular value as a function of J : rcirc0 (J), defined as the
solution of ∂H0(r, pr = 0, J)/∂r = 0 for a given J . [We
are assuming here that the pr dependence of Hord starts
at order p2r so that one can consistently set pr = 0 be-
fore considering the J dependence.] This yields for the
circular-reduced dependence of Hord as a function of J :

Hord
circ(J) = Hcirc

0 (J) + εHcirc
1 (J) +O(ε2), (4.21)

where Hcirc
0 (J) = H0(r

circ
0 (J), pr = 0, J) and Hcirc

1 (J) =
H1(r

circ
0 (J), pr = 0, J). Note that the O(ε) contribution

to Hord
circ(J) is directly equal to the zeroth-order-circular

value of the original O(ε) contribution to the Hamilto-
nian (4.20) [without any contribution from εrcirc1 (J), and
without any differentiation]. Futhermore, the on-shell
vanishing (along exact circular orbits) of ∂Hord/∂r also
ensures that the circular-reduced J-dependence of the
orbital frequency Ω = ∂Hord(r, pr, J)/∂J is simply given
by J-differentiation of Hord

circ(J):

Ωcirc(J) =
dHord

circ(J)

dJ
= Ωcirc

0 (J) + ε
dHcirc

1 (J)

dJ
+ O(ε2),

(4.22)
where Ωcirc

0 (J) = dHcirc
0 (J)/dJ is its unperturbed value.

From the two results (4.21), (4.22), it is easy to
derive the perturbed value of the function EΩ(Ω) ≡
Hord

circ(J
circ(Ω)), where Jcirc(Ω) is the inverse of the func-

tion Ωcirc(J). One gets

EΩ(Ω) = EΩ
0 (Ω) + εEΩ

1 (Ω) +O(ε2), (4.23)

with

EΩ
1 (Ω) =

[
Hcirc

1 (J) − dEΩ
0

dΩ

dHcirc
1 (J)

dJ

]

J=Jcirc

0
(Ω)

,

(4.24)
where Jcirc

0 (Ω) is the inverse of the function Ωcirc
0 (J).

Let us apply the convenient result (4.24) to the r12-
scale tail perturbation written as

εH
tail (r12)
1 =

64

5
µc2

ν

j10
ln

(
4eγEΩ rcirc0 (J)

c

)
, (4.25)

where we leave open for the moment the functional de-
pendence of Ω within the tail logarithm. In our case

10 The on-shell vanishing of ∂Hord/∂r ensures that when replacing
the exact solution rcircexact(J) = rcirc0 (J) + εrcirc1 (J), the εrcirc1 (J)
perturbation will only contribute at order O(ε2).

EΩ
0 = − 1

2µc
2Ω̂2/3 and jcirc0 (Ω) = Ω̂−1/3 (where Ω̂ ≡

mΩ), so that the general result (4.24) yields the simple
expression

EΩ
1 (Ω) =

(
1 +

1

3
j
d

dj

)
Hcirc

1 (j), (4.26)

which now involves a crucial j-derivative.
Applying Eq. (4.26) to Eq. (4.25) yields

EΩ
r12-tail(Ω) = −448

15
µc2νx10

[
ln

(
4eγEΩ rcirc0 (j)

c

)

−1

7

d lnΩ

d ln j
− 1

7

d ln rcirc0 (j)

d ln j

]
, (4.27)

where (on-shell) ln
(

4eγEΩ rcirc
0

(j)
c

)
= ln(4eγEx

1

2 ). As

rcirc0 (j) = mj2, the contribution of the last term11 in the
bracket is −2/7, which corresponds to the result claimed
in [21] [see Eq. (5.30) there; note that in Eq. (4.27) we
factored 448/15, instead of the 224/15 they factor in
their Eq. (5.30), to better exhibit the role of ln(Ωr0).]
By contrast, our Delaunay-based method led us to have

Ω̂ = Ω̂circ
0 (j) = j−3 in Eq. (4.25) (see notably Eq. (4.11)

in [17]), which yields the additional term

− 1

7

d lnΩcirc
0 (j)

d ln j
= +

3

7
, (4.28)

so that the bracket in (4.27) becomes

ln

(
4eγEΩ r0

c

)
+

3

7
− 2

7
= ln

(
4eγEΩ r0

c

)
+

1

7
. (4.29)

The shift + 3
7 , Eq. (4.28), connecting the result

ln
(

4eγEΩ r0
c

)
− 2

7 of [21] to our result [16, 17], namely

ln
(

4eγEΩ r0
c

)
+ 1

7 , Eq. (4.29), is the basis of the claim

of Ref. [21] that our value of the constant C should be
changed into C + 3

7 [see Eq. (5.31) in [21]].
We disagree with this conclusion of [21] because of the

Delaunay-based logic, recalled above, that unescapably
leads to the result (4.29) of [16, 17]. However, while
preparing this work, we understood what was the logical
basis of the claim of [21] that Ω should be treated as a
constant. See next section.

V. SUBTLETIES IN THE DEFINITION OF THE
ENERGY IN PRESENCE OF NONLOCAL

EFFECTS

In this Section we discuss subtle aspects of the order-
reduction of nonlocal actions which are automatically in-
corporated within our approach, but which can easily

11 Note, in passing, that if we were considering the s-scaled tail
(with a fixed scale s) the latter term would be − 1

7
d ln s/d ln j =

0.
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lead to apparent paradoxes and/or errors when trying to
define a conserved energy along circular orbits.
It will be convenient to use an even simpler toy model

than the one used above to explain these subtleties and
establish the need of including the nonzero value (4.28)
of the j-variation of the frequency Ω entering the tail
logarithm (4.25). Let us start (as above) with a nonlocal
interaction described (in Poincaré-Delaunay variables) by
a toy action of the form

S =

∫ [
Λdλ+ Ir d̟ −Hnonloc(t) dt

]
, (5.1)

with

Hnonloc(t) = − 1

2Λ2

+ ε

∫
dτµ(τ)Λ′nΛn [cos(λ′ − λ) +O(e)] , (5.2)

where, as above, Λ ≡ Λ(t), Λ′ ≡ Λ(t′) ≡ Λ(t+ τ), etc.
Above, we explained how to completely reduce

the nonlocality of this action (i.e. the dependence
of Hnonloc(t) on dynamical variables at time t′ 6=
t) to a purely local dependence. In this reduction
the term

∫
dτµ(τ)Λ′nΛn cos(λ′ − λ) was replaced by∫

dτµ(τ)Λ2n cos(Ω(Λ)τ) with Ω(Λ) = 1/Λ3. And we
have then seen the crucial role played by the Λ depen-
dence of Ω (corresponding to the J dependence discussed
in the previous section).
In order to better see the crucial transition from the

original cos(λ(t′) − λ(t)) (where there is no apparent Λ
dependence) to the final cos(Ω(Λ)(t′− t)), we shall study
a simple toy model where the original oscillatory factor

cos(λ(t′) − λ(t)) ≡ cos(λ(t
′)−λ(t)
t′−t (t′ − t)) is replaced by

cos(λ̇ (t′ − t)) with λ̇ ≡ dλ/dt.
A motivation for considering such a simplified dy-

namics is as follows. If one were formally consider-
ing a nonlocality kernel µ(τ) which decays sufficiently

fast for large |τ |’s (say µ(τ) = exp[− 1
2 (

τ
σ )

2]/
√
2πσ2),

one could formally replace in any nonlocal Hamiltonian
Hnonloc =

∫
dτµ(τ)f(q, q′, p, p′), the time-shifted vari-

ables q′ = q(t+τ) and p′ = p(t+τ) by their Taylor expan-
sions, q′ = q+τ q̇+ 1

2τ
2q̈+ · · · , etc. This then replaces the

original nonlocality by a generalized Ostrogradski Hamil-
tonian depending on the infinite tower of derivatives
of the phase-space variables: Hostro(q, p; q̇, ṗ, q̈, p̈, · · · ).
The theory of the order-reduction of such quasi-local,
Ostrogradski-type Hamiltonians has been abundantly
treated in the literature, particularly in the context of
the PN-expanded dynamics of binary systems (see, e.g.,
Refs. [44–47]). By considerations that would be too long
to explain here, one can then see that for nonlocali-
ties of the Delaunay-type

∫
dτµ(τ)Λ′nΛn cos(λ′ − λ), in

which one Taylor-expands the time-shifted variables, e.g.
λ′ = λ(t + τ) = λ + τλ̇ + 1

2τ
2λ̈ + · · · , Λ′ = Λ(t + τ) =

Λ+τ Λ̇+ 1
2τ

2Λ̈+ · · · ,, the crucially delicate nonlocality is

only contained in the term τλ̇. The other ones are essen-
tially equivalent to double-zero terms [because of some

special structure of the relevant Delaunay-like Hamilto-
nians, notably a Z2 symmetry transformation combining
time reversal (t → −t, t′ → −t′, τ → −τ) and angle
reversals (λ → −λ, ̟ → −̟), and keeping the action
variables fixed].
Independently of this motivation, we shall simply use

here, for pedagogical purposes, as a simple model of the
nonlocal action (5.2) the following first-order Ostrograd-
ski Hamiltonian

Hostro
toy (λ,Λ, ̟, Ir; λ̇, ˙̟ ) = − 1

2Λ2

+ ε

∫
dτ µ(τ) Λ2n

[
cos(λ̇ τ) +O(e)

]
, (5.3)

where the ˙̟ dependence only occur within the O(e) re-
mainder.
Note that this first-order Ostrogradski Hamiltonian

has a quasi-local (but not local) structure in that it de-
pends not only on the phase-space variables (q, p), but
also on some of their (first) derivatives (here a depen-
dence on the two q̇’s). Though the “nonlocality” associ-
ated with the presence of these derivatives in the Hamil-
tonian (5.3) might seem trivial, it will actually display
the origin of the discrepancy between [21] and us, and
show why the claims of [21] are unfounded.
In Ref. [46] we have investigated in detail Ostrogradski

Hamiltonians depending on q̇, ṗ in addition to q, p. Our
main results were the following. First, when considering
a general Hostro(q, p; q̇, ṗ) [with action Sostro =

∫
(pq̇ −

Hostro)dt], there exists a conserved energy canonically
associated with such an Ostrogradski Hamiltonian, which
is not given by the Hamiltonian by rather by the following
(Noether-theorem-deduced) quantity

Econs(q, p; q̇, ṗ) = Hostro(q, p; q̇, ṗ)

− q̇
∂Hostro

∂q̇
− ṗ

∂Hostro

∂ṗ
. (5.4)

Second, when considering the case of interest here
where

Hostro(q, p; q̇, ṗ) = H0(q, p) + εH1(q, p; q̇, ṗ), (5.5)

one can reduce [modulo O(ε2)] Hostro to an ordinary
HamiltonianHordin(q′, p′) [with action Sordin =

∫
(p′dq′−

Hordindt)] by means of the following shifts

q′ = q +
∂Hostro

∂ṗ
, p′ = p− ∂Hostro

∂q̇
. (5.6)

In addition the function Hordin(q, p) is obtained by the
naive (“incorrect”) order-reducing of Hostro(q, p; q̇, ṗ),
i.e. by inserting the lower-order equations of motion in
Hostro,

Hordin(q, p) = Hostro

(
q, p;

δH0

δp
,−δH0

δq

)
+O(ε2). (5.7)
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And, finally, the (Nœther) conserved energy (expressed
in terms of the original variables) is (numerically) equal
to the (order-reduced) ordinary Hamiltonian Hordin [ex-
pressed in terms of the corresponding shifted variables q′,
p′ of Eq. (5.6)]:

Econs(q, p; q̇, ṗ) = Hordin(q′, p′) +O(ε2). (5.8)

Let us now apply the general results (5.4)–(5.8) (recalled
from [46]) to our toy model (5.3). We first note the exis-
tence of a (Nœtherian) conserved energy, namely

Econs
toy (λ,Λ; λ̇, ˙̟ ) = Hostro

toy (λ,Λ; λ̇, ˙̟ )

− λ̇
∂Hostro

toy

∂λ̇
− ˙̟

∂Hostro
toy

∂ ˙̟
. (5.9)

In the circular limit the last term − ˙̟ ∂Hostro
toy /∂ ˙̟ van-

ishes because of the vanishing eccentricity12. On the
other hand the penultimate term does not vanish in the
circular limit because it involves a τ -even integrand:

∂

∂λ̇

∫
dτ µ(τ) cos(λ̇τ) = −

∫
dτ µ(τ) τ sin(λ̇τ), (5.10)

so that

Econs
circ (Λ, λ̇) = − 1

2Λ2

+ εΛ2n

∫
dτ µ(τ)

[
cos(λ̇τ) + λ̇τ sin(λ̇τ)

]
. (5.11)

In the circular limit the extra term −λ̇ ∂H/∂λ̇ is inde-
pendent of time and cannot therefore be guessed simply
by looking at the equations of motion. This is prob-
ably part of the problem that Bernard et al. [21] had.
They indeed use as conserved circular energy the circular-
reduced Hamiltonian itself, i.e., in our toy model, simply
Hostro

toy (Λ, λ̇), which differs from the “good” (Nœtherian)
conserved energy (5.9), (5.11).
Another useful outcome of the results (5.4)–(5.8) re-

called above is that, while there is no need to shift the
angular variables λ,̟ (because δλ = ∂Hostro/∂Λ̇ = 0,

δ̟ = ∂Hostro/∂İr = 0), one must shift the action vari-
ables if one wishes to have an order-reduced dynamics.
The first fact says in particular that, in the circular limit,
the orbital angular frequency λ̇ = λ̇′ is unambiguous and
is given either by the (functional) derivative

λ̇ =
δHostro

toy (Λ, λ̇)

δΛ

=
1

2Λ3
+ 2nεΛ2n−1

∫
dτ µ(τ) cos(λ̇τ), (5.12)

12 Here, one should use regular Poincaré variables to rigorously
show that the O(e) terms in (5.3) do not contribute when e → 0.

in which the frequency λ̇ in the argument of the cosine
is treated as a constant, or [up to O(ε2) corrections] by
the (ordinary) derivative of the order-reduced, ordinary
Hamiltonian

Hordin
toy (λ′, ̟′,Λ′, I ′r) = − 1

2Λ′2

+ εΛ′2n

∫
dτ µ(τ)

[
cos
( τ

Λ′3

)
+O(e)

]
, (5.13)

which yields (in the circular limit) an orbital frequency
given by

λ̇′ =
∂Hordin

toy

∂Λ′

=
1

Λ′3
+ ε

∂

∂Λ′

[
Λ′2n

∫
dτ µ(τ) cos

( τ

Λ′3

)]
. (5.14)

Contrary to Eq. (5.12) the Λ′-derivative on the rhs of
Eq. (5.14) now acts both on the prefactor Λ′2n and on
the argument of the cosine. Note that in the real 4PN
problem the power 2n is equal to −10 and the weight
function µ(τ) is either Pf2s/c|τ |−1 or Pf2r12/c|τ |−1 (as
one chooses). Using, say, the latter (r12-) choice, and,
e.g., Eq. (5.8) of [16], one has then

εΛ−10

∫ +∞

−∞

dτ µ(τ) cos(λ̇τ) = −εΛ−10 ln

(
4eγEλ̇r12

c

)
,

(5.15)
which shows that the difference between the two calcu-
lations (5.12) versus (5.14) parallels what we explained
above about he difference between the prescription used
by Ref. [21] (treating λ̇ as a constant within the argu-
ment of the tail logarithm) and the prescription used by
us [16, 17], which corresponds to an order-reduced, ordi-
nary (Delaunay) Hamiltonian.
The detailed reasoning we just made shows that the

calculation (5.14) [involving the ordinary, order-reduced
Hamiltonian (5.13)] is not only self-consistent (as we al-
ready argued above) but, most importantly, is consistent
with the nonlocal dynamics of the original Ostrogradski
Hamiltonian (5.3), under the following two conditions:
(i) the conserved energy associated with the nonlocal de-
scription (5.3) should not be equated (contrary to the
prescription used in [21]), when considering the circu-
lar limit, with the value of Hostro, but rather with Eqs.
(5.9), (5.11), and (ii) the variables λ,Λ, ̟, Ir entering
the (weakly) nonlocal dynamics (5.3) cannot be equated
with the variables λ′,Λ′, ̟′, I ′r entering the correspond-
ing order-reduced ordinary dynamics (5.13). More pre-
cisely, the link between the two sets of variables is λ′ = λ,
̟′ = ̟ but

Λ′ = Λ−
∂Hostro

toy

∂λ̇
= Λ+ εΛ′2n

∫
dτ µ(τ)τ sin(λ̇τ),

(5.16a)

I ′r = Ir −
∂Hostro

toy

∂ ˙̟
= Ir +O(e). (5.16b)
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It is easily checked that the shift (5.16a) ensures the con-

sistency between the two (different) functions Λ → λ̇,

Eq. (5.12), and Λ′ → λ̇′ = λ̇, Eq. (5.14). It is moreover

checked that the conserved energy Econs
circ (Λ, λ̇), Eq. (5.11),

becomes numerically equal to the ordinary Hamiltonian-
energy (5.13) when also taking into account the shift
(5.16a).
Summarizing so far: we have explicitly shown, by two

different approaches (one of them being the one used in
[16, 17], the other being as close as possible to the one
used in [21]), that the correct (r12-scaled) tail contribu-
tion to the (Nœtherian) conserved energy (along circu-
lar orbits) expressed in terms of the orbital frequency is
given by Eqs. (4.27), (4.29), in agreement with our results
[16, 17].

VI. INCOMPATIBILITY BETWEEN THE
C-MODIFIED FOKKER-ACTION RESULT OF

[21] AND SELF-FORCE RESULTS

An immediate consequence of the result of the pre-
vious Section is that the determination in Ref. [21] of
the ratio between the IR cutoff scale r0 and the scale
s0 = r′0e

−11/12 entering the computation of the tail-
transported nearzone metric perturbation [18] is incor-
rect. In other words, in terms of the notation of [16] [and
of Eqs. (2.3)–(2.4) above] one should add to the Hamil-
tonian of [21] an extra term ∆C F [xa,pa] with

∆C = −3

7
. (6.1)

If we understand correctly the notation used in [21], their
(ambiguity) parameter α [in their Eq. (3.9)] is equivalent
to our (ambiguity) parameter −C modulo a fixed, ad-
ditive constant linked to the difference between the two
schemes. It would then mean that the correct value of
their α should be

αnew
B3FM = αB3FM +

3

7
=

811

672
+

3

7
=

157

96
, (6.2)

instead of the value, here denoted αB3FM, in their
Eq. (4.30). [Note that the denominator of αnew

B3FM is
simpler than that of αB3FM: namely 96 = 25 × 3 while
672 = 7× 96 = 25 × 3× 7.]
Modifying the Hamiltonian of [21] by +∆C F then

modifies the difference Hnew
B3FM − HDJS into an expres-

sion of the same form as the rhs of Eq. (3.3) but with the
following new values of the three coefficients (a, b, c):

(a, b, c)newB3FM = (a, b, c)B3FM +∆C
16

15
(−11, 12, 0). (6.3)

Inserting ∆C = − 3
7 from Eq. (6.1), and using Eq. (3.4)

above, yields

(a, b, c)newB3FM =
1

315
(3013,−902, 902). (6.4)

The latter result is equivalent [modulo a gauge transfor-
mation, Eq. (3.6), with g = 288/315] to the rhs of Eq.
(5.34b) in [21], but with the different meaning that it is
the Hamiltonian of Ref. [21] on the lhs which has to be
shifted instead of HDJS.
Inserting Eq. (6.4) into our general formulas (3.5) then

lead to the following additional contributions (compared
to our results [17]) to the EOB potentials A and D̄ en-
tailed by the above modified version of the Hamiltonian
of Ref. [21]:

δnewA = 0, (6.5)

δnewD̄ = −34

9
ν u4. (6.6)

The first result, Eq. (6.5), shows that our prescription
(6.1) for modifying the result of [21] now yields a value
of the EOB A potential at 4PN in agreement with our
result [16, 17] (and with the many existing SF computa-
tions of A recalled above). On the other hand, we see on
Eq. (6.6) that, even after our correction, the 4PN contri-
bution to the EOB D̄ potential predicted by the Fokker-
action, harmonic-gauge computation of [21] significantly
differs from our result [17].
In terms of the gauge-invariant 4PN-level parameters

ac5, d̄c4, ρc4 introduced above, the results (3.9), (3.10),
(3.12) above are now replaced by

δB
3FM

′

ac5 = 0, (6.7)

δB
3FM

′

d̄c4 = −34

9
= −3.77777 · · · , (6.8)

δB
3FM

′

ρc4 = −34

9
= −3.77777 · · · . (6.9)

As we already said above, there are many (analytical
and numerical) SF results showing that the 4PN coeffi-
cients d̄c4 or ρc4 nicely agrees with the ADM result [17].
(Let us, in particular, recall the recent analytical con-
firmations [32, 43].) Numerical tests making use of the
eccentric first-law [28] yield a limit |δd̄c4|num < 0.05 on
any possible deviation δd̄c4 away from our analytical re-
sult (see discussion and references, in [43] and above). As
for direct dynamical limits on the 4PN-level coefficient of
the precession function ρ(u) we have displayed them in
Eqs. (2.13), (2.14) above. While the old limit (2.13) [34]
would be compatible with the modified result (6.9), the
recent limit (2.14) [35] is in violent disagreement with
(6.9).

VII. SUGGESTION FOR ADDING MORE IR
AMBIGUITY PARAMETERS IN [21]

In view of the strong disagreement between the B3FM
− DJS discrepancies (6.8), (6.9) remaining after making
use of the sole IR ambiguity parameter C = −α+ cst., we
suspect that the Fokker action derived in [21] has to be



14

modified not only by the shift (6.1) of C (or −α), but by
suitable shifts of further ambiguity parameters entering
their present computation.
An independent argument suggesting the presence of

more ambiguities in their calculations than the mere
C F [r,p] ambiguity (which is also present in our ADM
calculation, and was only fixed by using the analytical
result of [13]) is presented next.
The core of the calculation of [21] is the evaluation of

the (local) Fokker Lagrangian [their Eq. (4.20)]

Lg =

∫
d3xLg ∼

∫
d3x c4

[
h̄�h̄+ h̄ ∂h̄ ∂h̄

+ · · ·+ h̄ h̄ h̄ h̄ ∂h̄ ∂h̄
]
, (7.1)

in which one inserts the formal, near zone PN expansion
of the metric variables, computed in harmonic coordi-
nates. Both the Fokker Lagrangian density Lg and the
(time-symmetric) harmonic metric are formally Poincaré
covariant. One would then expect the Lagrangian Lg to
vary, under Poincaré transformations, as the time compo-
nent of a four-vector. In particular, as all the ingredients
of the calculation are manifestly invariant under spatial
translations, one would expect the Lagrangian Lg to be
manifestly translation invariant, and therefore to only de-
pend on the relative position y12 = y1−y2 of the two par-
ticles. However, Bernard et al. [21] state that the raw re-
sult of the computation (7.1) is not translation invariant,
but depends on the individual positions yA of the parti-
cles. They found that the offending terms can be removed
by some shifts ξA of the positions yA so as to yield a man-
ifestly Poincaré covariant (modulo a time derivative) La-
grangian, say Lshifted

g . An inspection of the needed shifts
(in their Appendix C) reveals a very large number of of-
fending non translation invariant terms which are mostly
connected with IR divergences [∝ ln(r12/r0)]. Moreover,
there are terms in the shifts ξA which combine both IR
and UV divergences [∝ ln(r12/r

′
1)]. This large zoology

of non translationally invariant IR-divergent terms; this
mixing of IR and UV divergences, together with the use
of a method which uses Hadamard regularization as an
intermediate step for UV divergences (before “correct-
ing” it by extra dimensional-regularization terms); and
finally, the regularization of IR divergences by means of a
single (non-dimensionally-regularized) analytic regulator
[∝ (r/r0)

B ], strongly suggest to us that there are more
ambiguities in the final result for Lg than the CF [r,p]
one.
We therefore suggest that Bernard et al. [21] should

(similarly to what happened at the 3PN level when us-
ing only Hadamard-type regularization [46, 48–50]) ac-
knowledge the presence of further ambiguities in their
result, parametrized by new ambiguity parameters. We
shall assume here that these ambiguities affect the three
discrepant terms (3.3) and only them.
In view of the unavoidable presence of the CF [r,p]

ambiguity, and of the possibility of making the gauge
transformation (3.6), the minimal number of extra am-

biguity parameters that need to be introduced is one.
For instance, we could introduce a single ambiguity
parametrized by adding to the result of [21] a term in
the Hamiltonian of the form

δ∆aH = +∆a
G4Mm2

1m
2
2

c8r412

(
(n12 · p1)

m1
− (n12 · p2)

m2

)2

,

(7.2)
which has the effect of changing (a, b, c) into (a+∆a, b, c).
Such a change does not affect the EOB A potential [which
is ∝ 2(b+c), Eq. (3.5a)], but affects the EOB D̄ potential
[which is ∝ 2(a + 4b), Eq. (3.5b)]. We conclude that
one must add to their result in addition to ∆CF , with
∆C = −3/7, Eq. (3.3), the extra contribution (7.2) with

∆a = +
17

9
. (7.3)

It is also possible that part of the ambiguities in
their calculation are parametrized by a transformation
of the type (3.6), but such a transformation has no
gauge-invariant impact on the dynamics as it is induced
by a canonical transformation with generating function
∝ ν n12 ·(p1/m1−p2/m2) r

−3
12 (corresponding to changes

of r1 and r2 in a purely radial direction). [Note, however,
that even such “gauge ambiguities” will affect the compu-
tation of the radiative quadrupole moment of the system,
see below.]

VIII. CONCLUSIONS

Let us summarize our main conclusions concerning the
conservative dynamics of a binary system at the 4PN
approximation.

• We have reviewed the numerous confirmations of
the correctness of the 4PN ADM dynamics [14, 16,
17]. When decomposed in powers of the symmetric
mass ratio ν, all its elements have been confirmed,
piecewise, by independent computations. In partic-
ular, the crucial linear-in-ν terms (at the first-self-
force level) have been confirmed, both analytically
and numerically, by several self-force results.

• By contrast we have computed the periastron pre-
cession induced by the recently reported Fokker-
action 4PN dynamics [21] and found it to be in vi-
olent contradiction with existent direct numerical
self-force computations [35]: compare Eq. (3.12) to
Eq. (2.14).

• After reviewing the logical basis and the consis-
tency of the ADM-Delaunay-EOB derivation of
[16, 17], we pointed out two different flaws in
the Fokker-action harmonic-corrdinates computa-
tion of [21]: (i) their computation of the func-
tional link, along circular orbits, between the en-
ergy and the orbital frequency involves a correct
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treatment on nonlocal (tail) effects but a flawed as-
sumption about the value of the physically relevant
conserved energy; (ii) after correcting for the pre-
vious issue, there remains a violent incompatibil-
ity between their theoretically predicted periastron
precession and recent dynamical self-force compu-
tations: compare Eq. (6.9) to Eq. (2.14).

• We suggest that the result of [21] must be corrected
by adding (at least) two infra-red ambiguity pa-
rameters to the Hamiltonian form of their result:
(1) ∆C = −∆α = − 3

7 , (6.1); and (2) ∆a = + 17
9 ,

(7.2), (7.3) (modulo a gauge transformation, Eq.
(3.6)). We, however, emphasize that our suggested
corrections represent only two rather minor adjust-
ments among hundreds of terms that agree between
two very difficult (four-loop level!) independent
calculations, using different methods and different
gauges.

• Before attempting a 4PN-level computation of
gravitational wave emission (in the more convenient
harmonic coordinates), it will be necessary to con-
firm, within the framework of [21], the presence,
and value, of the couple of ambiguities (notably
∆a and g) mentioned above.
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Appendix A: Tail Hamiltonian in the ADM
formalism

Reference [16] showed the necessity of includ-
ing in the ADM action a tail-related contribution
−
∫
dtHtail sym (s), with

H
tail sym (s)
4PN (t) = −1

5

G2M

c8
I
(3)
ij (t)

× Pf2s/c

∫ +∞

−∞

dv

|v| I
(3)
ij (t+ v), (A1)

by recalling the existence (first shown by Blanchet and
Damour [18]) of a fundamental breakdown of the stan-
dard PN scheme at the 4PN-level. Indeed, when com-
puting conservative effects, as is appropriate both in the
computation of the reduced ADM action, and in that
of the Fokker action, the standard PN scheme is based
on a formal near-zone expansion of the time-symmetric
gravitational propagator, say

�
−1
sym =

(
∆− 1

c2
∂2
t

)−1

=

(
∆−1 +

1

c2
∆−2∂2

t + · · ·
)
δ(t− t′). (A2)

At the 4PN-level the near-zone solution generated by
using the PN expansion (A2) is incomplete (as a near-
zone solution), and must be completed by adding to it a
4PN-level homogeneous solution of the (linearized) field
equations (regular within the source) which is a nonlocal-
in-time functional of the dynamical configuration of the
system (related to tail effects).
[Let us note in passing that we disagree on some for-

mal aspects of the definition of a Fokker action in [21].
Indeed, the standard definition (starting with [51] and
going up to modern treatments based on the diagram-
matic representation of the effective action [52]) sys-
tematically uses an iterative solution of the field equa-
tions based on the time-symmetric (half-retarded-half-
advanced) Green’s function. The 4PN ADM computa-
tion explicitly uses the time-symmetric version of the TT
degrees of freedom (see Sec. IV of [14]). By contrast, it
seems that [21] formally works with the nonconservative
dynamics of a binary system interacting via the retarded
Green’s function. They then argue that the terms as-
sociated with radiation damping only contribute time-
derivative terms to the action they compute. We under-
stand technically why this works out formally, however,
we object to such a conceptual framework.]
Reference [18] showed that in a suitable coordi-

nate gauge the additional, 4PN-level, tail-related ho-
mogeneous metric perturbation hnonloc

µν 4PN contains only a
quadrupolar time-time component of the form

hnonloc
00 4PN =

1

2
xixjHnonloc

ij (t), (A3)

with the nonlocal function of time Hnonloc
ij (t) given by

Hnonloc
ij (t) = −8

5

G2M

c10
Pf2s/c

∫ +∞

−∞

dτ

|τ | I
(6)
ij (t+ τ). (A4)

The pure, quasi-Newtonian, nature of the additional
(nonlocal) metric perturbation (A3) allowed us, in [16],
by considering the corresponding additional term in the
equations of motion of the system, to: (i) derive the cor-
responding additional (time-symmetric) nonlocal contri-
bution (A1) to the action (modulo a time derivative);
and, (ii) to check the consistency with the purely retarded
nature of the nonlocality in the equations of motion when
adding the (time-antisymmetric) radiation-reaction force
F rad reac

4PN .
Reference [21] formally showed how to recover the non-

local contribution (A1) from the harmonic-gauge Fokker
action, without considering the equations of motion, and
without using the simplifying features of the special
gauge leading to (A3) only. We wish here both to show
how the same result can be achieved within the ADM
formalism and why the procedure advocated in [21] is, in
our opinion, exceedingly formal and actually ill-defined
because of its sensitivity to nonconvergent integrations
by parts.
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In the ADM formalism, before eliminating the TT vari-
ables, the Routhian13 [48] reads (in the following we often
use without warning the ADM convention 16πG = 1)

R[xa,pa, h
TT
ij , ḣTT

ij ] =

∫
d3x

[
1

4
(∂kh

TT
ij )2

− 1

4c2
(ḣTT

ij )2 − 1

4
hTT
ij Jij + · · ·

]
, (A5)

where the leading-order source term for hTT
ij reads

Jij = 2
∑

a

paipaj
ma

δ(x− xa) +
1

2
∂iφ∂jφ+ · · · , (A6)

and where the ellipsis denote higher-order terms that we
shall not explicitly need here. Note that the longitudi-
nal field degrees of freedom, φ and π̃ij , are viewed as
being expressed in terms of the other degrees of freedom
(xa,pa, h

TT
ij , ḣTT

ij ) by using the constraints (which are el-
liptic in nature).
The key point is that the ADM analog of the decom-

position recalled above, gsymµν = gloc PN
µν + hnonloc

µν , reads

hTT sym
ij = hTT loc PN

ij + hTT nonloc
ij . (A7)

Here, hTT loc PN
ij is the usual, near-zone, time-symmetric

PN-expanded formally local solution of the field equation
for hTT

ij , namely

�hTT
ij = −1

2
δTTkl
ij Jkl, (A8)

as taken into account in the usual ADM version of the
PN expansion [14, 48]. On the other hand, the addi-
tional, tail-transported term hTT nonloc

ij is, again, when
viewed in the near zone, a homogeneous solution of the
(linearized) field equations for hTT

ij . The latter nonlo-
cal, tail-transported homogeneous solution is directly de-
ducible from the results of Schäfer [53] who studied radia-
tion and tail effects, within the ADM framework, both in
the wave zone and in the near zone. The Green’s func-
tions in the latter paper [see Eq. (22) there] yield the
following tail-modified radiation-reaction contribution to
the (usual, retarded) solution,

hTT reac
ij (t) = − 4G

5c5

[
J (1)
ij (t)

+
4GM

c3

∫ ∞

0

dτ ln
(cτ
2s

)
J (3)
ij (t− τ)

]
, (A9)

where

Jij(t) =

∫
d3xJ〈ij〉(t,x) (A10)

13 The Routh functional is a Hamilton function for the bodies but
a Lagrange functional for the field degrees of freedom.

is the trace-free part of the spatial integral of the source
(A6) of the field equation (A8) for hTT

ij . Note that the

tail-modified reactive contribution (A9) to hTT
ij is simply

a function of time. This is the anti-Newtonian version
of the gauge (A3), namely hij = Fij(t) instead of h00 =
1
2F

(2)
ij xixj , with the same linearized curvature

Rlin
0i0j = −1

2
(∂ijh00 + ∂00hij − ∂0ih0j − ∂0jh0i).

The conservative, time-symmetric part of the tail-
transported contribution to (A9) is

hTT nonloc
ij =

+
8G2M

5c8

∫ +∞

0

dτ ln

(
c|τ |
2s

)[
J (3)
ij (t+ τ)− J (3)

ij (t− τ)
]

= −8G2M

5c8
Pf2s/c

∫ +∞

−∞

dτ

|τ |J
(2)
ij (t+ τ).

(A11)

The elimination of the hTT
ij field consists in replacing

the complete solution (A7) of the TT field equation (A6)
in the Routhian (A5). At leading order, the effect of
hTT nonloc
ij is linear in hTT nonloc

ij and should a priori come
from the first and third terms in Eq. (A5). Such a stan-
dard computation yields

[Rnonloc]standard =

∫
d3x

[
1

4
∂kh

TT nonloc
ij ∂kh

TT loc PN
ij

+
1

4
∂kh

TT loc PN
ij ∂kh

TT nonloc
ij

− 1

4
hTT nonloc
ij Jij

]
, (A12)

where we exhibited the two separate (though trivially
equal) contributions coming from the (spatial) kinetic
term 1

4 (∇h)2 in (A5).
However, the explicit expression (A11) of the nonlocal

contribution to hTT
ij shows, as already mentioned, that

hTT nonloc
ij is spatially independent, being a mere function

of time. As a consequence the first two (equal) terms on
the rhs of (A12) give simply a zero contribution so that
this standard computation yields

[Rnonloc]standard =

∫
d3x

[
− 1

4
hTT nonloc
ij Jij

]
. (A13)

Actually, this answer is incorrect, because it does not
agree with the one (securely based on the equations of
motion) that we used in [16].
A formal way out of this contradiction was advocated,

and used, in [21]. It consists in replacing the standard
kinetic terms (∂h)2 in (A5) by −h�h. If we apply this
formal procedure to the spatial gradient terms in (A5)
(which are the only relevant ones at this order), i.e.,
1
4 (∂kh

TT
ij )2 → − 1

4h
TT
ij ∆hTT

ij , the result of replacing the
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complete solution (A7) in the Routhian now yields, in-
stead of (A12), the new expression

[Rnonloc]nonstandard =

∫
d3x

[
−1

4
hTT nonloc
ij ∆hTT loc PN

ij

− 1

4
hTT loc PN
ij ∆hTT nonloc

ij − 1

4
hTT nonloc
ij Jij

]
. (A14)

Formally, this is identical to (A12) modulo a (spatial)
integration by parts. However, if we use the fact that
hTT nonloc
ij is simply a function of time only, the sec-

ond term on the rhs now yields a vanishing contribution,
while the first one yields (upon using the field equation
for hTT loc PN

ij )

[Rnonloc]nonstandard =

∫
d3x

[
+

1

8
hTT nonloc
ij δTTkl

ij Jkl

− 1

4
hTT nonloc
ij Jij

]
. (A15)

If we now formally integrate by parts the spatially non-
local projections described by the TT projection kernel
and decide that the spatial derivatives they contain yield
zero on hTT nonloc

ij (t), we further get

[Rnonloc]nonstandardformal by parts =

∫
d3x

[
+

1

8
hTT nonloc
ij Jij

− 1

4
hTT nonloc
ij Jij

]
=

∫
d3x

[
− 1

8
hTT nonloc
ij Jij

]
. (A16)

As we see, we now have half the value (A13) given by
using the standard kinetic terms. And this second result
now agrees with the result given in our previous work.
Indeed, the last result (A16) only involves the spatial in-
tegral Jij , Eq. (A10), of Jij . Inserting also the expression

(A11) of hTT nonloc
ij as a nonlocal integral of J (2)

ij yields

[Rnonloc]nonstandard = +
G2M

5c8
Jij(t)

× Pf2s/c

∫ +∞

−∞

dτ

|τ |J
(2)
ij (t+ τ), (A17)

so that the corresponding nonlocal contribution to the
action reads (modulo an integration by parts with respect
to time)

−
∫

Rnonloc
nonstandard dt = +

G2M

5c8

× Pf2s/c

∫∫
dt dt′

|t′ − t|J
(1)
ij (t′)J (1)

ij (t). (A18)

Here, we note that the integral Jij of Jij , Eq. (A10), is
the following function of positions and momenta:

Jij = 2
∑

a

pa〈ipaj〉

ma
− 2Gm1m2

r
〈i
12r

j〉
12

r312
, (A19)

which is simply the on-shell value of the second time

derivative, say Î
(2)
ij (in the notation used in [21]), of the

quadrupole moment Iij =
∑

a max
〈i
a x

j〉
a . We thereby see

that, modulo the eventual order reduction of the extra

time derivative in J (1)
ij = d

dt Î
(2)
ij , the result (A18) agrees

with the nonlocal action of [16], as well as with the equiv-
alent action of [21]. However, our explicit calculation
above has given us two new results: (1) A reduced-action
calculation similar to the one performed in harmonic co-
ordinates in [21] can be done within the ADM formalism;
and (2) such a calculation has, at best, a formal value be-
cause it is very sensitive to ill controlled IR effects (spatial
divergences) and can easily be conducted so as to give a
wrong result, as exhibited in Eqs. (A12) and (A13), based
on the standard (∂h)2 action.
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