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Abstract

A broadcast channel (BC) where the decoders cooperate via a one-sided link is considered. One common and

two private messages are transmitted and the private message to the cooperative user should be kept secret from the

cooperation-aided user. The secrecy level is measured in terms of strong-secrecy, i.e., a vanishing information leakage.

An inner bound on the capacity region is derived by using a channel-resolvability-based code thatdouble-binsthe

codebook of the secret message, and by using alikelihood encoderto choose the transmitted codeword. The inner

bound is shown to be tight for semi-deterministic and physically degraded BCs and the results are compared to those

of the corresponding BCs without a secrecy constraint. Blackwell and Gaussian BC examples illustrate the impact of

secrecy on the rate regions. Unlike the case without secrecy, where sharing information about both private messages

via the cooperative link is optimal, our protocol conveys parts of the common and non-confidential messages only.

This restriction reduces the transmission rates more than the usual rate loss due to secrecy requirements.

Index Terms

Broadcast channel, conferencing, cooperation, likelihood encoder, physical-layer security, resolvability, strong

secrecy.

I. I NTRODUCTION

User cooperation and security are two essential aspects of modern communication systems. Cooperation can

increase transmission rates, whereas security requirements can limit these rates. To shed light on the interaction

between these two phenomena, we study broadcast channels (BCs) with one-sided decoder cooperation and one

confidential message (Fig. 1). Cooperation is modeled asconferencing, i.e., information exchange via a rate-limited

link that extends from one receiver (referred to as thecooperative receiver) to the other (thecooperation-aided

receiver). The cooperative receiver possesses confidential information that should be kept secret from the other user.

Secret communication over noisy channels was modeled by Wyner who introduced the degraded wiretap channel

(WTC) and derived its secrecy-capacity [1]. Wyner’s wiretap code relied on acapacity-basedapproach, i.e., the code
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Fig. 1: Cooperative BCs with one confidential message.

is a union of subcodes that operate just below the capacity ofthe eavesdropper’s channel. Csiszár and Körner [2]

generalized Wyner’s result to a general BC. Multiuser settings with secrecy have since been extensively treated in

the literature. Broadcast and interference channels with two confidential messages were studied in [3]–[7]. Gaussian

multiple-input multiple-output (MIMO) BCs and WTCs were studied in [8]–[13], while [14]–[16] focus on BCs

with an eavesdropper as an external entity from which all messages are kept secret.

The above papers consider theweak-secrecymetric, i.e., a vanishing information leakagerate to the eavesdropper.

Although the leakage rate vanishes asymptotically with theblocklength, the eavesdropper can decipher an increasing

number of bits of the confidential message. This drawback washighlighted in [17]–[19] (see also [20]), which

advocated using theinformation leakageas a secrecy measure referred to asstrong-secrecy. We consider strong-

secrecy by relying on work by Csiszár [20] and Hayashi [21] to relate the coding mechanism for secrecy to

channel-resolvability.

The problem of channel resolvability, closely related to the early work of Wyner [22], was formulated by Han

and Verdú [23] in terms of total variational (TV) distance.Recently, [24] advocated replacing the TV metric

with unnormalized relative entropy. In [25], the coding mechanism for the resolvability problem was extended to

various scenarios under the namesoft-covering lemma. These extensions were used to design secure communication

protocols for several source coding problems under different secrecy measures [26]–[29]. Aresolvability-based

wiretap code associates with each message a subcode that operates just above the resolvability of the eavesdropper’s

channel. Using such constructions, [30] extended the results of [2] to strong-secrecy for continuous random variables

and channels with memory. In [31] (see also [32, Remark 2.2]), resolvability-based codes were used to establish the

strong-secrecy-capacities of the discrete and memoryless(DM) WTC and the DM-BC with confidential messages

by using a metric calledeffective secrecy.

Our inner bound on the strong-secrecy-capacity region of the cooperative BC is based on a resolvability-based

Marton code. Specifically, we consider a state-dependent channel over which an encoder with non-causal access

to the state sequence aims to make the conditional probability mass function (PMF) of the channel output given

the state a product PMF. The resolvability code coordinatesthe transmitted codeword with the state sequence by

means of multicoding, i.e., by associating with every message a bin that contains enough codewords to ensure

joint encoding (similar to a Gelfand-Pinsker codebook). Most encoders use joint typicality tests to determine the
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transmitted codeword. We adopt thelikelihood encoder, recently proposed as a coding strategy for source coding

problems [33], as our multicoding mechanism. Doing so significantly simplifies the distribution approximation

analysis. We prove that the TV distance between the induced output PMF and the target product PMF approaches

zero exponentially fast in the blocklength, which implies convergence in unnormalized relative entropy [34, Theorem

17.3.3].

Next, we construct a BC code in which the relation between thecodewords corresponds to the relation between

the channel states and the channel inputs in the resolvability problem. To this end we associate with every

confidential message a subcode that adheres to the structureof the aforementioned resolvability code. Accordingly,

the confidential message codebook is double-binned to allowjoint encoding via the likelihood encoder (outer bin

layer) and preserves confidentiality (inner bin layer). Thebin sizes are determined by the rate constraints for the

resolvability problem, which ensures strong-secrecy. Theinner bound induced by this coding scheme is shown to

be tight for semi-deterministic (SD) and physically-degraded (PD) BCs.

Our protocol uses the cooperation link to convey information about the non-confidential message and the common

message. Without secrecy constraints, the optimal scheme shares information onboth private messages as well as

the common message [35]. We show that the restricted protocol results in an additional rate loss on top of standard

losses due to secrecy. To this end we compare the achievable regions induced by each cooperation strategy for a

cooperative BCwithout secrecy. We show that the restricted protocol does not lose rate whenthe BC is deterministic

or PD, but it is sub-optimal in general.

To the best of our knowledge, we present here the first resolvability-based Marton code. This is also a first

demonstration of the likelihood encoder’s usefulness in the context of secrecy for channel coding problems. From

a broader perspective, our resolvability result is a tool for proving strong-secrecy in settings with Marton coding.

As a special case, we derive the secrecy-capacity region of the SD-BC (without cooperation) where the message of

the deterministic user is confidential - a new result that hasmerit on its own. The structure of the obtained region

provides insight into the effect of secrecy on the coding strategy for BCs. A comparison between the cooperative

PD-BC with and without secrecy is also given.

The results are visualized by considering a Blackwell BC (BBC) [36], [37] and a Gaussian BC. An explicit

strong-secrecy-achieving coding strategy for an extreme point of the BBC region is given. Although the BBC’s

input is ternary, to maximize the transmission rate of the confidential message only a binary subset of the input’s

alphabet is used. As a result, a zero-capacity channel is induced to the other user, who, therefore, cannot decode

any of the secret bits. Further, we show that in the BBC scenario, an improved subchannel (given by the identity

mapping) to the legitimate receiver does not increase the strong-secrecy-capacity region.

This paper is organized as follows. Section II provides preliminaries and restates some useful basic properties. In

Section III we state a resolvability lemma. Section IV introduces the cooperative BC with one confidential message

and gives an inner bound on its strong-secrecy-capacity region. The secrecy-capacity regions for the SD and PD

scenarios are then characterized. In Section V the effect ofsecrecy constraints on the optimal cooperation protocol

is discussed. Section VI compares the capacity regions of SD- and PD-BCs with and without secrecy. Blackwell



4

and Gaussian BCs visualise the results. Finally, proofs areprovided in Section VII, while Section VIII summarizes

the main achievements and insights of this work.

II. N OTATION AND PRELIMINARIES

We use the following notation. Given two real numbersa, b, we denote by[a :b] the set of integers
{
n ∈ N

∣
∣⌈a⌉ ≤

n ≤ ⌊b⌋
}

. We defineR+ = {x ∈ R|x ≥ 0}. Calligraphic letters denote discrete sets, e.g.,X , while the cardinality

of a setX is denoted by|X |. Xn stands for then-fold Cartesian product ofX . An element ofXn is denoted

by xn = (x1, x2, . . . , xn), and its substrings asxj
i = (xi, xi+1, . . . , xj); when i = 1, the subscript is omitted.

We definexn\i = (x1, . . . , xi−1, xi+1, . . . , xn). Whenever the dimensionn is clear from the context, vectors (or

sequences) are denoted by boldface letters, e.g.,x. Random variables are denoted by uppercase letters, e.g.,X ,

with similar conventions for random vectors.Xj
i represents the sequence of random variables(Xi, Xi+1, . . . , Xj),

while X stands forXn. The probability of an eventA is denoted byP(A), while P(A
∣
∣B ) denotes conditional

probability ofA givenB. We use1A to denote the indicator function ofA. Probability mass functions (PMFs) are

denoted by the capital letterP , with a subscript that identifies the random variable and itspossible conditioning.

For example, for two jointly distributed random variablesX andY , let PX , PX,Y andPX|Y denote, respectively,

the PMF ofX , the joint PMF of(X,Y ) and the conditional PMF ofX given Y . In particular, whenX andY

are discrete,PX|Y represents the stochastic matrix whose elements are given by PX|Y (x|y) = P
(
X = x|Y = y

)
.

We omit subscripts if the arguments of the PMF are lowercase versions of the random variables. The support of a

PMF P and the expectation of a random variableX are denoted bysupp(P ) andE
[
X
]
, respectively. We useEP

andPP to indicate that an expectation or a probability are taken taken with respect to a PMFP (when the PMF is

clear from the context, the subscript is omitted). If the entries ofXn are drawn in an independent and identically

distributed (i.i.d.) manner according toPX , then for everyx ∈ Xn we havePXn(x) =
∏n

i=1 PX(xi) and we write

PXn(x) = Pn
X(x). Similarly, if for every(x,y) ∈ Xn ×Yn we havePY n|Xn(y|x) =

∏n
i=1 PY |X(yi|xi), then we

write PY n|Xn(y|x) = Pn
Y |X(y|x). We often useQn

X or Qn
Y |X when referring to product PMFs. The conditional

product PMFQn
Y |X given a specific sequencex ∈ Xn is denoted byQn

Y |X=x. The empirical PMFνx of a sequence

x ∈ Xn is

νx(x) ,
N(x|x)

n
(1)

whereN(x|x) =
∑n

i=1 1{xi=x}. We useT (n)
ǫ (PX) to denote the set of letter-typical sequences of lengthn with

respect to the PMFPX and the non-negative numberǫ [38, Ch. 3], [39], i.e., we have

T (n)
ǫ (PX) =

{

x ∈ Xn
∣
∣
∣

∣
∣νx(x) − PX(x)

∣
∣ ≤ ǫPX(x), ∀x ∈ X

}

. (2)

Definition 1 (TV Distance and Relative Entropy) Let P and Q be two PMFs on a countable sample spaceX
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W ∼ Unif
[
1 : 2nR̃

]

CodeBn

U
(
W,S0,I(S),Bn

)

Qn
V |U,S0,S

V ∼ P
(Bn)
V|S0,S

(S0,S)

Qn
S0,S

W = 1 W = 2 W = 2nR̃

. . .

Bn(s0): generated∼ Qn
U|S0=s0

2nR
′

u-codewords

u(1, s0, i): i chosen by
likelihood encoder

Fig. 2: Coding problem for approximatingP (Bn)
V|S0,S0

≈ Qn
V |S0,S

and the resolvability subcode that is superimposed

on s0 ∈ Sn
0 : Every subcode contains2n(R̃+R′) u-codewords drawn independently according toQn

U|S0=s0
. The

codewords are partitioned into2nR̃, each associated with a certainw ∈
[
1 : 2nR̃

]
. To transmitW = w the

likelihood encoder from (6) is used to choose au-codeword for thewth bin.

1. The TV distance and the relative entropy betweenP andQ are

||P −Q||TV =
1

2

∑

x∈X

∣
∣P (x)−Q(x)

∣
∣ (3)

and

D(P ||Q) =
∑

x∈supp(P )

P (x) log
P (x)

Q(x)
(4)

respectively.

Remark 1 Pinsker’s inequality shows that relative entropy is largerthan TV distance. A reverse inequality is

sometimes valid. For example, ifP ≪ Q (i.e., P is absolutely continuous with respect toQ), andQ is an i.i.d.

discrete distribution of variables, then (see [25, Equation (29)]) 2

D(P ||Q) ∈ O

([

n+ log
1

||P −Q||

]

||P −Q||

)

. (5)

In particular, (5) implies that an exponential decay of the TV distance produces an exponential decay of the

informational divergence with the same exponent.

III. C ONDITIONAL RELATIVE ENTROPY APPROXIMATION

A. Problem Definition

Consider a state-dependent discrete memoryless channel (DMC) over which an encoder with non-causal access

to the i.i.d. state sequence transmits a codeword (Fig. 2). Each channel state is a pair(S0, S) of random variables

drawn according toQS0,S . The encoder superimposes its codebook onS0 and then uses thelikelihood encoderwith

1Countable sample spaces are assumed throughout this work.
2f(n) ∈ O

(

g(n)
)

means thatf(n) ≤ k · g(n), for somek independent ofn and sufficiently largen.
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respect toS to choose the channel input sequence. The structure of a subcode that is superimposed on somes0 ∈ Sn
0

is also illustrated in Fig. 2. The conditional PMF of the channel output, given the states, should approximate a

conditional product distribution in terms of unnormalizedrelative entropy.

The random variableW is uniformly distributed overW =
[
1 : 2nR̃

]
and is independent of(S0,S) ∼ Qn

S0,S
.

Codebook Construction: For every s0 ∈ Sn
0 generate a codebookBn(s0) that comprises2nR̃ bins. Each

bin is associated with a different messagew ∈ W and contains2nR
′

u-codewords that are drawn according to

Qn
U|S0=s0

,
∏n

i=1 QU|S0
(·|s0,i). Let Bn =

{
Bn(s0)

}

s0∈Sn
0

denote this collection of codebooks and denote the

codewords in the bin associated withw ∈ W by
{
u(s0, w, i,Bn)

}

i∈I
, whereI =

[
1 : 2nR

′]
.

Encoding and Induced PMF: Consider thelikelihood encoderdescribed by conditional PMF

f (LE)(i|w, s0, s,Bn) =
Qn

S|U,S0

(
s
∣
∣u(s0, w, i,Bn), s0

)

∑

i′∈I

Qn
S|U,S0

(
s
∣
∣u(s0, w, i′,Bn), s0

) . (6)

Upon observing(w, s0, s), an indexi ∈ I is drawn randomly according to the probability distribution (6). The

codewordu(s0, w, i,Bn) is passed through the DMCQn
V |U,S0,S

. The distribution induced by the codebookBn is

P (Bn)(s0, s, w, i,u,v) = Qn
S0,S(s0, s)2

−nR̃f (LE)(i|w, s0, s,Bn)1{
u(s0,w,i,Bn)=u

}Qn
V |U,S0,S

(v|u, s0, s). (7)

Furthermore, we useBn to denote a random codebook that adheres to the above construction.

Lemma 1 (Sufficient Conditions for Approximation) For any QS0,S , QU|S0,S andQV |U,S0,S, if (R̃, R′) ∈ R2
+

satisfies

R′ > I(U ;S|S0) (8a)

R′ + R̃ > I(U ;S, V |S0) (8b)

then

EBn
D
(

P
(Bn)
V|S0,S

∣
∣
∣

∣
∣
∣Qn

V |S0,S

∣
∣
∣Qn

S0,S

)

−−−−→
n→∞

0. (9)

The proof of Lemma 1 is given in Section VII-A and it shows thatthe TV distance decays exponentially fast

with the blocklengthn. By Remark 1 this implies an exponential decay of the desiredrelative entropy. Another

useful property is that the chosenu-codeword is jointly letter-typical with(S0,S) with high probability.

Lemma 2 (Typical with High Probability) If (R̃, R′) ∈ R2
+ satisfies(8), then for anyw ∈ W and ǫ > 0, we

have

EBn
P
((

S0,S,U(S0, w, I,Bn)
)
/∈ T (n)

ǫ (QS0,S,U)
∣
∣
∣Bn

)

−−−−→
n→∞

0. (10)

The proof of Lemma 2 is given in Section VII-B.
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IV. COOPERATIVEBROADCAST CHANNELS WITH ONE CONFIDENTIAL MESSAGE

A. Problem Definition

The cooperative DM-BC with one confidential message is illustrated in Fig. 1. The channel has one sender

and two receivers. The sender chooses a triple(m0,m1,m2) of indices uniformly and independently from the set

[1 : 2nR0 ]× [1 : 2nR1 ]× [1 : 2nR2 ] and maps it to a sequencex ∈ Xn. The sequencex is transmitted over a BC with

transition probabilityQY1,Y2|X . If QY1,Y2|X factors as1{Y1=f(X)}QY2|X or QY1|XQY2|Y1
then we call the BC SD

or PD, respectively. The output sequenceyj ∈ Yn
j , wherej = 1, 2, is received by decoderj. Decoderj produces

a pair of estimates
(
m̂

(j)
0 , m̂j

)
of (m0,mj). Furthermore, the messagem1 is to be kept secret from Decoder 2.

There is a one-sided noiseless cooperation link of rateR12 from Decoder 1 to Decoder 2. By conveying a message

m12 ∈ [1 : 2nR12 ] over this link, Decoder 1 can share with Decoder 2 information abouty1,
(
m̂

(1)
0 , m̂1

)
, or both.

Definition 2 (Code) An (n,R12, R0, R1, R2) codeC for the BC with cooperation and one confidential message

has:

1) Four message setsM12 =
[
1 : 2nR12

]
andMj =

[
1 : 2nRj

]
, for j = 0, 1, 2.

2) A stochastic encoder described by a stochastic matrixf
(E)
X|M0,M1,M2

on Xn.

3) A decoder cooperation functionf12 : Yn
1 → M12.

4) Two decoding functionsφ1 : Yn
1 → M0 ×M1 andφ2 : Yn

2 ×M12 → M0 ×M2.

Definition 3 (Error Probability) The average error probability for an(n,R12, R0, R1, R2) codeCn is

Pe(Cn) = PCn

(

(M̂
(1)
0 , M̂

(2)
0 , M̂1, M̂2) 6= (M0,M0,M1,M2)

)

wherePCn
(·) means that the probability is calculated with respect to thejoint PMF induced byCn. Furthermore,

(

M̂
(1)
0 , M̂1

)

= φ1(Y1) and
(

M̂
(2)
0 , M̂2

)

= φ2

(
Y2, f12(Y1)

)
.

The information leakageat receiver 2 is measured byL(Cn) = ICn
(M1;M12,Y2), which is also calculated with

respect to PMF induced byCn.

Definition 4 (Achievability) A rate tuple (R12, R0, R1, R2) ∈ R4
+ is achievable if for anyǫ > 0 there is an

(n,R12, R0, R1, R2) codeCn with

Pe(Cn) ≤ ǫ (11a)

L(Cn) ≤ ǫ (11b)

for n sufficiently large.

The strong-secrecy-capacity regionCS is the closure of the set of the achievable rates.
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B. Strong-Secrecy-Capacity Bounds and Results

We state an inner bound on the strong-secrecy-capacity region CS of a cooperative BC with one confidential

message.

Theorem 3 (Inner Bound) Let RI be the closure of the union of rate tuples(R12, R0, R1, R2) ∈ R4
+ satisfying:

R1 ≤ I(U1;Y1|U0)− I(U1;U2, Y2|U0) (12a)

R0 +R1 ≤ I(U0, U1;Y1)− I(U1;U2, Y2|U0) (12b)

R0 +R2 ≤ I(U0, U2;Y2) +R12 (12c)

R0 +R1 +R2 ≤ I(U0, U1;Y1) + I(U2;Y2|U0)− I(U1;U2, Y2|U0) (12d)

where the union is over all PMFsQU0,U1,U2,XQY1,Y2|X . Then the following inclusion holds:

RI ⊆ CS. (13)

Furthermore,RI is convex and one may choose|U0| ≤ |X |+ 5, |U1| ≤ |X | and |U2| ≤ |X |.

The proof of Theorem 3 relies on a channel-resolvability-based Marton code and is given in Section VII-C.

Two key ingredients allow us keepingM1 secret while still utilizing the cooperation link to help Receiver 2. First,

the cooperation strategy is modified compared to the case without secrecy that was studied in [35], whereM12

conveyed information aboutboth private messages as well as the common message. Here, the confidentiality of

M1 restricts the cooperation message from containing any information aboutM1, and therefore, we use anM12

that is a function of(M0,M2) only. Since the protocol requires Receiver 1 to decode the information it shares

with Receiver 2, this modified cooperation strategy resultsin a rate loss inR1 when compared to [35]; the loss is

expressed in the first mutual information term in (12a) beingconditioned onU0 rather than havingU0 next toU1.

The second ingredient is associating with eachm1 ∈ M1 a resolvability-subcode that adheres to the code

construction for Lemmas 1 and 2 described in Section III-A. By doing so, the relations between the codewords in

the Marton code correspond to those between the channel states and its input in the resolvability problem. Marton

coding combines superposition coding and binning, hence the different roles the state sequencesS0 andS play

in our resolvability setup. Reliability is established with the help of Lemma 2, while invoking Lemma 1 ensures

strong-secrecy.

Theorem 4 (SD-BC Secrecy-Capacity)The strong-secrecy-capacity regionC(SD)
S of a cooperative SD-BC with

one confidential message is the closure of the union of rate tuples(R12, R0, R1, R2) ∈ R4
+ satisfying:

R1 ≤ H(Y1|W,V, Y2) (14a)

R0 +R1 ≤ H(Y1|W,V, Y2) + I(W ;Y1) (14b)

R0 +R2 ≤ I(W,V ;Y2) +R12 (14c)
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R0 +R1 +R2 ≤ H(Y1|W,V, Y2) + I(V ;Y2|W ) + I(W ;Y1) (14d)

where the union is over all PMFsQW,V,Y1,XQY2|X with Y1 = f(X). Furthermore,C(SD)
S is convex and one may

choose|W| ≤ |X |+ 3 and |V| ≤ |X |.

The direct part of Theorem 4 follows from Theorem 3 by settingU0 = W , U1 = Y1 andU2 = V . The converse

is given in Section VII-D.

Theorem 5 (PD-BC Secrecy-Capacity)The strong-secrecy-capacity regionC(PD)
S of a cooperative PD-BC with

on confidential message is the closure of the union of rate tuples (R12, R0, R1, R2) ∈ R4
+ satisfying:

R1 ≤ I(X ;Y1|W )− I(X ;Y2|W ) (15a)

R0 +R2 ≤ I(W ;Y2) +R12 (15b)

R0 +R1 +R2 ≤ I(X ;Y1)− I(X ;Y2|W ) (15c)

where the union is over all PMFsQW,XQY1|XQY2|Y1
. Furthermore,C(PD)

S is convex and one may choose|W| ≤

|X |+ 2.

The achievability ofC(PD)
S follows by settingU0 = W , U1 = X andU2 = 0 in Theorem 3. For the converse

see Section VII-E.

Remark 2 (Converse) We use two distinct converse proofs for Theorems 4 and 5. In the converse of Theorem 4,

the bound in(14d)does not involveR12 since the auxiliary random variableWi containsM12. With respect to this

choice ofWi, showing thatW −X − (Y1, Y2) forms a Markov chain relies on the SD property of the channel.For

the PD-BC, however, such an auxiliary is not feasible as it violates the Markov relationW −X−Y1 −Y2 induced

by the channel. To circumvent this, in the converse of Theorem 5 we defineWi withoutM12 and use the structure of

the channel to keepR12 from appearing in(15c). Specifically, this argument relies on the relationM12 = f12(Y1)

and thatY2 is a degraded version ofY1, implying that all three messages(M0,M1,M2) are reliably decodable

from Y1 only.

Remark 3 The cardinality bounds on the auxiliary random variables inTheorems 3, 4 and 5 are established using

the perturbation method [40] and the Carathéodory-Fenchel theorem.

V. SUB-OPTIMAL COOPERATION WITHOUTSECRECY

The cooperation protocol for the BC with a secretM1 uses the cooperative link to convey information that is a

function of the non-confidential message and the common message. Without secrecy constraints, it was shown in

[35] that the best cooperation strategy uses a public message that comprises parts ofboth private messages as well

as the common message. To understand whether the cooperation restriction reduces the transmission rates beyond

standard losses due to secrecy (which are discussed in Section VI), we compare the achievable regions induced
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by each scheme for the cooperative BCwithout secrecy. For simplicity we consider the setting without a common

message, i.e., whenR0 = 0.

At first glance it is not clear why the cooperative receiver (Decoder 1) should share information aboutM1 since

the cooperation-aided receiver (Decoder 2) is not requiredto decodeM1. However, we show that the restricted

protocol is sub-optimal in general. For BCs in which Decoder1 can decode more thannR12 bits of M2 (e.g.,

PD-BCs), both protocols achieve the same rates and no sharing information aboutM1 is needed. However, when

Decoder 1 can decode strictly less thannR12 bits of M2, then sharingM1 achieves higherR2 values, since now

M1 serves as side information for Decoder 2 in decodingM2 (note that this side information is also available at

the encoder).

The achievable regionRNS for the cooperative BC without secrecy that was characterized in [35] (see also [41],

[42]) is the union over the same domain as (12) of rate triples(R12, R1, R2) ∈ R3
+ satisfying:

R1 ≤ I(U0, U1;Y1) (16a)

R2 ≤ I(U0, U2;Y2) +R12 (16b)

R1 +R2 ≤ I(U0, U1;Y1) + I(U2;Y2|U0)− I(U1;U2|U0) (16c)

R1 +R2 ≤ I(U1;Y1|U0) + I(U0, U2;Y2)− I(U1;U2|U0) +R12. (16d)

This region is tight for SD- and PD-BCs. The cooperation scheme that achieves (16) uses the pair(M10,M20)

(whereMj0 refers to the public part of the messageMj and has rateRj0 ≤ Rj , for j = 1, 2) as a public message

that is decoded by both users. The public message codebook (generated by i.i.d. realizations of the random variable

U0 in (16)) is partitioned into2nR12 bins and is first decoded by User 1. Next, the bin numberM12 of the decoded

public message is shared with User 2 over the cooperative link, which reduces the search space by a factor of

2nR12 . The presence ofM10 in the public message essentially allows User 1 to achieve rates upI(U0, U1;Y1).

Introducing a secrecy constraint onM1, we must removeM10 from the public message, but we keep the rest of

the protocol unchanged. The regioñRNS achieved by the restricted cooperation protocol is derivedby repeating

the steps in the proof of [35, Theorem 6] while settingR10 = 0. One obtains that̃RNS is characterized by the

same rate bounds as (16), up to replacing (16a) with

R1 ≤ I(U1;Y1|U0) +
[

I(U2;Y2|U0)− I(U1;U2|U0)
]+

(17)

where[x]+ = max
{
0, x
}

. Clearly R̃NS ⊆ RNS.

Note thatR̃NS = RNS for any BC where settingU0 = 0 in (16) is optimal. In particular, we have the following

proposition.

Proposition 6 (Restricted Cooperation is Optimal for Deterministic and PD BCs) If the BCQY1,Y2|X is PD

or deterministic, thenR̃NS = RNS = CNS.

Proof: For the PD-BC, settingU0 = W , U1 = X andU2 = 0 into R̃NS recovers the region from [43, Equation
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X1

X2

Y1 = X1

Y2

QY2|X1,X2

Fig. 3: A SD-BC example.

(17)], which is the capacity region of the cooperative PD-BC. The capacity region of the cooperative deterministic

BC (DBC) given in [35, Corollary 12] is recovered from̃RNS by takingU0 = 0, U1 = Y1 andU2 = Y2.

Proposition 7 (Restricted Cooperation Sub-Optimal) There exist BCsQY1,Y2|X for which R̃NS ( RNS.

The proof of Proposition 7 is given in Appendix A, where we construct an example for which the maximal

achievableR1 in both regions is the same, but the highest achievableR2 while keepingR1 at its maximum is

strictly smaller inR̃NS.

We start with a family of SD-BCs as illustrated in Fig. 3, where the channel input isX = (X1, X2), the

deterministic output isY1 = X1 and the probabilistic outputY2 is generated by the DMCQY2|X1,X2
. All alphabets

are binary, i.e.,X1 = X2 = Y1 = Y2 =
{
0, 1
}

. The maximal achievableR1 in both schemes is 1 and we set the

capacity of the cooperation link toR12 = 1. We show that the highestR2 such that(R12, R1, R2) = (1, 1, R2) ∈

RNS is lower bounded by the capacity of the state-dependent channelQY2|X1,X2
(with X1 andX2 playing the roles

of the state and the input, respectively) with non-causal channel state information (CSI) available at the transmitting

and receiving ends. This is due to the fact thatR12 = 1 in the permissive protocol allows Decoder 1 to shareX1

with Decoder 2 despite the fact thatXn
1 = M1.

The corresponding value ofR2 in R̃NS is then upper bounded by the capacity of the same channel but with

non-causal CSI at the transmitter only (also known as a Gelfand-Pinsker (GP) channel). The cooperation link is,

in fact, useless in this scenario sinceY1 = X1 and the restricted protocol prohibits exchanging any information

aboutM1. Thus, the proof boils down to choosingQY2|X1,X2
as a channel for which the capacity with full CSI is

strictly larger than the GP capacity. The binary binary dirty-paper (BDP) channel [44]–[46] qualifies and completes

the proof.

VI. EFFECT OFSECRECY ONCODING SCHEMES AND RATE REGIONS FORCOOPERATIVE BCS

The impact of the secrecy constraint onM1 on the cooperation strategy and the resulting reduction of transmission

rates was discussed in Section V. However, secrecy requirements have additional effects on BC codes regardless of

user cooperation. We highlight these effects by comparing the SD and PD versions of the cooperative BC to their

corresponding models without secrecy. For simplicity, throughout this section we again assume BCs with private

messages only, i.e.,R0 = 0.
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R1

R2

0

I(V ;Y2)− I(V ;Y1)

H(Y1|V )

I(V ;Y2)

H(Y1|V, Y2)

H(Y1)I(Y1;Y2|V )

I(V ;Y1)

Secrecy

No secrecy

Fig. 4: Capacity region without secrecy vs. strong-secrecy-capacity region whereM1 is confidential for the SD-BC
(without cooperation).

A. Semi-Deterministic BCs

1) Capacity Region Comparison:Consider the SD-BC without cooperation (i.e., whereR12 = 0) in which M1

is secret. By Theorem 4, the strong-secrecy-capacity region of the SD-BC with one confidential message, which

was an unsolved problem until this work, is as follows.

Corollary 8 (Secrecy-Capacity for SD-BC without Cooperation) The strong-secrecy-capacity regioñC(SD)
S of

the SD-BC with one confidential message is the union of rate pairs (R1, R2) ∈ R2
+ satisfying:

R1 ≤ H(Y1|V, Y2) (18a)

R2 ≤ I(V ;Y2) (18b)

where the union is over all PMFsQV,Y1,XQY2|X with Y1 = f(X).

The region (18) coincides withC(SD)
S in (14d) (whereR12 = R0 = 0) by noting that the bound (14d) is

redundant because ifQW,V,Y1,XQY2|X is a PMF for which (14d) is active, then replacingW andV with W̃ = 0

and Ṽ = (W,V ) achieves a larger region. Removing (14d) fromC(SD)
S and settingṼ = (W,V ) recovers (18).

Marton coding achieves the capacity region of the classic SD-BC [47]. The capacity is the union of rate pairs

(R1, R2) ∈ R2
+ satisfying:

R1 ≤ H(Y1) (19a)

R2 ≤ I(V ;Y2) (19b)

R1 +R2 ≤ H(Y1|V ) + I(V ;Y2) (19c)

where the union is over the same domain as in Corollary 8.
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Fig. 5: (a) Cooperative Blackwell BC; (b) Cooperative Blackwell-like PD-BC.

The regions in (18) and (19) (for a fixed PMF) are depicted in Fig. 4. WhenM1 is secret, one can no longer

operate on both corner points of Marton’s region. Rather, the optimal coding scheme is the one with the lower

transmission rate to the 1st user. This essentially means that the redundancy in the codebook needed for multicoding

befalls solely on User 1 (whose message is to be kept secret).Consequently, a loss ofI(V ;Y1), which corresponds

to the sizes of the bins used for joint encoding, is inflicted on R1. An additional rate-loss ofI(Y1;Y2|V ) in R1 is

caused by a second layer of binning used to concealM1 from the 2nd user. A coding scheme for the higher corner

point of the region without secrecy, i.e., the point
(
H(Y1) , I(V ;Y2)−I(V ;Y1)

)
, is not feasible with secrecy since

the larger value ofR1 violates the secrecy constraint. A similar effect occurs for the corresponding regions with

cooperation.

2) Blackwell BC Example:Suppose the channel from the transmitter to receivers 1 and 2is the BBC without a

common message as illustrated in Fig 5(a) [36], [37]. Using Theorem 4 while settingR0 = 0, the strong-secrecy-

capacity region of a deterministic BC (DBC) is the following.

Corollary 9 (Secrecy-Capacity Region for DBC) The strong-secrecy-capacity regionC(D)
S of a cooperative DBC

with one confidential message is the union of rate triples(R12, R1, R2) ∈ R3
+ satisfying:

R1 ≤ H(Y1|Y2) (20a)

R2 ≤ H(Y2) +R12 (20b)

R1 +R2 ≤ H(Y1, Y2) (20c)

where the union is over all PMFsQX .

Corollary 9 follows by arguments similar to those in the proof of [35, Corollary 12]. By parameterizing the input

PMF QX as

QX(0) = α , QX(1) = β , QX(2) = 1− α− β (21)
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Fig. 6: (a) Projection of the strong-secrecy-capacity region of the cooperative BBC with one confidential message
onto the plane(R1, R2) for different values ofR12; (b) Cooperative BBC withR12 = 0.2: Strong-secrecy-capacity
region whereM1 is confidential vs. Capacity region without secrecy.

whereα, β ∈ R+ andα+ β ≤ 1, the strong-secrecy-capacity region of the BBC is:

C
(BBC)
S =

⋃

α,β∈R+,
α+β≤1







(R12, R1, R2) ∈ R3
+

R1 ≤ (1− α)Hb

(
β

1−α

)

R2 ≤ Hb(α) +R12

R1 +R2 ≤ Hb(α) + (1− α)Hb(
β

1−α )







. (22)

The projection ofC(BBC)
S onto the plane(R1, R2) for different values ofR12 is shown in Fig. 6(a). For every

R12 ∈ R+, the maximal achievableR1 in C
(BBC)
S equals 1 [bits/use] (while the correspondingR2 is zero). The rate

triple (R12, 1, 0) is achieved by settingα = 0 andβ = 1
2 in the bounds in (22). These probability values provide

insight into the coding strategy that maximizes the transmission rate to User 1. Namely, the encoder chooses each

channel input symbol uniformly from the set{1, 2} ( X . By doing so, Decoder 1 effectively sees a clean binary

channel (by mapping every receivedY1 = 0 to the input symbolX = 2) with capacity 1. Decoder 2, on the other

hand, sees a flat channel with zero capacity since bothX = 1 andX = 2 are mapped toY2 = 1. Thus, Decoder 2

has no information about the transmitted sequence, and therefore, strong-secrecy is achieved while conveying one

secured bit to Decoder 1 in each channel use.

Remark 4 An improved subchannel to the legitimate user does not enlarge the strong-secrecy-capacity region. We

illustrate this by considering the Blackwell-like PD-BC (PD-BBC) shown in Fig. 5(b), whereY1 = X andY1 = X

(Y2 and the mapping fromX to Y2 remain as in the BBC). Evaluating the strong-secrecy-capacity region of the

PD-BBC reveals that it coincides withC(BBC)
S . This implies that theQX that maximizesR1 while keeping Decoder

2 ignorant ofM1 is α = 0 andβ = 1
2 , which coincides with the input PMF that maximizesR1 while transmitting

over the classical BBC. Thus, to ensure secrecy over the PD-BBC, the encoder overlooks the improved channel to

Decoder 1 and ends up not using the symbolX = 0.
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R1

R2

0

Secrecy

No secrecy

I(W ;Y1)

I(X ;Y1|W )

I(W ;Y2) +R12

I(X ;Y1|W )− I(W ;Y2) +R12

I(X ;Y2|W )

Fig. 7: Capacity region without secrecy vs. strong-secrecy-capacity region whereM1 is confidential for the
cooperative PD-BC.

The effect of secrecy on the capacity region of a cooperativeBC is illustrated by comparing to the BBC (Fig.

5(a)) without a secrecy constraint. Using the characterization of the capacity region of a cooperative DBC given in

[35, Corollary 12] and the parametrization in (21), the capacity region of the cooperative BBC is:

C
(BBC)
NS =

⋃

α,β∈R+,
α+β≤1







(R12, R1, R2) ∈ R3
+

R1 ≤ Hb(α+ β)

R2 ≤ Hb(α) +R12

R1 +R2 ≤ Hb(α) + (1− α)Hb(
β

1−α )







. (23)

Fig. 6(b) compares the regions with and without secrecy. Thedashed red line represents the capacity region

for the case without secrecy while the blue line depicts the region whereM1 is confidential. Evidently,C(BBC)
NS

is strictly larger thanC(BBC)
S . Note that up to approximatelyR1 ≈ 0.6597 , R

(Th)
1 , the two regions coincide.

Thus, whileR1 ≤ R
(Th)
1 , concealingM1 is achieved without any rate loss inR2. WhenR1 > R

(Th)
1 , however, an

increased confidential message rate leads to a reducedR2 value compared to the case without secrecy. Further, if

no secrecy constraintis imposed onM1, one can transmit it at its maximal rate ofR1 = 1 and still have a positive

value ofR2 (up to approximately0.5148). WhenM1 is confidential thenR1 = 1 is achievable only ifR2 = 0.

B. Physically Degraded BCs

1) Capacity Region Comparison:When the BC is PD, the reduction inR1 is due to the extra layer of bins

in the codebook ofM1 only, while the modified cooperation scheme results in no loss. To see this, consider the

capacity regionC(PD)
NS of cooperative PD-BC without a secrecy constraint onM1 (see [43] and [48]), which is the

union over the same domain as (15) of rate triples(R12, R1, R2) ∈ R3
+ satisfying:

R1 ≤ I(X ;Y1|W ) (24a)

R2 ≤ I(W ;Y2) +R12 (24b)
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X Y1 Y2

Z1 ∼ N (0, N1) Z2 ∼ N (0, N2 −N1)

R12

Fig. 8: Cooperative Gaussian PD-BC.

R1 +R2 ≤ I(X ;Y1). (24c)

In contrast to the SD case, the only impact of the secrecy requirement on the capacity region is expressed

in a rate-loss ofI(X ;Y2|W ) in R1 (see (15a) in comparison to (24a)) that is due to the extra layer of bins

needed for secrecy. Otherwise, the optimal code construction (and the optimal cooperation protocol) for both

problems is the same. The similarity is because, whetherM1 is secret or not, its codebook is superimposed on

the codebook ofM2, and decodingM2 as part of the cooperation protocol comes without cost by thedegraded

property of the channel (see Proposition 6). Thus, for a fixedQW,XQY1|XQY2|Y1
, if (R12, R1, R2) ∈ C

(PD)
NS then

(

R12,
[
R1 − I(X ;Y2|V )

]+
, R2

)

∈ C
(PD)
S , and vice versa. This relation is illustrated in Fig. 7 for some fixed value

of R12 and under the assumption thatI(W ;Y2) +R12 > I(W ;Y1).

2) Gaussian BC Example:Consider next the cooperative Gaussian PD-BC (without a common message) shown

in Fig. 8, where for every time instancei ∈ [1 : n], we have

Y1,i = Xi + Z1,i, (25a)

Y2,i = Xi + Z1,i + Z2,i (25b)

and
{
Z1,i

}n

i=1
and

{
Z2,i

}n

i=1
are mutually independent sequences of i.i.d. Gaussian random variables withZ1,i ∼

N (0, N1), Z2,i ∼ N (0, N2 −N1) andN2 > N1, for i ∈ [1 : n]. The channel input is subject to an average power

constraint
1

n

n∑

i=1

E
[
Xi

]
≤ P. (26)

By using continuous alphabets with an input power constraint adaptation of Theorem 5 we characterize the

strong-secrecy-capacity region of the cooperative Gaussian PD-BC with one confidential message as

C
(G)
S =

⋃

α∈[0,1]







(R12, R1, R2) ∈ R3
+

R1 ≤ 1
2 log

(

1 + αP
N1

)

− 1
2 log

(

1 + αP
N2

)

R2 ≤ 1
2 log

(

1 + ᾱP
αP+N2

)

+R12

R1 +R2 ≤ 1
2 log

(

1 + P
N1

)

− 1
2 log

(

1 + αP
N2

)







. (27)
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Fig. 9: (a) Projection of the strong-secrecy-capacity region of the cooperative Gaussian BC with one confidential
message onto the plane(R1, R2) for different values ofR12; (b) Cooperative Gaussian BC withR12 = 0.2:
Strong-secrecy-capacity region whereM1 is confidential vs. capacity region without secrecy.

The achievability of (27) follows from Theorem 5 with the following choice of random variables:

W ∼ N (0, αP ) , W̃ ∼ N (0, ᾱP ) , X = W + W̃ (28)

whereW andW̃ are independent. The optimality of Gaussian inputs is proven in Appendix B.

SettingP = 11, N1 = 1 andN2 = 4, Fig. 9(a) shows the strong-secrecy-capacity region of thecooperative

Gaussian BC for differentR12 values, while Fig. 9(b) compares the optimal rate regions when a secrecy constraint

on M1 is and is not present. The red line in both figures coincide andrepresent the secrecy-capacity region when

R12 = 0.2. The dashed blue line in Fig 9(b) shows the capacity region ofthe cooperative Gaussian BC without

secrecy constraints, which is given by

C
(G)
NS =

⋃

α∈[0,1]







(R12, R1, R2) ∈ R3
+

R1 ≤ 1
2 log

(

1 + αP
N1

)

R2 ≤ 1
2 log

(

1 + ᾱP
αP+N2

)

+R12

R1 +R2 ≤ 1
2 log

(

1 + P
N1

)







. (29)

The derivation of (29) relies on [43, Eq. (17)] and uses standard arguments for proving the optimality of Gaussian

inputs.

By the structure of the rate bounds in (27) and (29), for everyfixed α ∈ [0, 1], if (R12, R1, R2) ∈ C
(G)
NS , we have

(

R12, R1 −
1

2
log

(

1 +
αP

N2

)

, R2

)

∈ C
(G)
S . (30)

This agrees with the discussion in Section VI-B1 asI(X ;Y2|W ) = 1
2 log

(

1 + αP
N2

)

.
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VII. PROOFS

A. Proof of Lemma 1

Note that the factorization in (7) implies thatP (Bn)
S0,S

= Qn
S0,S

, for every codebookBn. Therefore, to establish

Lemma 1 we show that

EBn
D
(

P
(Bn)
S0,S,V

∣
∣
∣

∣
∣
∣Qn

S0,S,V

)

−−−−→
n→∞

0. (31)

Lemma 10 (Absolute Continuity) For any fixed codebookBn, we haveP (Bn)
S0,S,V

≪ Qn
S0,S,V

, i.e., P (Bn)
S0,S,V

is

absolutely continues with respect toQn
S0,S,V

.

The proof of Lemma 10 is relegated to Appendix C. Combining this with Remark 1, a sufficient condition for

(31) is that

EBn

∣
∣
∣

∣
∣
∣P

(Bn)
S0,S,V

−Qn
S0,S,V

∣
∣
∣

∣
∣
∣ −−−−→

n→∞
0. (32)

To evaluate the TV distance in (32), define theideal PMF onSn
0 × Sn ×W × I × Un × Vn as

Γ(Bn)(s0, w, i,u, s,v) = Qn
S0
(s0)2

−n(R̃+R′)
1{

u(s0,w,i,Bn)=u

}Qn
S|U,S0

(s|u, s0)Q
n
V |U,S0,S

(v|u, s0, s) (33)

with respect to the same codebookBn as P (Bn). Note, however, thatΓ describes an encoding process where

the choice of theu-codeword from a certain bin is uniform, as opposed toP that uses the likelihood encoder.

Furthermore, the structure ofΓ implies that the sequences is generated by feedings0 and the chosenu-codeword

into the DMCQn
S|U,S0

.

Using the TV distance triangle inequality, we upper bound the left-hand side (LHS) of (32) by

EBn

∣
∣
∣

∣
∣
∣P

(Bn)
S0,S,V

−Qn
S0,S,V

∣
∣
∣

∣
∣
∣
TV

≤ EBn

∣
∣
∣

∣
∣
∣P

(Bn)
S0,S,V

− Γ
(Bn)
S0,S,V

∣
∣
∣

∣
∣
∣
TV

+ EBn

∣
∣
∣

∣
∣
∣Γ

(Bn)
S0,S,V

−Qn
S0,S,V

∣
∣
∣

∣
∣
∣
TV

. (34)

By [25, Corollary VII.5], the second expected TV distance onthe RHS of (34) decays exponentially fast asn → ∞

if

R̃+R′ > I(U ;S, V |S0). (35)

For the first term in (34), we use the following relations betweenΓ andP . For every fixed codebookBn, we

have

Γ
(Bn)
I|W,S0,S

= f
(LE)
I|W,S0,S,Bn=Bn

= P
(Bn)
I|W,S0,S

(36a)

Γ
(Bn)
U|I,W,S0,S

= 1{
U=U(S0,W,I,Bn)

} = P
(Bn)
U|I,W,S0,S

(36b)

Γ
(Bn)
V|U,I,W,S0,S

= Qn
V |U,S0,S

= P
(Bn)
V|U,I,W,S0,S

. (36c)
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While (36b)-(36c) follow directly from (7) and (33), the justification for (36a) is that for every(s0, s, w, i) ∈

Sn
0 × Sn ×W × I, we have

Γ(Bn)(i|w, s0, s) =
Γ(Bn)(s0, w, i, s)

Γ(Bn)(s0, w, s)

=

∑

u Qn
S0
(s0)2

−n(R̃+R′)
1{

u(s0,w,i,Bn)=u

}Qn
S|U,S0

(s|u, s0)

∑

u,i′ Q
n
S0
(s0)2−n(R̃+R′)1{

u(s0,w,i′,Bn)=u

}Qn
S|U,S0

(s|u, s0)

=
Qn

S|U,S0

(
s
∣
∣u(s0, w, i,Bn), s0

)

∑

i′ Q
n
S|U,S0

(
s
∣
∣u(s0, w, i′,Bn), s0

)

(a)
= f (LE)(i|w, s0, s,Bn) (37)

where (a) follows from (6). The relations in (36) yield

EBn

∣
∣
∣

∣
∣
∣P

(Bn)
S0,S,V

− Γ
(Bn)
S0,S,V

∣
∣
∣

∣
∣
∣
TV

≤ EBn

∣
∣
∣

∣
∣
∣P

(Bn)
S0,S,W,I,U,V − Γ

(Bn)
S0,S,W,I,U,V

∣
∣
∣

∣
∣
∣
TV

(a)
=
∑

w

2−nR̃EBn

∣
∣
∣

∣
∣
∣P

(Bn)
S0,S,I,U,V|W=w − Γ

(Bn)
S0,S,I,U,V|W=w

∣
∣
∣

∣
∣
∣
TV

(b)
= EBn

∣
∣
∣

∣
∣
∣P

(Bn)
S0,S,I,U,V|W=1 − Γ

(Bn)
S0,S,I,U,V|W=1

∣
∣
∣

∣
∣
∣
TV

(c)
= EBn

∣
∣
∣

∣
∣
∣Qn

S0,S − Γ
(Bn)
S0,S|W=1

∣
∣
∣

∣
∣
∣
TV

(38)

where:

(a) is becauseΓ(Bn)(w) = P (Bn)(w) = 2−nR̃ for everyw ∈ W and fixedBn, and sinceBn is independent ofW ;

(b) uses the symmetry of the code construction;

(c) is by (36) and becauseP (Bn)
S0,S

= Qn
S0,S

for every fixedBn.

Invoking [25, Corollary VII.5] once more yields

EBn

∣
∣
∣

∣
∣
∣Qn

S0,S − Γ
(Bn)
S0,S|W=1

∣
∣
∣

∣
∣
∣
TV

−−−−→
n→∞

0 (39)

exponentially fast, as long as

R′ > I(U ;S|S0). (40)

This implies that there existsc > 0 such that

EBn

∣
∣
∣

∣
∣
∣P

(Bn)
S0,S,V

−Qn
S0,S,V

∣
∣
∣

∣
∣
∣
TV

≤ e−cn. (41)

B. Proof of Lemma 2

This proof uses the following property of the TV distance (see, e.g., [28, Property 1]): Letǫ > 0 and let

f : X → R be a function bounded byb ∈ R. We have

∣
∣
∣
∣Π− Λ

∣
∣
∣
∣
TV

< ǫ =⇒
∣
∣
∣EΠf(X)− EΛf(X)

∣
∣
∣ < ǫb. (42)
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Fix ǫ > 0 and consider theΓ PMF defined in (33). With respect to the random experiment described byΓ, we

have

EBn
PΓ

((
S0,S,U(S0, w, I,Bn)

)
/∈ T (n)

ǫ (QS0,S,U )
∣
∣
∣Bn

)

−−−−→
n→∞

0 (43)

becauseU(S0, w, i,Bn) ∼ Qn
U|S0

, for everyi ∈ I, andS is obtained by feeding(S0,U(S0, w, i,Bn)
)

into a DMC

Qn
S|U,S0

. Thus, (43) holds by the law of large numbers (LLN). Further,based on the analysis in Section VII-A, we

have

EBn

∣
∣
∣

∣
∣
∣P

(Bn)
S0,S,V

− Γ
(Bn)
S0,S,V

∣
∣
∣

∣
∣
∣
TV

−−−−→
n→∞

0. (44)

Finally, let f : Sn
0 × Sn × Un → R be defined byf(s0, s,u) , 1{

(s0,s,u)/∈T
(n)
ǫ (QS0,S,U )

} and consider

EBn
PP

((
S0,S,U(S0, w, I,Bn)

)
/∈ T (n)

ǫ (QS0,S,U )
∣
∣
∣Bn

)

= EBn
EP

[

f
(
S0,S,U(S0, w, I,Bn)

)
∣
∣
∣Bn

]

≤ EBn
EΓ

[

f
(
S0,S,U(S0, w, I,Bn)

)
∣
∣
∣Bn

]

+ EBn

∣
∣
∣
∣
EP

[

f
(
S0,S,U(S0, w, I,Bn)

)
∣
∣
∣Bn

]

− EΓ

[

f
(
S0,S,U(S0, w, I,Bn)

)
∣
∣
∣Bn

]
∣
∣
∣
∣

(a)

≤ EBn
PΓ

((
S0,S,U(S0, w, I,Bn)

)
/∈ T (n)

ǫ (QS0,S,U)
∣
∣Bn

)

+ EBn

∣
∣
∣

∣
∣
∣P

(Bn)
S0,S,V

− Γ
(Bn)
S0,S,V

∣
∣
∣

∣
∣
∣
TV

(45)

where (a) uses (42) and the fact thatf is bounded byb = 1. By (43)-(44), the RHS of (45) approaches 0 asn → ∞.

C. Proof of Theorem 3

Fix a PMFQU0,U1,U2,XQY1,Y2|X andǫ > 0.

Codebook Generation:Split eachm2 ∈ M2 into two sub-messages denoted by(m20,m22). The pairmp ,

(m0,m20) is referred to as apublic messageand is to be decoded by both receivers, whilem1 andm22, that serve

as private messages, are to be decoded by receiver 1 and receiver 2, respectively. The cooperation protocol will

use the link to convey information about the decodedmp from receiver 1 to receiver 2. The rates associated with

m20 andm22 are denoted byR20 andR22, while the corresponding alphabets areM20 andM22, respectively.

Furthermore, we useRp , R0 +R20 andMp , M0 ×M20 = [1 : 2nRp ]. The partial ratesR20 andR22 satisfy

R2 = R20 +R22. (46)

The random variablesM20 andM22 are independent and uniform overM20 andM22, and we setMp , (M0,M20).

Note thatMp is uniformly distributed overMp. Moreover, letW be a random variable uniformly distributed over

W = [1 : 2nR̃] and independent of(M0,M1,M2) (which is therefore also independent of(Mp,M1,M22)).

Generate a public message codebook3 C0 that comprises2nRp u0-codewordsu0(mp, C0), mp ∈ Mp, each drawn

according toQn
U0

independent of all the otheru0-codewords. PartitionMp into 2nR12 equal-sized subsets (referred

3The subsequent notations for codebooks omit the blocklength n.
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replacements

u0(1) u0(1) u0(2
nRp)

C0

. . .

. . .

. . .

...

...
......

...
...

C2(1) C2(2) C2(2nRp)

C1(1) C1(2) C1(2nRp)

w=1

w=2nR̃

w=3

w=2

{

u1(2
nR1 , 1, i, w)

}

(i,w)

{

u1(1, 1, i, w)
}

(i,w)

{

u1(1, 1, i, 1)
}

i

u2(1, 1) u2(1, 2)

u2(1, 3) u2(1, 4)

u2(1, 2
nR22)

- m1 message

- u0-codeword

- u1-codeword

- u2-codeword

Legend:

Fig. 10: Codebook structure.

to as “bins”)B(m12), wherem12 ∈ M12.

For eachmp ∈ Mp, generate a codebookC1(mp) that comprises2n(R1+R′
1+R̃) codewordsu1, each drawn

according toQn
U1|U0

(
·
∣
∣u0(mp, C0)

)
independent of all the otheru1-codewords. Label these codewords as

u1(mp,m1, i, w, C1), where(m1, i, w) ∈ M1 × I ×W andI , [1 : 2nR
′
1 ]. Based on this labeling, the codebook

C1(mp) has au1-bin associated with every pair(m1, w) ∈ M1 ×W1, each containing2nR
′

u1-codewords.

For eachmp ∈ Mp also generate a codebookC2(mp) that comprises2nR22 u2-codewords, each associated with

a private messagem22 ∈ M22. Eachu2-codeword is drawn according toQn
U2|U0

(
·
∣
∣u0(mp, C0)

)
independently of

all the otheru2-codewords. DenoteC2(mp) ,
{
u2(mp,m22, C2)

}

m22∈M22
.

The channel inputx associated with a triple(u0,u1,u2) is generated according toQn
X|U0,U1,U2

(
·
∣
∣u0,u1,u2

)
.

The structure of the codebook is illustrated in Fig. 10 (for simplicity, the figure does not show the binning ofMp).

Encoding: To transmit a triple(m0,m1,m2), the encoder transforms it into the triple(mp,m1,m22), and draws
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W uniformly overW . Then, an indexi ∈ I is chosen by the likelihood encoder, i.e., according to the PMF

f
(LE)
BC

(
i
∣
∣w,u0(mp, C0),u2(mp,m22, C2), C1)

=
Qn

U2|U1,U0

(
u2(mp,m22, C2)

∣
∣u1(mp,m1, i, w, C1),u0(mp, C0)

)

∑

i′∈I Qn
U2|U1,U0

(
u2(mp,m22, C2)

∣
∣u1(mp,m1, i′, w, C1),u0(mp, C0)

) . (47)

The corresponding sequencex is transmitted over the BC.

Decoding and Cooperation:Decoder 1:Searches for a unique triple(m̂p, m̂1, ŵ) ∈ Mp×M1×W , for which

there is an index̂i ∈ I such that

(

u0(m̂p, C0),u1(m̂p, m̂1, î, ŵ, C1),y1

)

∈ T (n)
ǫ (QU0,U1,Y1). (48)

Upon finding such a unique triple,(m̂(1)
0 , m̂1) = (m̂0, m̂1) is declared as the decoded message pair; otherwise, an

error is declared.

Cooperation:Having (m̂p, m̂1, î, ŵ), Decoder 1 conveys the bin number ofm̂p to Decoder 2 via the cooperation

link. That is, Decoder 1 shares with Decoder 2 the indexm̂12 ∈ M12 such thatm̂p ∈ B(m̂12).

Decoder 2:Upon receiving(m̂12,y2), Decoder 2 searches for a unique pair( ˆ̂mp, ˆ̂m22) ∈ Mp ×M22, such that

(

u0( ˆ̂mp, C0),u2( ˆ̂mp, ˆ̂m22, C2),y2

)

∈ T (n)
ǫ (QU0,U2,Y2) (49)

where ˆ̂mp ∈ B(m̂12). If such a unique pair is found, then(m̂(2)
0 , m̂2) =

(
ˆ̂m0, ( ˆ̂m20, ˆ̂m22)

)
is declared as the

decoded message; otherwise an error is declared.

The error probability analysis is given in Appendix D and uses Lemma 2 to first show that the above encoding

process results inu0-, u1- and u2-sequences that are jointly typical. Then, by standard joint-typicality decoding

arguments, reliability is established provided that

R′ > I(U1;U2|U0) (50a)

R′ + R̃ > I(U1;U2, Y2|U0) (50b)

R1 +R′ + R̃ < I(U1;Y1|U0) (50c)

R0 +R20 +R1 +R′ + R̃ < I(U0, U1;Y1) (50d)

R22 < I(U2;Y2|U0) (50e)

R0 +R2 −R12 < I(U0, U2;Y2). (50f)

Security Analysis: Let C0 represent a random public message codebook that adheres to the above construction.

Furthermore, letCj , {Cj(mp)}mp∈Mp
, for j = 1, 2, be the private message codebooks 1 and 2, andC1 andC2 be

the corresponding random codebooks. With some abuse of notation, we useC , (C0, C1, C2) andC , (C0,C1,C2).

When clear from the context, we omit the functional dependencies of theuj-codewords,j = 0, 1, 2, on the

corresponding indices and codebooks, e.g., we writeU2 instead ofU2(Mp,M22, C2).
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For any fixedC = C, let the joint distribution induced by the code be

P (C)(w,mp,m1,m22,m12,u0,u2, i,u1,x,y1,y2)

= 2−n(R̃+Rp+R1+R22)1{
mp∈B(m12)

}
∩
{
u0=u0(mp,C0)

}
∩
{
u2=u2(mp,m22,C2)

}

× f
(LE)
BC

(
i
∣
∣w,u0(mp, C0),u2(mp,m22, C2), C1)1{

u1=u1(mp,m1,i,w,C1)
}

×Qn
X|U0,U1,U2

(x|u0,u1,u2)Q
n
Y1,Y2|X

(y1,y2|x). (51)

Accordingly, we have

IP (C)(M1;M12,Y2) ≤ IP (C)(M1;M12,Mp,M22,Y2)

(a)
= IP (C)

(
M1;Y2|Mp,M22,U0(Mp, C0),U2(Mp,M22, C2)

)

(b)
= D

(

P
(C)
Y2|Mp,M1,M22,U0,U2

∣
∣
∣

∣
∣
∣P

(C)
Y2|Mp,M22,U0,U2

∣
∣
∣P

(C)
Mp,M1,M22,U0,U2

)

(c)

≤ D
(

P
(C)
Y2|Mp,M1,M22,U0,U2

∣
∣
∣

∣
∣
∣Qn

Y2|U0,U2

∣
∣
∣P

(C)
Mp,M1,M22,U0,U2

)

(52)

where:

(a) is becauseM1 is independent of(Mp,M22), and sinceM12, U0(Mp, C0) andU2(Mp,M22, C2) are defined by

(Mp,M22);

(b) uses the relative entropy chain rule and the independence ofM1 and
(
Mp,M22,U0(Mp, C0),U2(Mp,M22, C2)

)
;

(c) is since for every fixedC, we have

D
(

P
(C)
Y2|Mp,M1,M22,U0,U2

∣
∣
∣

∣
∣
∣P

(C)
Y2|Mp,M22,U0,U2

∣
∣
∣P

(C)
Mp,M1,M22,U0,U2

)

=
∑

mp,m1,m22,u0,u2,y2

P (C)(mp,m1,m22,u0,u2,y2)

× log

(

P (C)(y2|mp,m1,m22,u0,u2)

P (C)(y2|m22,u0,u2)
·
Qn

Y2|U0,U2
(y2|u0,u2)

Qn
Y2|U0,U2

(y2|u0,u2)

)

= D
(

P
(C)
Y2|Mp,M1,M22,U0,U2

∣
∣
∣

∣
∣
∣Qn

Y2|U0,U2

∣
∣
∣P

(C)
Mp,M1,M22,U0,U2

)

+
∑

mp,m1,m22,u0,u2,y2

P (C)(mp,m1,m22,u0,u2,y2) log

(
Qn

Y2|U0,U2
(y2|u0,u2)

P (C)(y2|mp,m22,u0,u2)

)

= D
(

P
(C)
Y2|Mp,M1,M22,U0,U2

∣
∣
∣

∣
∣
∣Qn

Y2|U0,U2

∣
∣
∣P

(C)
Mp,M1,M22,U0,U2

)

−D
(

P
(C)
Y2|Mp,M22,U0,U2

∣
∣
∣

∣
∣
∣Qn

Y2|U0,U2

∣
∣
∣P

(C)
Mp,M22,U0,U2

)

.

By (52), to satisfy (11b) it suffices to show that there is a sufficiently largen for which

D
(

P
(C)
Y2|Mp,M1,M22,U0,U2

∣
∣
∣

∣
∣
∣Qn

Y2|U0,U2

∣
∣
∣P

(C)
Mp,M1,M22,U0,U2

)

≤ ǫ. (53)
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Taking the expectation of the RHS of (52) over the ensemble ofcodebooks, we have

ECD
(

P
(C)
Y2|Mp,M1,M22,U0,U2

∣
∣
∣

∣
∣
∣Qn

Y2|U0,U2

∣
∣
∣P

(C)
Mp,M1,M22,U0,U2

)

= EC

[
∑

m0,m1,m2,u0,u2

2−n(Rp+R1+R22)1{(
U0(mp,C0),U0(mp,m22,C2)

)
=(u0,u2)

}

×D
(

P
(C)
Y2|Mp=mp,M1=m1,M22=m22,U0=u0,U2=u2

∣
∣
∣

∣
∣
∣Qn

Y2|U0=u0,U2=u2

)
]

(a)
=
∑

u0,u2

EC

[

1{(
U0(1,C0),U2(1,1,C2)

)
=(u0,u2)

}

×D
(

P
(C)
Y2|Mp=1,M1=1,M22=1,U0=u0,U2=u2

∣
∣
∣

∣
∣
∣Qn

Y2|U0=u0,U2=u2

)]

(b)
=
∑

u0,u2

EC1

[

EC0,C2|C1

[

1{(
U0(1,C0),U2(1,1,C2)

)
=(u0,u2)

}

×D
(

P
(C)
Y2|Mp=1,M1=1,M22=1,U0=u0,U2=u2

∣
∣
∣

∣
∣
∣Qn

Y2|U0=u0,U2=u2

)
∣
∣
∣
∣
C1

]]

(c)
=
∑

u0,u2

EC1

[

D
(

P
(C1)
Y2|Mp=1,M1=1,M22=1,U0=u0,U2=u2

∣
∣
∣

∣
∣
∣Qn

Y2|U0=u0,U2=u2

)

× EC0,C2|C1

[

1{(
U0(1,C0),U2(1,1,C2)

)
=(u0,u2)

}

∣
∣
∣C1

]]

(d)
=
∑

u0,u2

EC1

[

D
(

P
(C1)
Y2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,C1

∣
∣
∣

∣
∣
∣Qn

Y2|U0=u0,U2=u2

)

EC0,C2

[

1{(
U0(1,C0),U2(1,1,C2)

)
=(u0,u2)

}
]]

(e)
= EC1

[
∑

u0,u2

Qn
U0,U2

(u0,u2)D
(

P
(C1)
Y2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,C1

∣
∣
∣

∣
∣
∣Qn

Y2|U0=u0,U2=u2

)
]

= EC1D
(

P
(C1)
Y2|Mp=1,M1=1,M22=1,U0,U2,C1

∣
∣
∣

∣
∣
∣Qn

Y2|U0,U2

∣
∣
∣Qn

U0,U2

)

(54)

where:

(a) uses the symmetry of the codebook with respect to the messages;

(b) is the law of total expectation (conditioning the inner expectation onC1);

(c) follows because conditioning onC1 fixes the relative entropy

D
(

P
(C)
Y2|Mp=1,M1=1,M22=1,U0=u0,U2=u2,C1

∣
∣
∣

∣
∣
∣Qn

Y2|U0=u0,U2=u2

)

;

(d) is since the codebook construction makes
(
U0(1,C0),U2(1, 1,C2)

)
independent ofC1;

(e) relies on the coding PMF beingQn
U0,U2

.

We now invoke Lemma 1 on the RHS of (54) by viewingQn
Y2|U0,U1,U2

as a state-dependent DMC fromU1 to

Y2 with state spaceU0 ×U2, and noting that the structure ofC1 and the RHS of (54) fall within the framework of

the lemma. Thus, the first two rate bounds in (50) ensure that

EC1D
(

P
(C1)
Y2|Mp=1,M1=1,M22=1,U0,U2

∣
∣
∣

∣
∣
∣Qn

Y2|U0,U2

∣
∣
∣Qn

U0,U2

)

−−−−→
n→∞

0. (55)

By (52) and (54), (55) implies thatECL(C) → 0, asn → ∞.
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The Selection Lemma [19, Lemma 2.2] applied to the random variableC and the functionsPe andL implies the

existence of a realizationC of C that satisfies (11). Finally, we apply Fourier-Motzkin elimination (FME) on (50)

while using (46) and the non-negativity of the involved terms, to eliminateR20, R′ and R̃. Since the above linear

inequalities have constant coefficients, the FME can be performed by a computer program, e.g., by the FME-IT

algorithm [49]. This establishes (12) as an inner bound.

Remark 5 The main differences between the coding schemes for the cooperative BC with one confidential message

and the same channel without secrecy [35] are threefold. First, a randomizerW is used in the secrecy-achieving

scheme. Second, the cooperation messageM12 depends onM20 rather than on the pair(M10,M20) (M10 refers

to the public part of the messageM1). Note that conveying anM12 that holds any part ofM1 (in the form of

its public part M10) violates the secrecy requirement. Finally, a prefix channel QX|U0,U1,U2
is used to optimize

randomness and, in turn, to concealM1 from the 2nd receiver.

D. Converse Proof for Theorem 4

We show that if a rate tuple(R12, R0, R1, R2) is achievable, then there exists a PMFQW,V,Y1,XQY2|X with

Y1 = f(X), such that the inequalities in (14) are satisfied. Fix an achievable tuple(R12, R0, R1, R2) and anǫ > 0,

and letCn be the corresponding(n,R12, R0, R1, R2) code for some sufficiently largen ∈ N. The joint distribution

induced byCn is

P
(
m0,m1,m2,x,y1,y2,m12, (m̂

(1)
0 , m̂1), (m̂

(2)
0 , m̂2)

)
= 2−n(R0+R1+R2)f (E)(x|m0,m1,m2)

× 1{

⋂

n
i=1

(
y1,i=f(xi)

)
}Qn

Y2|X
(y2|x)1{

m12=f12(y1)
}
∩
{
(m̂

(1)
0 ,m̂1)=φ1(y1)

}
∩
{
(m̂

(2)
0 ,m̂2)=φ2(y2,m12)

} (56)

Thoughout the converse proof, all multi-letter information measures are calculated with respect to the PMF from

(56) or its marginals. By Fano’s inequality we have

H(M0,M1|Y
n
1 ) ≤ 1 + nǫ(R0 +R1) , nǫ(1)n (57a)

H(M0,M2|M12, Y
n
2 ) ≤ 1 + nǫ(R0 +R2) , nǫ(2)n . (57b)

Define

ǫn = max
{
ǫ(1)n , ǫ(2)n

}
. (57c)

Moreover, by (11b), we write

ǫ ≥ I(M1;M12, Y
n
2 )

= I(M1;M0,M2,M12, Y
n
2 )− I(M1;M0,M2|M12, Y

n
2 )

(a)

≥ I(M1;M12, Y
n
2 |M0,M2)−H(M0,M2|M12, Y

n
2 )

(b)

≥ I(M1;M12, Y
n
2 |M0,M2)− nǫn (58)
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where (a) uses the independence ofM1 and (M0,M2) and the non-negativity of entropy, while (b) follows from

(57). Thus,

I(M1;M12, Y
n
2 |M0,M2) ≤ ǫ+ nǫn. (59)

It follows that

nR1 = H(M1)

(a)
= H(M1|M12,M0,M2) + I(M1;M12|M0,M2)

(b)

≤ I(M1;Y
n
1 |M12,M0,M2) + I(M1;M12|M0,M2)− I(M1;M12, Y

n
2 |M0,M2) + nδ(1)n

(c)
=

n∑

i=1

[

I(M1;Y
i
1 , Y

n
2,i+1|M12,M0,M2)− I(M1;Y

i−1
1 , Y n

2,i|M12,M0,M2)
]

+ nδ(1)n

=

n∑

i=1

[

I(M1;Y1,i|M12,M0,M2, Y
i−1
1 , Y n

2,i+1)− I(M1;Y2,i|M12,M0,M2, Y
i−1
1 , Y n

2,i+1)
]

+ nδ(1)n

(d)
=

n∑

i=1

[

H(Y1,i|M2,Wi)−H(Y1,i|M1,M2,Wi)− I(M1;Y2,i|M2,Wi)
]

+ nδ(1)n

≤
n∑

i=1

[

H(Y1,i|M2,Wi)− I(Y1,i;Y2,i|M1,M2,Wi)− I(M1;Y2,i|M2,Wi)
]

+ nδ(1)n

=
n∑

i=1

[

H(Y1,i|M2,Wi)− I(M1, Y1,i;Y2,i|M1,M2,Wi)
]

+ nδ(1)n

≤
n∑

i=1

H(Y1,i|M2,Wi, Y2,i) + nδ(1)n (60)

where:

(a) is becauseM1 is independent(M0,M2);

(b) follows from (57)-(58) and by denotingδ(1)n = 2ǫn + ǫ
n ;

(c) is a telescoping identity [50, Eqs. (9) and (11)];

(d) is by definingWi = (M12,M0, Y
i−1
1 , Y n

2,i+1).

The common message rateR0 satisfies

nR0 = H(M0)

(a)

≤ I(M0;Y
n
1 ) + nǫn (61a)

=
n∑

i=1

I(M0;Y1,i|Y
i−1
1 ) + nǫn

≤
n∑

i=1

I(M0, Y
i−1
1 ;Y1,i) + nǫn

(b)

≤
n∑

i=1

I(Wi;Y1,i) + nǫn (61b)
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where (a) uses (57) and (b) follows by the definition ofWi. Combining (60) with (61b) yields

n(R0 +R1) ≤
n∑

i=1

[

H(Y1,i|M2,Wi, Y2,i) + I(Wi;Y1,i)
]

+ nδ(2)n (62)

whereδ(2)n = δ
(1)
n + ǫn.

For the sumR0 +R2, we have

n(R0 +R2) = H(M0,M2)

(a)

≤ I(M0,M2;M12, Y
n
2 ) + nǫn

= I(M0,M2;Y
n
2 |M12) + I(M0,M2;M12) + nǫn

(b)

≤ I(M0,M2;Y
n
2 |M12) + nR12 + nǫn

=

n∑

i=1

I(M0,M2;Y2,i|M12, Y
n
2,i+1) + nR12 + nǫn

(c)

≤
n∑

i=1

I(M2,Wi;Y2,i) + nR12 + nǫn (63)

where:

(a) uses (57);

(b) is by the non-negativity of entropy and since a uniform distribution maximizes entropy;

(c) follows from the definition ofWi and because conditioning cannot increase entropy.

To boundR0 +R1 +R2, we begin by writing

n(R0 +R1 +R2) = H(M0,M1,M2) = H(M1|M0,M2) +H(M2|M0) +H(M0). (64)

Consider

H(M2|M0)
(a)

≤ I(M2;Y
n
2 |M12,M0) + I(M2;M12|M0) + nǫn

(b)
=

n∑

i=1

[

I(M2;Y
n
2,i|M12,M0, Y

i−1
1 )− I(M2;Y

n
2,i+1|M12,M0, Y

i
1 )
]

+ I(M2;M12|M0) + nǫn

(c)
=

n∑

i=1

[

I(M2;Y
n
2,i+1|M12,M0, Y

i−1
1 ) + I(M2;Y2,i|Wi)− I(M2;Y1,i, Y

n
2,i+1|M12,M0, Y

i−1
1 )

+ I(M2;Y1,i|M12,M0, Y
i−1
1 )

]

+ I(M2;M12|M0) + nǫn

(d)
=

n∑

i=1

[

I(M2;Y2,i|Wi)− I(M2;Y1,i|Wi)
]

+ I(M2;Y
n
1 |M0) + nǫn (65)

where:

(a) is by (57) and by the mutual information chain rule;

(b) is a telescoping identity;

(c) follows from the definition ofWi;
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(d) is due to the mutual information chain rule and the definition of Wi (second term), and becauseM12 is defined

by Y n
1 (third term).

Combining (61a) with (65), yields

n(R0 +R2) ≤
n∑

i=1

[

I(M2;Y2,i|Wi)− I(M2;Y1,i|Wi)
]

+ I(M0,M2;Y
n
1 ) + 2nǫn

(a)

≤
n∑

i=1

[

I(M2;Y2,i|Wi)− I(M2;Y1,i|Wi) +H(Y1,i)−H(Y1,i|M0,M2, Y
i−1
1 )

]

+ 2nǫn

(b)

≤
n∑

i=1

[

I(M2;Y2,i|Wi) + I(Wi;Y1,i)− I(M12, Y
n
2,i+1;Y1,i|M0,M2, Y

i−1
1 )

]

+ 2nǫn

(c)

≤
n∑

i=1

[

I(M2;Y2,i|Wi) + I(Wi;Y1,i)
]

+ 2nǫn (66)

where:

(a) is because conditioning cannot increase entropy;

(b) uses the definition ofWi;

(c) is by the non-negativity of mutual information.

By inserting (60) and (66) into (64), we bound the sum of ratesas

n(R0 +R1 +R2) ≤
n∑

i=1

[

H(Y1,i|M2,Wi, Y2,i) + I(M2;Y2,i|Wi) + I(Wi;Y1,i)
]

+ nδ(3)n (67)

whereδ(3)n = δ
(1)
n + 2ǫn.

The bounds in (60), (62), (63) and (66) are rewritten by introducing a time-sharing random variableT that is

uniformly distributed over the set[1 : n] and is independent of(M0,M1,M2, X
n, Y n

1 , Y n
2 ). For instance, (60) is

rewritten as

R1 ≤
1

n

n∑

t=1

H(Y1,t|M2,Wt, Y2,t) + δ(1)n

=

n∑

t=1

P
(
T = t

)
H(Y1,T |M2,WT , Y2,T , T = t) + δ(1)n

= H(Y1,T |M2,WT , Y2,T , T ) + δ(1)n (68)

DenoteW , (WT , T ), V , (M2,W ), X , XT , Y1 , Y1,T and Y2 , Y2,T . This results in the bounds (14)

with small added terms such asǫn and δ
(1)
n . For largen, we can make these terms approach 0. The converse is

completed by showing the PMF of(W,V,X, Y1, Y2) factors asPW,V,Y1,XPY2|X , which boils down to the Markov

relation

(W,V, Y1)−X − Y2. (69)

This is proven in Appendix E-A.
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E. Converse Proof for Theorem 5

We show that given an achievable rate tuple(R12, R0, R1, R2), there is a PMFQW,XQY1|XQY2|Y1
for which (15)

holds. Let be(R12, R0, R1, R2) an achievable tuple and fixǫ > 0. Let Cn be the corresponding(n,R12, R0, R1, R2)

code for some sufficiently largen ∈ N. The induced joint distribution is coincides (56) up to replacing the DM

SD-BC transition matrixP (y1,y2|x) = 1{

⋂

n
i=1

(
y1,i=f(xi)

)
}Qn

Y2|X
(y2|x) from (56) with this of a PD-BC, i.e.,

with P (y1,y2|x) = Qn
Y1|X

(y1|x)Qn
Y2|Y1

(y2|y1). All multi-letter information measures throughout this proof are

calculated with respect to the induced PMF or its marginals.Fano’s inequality gives

H(M0,M1|Y
n
1 ) ≤ 1 + nǫ(R0 +R1) , nκ(1)

n (70a)

H(M0,M2|M12, Y
n
2 ) ≤ 1 + nǫ(R0 +R2) , nκ(2)

n (70b)

H(M0,M1,M2|Y
n
1 , Y n

2 ) ≤ 1 + nǫ(R0 +R1 +R2) , nκ(3)
n (70c)

and we set

κn = max
{
κ(1)
n , κ(2)

n , κ(3)
n

}
= κ(3)

n . (70d)

Further, by the strong-secrecy constraint (11b), we have

ǫ ≥ I(M1;M12, Y
n
2 )

= I(M1;M0,M2,M12, Y
n
2 )− I(M1;M0,M2|M12, Y

n
2 )

(a)

≥ I(M1;M12, Y
n
2 |M0,M2)−H(M0,M2|M12, Y

n
2 )

(b)

≥ I(M1;Y
n
2 |M0,M2)− nκn (71)

where (a) uses the independence ofM1 and(M0,M2) and the non-negativity of entropy, while (b) is by (70) and

since conditioning cannot increase entropy. This yields

I(M1;Y
n
2 |M0,M2) ≤ ǫ+ nκn. (72)

We bound

nR1 = H(M1)

(a)
= H(M1|M0,M2)

(b)

≤ I(M1;Y
n
1 |M0,M2)− I(M1;Y

n
2 |M0,M2) + nηn

(c)
=

n∑

i=1

[

I(M1;Y
i
1 , Y

n
2,i+1|M0,M2)− I(M1;Y

i−1
1 , Y n

2,i|M0,M2)
]

+ nηn

(d)
=

n∑

i=1

[

I(M1;Y1,i|Wi)− I(M1;Y2,i|Wi)
]

+ nηn (73a)
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(e)
=

n∑

i=1

I(M1;Y1,i|Wi, Y2,i) + nηn

(f)

≤
n∑

i=1

I(Xi;Y1,i|Wi, Y2,i) + nηn

(g)

≤
n∑

i=1

[

I(Xi;Y1,i|Wi)− I(Xi;Y2,i|Wi)
]

+ nηn (73b)

where:

(a) uses the independence ofM1 and (M0,M2);

(b) is by (70) and (71), and by denotingηn = 2κn + ǫ
n ;

(c) is a telescoping identity;

(d) follows by definingWi , (M0,M2, Y
i−1
1 , Y n

2,i+1);

(e) and (g) rely on the mutual information chain rule and the PD property of the channel, which implies that

(M1, Xi)− (Wi, Y1,i)− Y2,i forms a Markov chain for alli ∈ [1 : n];

(f) follows sinceM1 − (Wi, Xi, Y1,i)− Y2,i forms a Markov chain.

Next, we have

n(R0 +R2) = H(M0,M2)

(a)

≤ I(M0,M2;M12, Y
n
2 ) + nκn

(b)

≤ I(M0,M2;Y
n
2 ) + nR12 + nκn

=
n∑

i=1

I(M0,M2;Y2,i|Y
n
2,i+1) + nR12 + nκn

(c)

≤
n∑

i=1

I(Wi;Y2,i) + nR12 + nκn (74)

where:

(a) is by (70);

(b) is because entropy is non-negative and is maximized by the uniform distribution;

(c) follows from the definition ofWi and because conditioning cannot increase entropy.

Finally, consider

n(R0 +R1 +R2) = H(M0,M1,M2)

(a)

≤ I(M0,M1,M2;Y
n
1 , Y n

2 )− I(M1;Y
n
2 |M0,M2) + nηn

(b)
= I(M0,M1,M2;Y

n
1 )− I(M1;Y

n
2 |M0,M2) + nηn

(c)
=

n∑

i=1

[

I(M0,M1,M2, Y
n
2,i+1;Y1,i|Y

i−1
1 )− I(Y n

2,i+1;Y1,i|M0,M1,M2, Y
i−1
1 )

− I(M1;Y2,i|M0,M2, Y
n
2,i+1)

]

+ nηn
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(d)
=

n∑

i=1

[

I(M0,M1,M2, Y
n
2,i+1;Y1,i|Y

i−1
1 )− I(Y i−1

1 ;Y2,i|M0,M1,M2, Y
n
2,i+1)

− I(M1;Y2,i|M0,M2, Y
n
2,i+1)

]

+ nηn

≤
n∑

i=1

[

I(M0,M1,M2, Y
i−1
1 , Y n

2,i+1;Y1,i)− I(M1, Y
i−1
1 ;Y2,i|M0,M2, Y

n
2,i+1)

]

+ nηn

(e)

≤
n∑

i=1

[

I(Wi;Y1,i) + I(M1;Y1,i|Wi)− I(M1;Y2,i|Wi)
]

+ nηn

(f)

≤
n∑

i=1

[

I(Wi;Y1,i) + I(Xi;Y1,i|Wi)− I(Xi;Y2,i|Wi)
]

+ nηn

(g)
=

n∑

i=1

[

I(Xi;Y1,i)− I(Xi;Y2,i|Wi)
]

+ nηn (75)

where:

(a) uses (70) and the definition ofηn;

(b) is because(M0,M1,M2) − Y n
1 − Y n

2 forms a Markov chain, which is induced by the PD degraded and

memoryless property of the channel;

(c) is the mutual information chain rule;

(d) uses the Csiszár sum identity;

(e) follows from the definitions ofWi and because conditioning cannot increase entropy;

(f) is by repeating steps (73a)-(73b);

(g ) is by the mutual information chain rule and becauseWi −Xi−Y1,i forms a Markov chain (see Appendix E-B

for the proof).

By time-sharing arguments similar to those presented in Section VII-D, and by denotingW , (WT , T ), X , XT ,

Y1 , Y1,T andY2 , Y2,T , we obtain the bounds of (15) with the small added termsκn andηn, which approach 0

asn → ∞. In Appendix E-B we shown that the chain

W −X − Y1 − Y2 (76)

is Markov, which establishes the converse.

VIII. S UMMARY AND CONCLUDING REMARKS

We considered cooperative BCs with one common and two private messages, where the private message to the

cooperative user is confidential. An inner bound on the strong-secrecy-capacity region was established by deriving

a channel resolvability lemma and using it as a building block in the BC code. The analysis was made tractable

by incorporating the likelihood encoder [33] as the multicoding mechanism.

For the BC, a resolvability-based Marton code with a double-binning of the confidential message codebook was

constructed, and the resolvability lemma was invoked to achieve strong-secrecy. The cooperation protocol used

the link from Decoder 1 to Decoder 2 to share information on a portion of the non-confidential message and the



32

common message only. Removing the secrecy constraint onM1 allows a more flexible cooperation scheme that in

general achieves strictly higher transmission rates [35].The inner bound was shown to be tight for the SD and PD

cases. Two separate converse proofs were used because the structure of the joint PMFs describing the regions seem

to require distinct choices of auxiliary random variable.

The secrecy results were compared to those of the corresponding BCs without secrecy constraints, and the impact

of secrecy on the capacity regions was highlighted. Cooperative Blackwell and Gaussian BCs visualized the results.

An explicit coding scheme that achieves strong-secrecy while maximizing the transmission rate of the confidential

message over the BBC was given. Further, it was shown that thestrong-secrecy-capacity region of the BBC remains

unchanged even if the subchannel to the legitimate user is noiseless.

APPENDIX A

PROOF OFPROPOSITION7

Consider the SD-BC depicted in Fig. 3, whereX1 = X2 = Y1 = Y2 =
{
0, 1
}

. SettingU0 = W , U1 = Y1 and

U2 = V into RNS recovers the capacity-regionC(SD)
NS of the cooperative SD-BC [35, Theorem 5], which is the

union of rate triples(R12, R1, R2) ∈ R3
+ satisfying:

R1 ≤ H(Y1) (77a)

R2 ≤ I(W,V ;Y2) +R12 (77b)

R1 +R2 ≤ H(Y1|W,V ) + I(V ;Y2|W ) + min
{

I(W ;Y1), I(W ;Y2) +R12

}

(77c)

where the union is over all PMFsQV,U,Y1,XQY2|X for which Y1 = f(X). SettingU0 = W , U1 = Y1 andU2 = V

into R̃NS, gives a region that coincides with (77), up to replacing (77a) with

R1 ≤ H(Y1|W ) +
[

I(V ;Y2|W )− I(V ;Y1|W )
]+

. (78)

Denoting the obtained region bỹR(SD)
NS , we outer bound it by loosening (78) to

R1 ≤ H(Y1|W ). (79)

Let Õ(SD)
NS denote the obtained outer bound onR̃

(SD)
NS . We show that under the considered exampleÕ

(SD)
NS ( C

(SD)
NS .

For anyr ∈ R+, let

C
(SD)
NS (r) ,

{

(r, R1, R2) ∈ C
(SD)
NS

}

(80a)

Õ
(SD)
NS (r) ,

{

(r, R1, R2) ∈ Õ
(SD)
NS

}

(80b)

be the projections ofC(SD)
NS and Õ

(SD)
NS on the (R1, R2) plane forR12 = r. Set r = 1 and note thatR1 = 1 is

the maximal achievable rate ofM1 in bothC
(SD)
NS andÕ(SD)

NS . Define the maximal achievableR2 that preserves for
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R1 = 1 in each region by

R⋆
2 , max

{

R2 ∈ R+

∣
∣
∣(1, 1, R2) ∈ C

(SD)
NS (1)

}

(81a)

R̃⋆
2 , max

{

R2 ∈ R+

∣
∣
∣(1, 1, R2) ∈ Õ

(SD)
NS (1)

}

. (81b)

We next evaluateR⋆
2 and R̃⋆

2, and then chooseQY2|X1,X2
for which R⋆

2 > R̃⋆
2.

For C(SD)
NS (1), settingX1 ∼ Ber

(
1
2

)
achievesR1 = 1 since

R1 = H(Y1) = H(X1) = 1. (82)

Consequently, forR⋆
2 we have

R⋆
2

(a)
= max

QW,V,X2|X1
:

(W,V )−(X1,X2)−Y2

min
{

I(W,V ;Y2) + 1 , I(V ;Y2|W )− I(V ;Y1|W ) , I(W,V ;Y2) +H(Y1|W,V )
}

(b)

≥ max
QV,X2|X1

:

V −(X1,X2)−Y2

min
{

I(X1, V ;Y2) + 1 , I(V ;Y2|X1)− I(V ;Y1|X1) , I(X1, V ;Y2) +H(Y1|X1, V )
}

(c)
= max

QV,X2|X1
:

V−(X1,X2)−Y2

I(V ;Y2|X1) (83)

where (a) uses the structure ofC
(SD)
NS from (77) and the relationR12 = H(Y1) = 1, (b) follows by settingW = X1

and because the Markov chain(X1, V ) − (X1, X2) − Y2 implies thatV − (X1, X2) − Y2 also forms a Markov

chain, while (c) is becauseI(V ;Y1|X1) = H(Y1|X1, V ) = 0 andI(V ;Y2|X1) ≤ I(X1, V ;Y2).

AchievingR1 = 1 in Õ
(SD)
NS (1) requiresX1 ∼ Ber

(
1
2

)
that is independent ofW . This is since inÕ(SD)

NS (1) we

have

R1 ≤ H(Y1|W ) = H(X1|W ) ≤ H(X1) ≤ 1 (84)

and (X1,W ) as above satisfy (84) with equality. For̃R⋆
2, we have

R̃⋆
2

(a)
= max

QWQV,X2|W,X1
:

(W,V )−(X1,X2)−Y2

min
{

I(W,V ;Y2) + 1 , I(V ;Y2|W )− I(V ;Y1|W ) , I(W,V ;Y2) +H(Y1|W,V )
}

(b)
= max

QWQV,X2|X1,W :

(W,V )−(X1,X2)−Y2

I(V ;Y2|W )− I(V ;Y1|W )

(c)

≤ max
w∈W

max
QV,X2|X1,W=w:

Vw−(X1,X2,w)−Y2

I(V ;Y2|W = w)− I(V ;Y1|W = w)

≤ max
QV,X2|X1

:

V−(X1,X2)−Y2

I(V ;Y2)− I(V ;Y1) (85)

where:

(a) uses the structure of̃Q(SD)
NS , the independence ofW andX1 = Y1 and the relationR12 = H(Y1|W ) = 1;

(b) follows by I(V ;Y2|W ) ≤ I(W,V ;Y2) and the non-negativity of mutual information and entropy.
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(c) is by defining(Vw, X2,w) to be a pair of random variables jointly distributed withX1 ∼ Ber
(
1
2

)
according to

QX1QV,X2|X1,W=w, wherew ∈ W .

The lower bound onR⋆
2 from (83) is the capacity of the state-dependent channelQY2|X1,X2

with non-causal

CSI available at the transmitting and receiving ends. The upper bound onR̃⋆
2 given in (85) is the capacity of the

corresponding GP channel, i.e., with non-causal transmitter CSI only. Thus, to show that̃R⋆
2 < R⋆

2 it suffices to

chooseQY2|X1,X2
for which the GP capacity is strictly less than the capacity with full CSI. A simple example for

which these capacities are different is the binary dirty-paper (BDP) channel. Specifically, letQY2|X1,X2
be defined

by

Y2 = X2 ⊕X1 ⊕ Z (86)

where⊕ denotes modulo 2 addition,X1 ∼ Ber
(
1
2

)
plays the role of the channel’s state, and the noiseZ ∼ Ber(ǫ),

with ǫ ∈
[
0, 12

]
is independent of(X1, X2). The inputX2 is subject to a constraint1nwH(x2) ≤ q, for q ∈

[
0, 1

2

]
,

wherewH :
{
0, 1
}n

→ N ∪
{
0
}

is the Hamming weight. For the BDP channel, the GP capacity is[44]–[46]

C
(BDP)
GP = max

QV,X2|X1
:

V −(X1,X2)−Y2

I(V ;Y2)− I(V ;Y1) = uce
{[

Hb(q)−Hb(ǫ)
]+
}

(87)

where ‘uce’ is the upper convex envelope operation with respect toq (ǫ is constant). On the other hand, the capacity

of the BDP channel with full CSI is [44]–[46]

C
(BDP)
F−CSI = max

QV,X2|X1
:

V−(X1,X2)−Y2

I(V ;Y2|X1) = Hb(q ∗ ǫ)−Hb(ǫ) (88)

whereq ∗ ǫ = q(1 − ǫ) + (1 − q)ǫ. Clearly, q and ǫ can be chosen to yieldC(BDP)
GP < C

(BDP)
F−CSI, which shows that

R
(SD)
NS andR̃(SD)

NS are not equal in general.

APPENDIX B

CONVERSEPROOF FOR(27)

To prove the optimality of (27), we show thatC(PD)
S ⊆ C

(G)
S (C(PD)

S and C
(G)
S are given by (15) and (27),

respectively). First consider

1

2
log(2πeN1) = h(Z1) = h(Y1|X)

(a)

≤ h(Y1|W ) ≤ h(Y1) ≤
1

2
log
(
2πe(P +N1)

)
(89)

where (a) is becauseW −X−Y1 forms a Markov chain. The intermediate-value theorem and (89) imply that there

is anα ∈ [0, 1], such that
1

2
log
(
2πe(αP +N1)

)
. (90)

Further, for everyw ∈ W , we have

h(Y2|W = w) = h(Y1 + Z2|W = w)
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(a)

≥
1

2
log
(

22h(Y1|W=w) + 22h(Z2|W=w)
)

(b)
=

1

2
log
(

22h(Y1|W=w) + 2πe(N2 −N1)
)

(91)

where (a) uses the conditional entropypower inequality (EPI), while (b) follows by the independence ofZ2 andW .

Using (91), we lower boundh(Y2|W ) in terms ofh(Y1|W ) as

h(Y2|W ) = EW

[
h(Y2|W )

]

(a)

≥ EW

[
1

2
log
(

22h(Y1|W ) + 2πe(N2 −N1)
)]

(b)

≥
1

2
log

(

22EW

[
h(Y1|W )

]

+ 2πe(N2 −N1)

)

=
1

2
log
(

22h(Y1|W ) + 2πe(N2 −N1)
)

=
1

2
log
(
2πe(αP +N2)

)
(92)

where (a) follows from (91), while (b) uses the convexity of the functionx → log(2x+ c) for c ∈ R+ and Jensen’s

inequality.

Having this, we present the following upper bounds of the information terms in the RHS of (15). For (15a), we

have

I(X ;Y1|W )− I(X ;Y2|W )
(a)
= h(Y1|W )− h(Y1|X)− h(Y2|W ) + h(Y2|X)

(b)

≤
1

2
log

(

1 +
αP

N1

)

−
1

2
log

(

1 +
αP

N2

)

(93)

where (a) follows since the chainW −X − (Y1, Y2) is Markov, while (b) relies on (90), (92) and on the Gaussian

distribution being the maximizer of the differential entropy under a variance constraint. Next, using (92) we bound

the RHS of (15b) as

I(W ;Y2) +R12 = h(Y2)− h(Y2|W ) +R12 ≤
1

2
log

(

1 +
ᾱP

αP +N2

)

+R12. (94)

By repeating arguments similar to those in the derivation of(93), we bound the sum of ratesR1 +R2 as

R1 +R2 ≤
1

2
log

(

1 +
P

N1

)

−
1

2
log

(

1 +
αP

N2

)

. (95)

APPENDIX C

PROOF OFLEMMA 10

For a fixed codebookBn and every(s0, s,v) ∈ Sn
0 × Sn × Vn, we have

P (Bn)(s0, s,v) = Qn
S0,S(s0, s)

∑

w,i

2−nR̃f (LE)(i|w, s0, s,Bn)Q
n
V |U,S0,S

(
v
∣
∣u(s0, w, i,Bn), s0, s

)
. (96)

Let (s0, s,v) ∈ Sn
0 ×Sn ×Vn be a triple such thatQn

S0,S,V
(s0, s,v) = 0. Clearly, if Qn

S0,S
(s0, s) = 0 then (96)
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implies thatP (Bn)(s0, s,v) = 0. Thus, we henceforth assume thatQn
S0,S

(s0, s) > 0 andQn
V |S0,S

(v|s0, s) = 0. By

expanding

Qn
V |S0,S

(v|s0, s) =
∑

u∈supp
(

Qn
U|S0=s0,S=s

)

Qn
U|S0,S

(u|s0, s)Q
n
V |U,S0,S

(v|u, s0, s) (97)

we haveQn
V |U,S0,S

(v|u, s0, s) = 0 for everyu ∈ supp
(

Qn
U|S0=s0,S=s

)

. Thus, to complete the proof it suffices to

show that everyu-codeword that is transmitted with positive probability isin supp
(

Qn
U|S0=s0,S=s

)

.

By the construction of the codebook, everyu ∈ Bn also satisfiesu ∈ supp
(

Qn
U|S0=s0

)

. More-

over, a necessary condition for a codewordu(s0, w, i,Bn) to be chosen by the encoder with positive

probability is f (LE)(i|w, s0, s,Bn) > 0, which by the definition of the likelihood encoder implies that

Qn
S|U,S0

(
s
∣
∣u(s0, w, i,Bn), s0

)
> 0. Combining the above, we have that if a codewordu(s0, w, i,Bn) is transmitted

with positive probability then

Qn
U|S0,S

(
u(s0, w, i,Bn)

∣
∣s0, s

)
=

Qn
S0,S,U

(
s0, s,u(s0, w, i,Bn)

)

Qn
S0,S

(s0, s)

=
Qn

S0
(s0)Q

n
U|S0

(
u(s0, w, i,Bn)

∣
∣s0
)
Qn

S|U,S0

(
s
∣
∣u(s0, w, i,Bn), s0

)

Qn
S0,S

(s0, s)
> 0.

APPENDIX D

ERROR PROBABILITY ANALYSIS FOR THEOREM 3

By symmetry, we assume that(Mp,M1,M22,W ) = 1 = (1, 1, 1, 1) is chosen. We also defineI to be a random

variable that represents the index chosen by the likelihoodencoder.

Encoding errors: An encoding error occurs if theu1-codeword chosen by the likelihood encoder is not jointly

typical
(
U0(Mp,C0),U2(Mp,M22,C2)

)
. This is described by the event

E =
{(

U0(1,C0),U1(1, 1, I, 1,C1),U2(1, 1,C2)
)
/∈ T (n)

ǫ (QU0,U1,U2)
}

. (98)

To expand the expected probability of (98) over the ensembleof codebooks, we use the definitions of the random

variablesCj , for j = 0, 1, 2, andC given in Section VII-C and denoteT , T
(n)
ǫ (QU0,U1,U2). We have

ECP
((

U0(Mp,C0),U1(Mp,M1, I,W,C1),U2(Mp,M22,C2)
)
/∈ T

∣
∣
∣C
)

(a)
= ECP

((
U0(1,C0),U1(1, 1, I, 1,C1),U2(1, 1,C2)

)
/∈ T

∣
∣
∣C, (Mp,M1,M22,W ) = 1

)

= EC

[
∑

i,u0,u1,u2

1{(
U0(1,C0),U2(1,1,C2)

)
=(u0,u2)

}f
(LE)
BC (i|1,u0,u2,C1)

× 1{
U1(1,1,i,1,C1)=u1

}1{
(u0,u1,u2)/∈T

}

]

(b)
= EC1

[
∑

i,u0,u1,u2

Qn
U0,U2

(u0,u2)f
(LE)
BC (i|1,u0,u2,C1)1{

U1(1,1,i,1,C1)=u1

}1{
(u0,u1,u2)/∈T

}

]

(c)
= EC1PQn

U0,U2

((
U0,U1

(
1, 1, I, 1,C1

)
,U2

)
/∈ T

∣
∣
∣C1

)

(99)
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where:

(a) follows by the symmetry of the code construction;

(b) uses the law of total expectation and the independence of
(
U0(1,C0),U2(1, 1,C2)

)
andC1 in a similar manner

to steps (b)-(d) in the derivation of (54) in Section VII-C;

(c) is becausePQn
U0,U2

(·) denotes that(U0,U2) ∼ Qn
U0,U2

.

By Lemma 2, if (50a)-(50b) hold then the RHS of (99) approaches 0 asn → ∞, which shows thatP(E) → 0

asn → ∞.

Decoding errors: Let i ∈ I be the realization ofI chosen by the encoder and̂m12 ∈ M12 be the cooperation

index conveyed via the link from Decoder 1 to Decoder 2. To account for decoding errors, define the events

D1(mp,m1, ĩ, w) =
{(

U0(mp,C0),U1(mp,m1, ĩ, w,C1),Y1

)
∈ T (n)

ǫ (QU0,U1,Y1)
}

(100a)

D2(mp,m22) =
{(

U0(mp,C0),U2(mp,m22,C2),Y2

)
∈ T (n)

ǫ (QU0,U2,Y2)
}

. (100b)

By the union bound, the expected error probability is bounded as

EPe(C) ≤ P
(
E
)
+
(

1− P
(
E
))









P
(

Dc
1(1, 1, i, 1)

∣
∣
∣Ec
)

︸ ︷︷ ︸

P
[1]
1

+P




⋃

m̃p 6=1

D1(m̃p, 1, i, 1)

∣
∣
∣
∣
∣
∣

Ec





︸ ︷︷ ︸

P
[2]
1

+ P







⋃

ĩ,m̃1 6=1,
w̃ 6=1

D1(1, m̃1, ĩ, w̃)

∣
∣
∣
∣
∣
∣
∣
∣

Ec







︸ ︷︷ ︸

P
[3]
1

+P







⋃

ĩ,m̃p 6=1
m̃1 6=1,w̃ 6=1

D1(m̃p, m̃1, ĩ, w̃)

∣
∣
∣
∣
∣
∣
∣
∣

Ec







︸ ︷︷ ︸

P
[4]
1

+ P
(

Dc
2(1, 1)

∣
∣
∣Ec
)

︸ ︷︷ ︸

P
[1]
2

+P







⋃

m̃p 6=1:
m̃p∈B(m̂12)

D2(m̃p, 1)

∣
∣
∣
∣
∣
∣
∣
∣

Ec







︸ ︷︷ ︸

P
[2]
2

+P




⋃

m̃22 6=1

D2(1, m̃22)

∣
∣
∣
∣
∣
∣

Ec





︸ ︷︷ ︸

P
[3]
2

+ P







⋃

m̃p 6=1,m̃22 6=1:
m̃p∈B(m̂12)

D2(m̃p, m̃22)

∣
∣
∣
∣
∣
∣
∣
∣

Ec







︸ ︷︷ ︸

P
[4]
2









. (101)

Note that
{
P

[k]
j

}4

k=1
correspond to errors that occur at Decoderj, wherej = 1, 2. We proceed with the following

steps:

1) P
[1]
j , for j = 1, 2, approaches 0 asn → ∞ by the LLN.
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2) ForP [3]
1 , consider the bound

P
[3]
1

(a)

≤
∑

ĩ,m̃1 6=1,w̃ 6=1

2−n
(
I(U1;Y1|U0)−δ

[3]
1 (ǫ)

)

≤ 2n(R1+R′+R̃)2−n
(
I(U1;Y1|U0)−δ

[3]
1 (ǫ)

)

= 2n
(
R1+R′+R̃−I(U1;Y1|U0)+δ

[3]
1 (ǫ)

)

where (a) is because for everyĩ ∈ I, m̃1 6= 1 and w̃ 6= 1, U1(1, m̃1, ĩ, w̃j ,C1) is independent ofY1 while

both U1(1, m̃1, ĩ, w̃j ,C1) andY1 are drawn conditioned onU0(1,C0). Moreover, we haveδ[3]1 (ǫ) → 0 as

ǫ → 0. Hence, forP [3]
1 to vanish asn → ∞, we take:

R1 + R′ + R̃ < I(U1;Y1|U0). (102)

3) ForP [4]
1 , we have

P
[4]
1

(a)

≤
∑

ĩ,m̃p 6=1,m̃1 6=1,w̃ 6=1

2−n
(
I(U0,U1;Y1)−δ

[4]
1 (ǫ)

)

≤ 2n(Rp+R1+R′+R̃)2−n
(
I(U0,U1;Y1)−δ

[4]
1 (ǫ)

)

= 2n
(
Rp+R1+R′+R̃−I(U0,U1;Y1)+δ

[4]
1 (ǫ)

)

where (a) follows since for everỹi ∈ I, m̃p 6= 1, m̃1 6= 1 andw̃ 6= 1, U0(m̃p,C0) andU1(m̃p, m̃1, ĩ, w̃,C1)

are jointly letter-typical with each other but independentof Y1. Again, δ[4]1 (ǫ) → 0 as ǫ → 0, and therefore,

we haveP [4]
1 → 0 asn → ∞ if

Rp +R1 +R′ + R̃ < I(U0, U1;Y1). (103)

4) By repeating similar steps to upper boundP
[2]
1 , the obtained rate bound is redundant. This is since for every

m̃p 6= 1 the codewordsU0(m̃p,C0) andU1(m̃p, 1, i, 1,C1) are independent ofY1. Hence, to ensure that

P
[2]
1 vanishes asn → ∞, we take

Rp < I(U0, U1;Y1) (104)

and the RHS coincides with the RHS of (103), while the LHS is with respect toRp only. Clearly, (103) is

the dominating constraint.

5) By a similar argument, we have thatP [j]
2 , for j = 2, 3, 4, vanishes withn if

R22 < I(U2;Y2|U0) (105)

Rp +R22 −R12 < I(U0, U2;Y2). (106)

Summarizing the above results, and substitutingRp = R0 + R20, we find that the RHS of (101) decays as the
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M0 M2M1

Xt−1

Xt

Xn
t+1

Y t−1
1 Y t−1

2
Y1,t Y2,t Y n

1,t+1 Y n
2,t+1

(a)

M0 M2M1

Xt−1

Xt

Xn
t+1

Y t−1
1

Y1,t Y2,t Y n
1,t+1 Y n

2,t+1

(b)

Fig. 11: (a) The FDG that stems from (109): (108) follows since C =
{
Xt

}
d-separatesA =

{
Y2,t

}
from

B =
{
M1,M2, Y

n
1 , Y n

2,t+1

}
. (b) The undirected graph obtained from the FDG after the manipulations described in

Definition [51, Definition 1]. Both FDGs omit the dependence of the channel outputs on the noise.

blocklengthn → ∞ if the conditions in (50) are met.

APPENDIX E

PROOF OF THEMARKOV RELATION IN (69) AND (76)

We prove that (69) and (76) form Markov chains by using the notions of d-separation and fd-separation in

functional dependence graphs (FDGs), for which we use the formulation from [51].

A. Proof of (69)

By the definitions of the auxiliariesW andV , it suffices to show that

(M0,M1,M2,M12, Y
t−1
1 , Y n

2,t+1, Y1,t)−Xt − Y2,t (107)

forms a Markov chain for everyt ∈ [1 : n]. In fact, we prove the stronger relation

(M0,M1,M2, Y
n
1 , Y n

2,t+1)−Xt − Y2,t (108)

from which (107) follows becauseM12 is a function ofY n
1 . Since the channel is SD, memoryless and without

feedback, for every(m0,m1,m2) ∈ M0 ×M1 ×M2, (xn, yn1 , y
n
2 ) ∈ Xn × Yn

1 × Yn
2 and t ∈ [1 : n], we have

P (m0,m1,m2, x
n, yn1 , y

n
2 ) = P (m0)P (m1)P (m2)P (xn|m0,m1,m2)P (yt−1

1 |xt−1)P (yt−1
2 |xt−1)

× P (y1,t|xt)P (y2,t|xt)P (yn1,t+1|x
n
t+1)P (yn2,t+1|x

n
t+1) (109)

Fig. 11(a) shows the FDG induced by (109). The structure of FDGs allows one to establish the conditional

statistical independence of sets of random variables by using d-separation. The Markov relation in (108) follows

by settingA =
{
Y2,t

}
, B =

{
M0,M1,M2, Y

n
1 , Y n

2,t+1

}
andC =

{
Xt

}
, and noting thatC d-separatesA from B

by applying the manipulations described in [51, Definition 1].
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M0 M2M1

Xt−1

Xt

Xn
t+1

Y t−1
1

Y t−1
2

Y1,t

Y2,t

Y n
1,t+1

Y n
2,t+1

(a)

M0 M2M1

Xt−1

Xt

Xn
t+1

Y t−1
1 Y1,t Y n

1,t+1

Y n
2,t+1

(b)

M0 M2M1

Xt−1

Xt

Xn
t+1

Y t−1
1 Y1,t

Y2,t

Y n
1,t+1

Y n
2,t+1

(c)

Fig. 12: (a) The FDG that stems from (111): (110) follows since Cj d-separatesAj from Bj , for j = 1, 2. (b) The
undirected graph that corresponds toA1, B1 andC1. (c) The undirected graph that corresponds toA2, B2 andC2.
The FDGs omit the dependence of the channel outputs on the noise.

B. Proof of (76)

To prove (76), is suffices to show that Markov relations

(M0,M2, Y
t−1
1 , Y n

2,t+1)−Xt − Y1,t (110a)

(M0,M2, Y
t−1
1 , Y n

2,t+1, Xt)− Y1,t − Y2,t (110b)

hold for everyt ∈ [1 : n]. By the PD property of the channel, and because it is memoryless and without feedback,

for every(m0,m1,m2) ∈ M0 ×M1 ×M2, (xn, yn1 , y
n
2 ) ∈ Xn × Yn

1 × Yn
2 and t ∈ [1 : n], we have

P (m0,m1,m2, x
n, yn1 , y

n
2 ) = P (m0)P (m1)P (m2)P (xn|m0,m1,m2)P (yt−1

1 |xt−1)P (yt−1
2 |yt−1

1 )

× P (y1,t|xt)P (y2,t|y1,t)P (yn1,t+1|x
n
t+1)P (yn2,t+1|y

n
1,t+1). (111)

The FDG induced by (111) is shown in Fig. 12(a). SetA1 =
{
Y1,t

}
, B1 =

{
M0,M2, Y

i−1
1 , Y n

2,t+1

}
and

C1 =
{
Xt

}
, andA2 =

{
Y2,t

}
, B2 =

{
M0,M2, Y

i−1
1 , Y n

2,t+1, Xt

}
andC2 =

{
Y1,t

}
. The relations in (110) follow

by noting thatCj d-separatesAj from Bj , for j = 1, 2 by applying the manipulations described in [51, Definition

1].
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