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Abstract

A broadcast channel (BC) where the decoders cooperate vigeaided link is considered. One common and
two private messages are transmitted and the private neessabe cooperative user should be kept secret from the
cooperation-aided user. The secrecy level is measurednis tef strong-secrecy, i.e., a vanishing information |g@ka
An inner bound on the capacity region is derived by using awcbharesolvability-based code thdbuble-binsthe
codebook of the secret message, and by usifigetihood encoderto choose the transmitted codeword. The inner
bound is shown to be tight for semi-deterministic and phaisicdegraded BCs and the results are compared to those
of the corresponding BCs without a secrecy constraint. l@latl and Gaussian BC examples illustrate the impact of
secrecy on the rate regions. Unlike the case without secvdugre sharing information about both private messages
via the cooperative link is optimal, our protocol conveystpaf the common and non-confidential messages only.
This restriction reduces the transmission rates more thamusual rate loss due to secrecy requirements.

Index Terms

Broadcast channel, conferencing, cooperation, likeiheacoder, physical-layer security, resolvability, stron
secrecy.

I. INTRODUCTION

User cooperation and security are two essential aspectsodem communication systems. Cooperation can
increase transmission rates, whereas security requitencan limit these rates. To shed light on the interaction
between these two phenomena, we study broadcast chanr@d$ (Bth one-sided decoder cooperation and one
confidential message (Figl 1). Cooperation is modelecbagerencingi.e., information exchange via a rate-limited
link that extends from one receiver (referred to as theperative receiverto the other (thecooperation-aided
receive)). The cooperative receiver possesses confidential infiomthat should be kept secret from the other user.

Secret communication over noisy channels was modeled bye¥Wyho introduced the degraded wiretap channel
(WTC) and derived its secrecy-capaclty [1]. Wyner's wipetade relied on aapacity-basedpproach, i.e., the code

The work of Z. Goldfeld and H. H. Permuter was supported by Itiieel Science Foundation (grant no. 684/11), an ERC istagdrant
and the Cyber Security Research Grant at Ben-Gurion Urityen$ the Negev. The work of G. Kramer was supported by an Ateler von
Humboldt Professorship endowed by the German Federal tlira§ Education and Research. The work of P. Cuff was suppdsy the National
Science Foundation (grants CCF-1350595 and CCF-1116Gi8B)he Air Force Office of Scientific Research (grants FA935t-0180 and

FA9550-12-1-0196). This paper was presented in part at @& 2EEE International Symposium on Information Theoryngdkong, and in
part at the 2016 International Zurich Seminar on Commuitinat Zurich, Switzerland.


http://arxiv.org/abs/1601.01286v1

Y1 (M(()l)’ Ml)
Channel Decoder 1 ————
(MQ, ]\/[1, Mg) X
— |  Encoder Qvy vz |x Mo
Y M
2 . Decoder 2 (—°> 2)

@)

Fig. 1: Cooperative BCs with one confidential message.

is a union of subcodes that operate just below the capacitiieobavesdropper’'s channel. Csiszar and Koiner [2]
generalized Wyner's result to a general BC. Multiuser sg#iwith secrecy have since been extensively treated in
the literature. Broadcast and interference channels withconfidential messages were studied in [3]-[7]. Gaussian
multiple-input multiple-output (MIMO) BCs and WTCs wereudied in [8]-[13], while [14]-[16] focus on BCs
with an eavesdropper as an external entity from which allsagss are kept secret.

The above papers consider tiveak-secrecynetric, i.e., a vanishing information leakagee to the eavesdropper.
Although the leakage rate vanishes asymptotically withbtloeklength, the eavesdropper can decipher an increasing
number of bits of the confidential message. This drawback igklighted in [17]-[19] (see alsd_[20]), which
advocated using thimformation leakageas a secrecy measure referred tosaeng-secrecyWe consider strong-
secrecy by relying on work by Csisz&dr [20] and Hayashil [2i]re¢late the coding mechanism for secrecy to
channel-resolvability

The problem of channel resolvability, closely related te #arly work of Wyner[[22], was formulated by Han
and Verd( [[28] in terms of total variational (TV) distand@ecently, [24] advocated replacing the TV metric
with unnormalized relative entropyn [25], the coding mechanism for the resolvability prahlevas extended to
various scenarios under the nastdt-covering lemmarhese extensions were used to design secure communication
protocols for several source coding problems under diffiesecrecy measures [26]-[29]. #esolvability-based
wiretap code associates with each message a subcode thatesgast above the resolvability of the eavesdropper’s
channel. Using such constructioris,|[30] extended thetesti[2] to strong-secrecy for continuous random variables
and channels with memory. In[81] (see alsol[32, Remark 2r@¥plvability-based codes were used to establish the
strong-secrecy-capacities of the discrete and memoryizlg§ WTC and the DM-BC with confidential messages
by using a metric calle@ffective secrecy

Our inner bound on the strong-secrecy-capacity region efctioperative BC is based on a resolvability-based
Marton code. Specifically, we consider a state-dependent chaveelwhich an encoder with non-causal access
to the state sequence aims to make the conditional protyabikss function (PMF) of the channel output given
the state a product PMF. The resolvability code coordindtestransmitted codeword with the state sequence by
means of multicoding, i.e., by associating with every mgsesa bin that contains enough codewords to ensure

joint encoding (similar to a Gelfand-Pinsker codebook).sMencoders use joint typicality tests to determine the



transmitted codeword. We adopt thikelihood encoderrecently proposed as a coding strategy for source coding
problems [[38], as our multicoding mechanism. Doing so $igatly simplifies the distribution approximation
analysis. We prove that the TV distance between the induogglib PMF and the target product PMF approaches
zero exponentially fast in the blocklength, which impliesmeergence in unnormalized relative entrdpyi [34, Theorem
17.3.3].

Next, we construct a BC code in which the relation betweenctisewords corresponds to the relation between
the channel states and the channel inputs in the resolyalpitoblem. To this end we associate with every
confidential message a subcode that adheres to the stroétiive aforementioned resolvability code. Accordingly,
the confidential message codebook is double-binned to gow encoding via the likelihood encoder (outer bin
layer) and preserves confidentiality (inner bin layer). i sizes are determined by the rate constraints for the
resolvability problem, which ensures strong-secrecy. ifiner bound induced by this coding scheme is shown to
be tight for semi-deterministic (SD) and physically-detgd (PD) BCs.

Our protocol uses the cooperation link to convey infornratibout the non-confidential message and the common
message. Without secrecy constraints, the optimal schéares information omboth private messages as well as
the common message [35]. We show that the restricted priotesults in an additional rate loss on top of standard
losses due to secrecy. To this end we compare the achievatins induced by each cooperation strategy for a
cooperative BGvithout secrecyWe show that the restricted protocol does not lose rate wheBC is deterministic
or PD, but it is sub-optimal in general.

To the best of our knowledge, we present here the first relsitityabased Marton code. This is also a first
demonstration of the likelihood encoder’s usefulness exdbntext of secrecy for channel coding problems. From
a broader perspective, our resolvability result is a toolgmving strong-secrecy in settings with Marton coding.
As a special case, we derive the secrecy-capacity regiameoSD-BC (without cooperation) where the message of
the deterministic user is confidential - a new result thatrasit on its own. The structure of the obtained region
provides insight into the effect of secrecy on the codingtetyy for BCs. A comparison between the cooperative
PD-BC with and without secrecy is also given.

The results are visualized by considering a Blackwell BC (BH386], [37] and a Gaussian BC. An explicit
strong-secrecy-achieving coding strategy for an extremiatf the BBC region is given. Although the BBC's
input is ternary, to maximize the transmission rate of thefidential message only a binary subset of the input's
alphabet is used. As a result, a zero-capacity channel iscedito the other user, who, therefore, cannot decode
any of the secret bits. Further, we show that in the BBC séenan improved subchannel (given by the identity
mapping) to the legitimate receiver does not increase ttomgtsecrecy-capacity region.

This paper is organized as follows. Sectidn Il providesipriglaries and restates some useful basic properties. In
Sectior[I]] we state a resolvability lemma. Section 1V imtuces the cooperative BC with one confidential message
and gives an inner bound on its strong-secrecy-capaciipmedhe secrecy-capacity regions for the SD and PD
scenarios are then characterized. In Sediibn V the effestafecy constraints on the optimal cooperation protocol

is discussed. Sectidn VI compares the capacity regions efé®d PD-BCs with and without secrecy. Blackwell



and Gaussian BCs visualise the results. Finally, proofpereided in Sectioh VlI, while Sectidn VIIl summarizes

the main achievements and insights of this work.

II. NOTATION AND PRELIMINARIES

We use the following notation. Given two real numbers, we denote bya:b] the set of integergn € N|[a] <
n < |b]}. We defineR,. = {z € R|z > 0}. Calligraphic letters denote discrete sets, ely. while the cardinality
of a setX is denoted byl X'|. X" stands for then-fold Cartesian product oft. An element of X" is denoted
by =™ = (x1,29,...,2,), and its substrings a;s{ = (2, %it1,...,2;); wheni = 1, the subscript is omitted.
We definez\! = (1,...,Ti—1,Tit1,---,2Tn). Whenever the dimension is clear from the context, vectors (or
sequences) are denoted by boldface letters, g.gRandom variables are denoted by uppercase letters,2¢,g.,
with similar conventions for random vecton&f represents the sequence of random variab¥gs X 11, ..., X;),
while X stands forX™. The probability of an event is denoted byP(.A), while P(A|B) denotes conditional
probability of A given B. We usel 4 to denote the indicator function of. Probability mass functions (PMFs) are
denoted by the capital lettdP, with a subscript that identifies the random variable angdssible conditioning.
For example, for two jointly distributed random variabl&sandY’, let Py, Pxy and Px|y denote, respectively,
the PMF of X, the joint PMF of (X,Y) and the conditional PMF o givenY'. In particular, whenX andY
are discretePx|y represents the stochastic matrix whose elements are giverxb (zy) = ]P’(X =z|Y = y)
We omit subscripts if the arguments of the PMF are lowercassians of the random variables. The support of a
PMF P and the expectation of a random variableare denoted byupp(P) andIE[X], respectively. We usgp
andPp to indicate that an expectation or a probability are také&erawvith respect to a PMIP (when the PMF is
clear from the context, the subscript is omitted). If theriestof X™ are drawn in an independent and identically
distributed (i.i.d.) manner according fx, then for everyx € X™ we havePx~(x) = [[;_, Px(z;) and we write
Pxn(x) = P¥(x). Similarly, if for every (x,y) € X™ x V" we havePy« x~ (y|x) = [[;_; Py|x (yilz:), then we
write Pyn|xn(y[x) = Py ¢ (y[x). We often useQ’y or @y when referring to product PMFs. The conditional
product PMFQ;}‘X given a specific sequensec X is denoted b)Q@IX:x. The empirical PMF/ of a sequence

xe X"is

1)

where N (z[x) = Y7 | Tp,—0). We use7." (Px) to denote the set of letter-typical sequences of lengthith
respect to the PMPPy and the non-negative numbef38, Ch. 3], [39], i.e., we have

T (Py) = {x e X"‘ () — Px(x)| < ePx(x), Va € X}. @)

Definition 1 (TV Distance and Relative Entropy) Let P and Q be two PMFs on a countable sample spate
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Fig. 2: Coding problem for approximatin@\(ffg())_S0

onsy € Sy: Every subcode containg*(i+£) y-codewords drawn independently according@@lSOZSO. The

codewords are partitioned int2"®, each associated with a certain € [1 : 2"R]. To transmitWW = w the
likelihood encoder from[{6) is used to choose-@odeword for thewth bin.

~ Q(}‘SO ¢ and the resolvability subcode that is superimposed

H. The TV distance and the relative entropy betwéeand @ are

1P~ @llrv = 5 3~ |P() - Q)] 3)
reX
and
DPIQ = Y Pl)osp ] (@
z€supp(P)
respectively.

Remark 1 Pinsker's inequality shows that relative entropy is largean TV distance. A reverse inequality is
sometimes valid. For example, # < @ (i.e., P is absolutely continuous with respect @), and Q is an i.i.d.
discrete distribution of variables, then (sée 25, Equat{@9)])

D(PQ) € 0 ([ + 1y IP-al). 5)

1)
1P =@l
In particular, (8) implies that an exponential decay of th¥ ®istance produces an exponential decay of the

informational divergence with the same exponent.

IIl. CONDITIONAL RELATIVE ENTROPY APPROXIMATION
A. Problem Definition

Consider a state-dependent discrete memoryless chankELYDver which an encoder with non-causal access
to the i.i.d. state sequence transmits a codeword [FFig. &hEhannel state is a pdify, S) of random variables

drawn according t@) s, s. The encoder superimposes its codebool§gand then uses thikelihood encodewith

1Countable sample spaces are assumed throughout this work.
2f(n) € O(g(n)) means thatf(n) < k - g(n), for somek independent of, and sufficiently largen.



respect toS to choose the channel input sequence. The structure of adelbcat is superimposed on somes S
is also illustrated in Figld2. The conditional PMF of the chahoutput, given the states, should approximate a

conditional product distribution in terms of unnormalizedative entropy.
The random variabléV is uniformly distributed ovetV = [1 : 2"1%} and is independent dfSo, S) ~ Q% -

Codebook Construction: For everys, € SJ' generate a codebook,,(so) that comprises:Z"R bins. Each
bin is associated with a different messagec W and contain2"®" u-codewords that are drawn according to
UlSo=s0 £ [T, Quys, (‘150,4). Let B, = {Bn(so)}soesg denote this collection of codebooks and denote the

codewords in the bin associated withe W by {u(so, w,i, B,)} whereZ = [1: 2"3']

€L’

Encoding and Induced PMF: Consider thdikelihood encodedescribed by conditional PMF

f(LE)(i|w,SO,S,Bn) _ Qg’\U,SU (S|u(50?waia?n)350) .
'ZI QE‘U-,S[) (S‘U.(So, w, 7, Bn)a SO)
S

(6)

Upon observing(w, sg,s), an indexi € Z is drawn randomly according to the probability distribatif6). The

codewordu(sg, w, i, B,,) is passed through the DMQ(}IUSO - The distribution induced by the codeboBk is

PB) (so,8,w,,u,v) = Q%,.5(s0, )2 "R FLE) (Gl s, S’Bn)]l{u(so,w,i,Bn):u}Q1‘1/|U’SO’S(V|U7 so,s).  (7)

Furthermore, we usB,, to denote a random codebook that adheres to the above adimstru

Lemma 1 (Sufficient Conditions for Approximation) For any Qs, s, Quis,,s and Qv u,s,,s, if (R,R) € R2

satisfies
R' > I(U; S|So) (8a)
R +R>I(U;S,V|Sy) )
then
EB”D(P\(’I?EZ,S"Q?/\SO,S‘QZ*O,S) P 0. )

The proof of Lemmadll is given in Sectign VIIFA and it shows thia¢ TV distance decays exponentially fast
with the blocklengthn. By Remark{lL this implies an exponential decay of the desiedative entropy. Another
useful property is that the chosencodeword is jointly letter-typical witl{Sy, S) with high probability.

Lemma 2 (Typical with High Probability) If (R, R’) € R% satisfies(8), then for anyw € W and e > 0, we

have

]E]BTLP((SOa Sa U(S()7 w, Iv ]Bn)) ¢ 7;(71) (QSO-,S,U)

IB%n) — 0. (10)

n—oo

The proof of Lemmal2 is given in Secti@n VII-B.



IV. COOPERATIVEBROADCAST CHANNELS WITH ONE CONFIDENTIAL MESSAGE

A. Problem Definition

The cooperative DM-BC with one confidential message is tilatsd in Fig.[1. The channel has one sender
and two receivers. The sender chooses a tiiplg, m1, m2) of indices uniformly and independently from the set
[1:2n80] % [1: 278 x [1: 27F2] and maps it to a sequenges X", The sequence is transmitted over a BC with
transition probabilityQy, v, x- If Qy, v, x factors asly, —r(x)} @y, x OF Qy,xQys|y, then we call the BC SD
or PD, respectively. The output sequencec V', wherej = 1,2, is received by decodei. Decoder; produces
a pair of estimates{mgj),mj) of (mg,m;). Furthermore, the message; is to be kept secret from Decoder 2.
There is a one-sided noiseless cooperation link of fatefrom Decoder 1 to Decoder 2. By conveying a message

mya € [1 : 27f2] over this link, Decoder 1 can share with Decoder 2 infornmatibouty, (mg”,ml), or both.

Definition 2 (Code) An (n, Ri12, Ry, R1, R2) codeC for the BC with cooperation and one confidential message

has:

1) Four message setdti, = [1:2"2] and M; = [1: 2"%5], for j = 0,1, 2.

2) A stochastic encoder described by a stochastic mg‘tjf&% My, ON AT

3) A decoder cooperation functiofys : Vi* — M;is.

4) Two decoding functiong; : V' — Mg x My and ¢3 : V5 x Mqa — My x Mo.
Definition 3 (Error Probability) The average error probability for afn, R12, Ry, R1, Re) codeC,, is
P.(Cn) = Pe, (NI, M, Ny, 1) # (Mo, Mo, My, My))

whereP¢, (-) means that the probability is calculated with respect to jhiat PMF induced byC,,. Furthermore,
(Mél)aMl) =¢1(Y1) and (MSQ)sz) = ¢2(Ya, f12(Y1)).

Theinformation leakaget receiver 2 is measured I8(C,,) = I¢, (M1; M12,Y2), which is also calculated with

respect to PMF induced b, .

Definition 4 (Achievability) A rate tuple (R12, Ro, R1, R2) € Ri is achievable if for any > 0 there is an
(n, Ri2, Ry, Ry, Rg) CodeCn with

P.(Co) <€ (11a)

L(Cy) < e (11b)
for n sufficiently large.

The strong-secrecy-capacity regiafy is the closure of the set of the achievable rates.



B. Strong-Secrecy-Capacity Bounds and Results

We state an inner bound on the strong-secrecy-capacitprr&i of a cooperative BC with one confidential

message.

Theorem 3 (Inner Bound) Let R; be the closure of the union of rate tupleBi2, Ry, R1, R2) € Ri satisfying:

Ry < I(Uy; Y1|Uo) — 1(Uy; Uz, Ya|Uo) (12a)

Ro+ Ry < I(Uy,Uy; Y1) — I(Uy; Us, Ya|Up) (12b)
Ro + Ry < I(Uo, Uz; Y2) + Riz (12c)
Ro+ Ry + Ry < I(Uo, Ur; Y1) + I(Uz; Y2|Uo) — I(Uy; Us, Y2|Up) (12d)

where the union is over all PMFQu, v, v,, x @,z x- Then the following inclusion holds:
Ri1 CCs. (13)
Furthermore,R; is convex and one may choogé| < |X|+ 5, [U] < |X] and U] < |X].

The proof of Theoreni]3 relies on a channel-resolvabilitgdahMarton code and is given in Section VII-C.
Two key ingredients allow us keeping; secret while still utilizing the cooperation link to help ¢ver 2. First,
the cooperation strategy is modified compared to the cadsowutitsecrecy that was studied [n[35], wheYg,
conveyed information abouioth private messages as well as the common message. Here, thi@entality of
M restricts the cooperation message from containing anyrimdtion about)M, and therefore, we use aWi,
that is a function of(My, M2) only. Since the protocol requires Receiver 1 to decode tharnmation it shares
with Receiver 2, this modified cooperation strategy resulta rate loss inR?; when compared td [35]; the loss is
expressed in the first mutual information term[in (12a) beingditioned onlJ, rather than having/y next toU;.

The second ingredient is associating with eagh € M, a resolvability-subcode that adheres to the code
construction for Lemmals] 1 ad 2 described in SedfionIl-4.d®ing so, the relations between the codewords in
the Marton code correspond to those between the channes stat its input in the resolvability problem. Marton
coding combines superposition coding and binning, heneedffierent roles the state sequen&sand S play
in our resolvability setup. Reliability is established hwihe help of Lemm&l2, while invoking Lemnhd 1 ensures

strong-secrecy.

Theorem 4 (SD-BC Secrecy-Capacity)rhe strong-secrecy-capacity regiaﬂéSD) of a cooperative SD-BC with
one confidential message is the closure of the union of ratkedR;2, Ry, R1, R2) € Ri satisfying:
Ry < HY|[W,V,Y3) (14a)
Ro+ Ry < HM W, V,Y2) + I(W; Y1) (14b)

Ro+ Ry < I(W,V;Y2) + Rio (14c)



Ro+ Ry + Ry < HVA[W,V,Y2) + I(V; Y2 |W) + I(W; Y3) (14d)

where the union is over all PMFQw, vy, x Qy,|x With Y1 = f(X). Furthermore,CéSD) is convex and one may
chooselW| < |X|+ 3 and [V| < |X|.

The direct part of Theorefd 4 follows from Theoréin 3 by setting= W, U; = Y; andU, = V. The converse
is given in Section VII=D.

Theorem 5 (PD-BC Secrecy-Capacity)The strong-secrecy-capacity regiméPD) of a cooperative PD-BC with

on confidential message is the closure of the union of ratesuiR;2, Ry, R1, R2) € Ri satisfying:

Ry < I(X;a W) = I(X; Yo |[W) (15a)
Ro+ Ra < I(W;Y2) + Rio (15b)
Ro+ Ry + Ry < I(X; Y1) — I(X; Ya|W) (15¢)

where the union is over all PMFQw, x Qy, | x Qys |y, - Furthermore,CéPD)

X + 2.

is convex and one may choog®| <

The achievability ofCéPD) follows by settingUy = W, U; = X andU; = 0 in TheoremB. For the converse
see Sectioh VII-F.

Remark 2 (Converse) We use two distinct converse proofs for TheorEins 4[and 5.ercdnverse of Theoreh 4,
the bound in(I4d) does not involvek,; since the auxiliary random variabld/; containsi/;,. With respect to this
choice ofW;, showing that? — X — (Y1, Y2) forms a Markov chain relies on the SD property of the chanfea.
the PD-BC, however, such an auxiliary is not feasible asadtates the Markov relatiom” — X — Y7 — Y5 induced
by the channel. To circumvent this, in the converse of Tme&eve defindV; without M1, and use the structure of
the channel to keeR; > from appearing in(I5d). Specifically, this argument relies on the relatidfis = f12(Y1)
and thatY; is a degraded version of, implying that all three messag€é3d/,, M;, Ms) are reliably decodable

from Y only.

Remark 3 The cardinality bounds on the auxiliary random variablesTimeorem§13.14 ard 5 are established using

the perturbation method [40] and the Car&thdory-Fenchel theorem.

V. SuB-OPTIMAL COOPERATION WITHOUTSECRECY

The cooperation protocol for the BC with a seciét uses the cooperative link to convey information that is a
function of the non-confidential message and the commonagesaVithout secrecy constraints, it was shown in
[35] that the best cooperation strategy uses a public meskag comprises parts tbth private messages as well
as the common message. To understand whether the coopemediaiction reduces the transmission rates beyond

standard losses due to secrecy (which are discussed iro&B&i, we compare the achievable regions induced
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by each scheme for the cooperative B@&hout secrecyFor simplicity we consider the setting without a common
message, i.e., wheRy = 0.

At first glance it is not clear why the cooperative receivee¢bder 1) should share information abdut since
the cooperation-aided receiver (Decoder 2) is not requioedecode)M;. However, we show that the restricted
protocol is sub-optimal in general. For BCs in which Decodletan decode more thamR,- bits of M, (e.g.,
PD-BCs), both protocols achieve the same rates and no ghiafiormation about\/; is needed. However, when
Decoder 1 can decode strictly less thaR5 bits of Ms, then sharingl/; achieves higheR, values, since now
M, serves as side information for Decoder 2 in decodlrig (note that this side information is also available at
the encoder).

The achievable regioR g for the cooperative BC without secrecy that was charaadriz [35] (see alsd [41],

[42]) is the union over the same domain Bsl (12) of rate triples, k1, R») € R3 satisfying:

Ry < I(Up,Uy; Y1) (16a)
Ry < I(Uo, Us; Y2) + Ri2 (16b)
Ry + Ry < I(Uo, Ur: V) + I(Us: Ya|Up) — I(U: Us|Up) (16¢)
Ry + Ry < I(U1; Y1|Uo) + 1(Uog, Ua; Ya) — I(U1; Us|Up) + Rio. (16d)

This region is tight for SD- and PD-BCs. The cooperation sehehat achieved (16) uses the p@lf;o, Mag)
(where M, refers to the public part of the messayjg and has rate?;o < R;, for j = 1,2) as a public message
that is decoded by both users. The public message codeben&r@ged by i.i.d. realizations of the random variable
Up in ([I8)) is partitioned int@™12 bins and is first decoded by User 1. Next, the bin numiifes of the decoded
public message is shared with User 2 over the cooperatike Viich reduces the search space by a factor of
27tz The presence o/, in the public message essentially allows User 1 to achietes napl (U, U; Y7).

Introducing a secrecy constraint dr;, we must removél/;, from the public message, but we keep the rest of
the protocol unchanged. The regi®ys achieved by the restricted cooperation protocol is derivgdepeating
the steps in the proof of [85, Theorem 6] while settiRg, = 0. One obtains thaRys is characterized by the
same rate bounds ds {16), up to replacingl(16a) with

+
Ry < I(U3Yi[Uo) + [1(U; YalUo) — 1(Us; UslUo)| 17)

where [z]* = max {0,z }. Clearly Rxs C Rus.
Note thatRys = Rys for any BC where setting/, = 0 in {8) is optimal. In particular, we have the following

proposition.

Proposition 6 (Restricted Cooperation is Optimal for Deteministic and PD BCs) If the BC Qy, y,|x is PD

or deterministic, theRxs = Rng = Cns.

Proof: For the PD-BC, setting/, = W, U; = X andU, = 0 into Ryg recovers the region from [43, Equation
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Fig. 3: A SD-BC example.

(17)], which is the capacity region of the cooperative PD-B@e capacity region of the cooperative deterministic
BC (DBC) given in [35, Corollary 12] is recovered froys by takingUs = 0, U; = Y; andUs = Ys. [ |

Proposition 7 (Restricted Cooperation Sub-Optimal) There exist BC€)y, y,|x for which Runs € Rus.

The proof of Propositiofi]7 is given in Appendix A, where we swact an example for which the maximal
achievableR; in both regions is the same, but the highest achievablevhile keepingR; at its maximum is
strictly smaller inRys.

We start with a family of SD-BCs as illustrated in Fig. 3, wlehe channel input is¥ = (X3, X»), the
deterministic output i¥; = X; and the probabilistic outpudt; is generated by the DM@y, x,  x, - All alphabets
are binary, i.e.X; = Xy =Y =)o = {O, 1}. The maximal achievabl®; in both schemes is 1 and we set the
capacity of the cooperation link t&,> = 1. We show that the highes®, such that(Ri2, R1, R2) = (1,1, R2) €
Rxs is lower bounded by the capacity of the state-dependentnehéh, | x, x, (with X; and X, playing the roles
of the state and the input, respectively) with non-causahaokel state information (CSI) available at the transngttin
and receiving ends. This is due to the fact tlkat = 1 in the permissive protocol allows Decoder 1 to share
with Decoder 2 despite the fact that = M.

The corresponding value ak, in Rys is then upper bounded by the capacity of the same channel itut w
non-causal CSI at the transmitter only (also known as a @e@lfsinsker (GP) channel). The cooperation link is,
in fact, useless in this scenario sinkge = X; and the restricted protocol prohibits exchanging any imfation
aboutM;. Thus, the proof boils down to choosirgy, x, x, as a channel for which the capacity with full CSl is
strictly larger than the GP capacity. The binary binaryydpaper (BDP) channel [44]=[46] qualifies and completes
the proof.

V1. EFFECT OFSECRECY ONCODING SCHEMES AND RATE REGIONS FORCOOPERATIVEBCsS

The impact of the secrecy constraint di on the cooperation strategy and the resulting reductioraotmission
rates was discussed in Sectfoh V. However, secrecy regeitenihave additional effects on BC codes regardless of
user cooperation. We highlight these effects by compatiegSD and PD versions of the cooperative BC to their
corresponding models without secrecy. For simplicityptlghout this section we again assume BCs with private

messages only, i.eRy = 0.
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Fig. 4: Capacity region without secrecy vs. strong-seciapacity region wherd/; is confidential for the SD-BC
(without cooperation).

A. Semi-Deterministic BCs

1) Capacity Region ComparisorConsider the SD-BC without cooperation (i.e., whétg = 0) in which M,
is secret. By Theorei 4, the strong-secrecy-capacity negfahe SD-BC with one confidential message, which

was an unsolved problem until this work, is as follows.

Corollary 8 (Secrecy-Capacity for SD-BC without Cooperaton) The strong-secrecy-capacity regi(ﬁfD) of
the SD-BC with one confidential message is the union of raies p&;, R,) € R? satisfying:

Ry < H|V,Yy) (18a)

Ry < I(V3Y2) (18b)
where the union is over all PMFQv.y, xQy, x with Y, = f(X).

The region [(IB) coincides Witlﬁ,’éSD) in (I4d) (whereRi2 = Ry, = 0) by noting that the bound(I}d) is
redundant because @w,v,v, xQv, x is @ PMF for which[(14) is active, then replacifig and V' with W =0
andV = (W, V) achieves a larger region. Removirig (L 4d) frdéﬁD) and settingl’ = (W, V) recovers[(1B).

Marton coding achieves the capacity region of the classieB&D[47]. The capacity is the union of rate pairs

(R1, R2) € R? satisfying:

Ry < H(Yl) (19a)
Ry < I(V3Y3) (19b)
Ri+ R <HM|V) +1(V3Y2) (19¢)

where the union is over the same domain as in Corollary 8.
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Fig. 5: (a) Cooperative Blackwell BC; (b) Cooperative Blaei-like PD-BC.

The regions in[{1I8) and (119) (for a fixed PMF) are depicted ig. Bi. Whenl/; is secret, one can no longer
operate on both corner points of Marton’s region. Rathes, dptimal coding scheme is the one with the lower
transmission rate to the 1st user. This essentially meatsth redundancy in the codebook needed for multicoding
befalls solely on User 1 (whose message is to be kept se@atsequently, a loss di{V'; Y1), which corresponds
to the sizes of the bins used for joint encoding, is inflictedRy . An additional rate-loss of (Y1;Y2|V) in Ry is
caused by a second layer of binning used to congéafrom the 2nd user. A coding scheme for the higher corner
point of the region without secrecy, i.e., the pofrtf (Y1), I(V;Y2)—I(V;Y1)), is not feasible with secrecy since
the larger value of?; violates the secrecy constraint. A similar effect occunstfee corresponding regions with
cooperation.

2) Blackwell BC ExampleSuppose the channel from the transmitter to receivers 1 dadh2 BBC without a
common message as illustrated in Elg 5(a) [36]] [37]. Usihgdren# while settindzy = 0, the strong-secrecy-

capacity region of a deterministic BC (DBC) is the following

Corollary 9 (Secrecy-Capacity Region for DBC) The strong-secrecy-capacity regidéD) of a cooperative DBC

with one confidential message is the union of rate triglBs., R1, R2) € Ri satisfying:

Ry < H(Y1|Yz) (20a)
Ry < H(Y2)+ Rz (20b)
Ry + Ry < H(Y1,Ys) (20c)

where the union is over all PMF§ x.

Corollary[d follows by arguments similar to those in the drob[85, Corollary 12]. By parameterizing the input
PMF Qx as

Rx(0)=a, Qx(1)=p, Qx(2)=1-a—-p (21)
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Fig. 6: (a) Projection of the strong-secrecy-capacityagrgf the cooperative BBC with one confidential message
onto the pland Ry, R») for different values ofR;»; (b) Cooperative BBC withR,5 = 0.2: Strong-secrecy-capacity
region wherel; is confidential vs. Capacity region without secrecy.

wherea, f € Ry anda + 8 < 1, the strong-secrecy-capacity region of the BBC is:

R <(1—a)H, (%)

CéBBC) _ U (Ri2,Ri,R2) €RY | R, < Hy(o) + Ry . (22)
a,BeER,
a+p<1 Ry + Ry < Hy(a) + (1 — O‘)Hb(%)

The projection ofCéBBC) onto the plang R;, R») for different values ofR;» is shown in Fig[b(a). For every
R15 € R, the maximal achievabl®&; in CéBBC) equals 1 [bits/use] (while the correspondiRg is zero). The rate
triple (R12,1,0) is achieved by settingg = 0 and 5 = % in the bounds in[(22). These probability values provide
insight into the coding strategy that maximizes the trassion rate to User 1. Namely, the encoder chooses each
channel input symbol uniformly from the sét,2} C X. By doing so, Decoder 1 effectively sees a clean binary
channel (by mapping every receivéd = 0 to the input symbolX = 2) with capacity 1. Decoder 2, on the other
hand, sees a flat channel with zero capacity since Both 1 and X = 2 are mapped td> = 1. Thus, Decoder 2
has no information about the transmitted sequence, andftrer strong-secrecy is achieved while conveying one

secured bit to Decoder 1 in each channel use.

Remark 4 An improved subchannel to the legitimate user does not galdre strong-secrecy-capacity region. We
illustrate this by considering the Blackwell-like PD-BCOMBBC) shown in Figib(b), wher®; = X andY; = X

()2 and the mapping fronit' to ), remain as in the BBC). Evaluating the strong-secrecy-ciapaegion of the
PD-BBC reveals that it coincides WitB\éBBC). This implies that the&) x that maximizes?, while keeping Decoder

2 ignorant of My isa =0 and g = % which coincides with the input PMF that maximizs while transmitting
over the classical BBC. Thus, to ensure secrecy over the BO;Bhe encoder overlooks the improved channel to

Decoder 1 and ends up not using the symio 0.
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Fig. 7: Capacity region without secrecy vs. strong-secipacity region wherel/; is confidential for the
cooperative PD-BC.

The effect of secrecy on the capacity region of a cooperd&iUes illustrated by comparing to the BBC (Fig.
[Bl(a)) without a secrecy constraint. Using the charactiéomaf the capacity region of a cooperative DBC given in

[35, Corollary 12] and the parametrization [n(21), the ifyaregion of the cooperative BBC is:

Ry < Hy(a + B)

C,EIZBC) = U (R127 R17 R2) € ]Ri R2 < Hb(O() + R12 . (23)
OZ,BER+,
at+f<1 Ri + Ro SHb(a)—l—(l—oz)Hb(%)

Fig. [@(b) compares the regions with and without secrecy. dashed red line represents the capacity region
for the case without secrecy while the blue line depicts #gion where)M; is confidential. EvidentIyC,S,}gBC)
is strictly larger tharCéBBc). Note that up to approximatel; ~ 0.6597 £ R&Th), the two regions coincide.
Thus, whileR; < R&Th), concealing)M; is achieved without any rate loss ®,. When Ry > RgTh), however, an
increased confidential message rate leads to a redligedilue compared to the case without secrecy. Further, if
Nno secrecy constrairis imposed on\/;, one can transmit it at its maximal rate Bf = 1 and still have a positive

value of Ry (up to approximately).5148). When M is confidential thenR; = 1 is achievable only ifRy; = 0.

B. Physically Degraded BCs

1) Capacity Region ComparisoriVhen the BC is PD, the reduction iR; is due to the extra layer of bins
in the codebook of\/; only, while the modified cooperation scheme results in ns.I@® see this, consider the
capacity regiorCl(\IZD) of cooperative PD-BC without a secrecy constraintAdn (see [43] and([48]), which is the
union over the same domain &s1(15) of rate trigl&s2, R1, R2) € Ri satisfying:

Ry < I(X;1 W) (24a)

Ry <I(W;Y2) + Rio (24b)
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Zy ~ N(0,N1)  Zy ~N(0, Ny — Ny)

X hon b

Fig. 8: Cooperative Gaussian PD-BC.

R+ Ry SI(X,Yl) (24C)

In contrast to the SD case, the only impact of the secrecyinement on the capacity region is expressed
in a rate-loss ofl/(X;Y5|WW) in Ry (see [I5a) in comparison td (24a)) that is due to the extrarlay bins
needed for secrecy. Otherwise, the optimal code construdénd the optimal cooperation protocol) for both
problems is the same. The similarity is because, whelligris secret or not, its codebook is superimposed on
the codebook of\/;, and decodingV/, as part of the cooperation protocol comes without cost bydiéngraded
property of the channel (see Propositidn 6). Thus, for a figedx Qy, | xQv,|v,, if (Ri2, R1,Ra) € CI%D) then
(ng, [Rl —I(X; Y2|V)]+, Rg) € CéPD), and vice versa. This relation is illustrated in Hig. 7 fomsofixed value
of R;» and under the assumption th&iV; Y3) + R > I(W;Y7).

2) Gaussian BC ExampleConsider next the cooperative Gaussian PD-BC (without ancommessage) shown

in Fig.[8, where for every time instandec [1 : n|, we have

Yi:=Xi+ 214, (25a)

You=Xi+ 21+ Z2; (25h)

and{ZLi}?:1 and{Zm-}?:1 are mutually independent sequences of i.i.d. Gaussiaronandriables with7; ; ~
N(0,Ny), Za; ~ N(0,No — N1) and No > Ny, for i € [1: n]. The channel input is subject to an average power
constraint

n

% Y E[xi] <P (26)

i=1
By using continuous alphabets with an input power constrattaptation of Theorefl] 5 we characterize the

strong-secrecy-capacity region of the cooperative Gang8D-BC with one confidential message as

R <

cf = |J {(Riz,Ri,Ry) R | R, <
ael0,1]

N[

1og(1—|— ‘?‘V—P) - %1og(1—|— %)
(14 285 ) + P . @

log
Ri+ Ry < 3 1og(1—|— )—%log(l—i—%)

NIEg
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R, [bits/use]
Ry [bits/use]
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Fig. 9: (a) Projection of the strong-secrecy-capacityargf the cooperative Gaussian BC with one confidential
message onto the plan&;, R2) for different values ofR;2; (b) Cooperative Gaussian BC witR;2 = 0.2:
Strong-secrecy-capacity region whevf is confidential vs. capacity region without secrecy.

The achievability of[(2]7) follows from Theoreli 5 with the lfmking choice of random variables:
W ~N(0,aP), W~N(0,aP), X=W+W (28)
whereW and W are independent. The optimality of Gaussian inputs is promeAppendixB.

Setting P = 11, N; = 1 and N, = 4, Fig.[9(a) shows the strong-secrecy-capacity region ofcth@perative
Gaussian BC for differenk;, values, while Fig[9(b) compares the optimal rate regionsmé secrecy constraint
on M; is and is not present. The red line in both figures coinciderapdesent the secrecy-capacity region when
R = 0.2. The dashed blue line in Flg 9(b) shows the capacity regiothefcooperative Gaussian BC without

secrecy constraints, which is given by

Ry

R = U {(Riz, Ri,Ry) €RY | R, <
ael0,1]

IN
SIS

(SIS

log (1 + %)
log (1+ 2Ly ) + Buz (- (29)
Ri+ Ry < log (1+ £)

The derivation of[(29) relies on [43, Eq. (17)] and uses saatidirguments for proving the optimality of Gaussian

inputs.

By the structure of the rate bounds [n}(27) ahd) (29), for eVied o € [0, 1], if (Ri2, R1, R2) € Cf\%), we have
1 P

(ng, R — = log (1 + a—) ,Rg) S CéG) (30)
2 Ny

This agrees with the discussion in Section VIFB1/4X; Y>|W) = £ log (1 + %)
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VIl. PROOFS

A. Proof of Lemmé&]l

Note that the factorization i J7) implies th (f,"s) = Q5,5 for every codebool3,. Therefore, to establish
Lemmal[l we show that
]EanD(Ps(]ffls),v’ ‘ngs,v) —0 (31)

Lemma 10 (Absolute Continuity) For any fixed codebools,,, we havePS(lj:‘s),V < Q% sv 1€, Ps(l:"j‘S{V is

absolutely continues with respect €%, -

The proof of Lemma&_10 is relegated to Appendix C. Combinirig thith Remarkl, a sufficient condition for

(32) is that

)

Bn n
Eg, Ps(o,s.,v - QSQ,S,VH —0 (32)

To evaluate the TV distance ih(32), define ideal PMF onS} x 8™ x W x T x U™ x V™ as

F(Bn)(so, w,i,u,8,V) = ng (So)2‘n(R+R )]1{u(so,w,i,Bn):u}Qg‘U'rSU (s|u, SO)Q?/\U.,SO,S(V'u’ S0, S) (33)

with respect to the same codeboBk as P(B~). Note, however, thal' describes an encoding process where
the choice of theu-codeword from a certain bin is uniform, as opposedfdhat uses the likelihood encoder.
Furthermore, the structure @f implies that the sequeneeis generated by feeding, and the chosen-codeword
into the DMCQg‘U_’SO.

Using the TV distance triangle inequality, we upper bourel l#ft-hand side (LHS) of(32) by

Br)

(B, n
]E]Bn Pso,s,v - QSO,S,V v < ]E]Bn

B, B,
Ps(o,s),v - F(so,%,v‘ ‘TV + Eg,

B, n
1ﬂ(so.,é,v - QSO,S,VHTV' (34)

By [25, Corollary VI11.5], the second expected TV distancetba RHS of [3%) decays exponentially fastrass oo
if
R+ R > 1(U;8,V|S). (35)

For the first term in[(34), we use the following relations be¢wI™ and P. For every fixed codebook,,, we

have
(Bn) _ ¢(LE) _ p(Bn)
Liiwses = f1wso.s .28, = L1wso.s (36a)
(Br) _ _ p(Br)
I‘U|I,W,So,S - ]l{U:U(So,W,I,Bn)} - PU\I.,W.,SO.,S (36Db)
(Bn) _n _ p(Bn)
VU nwsos = Qvivse,s = Pyvivrwso,s: (36¢)
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While (36D)-[36t) follow directly from[{7) and(83), the fification for (36&) is that for everysg,s,w,i) €

Si x 8" x W x I, we have

I‘(B")(so, w,1,8)
F(Bn) (SOa w, S)
> u ng(SO)Q*n(RJrR’)]l{u(Smw_’inn):u}Qg‘Uﬁo(S|u, so)
Zu,i/ ng (50)27’”«(1’%4’]%/)1[{u(507w7i,76n):u}Qg‘U750 (S|u, So)
o Qg\U.,Sg (S’u(S(vaaiaBn)aSO)
Zi/ Qg\U.,Sg (S|u(507 w, ilv Bn), SO)
(a)

B (iw, s, 8) =

SEE) (iw,s0.5, By) (37)
where (a) follows from[{6). The relations i (36) yield

Eg,

(Bn) (Br)
Pso,s,v - lﬂsg,s,v’ ’TV <Es,

P(Bn) _ I‘(]Bn)
S0,8,W,1,U,V S0, S.W.LUV || 1y,

(;) Z 2_nRE]B§n

()

S0,8,I,U,V|W=uw S0,8,1,U,V|W=uw

[

® (Bn) s

= Ep, PSU,S,J,U,V|W:1 - so,S,I,U,VlwleTv

(i) n (]Bn)

= Eg, ||Q%,.s — Fso,S\WleTv o

where:

(a) is becaus& ) (w) = PB) (w) = 2-"F for everyw € W and fixedB,, and sinceB,, is independent ofV’;
(b) uses the symmetry of the code construction;

(c) is by [38) and becausés(fﬂ’"‘s) = QY, s for every fixedB,,.

Invoking [28, Corollary VII.5] once more yields

n (Br)
Es, || Q%5 ~ Tordw=| |, —=0 (39)
exponentially fast, as long as
R’ > I(U; S|So). (40)

This implies that there exists> 0 such that

Eg,

B, n —cn
Ps(o,s),v - QSO,S,V‘ ‘TV <e " (41)

B. Proof of Lemma&l2

This proof uses the following property of the TV distancee(se.g., [28, Property 1]): Let > 0 and let
/X — R be a function bounded by e R. We have

I~ Al|; <€ = |[Enf(X) —Erf(X)| < eb. (42)
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Fix e > 0 and consider th& PMF defined in[§3). With respect to the random experiment described byve

have
E]Bn]P)F ((SOa Sa U(SO7 w, I7 Bﬂ)) ¢ 7;(’”) (QSO,S7U)

Bn) ——0 (43)

becausdJ(Sy, w,i,B,,) ~ Q’[}‘SO, for every: € Z, andS is obtained by feedingSy, U(So,w,i,IB%n)) into a DMC
QS|v.5,- Thus, [48) holds by the law of large numbers (LLN). Furthersed on the analysis in Sectlon VII-A, we

have

(Bn) &)

Eg, So,S,V so,s v

(44)

HTV n—oo

Finally, let f : S§ x S™ x U™ — R be defined byf(sg,s,u) =

)

L om0 2T (@5 5.0} AN CONSICe

EBn]P)P ((807 Sa U(S()7 w, Iv ]Bn)) ¢ 7;(71) (QSO-,S,U)

Ep [f(sov 87 U(SO’ w, I’B"))

= EBn]EP |:f(807 Sa U(S()7 w, IaBn))

S E]Bn]EF |:f (807 S7 U(SOa w, Ia IBn))

+ Eg,

n} —Er [f(So,S,U(SO,w,I,Bn))

d

iy -], (45)

(a) )
< ]E]BnPF((807SvU(SOawaIaBn)) ¢ 7. (QSO,S,U)‘Bn) + Eg,

where (a) use$(42) and the fact tifais bounded by = 1. By (43)-(43), the RHS of(45) approaches Omas: cc.

C. Proof of Theoreril3

Fix a PMF Qu, v, U5, xQy, v, x ande > 0.

Codebook Generation: Split eachmy € M, into two sub-messages denoted (20, m22). The pairm, £
(mo, mag) is referred to as ublic messagand is to be decoded by both receivers, while andms,, that serve

as private messagesre to be decoded by receiver 1 and receiver 2, respectiVbly cooperation protocol will
use the link to convey information about the decodeg from receiver 1 to receiver 2. The rates associated with
mog and moy are denoted byRR,y and Rz, while the corresponding alphabets aké,, and Moo, respectively.

Furthermore, we us&, £ Ry + Ra and M, & My x Moy = [1 : 2"F»]. The partial rateskay and Rao satisfy
Ry = Rop + Raa. (46)

The random variables/,, andM», are independent and uniform ouét,, and Mo,, and we sef/,, £ (Mo, Mayg).

Note that)M,, is uniformly distributed over\,,. Moreover, letiV” be a random variable uniformly distributed over

W=]1: 2"R] and independent dfM,, M, M2) (which is therefore also independent @f/,,, M1, Ma2)).
Generate a public message code that comprise€"%» uy-codewordsuy(m,, Co), m, € M, each drawn

according toQ)7;, independent of all the other,-codewords. Partitioo\,, into 2nfliz gqual-sized subsets (referred

3The subsequent notations for codebooks omit the blockiengt
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Fig. 10: Codebook structure.

to as “bins”) B(mi2), wherem,z € M.

For eachm, € M,, generate a codeboak (m,) that comprisen(F1+R1+R) codewordsu;, each drawn
according toQ;}lIUO( . ]uo(m,,,co)) independent of all the othen;-codewords. Label these codewords as
wi (my, my, i, w,Cr), where(my,i,w) € My x T x W andZ £ [1 : 2*%1]. Based on this labeling, the codebook
Ci(my) has au;-bin associated with every paffn,, w) € M; x Wy, each containin@"R/ u;-codewords.

For eachm,, € M, also generate a codeboGk(m,,) that comprise€"22 u,-codewords, each associated with
a private messageiss € Moo, Eachus-codeword is drawn according @’&2% ( \uo(mp,co)) independently of
all the otheru,-codewords. Denotés(m,,) £ {uz(my, mQQ,Cg)}m22€M22.

The channel inpuk associated with a tripléug, ui, us) is generated according @}WO’UMUQ ( ‘1107111,112).
The structure of the codebook is illustrated in figl 10 (femicity, the figure does not show the binning 44,,).

Encoding: To transmit a triplg(m, m1, m2), the encoder transforms it into the tripler,, m1, ms2), and draws



22

W uniformly overW. Then, an index € Z is chosen by the likelihood encoder, i.e., according to thd#-P

E(;LCE) (i|w, ug(my, Co), uz(my, maz, Ca), C1)

. Qr(}g\Ul,Uo (u2(mp7m22702)‘u1(mp7m17iawacl)auo(mpvco)) (47)
Zi’el QT(}2|U1 Uo (u2(mp7 ma2, 62)‘111 (mpa mi, i/a w, Cl)a uO(mpa CO)) '

The corresponding sequenges transmitted over the BC.

Decoding and Cooperation:Decoder 1:Searches for a unique tripleh,,, m1,w) € M, x My x W, for which

there is an index € Z such that
(uo(mpa CO)7 up (mpa mh %7 w7 Cl)7 }’1) S 7;(71) (QUQ,U] e ) (48)

Upon finding such a unique tripléfnél),ml) = (o, 711) is declared as the decoded message pair; otherwise, an
error is declared.
CooperationHaving (1, 171, i,1), Decoder 1 conveys the bin numbersof, to Decoder 2 via the cooperation

link. That is, Decoder 1 shares with Decoder 2 the index € M2 such thati, € B(r2).

Decoder 2:Upon receiving(rn2, y2), Decoder 2 searches for a unique r(afrp, ﬁ"m) € M, x Mas, such that
(uo(ﬁ”bp,co),uz(TﬁpaTﬁzzacz)a}’z) € T (Quo,vs.v2) (49)

where i, € B(ri,). If such a unique pair is found, thei?, ) = (10, (120, 122)) is declared as the
decoded message; otherwise an error is declared.

The error probability analysis is given in AppendiX D andusemmdR to first show that the above encoding
process results img-, u1- and us-sequences that are jointly typical. Then, by standardt{tyipicality decoding

arguments, reliability is established provided that

R' > I(Uy; Us|Uy) (50a)

R + R > I(Uy; Uy, Ya|Up) (50b)

Ry + R + R < I(Uy; Y1|Up) (50c)

Ro+ Roo+ Ry + R + R < I(Up,Uy; Y1) (50d)
Rao < I(Us; Y2|Up) (50e)

Ro+ Ry — Ria < I(Uo, Us; Y2). (50f)

Security Analysis: Let C, represent a random public message codebook that adhetes abdve construction.
Furthermore, le€; £ {C;(m;)}m,em,, for j = 1,2, be the private message codebooks 1 and 2GnandC, be
the corresponding random codebooks. With some abuse dionotave useC = (Co,Cy,C2) andC £ (Cy, Cy, Cy).
When clear from the context, we omit the functional depec@Enof thew;-codewords,j = 0,1,2, on the

corresponding indices and codebooks, e.g., we viiteinstead ofUy (M, Maa, Ca).
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For any fixedC = C, let the joint distribution induced by the code be

C .
P( )(wamp7m17m227m127u07u27zuulaxuylayQ)

_ 9—n(R+Rp+Ri+Ra2)
- 2 ' > ﬂ{mPGB(mlg)}ﬂ{uozuo(mp,Co)}ﬂ{U2:u2(mp,m22,C2)}

LE) /.
X }(30 )(’L"w, U.o(mp,C()), U (mp, mo2, Cg), Cl)]l{ulzul(mp,ml,i,w,cl)}

X Q% \vy,0,0, (X[W0, w1, 12)QY, v, x (Y1, ¥2[x). (51)
Accordingly, we have

Ipe) (M5 Mi2,Y2) < Ipey(My; Mo, My, Mo, Y2)

@ Ipe) (My; Y2 |M,, Mao, Ug(M,,Co), Uz (M, Maz,Ca))

® (©) (©) (©)

- D(PY2|MP7M17M22-,U0-,U2 PY2|MP7M22.,U0-,U2 PA{p7A{17A[227U07U2)

(c)

(©) n (©)

S D(PYQ‘ILIP,IL{17M227UO,U2 Y2|Up,Us PA{p,Afl,Afzz,Uo,UQ) (52)
where:
(a) is becausd/; is independent ofM,,, Ms2), and sinceM2, Uy(M,, Co) and Uz (M, Mz, Co) are defined by
(Mvazz);

(b) uses the relative entropy chain rule and the indeperedeint/,; and (Mp, M2, Uy(M,,Co), Uz(M,, Maa, Cg));

(c) is since for every fixed’, we have

()

P pe
Y2 |Mp,M22,Uq, Uz |~ Mp,M1,M22,Uq, Uz

(€)
D (PYz |Mp,My,Msz2,Uq, Uz

= Z P(C)(mp7m17m227u07u27y2)

mp,M1,M22,U0,U2,y2

% log P(C)(y2|mp,m1,m22,uo,u2) ) Q7)1/2|U07U2(y2|u07u2)
P©)(y2]maz, 19, uz) @Y, v,,v, V2|10, 12)

P(C)
My, Mq,M22,Uq, Uz

_ ) n
- D(PY2|MP,M1,Mgg,U0,U2 QYzIUo,Uz

N > PO(my,mi,ma, up,uz,y2) log

P©)(ys|lm,, mag, ug, u
myp,M1,M22,U0,U2,y2 (}’2| p) 1122, 10, 2)

< QY,v.v, (Y2[u0, 12) )

— (€) n ©)
- D(PY2|MP,M1,IL{22,U0,U2 QYleo,U2 PMP,Ml,Mm.,Uo-,Uz

o ©) n (€)
D(Pyzuup,zun,uo,u2 Qv |U0.Us | Paty Moz, U0, U, ) -

By (B2), to satisfy[(11b) it suffices to show that there is disigintly largen for which

C)
Pf&pJWthz,Uo,Uz) e (53)

(€) n
D(PYz\Afp-,A117M227U0-,U2 Y2|Uo, Uz
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Taking the expectation of the RHS ¢f{52) over the ensembleodEbooks, we have

on p©
Y2|U0 U2 M M1 M22 U[) U2

(©)
EcD(PYﬂMp,Ml,Mzz,Uo,Uz

=F¢ Z 2—n(Rp+R1+R22)]1

mo,mi,m2,Up,u2

{ (Uo(mp,CQ),Uo(mP,mzz,(Cz)):(uo,UQ)}

x D(Py)

Yz‘ﬂ{p—mp Ml_ml A{zz—ﬂlQ2 Uo—ll[) U2 =us2

Qn
Y2|Up=up,Uz=uz

(a)
Z EC{ UO 1,Co), Ug(l,l,(Cg)) (uo,uz)}

Up,u2

(©)
x D(PYz\Mp_l Mi=1,Mas=1,Ug=u0,Us=us

QYQ'UQ—UQ U2 U2):|

(b)
= Z Ec, [EC07C2|C1 |:]l{(Uo(l,(CU),Ug(l,l,(Cg))—(uo,uz)}

Up,uz

o

(©)
XD(PY2|MP—1 Mi=1,Maa—1,Uo =10, U —us | | @¥a|Uo=uo,Us—us

O Z Ee, p)
Yg‘Afp—l,]\41:1,M22:1,U()ZU(),U2:112

up,u2

Qn
Y2|Up=ug,Uz=uz

x Ecy,colcy {]l{(Uo(l,(CO),Ug(l,l,(Cg)):(uo,ug)} ’QH

d) (Cy) n
Z Ec |: ( Y21|Mp_1 M;1=1,M33=1,Up=ug,Uz=us,C; Yz\Uo:uo,Uzzuz)ECO'rC? |:]l{(Uo(l,Co),Ug(l,l,(Cz))—(uo.,U2)}:|:|

up,uz
O g, > Qb (w0, u2)D(PS) Qr
- Cy Uy, U2 0, Y2 Y2|MT_,:1,M1:1,M22:1,U0:11[),U2:112,(C1 Y2‘U0:u07U2:u2
up,u2
= Ec,D( P Q3 Q¥ (54)
Cy Yo |My=1,M;=1,M,=1,U;,Us,C; Y2|Uo,Usz | Uop,Us

where:

(a) uses the symmetry of the codebook with respect to theagess

(b) is the law of total expectation (conditioning the inn&pectation onC,);
(c) follows because conditioning df; fixes the relative entropy

© n .
D(PYQ‘Mp—l Mi=1,M2>=1,Ug=up,Uz=u2,C; QY2‘U0:u07U2:u2 ’

(d) is since the codebook construction maléé&(l,(co), Us(1,1, (Cg)) independent ofCy;

(e) relies on the coding PMF beir@y, 1, -
We now invoke Lemmall on the RHS ¢f {54) by viewiny), vo,Us,0, @S @ state-dependent DMC fram to
Y, with state spacéfy x U, and noting that the structure 6f and the RHS of[(34) fall within the framework of

the lemma. Thus, the first two rate bounds[in] (50) ensure that

62711/2|U0,U2

Qi) —— 0. (55)

(C1)
IE(ClD(PY2\Mpzl,1\41:1,1\422:1,U0,U2 oo

By (52) and [(B4),[(55) implies thdc-L(C) — 0, asn — .
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The Selection Lemma[19, Lemma 2.2] applied to the randonakbrC and the functiong’. and £ implies the
existence of a realizatio@ of C that satisfies[(11). Finally, we apply Fourier-Motzkin diation (FME) on [5D)
while using [@6) and the non-negativity of the involved tsrrto eliminateR,, R’ and R. Since the above linear
inequalities have constant coefficients, the FME can beopadd by a computer program, e.g., by the FME-IT

algorithm [49]. This establisheB{[12) as an inner bound.

Remark 5 The main differences between the coding schemes for the@iye BC with one confidential message
and the same channel without secrecy][35] are threefoldstFia randomizei is used in the secrecy-achieving
scheme. Second, the cooperation messtge depends onV/y, rather than on the pai( Mo, May) (Mo refers

to the public part of the messagd;). Note that conveying a/;» that holds any part of\/; (in the form of
its public part M) violates the secrecy requirement. Finally, a prefix chan@& |y, v, v, is used to optimize

randomness and, in turn, to concedf; from the 2nd receiver.

D. Converse Proof for Theorel 4

We show that if a rate tupléRis, Ro, R1, R2) is achievable, then there exists a PNy, vy, x @y, x With
Y1 = f(X), such that the inequalities ih{|14) are satisfied. Fix aneettle tuple Rz, Ry, R1, R2) and ane > 0,
and letC,, be the correspondin@:, Ri2, Ry, R1, R2) code for some sufficiently large € N. The joint distribution
induced byC,, is

(1) (2)

P(mOa mi,mz,X,y1,y2,Mmi2, (mo aml)a (mo = 2—71(R0+R1+R2)f(5)(

N)) x|mo,m1,ms)

X]1{ r, (yl,i:f@ci))}Q%\X(Mx)ﬂ{mm:fm(yl)}m{(mé”,ml):m<y1>}m{(mé2>,m2>:¢2<y2.,mm>} (56)

Thoughout the converse proof, all multi-letter informatimeasures are calculated with respect to the PMF from

(58) or its marginals. By Fano’s inequality we have

H(Mo, Mi|Y") <14 ne(Ro + Ry) 2 nelV) (57a)
H(Moy, Ma| Mo, Y3") <1+ ne(Ro + Ra) 2 ne®. (57b)

Define
€, = mMax {esll), 6512)}. (57¢)

Moreover, by [(I1b), we write
€ > I(My; M2, Yy")
= I(My; Mo, Ma, M12,Yy") — I(My; Mo, Ma|Mi2,Y5")
& 1(0Mys Mz, Y Mo, Ma) — H(My, My My, V3

(b)
> I(My; Mo, Y5 | My, Ma) — ne, (58)
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where (a) uses the independenceldf and (M, M>) and the non-negativity of entropy, while (b) follows from
(542). Thus,
I(Ml;Mlg,YVinMo,Mg) S €+7’L€n. (59)

It follows that

an = H(Ml)
@ H (M| Mo, My, Ma) + I(My; My2| Mo, M)
(©]
< I(My; Y| Myg, Mo, Ma) + I(My; Mya| Mo, Ms) — I(My; My, Y3 | My, Ma) + nétV)

n

© Z [I(MUYf,Ygrfi+1|M127M0,M2) - I(Ml;Yli_lvY27fi|M127M0,M2)} +nd(M

N
Il
-

N
Il
-

[1(M; Yl Mo, Mo, Ma, Yy~ Y1) = T(Ms Yo | Muo, Mo, M, Vi~ ¥l ) |+ nd)

—~
U
=

[H(}/l,i|M2; W) — H(Y1 3| My, My, W;) — I(My;Ys|Ma, Wz)} +nolH

-

N
Il
-

{H(Yl,i|M2, W) — I(Y1,5; Yo 5| My, Mo, W;) — I(My;Y2,;| Mo, Wl)} +ndoM

|

{H(Yl,i|M2, W) — I(Mq, Y1, Yo :| My, Mo, Wl)} + no

i=1

< H(Y1 | My, Wy, Yo ;) +nétV (60)

-

1=1

where:

(a) is becausé/; is independentMy, Ms);

(b) follows from [57)458) and by denoting,”) = 2¢,, + <,
(c) is a telescoping identity [50, Eqgs. (9) and (11)];

(d) is by definingW; = (M2, Mo, Y7 ™', Y3 ).

The common message rakg satisfies

< I(Mo; Y7") + ney (61a)

< Y I(WiiYii) + nen (61b)



where (a) used (57) and (b) follows by the definitionlBf. Combining [6D) with[(61b) yields

n

n(Ro+Ri) <> [H(Yl,i|M27 Wi, Yo ;) + I(Wi; Yl,i)} +nd)
i=1

Where5,(12) = 57(11) + €.

For the sumR, + Rs, we have
n(R() =+ RQ) = H(Mo, MQ)
(a)
< I(My, Mo; M2, Y5") + ney,
= I(Mo, My; Y3 |My2) + I(Mo, My; Mi2) + ney,

b
< I(Mo, M2; Y5 | M12) + nRia + ney,

—~
=

I(Mo, Ma; Y ;| M2, Y3 1) + nRia + ne,

|

—
o
N
-
Il
—

NE

I(M2,W;;Ya;) + nRi2 + ney,
1

-
Il

where:
(a) uses[(H7);
(b) is by the non-negativity of entropy and since a uniformstrithution maximizes entropy;
(c) follows from the definition ofi¥’; and because conditioning cannot increase entropy.
To boundRy + Ry + R2, we begin by writing
n(Ro + R1 + Ra) = H(My, My, Ms) = H(My|My, My) + H(Ms|My) + H(Mo).

Consider

(a)
H(Mz|My) < I

—~

Mo; Y3 | Mo, Mo) + I(Ma; Mi2|My) + nep

7

@
Il
s

c

—

1M

1

.
Il

[I(Mz; Y| Mg, Mo, Y{ ™) — I(Ms; Y3,y [ Mi2, My, Yf)} + I(Mz; Mi2|My) + nep

[1(Ma3 Y 1| Myo, Mo, Y1)+ 1(Ma3 Ya,l W) = I(Ma3 Y, Yl 2| Maz, Mo, i)

27

(62)

(63)

(64)

+ I(My; Y1 ;| Mo, Mo, Yf_l)} + I(Ma; Mr2| My) + ney,

=
INgE

@
I
s

[1(Ma3 Yl Wi) = T(Ma3 Yl Wa) | + T(Ma3 YT Mo) + e

where:
(a) is by [BY) and by the mutual information chain rule;
(b) is a telescoping identity;

(c) follows from the definition ofiV;;

(65)
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(d) is due to the mutual information chain rule and the deéiniof W; (second term), and becausé, is defined
by Y7 (third term).

Combining [61k) with[{@5), yields

n(Ro + Rz) < 3 [1(Ma: Yol Wi) = I(Ma; YialWi)| + I(Mo, Ma; Y1) + 2nes

—~

s
Il
-

a)

< 3 [F(Ma: Y| Wa) = I(Mai YialWa) + H(Yi3) = H(Vi,il Mo, Ma, ¥ ™) + 2ne,

—~
=)
=

M=

|13 Yo, Wi) + T(Wes Ya,0) = T(Maz, V' 13 Yaal Mo, Mo, Yi )] + 2ne,
1

.
Il

—
o
N

NE

[I(MQ; Yai|Wi) + I(W; YM)} + 2ne, (66)
1

-
Il

where:
(a) is because conditioning cannot increase entropy;
(b) uses the definition ofV;;

(c) is by the non-negativity of mutual information.

By inserting [€D) and[(@6) intd_(64), we bound the sum of rags

n(Ro + Ry + Ro) < [H(i 4 Ma, Wi, Ya,5) + T(Ma; Yo | We) + T(Wis Vi) | + o (67)
i=1

where&,(f) = 5,(11) + 2¢,,.

The bounds in[{80)[(62)[(63) and_{66) are rewritten by idtiing a time-sharing random variakilethat is
uniformly distributed over the sét : n] and is independent afMy, My, Mo, X™, Y*, YJ*). For instance,[{80) is
rewritten as

n

R < — Z H(Y1,¢|Ma, Wy, Ya,) + 57(11)
=1

S|

[
M=

P(T = t)H (Y1, 7| Ma, W, Yo, T = t) + {1

~~
Il

1

= H (Y 7|Mo, Wr, Yo, T) + 5V (68)

DenoteW & (Wr,T), V & (Ma,W), X £ X7, Y1 = Yy r andYs £ Y 7. This results in the bound§(14)
with small added terms such ag and SV For largen, we can make these terms approach 0. The converse is
completed by showing the PMF ¢V, V, X, Y1, Y>) factors asPw,v,y; x Py, |x, Which boils down to the Markov
relation

(W,V, Y1) — X — Ys. (69)

This is proven in Appendik EJA.
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E. Converse Proof for Theorelh 5

We show that given an achievable rate tu@ig., Ro, R1, R2), there is a PMR)w, x Qy, | x Qv, |y, for which (15)
holds. Let be(R12, Ry, R1, R2) an achievable tuple and fex> 0. LetC,, be the correspondin@:, R12, Ro, R1, R2)
code for some sufficiently large € N. The induced joint distribution is coincides {56) up to mphg the DM
SD-BC transition matrixP(yi,y2|x) = 1 e Qy, x (y2[x) from (58) with this of a PD-BC, i.e.,
with P(y1,y2[x) = QY. x (y1[x)QY, y, (v2ly1). All multi-letter information measures throughout thisopf are

calculated with respect to the induced PMF or its margirédso’s inequality gives

H(Mo, My[Y{") < 14 ne(Ro + Ry) £ nkll) (70a)
H(My, My|My2,Y3") <1+ ne(Ro+ Ra) 2 nk'? (70b)
H (Mo, My, M|V, Y) <1+ ne(Ro 4+ Ry + Ry) 2 nk® (70c)
and we set
Kp = max {/@511), k2, /@S’)} =x®. (70d)

Further, by the strong-secrecy constrainf {11b), we have
€ > I(My; My2,Ys")
= I(My; Mo, Mo, Mi2,Y5") — I(My; Mo, Ma| M2, Y5")
& (M My, VMo, M) — H (Mo, Myl My, V3')
(g I(My; Y3 | Mo, Ms) — nky, (71)

where (a) uses the independenceldf and (M, M>) and the non-negativity of entropy, while (b) is By{70) and

since conditioning cannot increase entropy. This yields

I(Ml;Yin|MQ,M2) < €+ NKy. (72)

We bound

an = H(Ml)

@ H (M| My, M)

b
< I(My; Y| Mo, M) — I(My; Y5 | Mo, Ma) + nny,

—~
=

© Z {I(Ml;iﬁiaYzZJrﬂMo,Mz) — I(My; Y71 Y5 | Mo, Ma) | + 1y,

n
i=1

M-

[I(Ml; Yi4|Wi) = I(My; Ya i |[Wi)| + ns, (73a)

i=1
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[
INgh

-
Il
A

I(My;Y13|W5,Ya,) + nip

A
=

I

s
Il
-

I(X3;Y1,:|Wi, Yo ) + nmy,

—~
Q
~

NE

(165 Y1l W2) = 1(Xi3 Yl W) + o (73)
1

.
Il

where:

(a) uses the independence df, and (M, Ms);

(b) is by [70) and[(71), and by denoting = 2x, + £;
(c) is a telescoping identity;

(d) follows by definingW; £ (Mo, Mo, Yy~ ', Y7 1 );

(e) and (g) rely on the mutual information chain rule and th#& roperty of the channel, which implies that
(M, X;) — (Wi, Y1,;) — Y2, forms a Markov chain for alt € [1 : n];

(f) follows since M, — (W, X;, Y1) — Y2, forms a Markov chain.

Next, we have

n(Ro + Rg) = H(Mo, Mg)

(a)
< I(Mo, My; M2, Y5") + nky,

b
< I(Mo, M2;Y3') + nRy2 + nky,

=¥ I(Moy, M;Y2,4]Y5'; 1) + nRiz + nky

—~
=

=1
(0 &
< Y I(Wi;Yas) + nRip + nkn (74)
=1
where:
(a) is by [70);

(b) is because entropy is non-negative and is maximized éyttiform distribution;

(c) follows from the definition ofi’; and because conditioning cannot increase entropy.

Finally, consider
n(Ro + R1 + Ra) = H(Mo, My, M>)

a)
S I(M07 Mla MQ; }/1”7 YQn) - I(Ml; Y2n|M07 MQ) + nhn

—~
=

= I(Mo, My, Ma; Y1) — I(My; Y5 | Mo, M2) + napy,
D3 (1Mo, My, Ma, Y3 Vil ™) = (V03 Yaa Mo, Ma, Mz, Vi)
i=1

— I(My; Y Mo, Ma, Y3 11)| +
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d) — i— i— n
@ Z [I(MO,]\/[l,]\/IQ,}/21}1'4’,1;}/171"}/1 Y = 1YY Ya,i| Mo, My, My, Y3, 1)
i=1
— (M3 Y Mo, Ma, Y3 1)| +

<3 [1(Mo, My, Mo, Vi Y5 V) = TOM Y5 Yl Mo, Mo, V') | +

N.
i M:
I

—
®
~

-

s
Il
-

{I(Wi; Y1) + I(My; Y1 ,:|Ws) — I(My; }/21|W1):| + nny,

INS

@
Il
A

[1(W3 Y1,0) + T(Xi V1,0l Wi) = 1(X3 Yol W3) | + o

>
Ngk

N
Il
-

10X Y1,0) = T(Xe: Yo [ W2) | + (75)

where:
(a) uses[(70) and the definition of;;
(b) is becausd My, M;, My) — Y{* — Y3* forms a Markov chain, which is induced by the PD degraded and
memoryless property of the channel;
(c) is the mutual information chain rule;
(d) uses the Csiszar sum identity;
(e) follows from the definitions of¥/; and because conditioning cannot increase entropy;
(f) is by repeating step$ (7ZBd)-(73b);
(9 ) is by the mutual information chain rule and becalse- X; — Y1 ; forms a Markov chain (see AppendixB-B
for the proof).

By time-sharing arguments similar to those presented iti@€¥1-D] and by denotingV = (Wr,T), X = Xr,
= Yir andYs £ Y>,7, we obtain the bounds df (IL5) with the small added terpsand,,, which approach 0
asn — oo. In AppendixX'E-B we shown that the chain

W-X-Y-Y, (76)

is Markov, which establishes the converse.

VIIl. SUMMARY AND CONCLUDING REMARKS

We considered cooperative BCs with one common and two grivegssages, where the private message to the
cooperative user is confidential. An inner bound on the gh®gcrecy-capacity region was established by deriving
a channel resolvability lemma and using it as a building blocthe BC code. The analysis was made tractable
by incorporating the likelihood encoder |33] as the multiicy mechanism.

For the BC, a resolvability-based Marton code with a douddteting of the confidential message codebook was
constructed, and the resolvability lemma was invoked taesehstrong-secrecy. The cooperation protocol used

the link from Decoder 1 to Decoder 2 to share information orogipn of the non-confidential message and the
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common message only. Removing the secrecy constraififpallows a more flexible cooperation scheme that in
general achieves strictly higher transmission r&tes [BBg inner bound was shown to be tight for the SD and PD
cases. Two separate converse proofs were used becauseitterstof the joint PMFs describing the regions seem
to require distinct choices of auxiliary random variable.

The secrecy results were compared to those of the corresgpBEs without secrecy constraints, and the impact
of secrecy on the capacity regions was highlighted. CodiperBlackwell and Gaussian BCs visualized the results.
An explicit coding scheme that achieves strong-secrecyewhaximizing the transmission rate of the confidential
message over the BBC was given. Further, it was shown thatitbeg-secrecy-capacity region of the BBC remains

unchanged even if the subchannel to the legitimate useriseless.

APPENDIXA

PROOF OFPROPOSITIONT]

Consider the SD-BC depicted in Fig. 3, whetg = X, = Y, = )» = {0,1}. SettingUy = W, U; = Y; and
U = V into Rng recovers the capacity-regicﬂ‘ﬁlssD) of the cooperative SD-BQ [35, Theorem 5], which is the
union of rate tripleSR12, R1, R2) € R} satisfying:

Ry <H(Y) (77a)
Ry < I(VV, Vv }/2) + R1o (77b)
R+ Ry < HYAW,V) + I(V: Ya|W) + min { I(W; Y1), [(W; Ya) + Ruz | (770)

where the union is over all PMRv vy, x Qy,|x for whichY; = f(X). SettingUy = W, U; = Y1 andUs =V
into Rxs, gives a region that coincides with {77), up to replacingadj7with

+
Ry < HOIW) + [1(V:YalW) = 1V Vi w)] (78)
Denoting the obtained region b%?sm, we outer bound it by looseninf ([78) to

Ry < HM[W). (79)

Let OG) denote the obtained outer bound AL . We show that under the considered exan@®fg"’ ¢ c(y.

For anyr € R4, let

e ) 2 {0 Ry Ro) € €} (80a)
O () £ {1, Rz) € O} (80b)

be the projections ocEf\ISSD) and (51(\ISSD) on the (Ry, R2) plane for R15 = r. Setr = 1 and note that?; = 1 is

the maximal achievable rate @f/; in both Cl(\TSSD) and @ﬁ,SSD). Define the maximal achievabl@, that preserves for
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R, =1 in each region by

R; £ max { R; € R+’(1, 1LRs) €y (1)} (81a)
RS 2 max {R2 € R+’(1, 1,Ry) € @1@5)(1)}. (81b)

We next evaluateR} and 13, and then chooséy,|x, x, for which Rj > Rj.

For CI(\ISSD)(l), setting X1 ~ Ber(3) achievesRk, = 1 since
Ri=HMY)=H(X;)=1 (82)

Consequently, folR; we have

By max  min {IW,ViYa) + 1, IV VaIW) — (ViAW) H(W, V3 Ya) + HOG W, V) }
(W) Xy X2~V
®)
> max min{I(Xl,V;Yg)—l—l,I(V;Y2|X1)—I(V;Y1|X1),I(Xl,V;Y2)+H(Y1|X1,V)}
V—(.‘;{,iiéj)l—'yz

9 max  IVivalX) &
QV,XQ\Xl:
V—(X1,X2)-Y>

where (a) uses the structure@fsm from (72) and the relatio?,, = H (Y1) = 1, (b) follows by settingV = X;
and because the Markov chaiX,,V) — (X1, X2) — Y> implies thatV — (X3, X») — Y, also forms a Markov
chain, while (c) is becausBV;Y1|X1) = H(Y1|X1,V) =0 andI(V; Y2 X1) < I(X1,V;Y5).

AchievingR; =1 in (’51(\%))(1) requiresX; ~ Ber(3) that is independent dfi”. This is since in@l(f’;))(l) we
have

Ry < HWM W) = H(X,[W) < H(X;) <1 (84)

and (X, W) as above satisfy (84) with equality. F&;, we have

By max min {IWViYs) + 1, IV VRIW) — (ViAW) I(W, V3 Ya) + HG (W, V) )

QWQV,X2\W,X1:
(W)V)_(X1;X2)_Y2
@ max I(V:Ya|W) — I(V; V1| W)
QwQv, x5 x;, Wt
(va)f(Xl -,X2)7Y2

(c)
max max I(V; Y[ W =w) — I(V; V1 |[W = w)
wEW Qv X, |X;,W=w'
Vi—(X1,X2,0)—Yo

IN

IN

max I(V;Ys) — I(V; Y1) (85)
Qv x5 |X1 "
V—(X1,X2)-Y>
where:
(a) uses the structure @l(s‘sm, the independence a1 and X; = Y; and the relationR;, = H(Y1|W) = 1;

(b) follows by I(V; Y2 |W) < I(W,V;Y>) and the non-negativity of mutual information and entropy.
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(c) is by defining(V,,, X2,.,) to be a pair of random variables jointly distributed with ~ Ber(%) according to
Qx,Qv, X, x,,W=w, Wherew € W.

The lower bound onk; from (83) is the capacity of the state-dependent chafhglx, x, with non-causal
CSI available at the transmitting and receiving ends. Thgeufppound onfz’g given in [8%) is the capacity of the
corresponding GP channel, i.e., with non-causal tranem@SI only. Thus, to show tha?; < R% it suffices to
chooseQy,|x,,x, for which the GP capacity is strictly less than the capaciihvull CSI. A simple example for
which these capacities are different is the binary dirtpgra BDP) channel. Specifically, I€}y,|x, x, be defined
by

Yo=Xo00X1®Z (86)

where® denotes modulo 2 additiotX; ~ Ber(4) plays the role of the channel’s state, and the ndise Ber(e),
with e € [0, 3] is independent of X1, X;). The inputX, is subject to a constraintwy (x2) < g, for ¢ € [0, 1],
wherewy : {0,1}" — NU {0} is the Hamming weight. For the BDP channel, the GP capaci#4s-[46]

Cip = max  I(ViYa) = 1(ViY1) = uee{ [Hy(q) — Hy(e)] "} (87)

Qv X5 |X1 "
V—(X1,X2)-Y>
where ‘uce’ is the upper convex envelope operation witheesiq (e is constant). On the other hand, the capacity
of the BDP channel with full CSI i< [44]=[46]
CPPR = max  I(V;Ya|Xy) = Hyg *€) — Hy(e) (88)
V,Xo|Xq"

V—(X1,X2)-Y>

whereq * € = ¢(1 — €) + (1 — g)e. Clearly,q ande can be chosen to yield’é%DP) < CS?’_%?I, which shows that

Rl(\?SD) and 7?1(\18513) are not equal in general.

APPENDIXB

CONVERSEPROOF FOR(Z1)

To prove the optimality of[(27), we show thé’éPD) - CéG) (CéPD) and CéG) are given by [(Ib) and(27),

respectively). First consider

%10g(27reN1) = h(Z1) = h(Y1|X) (%) h(Y1|W) < h(Y1) < = log (2me(P + Ny)) (89)

N~

where (a) is becausé” — X —Y; forms a Markov chain. The intermediate-value theorem B8}l if@ply that there
is ana € [0, 1], such that
% log (2me(aP + Ny)). (90)

Further, for everyw € W, we have

WYaW = w) = h(Ys + Zo|W = w)
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Y

(a) %1og (22h(Y1|W:w) 4 22h(Z2|W:w))

1
R os

where (a) uses the conditional entropypower inequalityl\;B#hile (b) follows by the independence &t and V.

Using [91), we lower bound(Y>|W) in terms ofh(Y;|W) as

h(Y2|W) = Bw [h(Ya|W)]

@ T1
> By [5 log (22h<Y1‘W> + 2me(Ny — Nl))]

® 1
2 Liog <22]Ew [ra] 4 ore(, — N1)>

1
— ~log (22h(Y1\W) + 2me(Ny — Nl))

— N

= log (2me(aP + N3)) (92)

[N)

where (a) follows from[{91), while (b) uses the convexity loé functionz — log(2® + ¢) for ¢ € R, and Jensen’s
inequality.
Having this, we present the following upper bounds of theimfation terms in the RHS of (1L5). Fdr (15a), we

have

I(X W) = I(X; Vo[ W) Y (v W) — h(Y1|X) — h(Ya|W) + h(Ya| X)

®) 1 aP 1 aP

< — | — = —

< 2log(1+ 1) 210g(1—|— N2> (93)
where (a) follows since the chaliy — X — (Y7, Y>) is Markov, while (b) relies on[{30)[{92) and on the Gaussian

distribution being the maximizer of the differential ergyounder a variance constraint. Next, usihgl (92) we bound

the RHS of [I5h) as

1 aP
R = — < — _— .
I(W,Yz)'i‘Rlz h(Yg) h(Yz|W)+R12_ 210g (1+QP+N2)+R12 (94)

By repeating arguments similar to those in the derivatio@d)), we bound the sum of ratd®, + R, as

1 P 1 aP
R Ry < =1 14+ — ] —=1 14+ —. 95
L+ 2_2og<+N1) 2og(+N2> (95)
APPENDIXC

ProOOF oFLEMMA [1I0

For a fixed codeboolg,, and every(sg,s,v) € S x S™ x V", we have

P(B")(So, S, V) = ng,S(SO’ S) Z 27néf(LE) (’L|’(U, S0, S, Bn)Q’r\lﬂU,SO,S (V|u(507 w, iv Bn)7 S0, S) . (96)

w,i

Let (so,s,Vv) € S§ x 8™ x V" be a triple such thaQ’, s (so,s,v) = 0. Clearly, if Q%5 ¢(so,s) = 0 then [96)
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implies thatP(5+) (sq, s, v) = 0. Thus, we henceforth assume ti@4, s(so,s) > 0 and Q¥ s,.5(VIso,s) = 0. By
expanding

Qr\l/|So,S(V|SO’S) = Z QE|SO,S(U|SO’S)Qr\l/|U,SO,S(V|ua507S) (97)

uEsupp(Qg‘SUZSOYSZS)

we haveQ(}|U7SO,S(v|u, s0,s) = 0 for everyu € supp (Q8|s0:so,s:s)- Thus, to complete the proof it suffices to
show that every,-codeword that is transmitted with positive probabilityinissupp (Q’I}I So=so. S:S).

By the construction of the codebook, every € B, also satisfiesu € supp (QZ\SO:SO)- More-
over, a necessary condition for a codewoudsy,w,i,/3,) to be chosen by the encoder with positive
probability is f"® (ilw,sg,s,B,) > 0, which by the definition of the likelihood encoder impliesath
Q7§|U,s0 (s\u(so, w, i, Bp), so) > (0. Combining the above, we have that if a codewafd, w, i, 5,) is transmitted

with positive probability then
. Qno SOaS7u(SOawaiaBn)
?]‘5075(11(50,w,Z,Bn)‘SQ,S) = 5 757U( p )
5075(507 s)
- ng (SO)QZ'LS’O (U(So, w, 7;3 Bn)‘so) Qg|U,S0 (S|u(507 w, 7;7 Bn)a SO)

ngS(SOv S)

> 0.

APPENDIXD

ERRORPROBABILITY ANALYSIS FOR THEOREM[3

By symmetry, we assume théd/,, My, M, W) =1 = (1,1,1,1) is chosen. We also defineto be a random
variable that represents the index chosen by the likelirerazbder.
Encoding errors: An encoding error occurs if the;-codeword chosen by the likelihood encoder is not jointly

typical (UO(MP,(CO),UQ(MP,MQQ,(CQ)). This is described by the event
&= {(UO(laCO)aUl(lv 1,1,1,Cq1),Ux(1,1,Cy)) ¢ 7;(n)(QUU,Ul,Uz)}- (98)

To expand the expected probability 61198) over the ensembtedebooks, we use the definitions of the random
variablesC;, for j = 0,1,2, andC given in Sectio. VI-=C and denotg = ﬁ(")(QU07U17U2). We have

ECP((UO(MPa (C()), Ul(Mpv Mlvjv Wa (Cl)a UQ(MPa M227C2)) ¢ T’C)

@ ECP((UO(l,CO),Ul(l, 1,1,1,C,), Us(1,1,Cy)) ¢ T’(C, (My, My, My, W) = 1)

:]EC

(LE),.
Z ]l{(Uo(l,(Cg),U2(1.,1,(C2)):(UO,Uz)} BC (Z|1,1107112,(C1)

i,Up,U1,U2

X 11{Ul(l,l,i,l,tcl):ul } ]l{(uo,u17u2)¢7’}]

®) n (LE) .
B E(Cl l Z QUOxU2 (UO,UQ)fBC (Z|1’uo’u2’Cl)ﬂ{Ul(l,l,i,l,Cﬂ—ln}ﬂ{(uo,u1,u2)¢7—}‘|

i,Up,u1,u2

9D Ec,Poy ((Uo,Ul(l, 1,1,1,C,),Uy) ¢ T‘(Cl) (99)
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where:
(a) follows by the symmetry of the code construction;
(b) uses the law of total expectation and the independen(:U@@l, Cop), Ua(1,1, (Cg)) andC; in a similar manner
to steps (b)-(d) in the derivation di(b4) in Section VII-C;
(c)is becausé"%w2 (-) denotes thatUy, Us) ~ Q7 1, -

By Lemmal2, if (50k){{50b) hold then the RHS 6f199) approacbeasn — oo, which shows thaf’(£) — 0
asn — oo.

Decoding errors: Let i € 7 be the realization of chosen by the encoder ama,» € M, be the cooperation

index conveyed via the link from Decoder 1 to Decoder 2. Tooaot for decoding errors, define the events

Di(my,ma, iy w) = { (Uo(my, Co), U (my, ma, i, w, C1), Y1) € T Qo) | (100a)

Dy (my, maoz) = {(Uo(mp, Co), Ua(my, ma2,Cs),Y2) € 7;(n)(QUo,Uz,Yz)}- (100b)
By the union bound, the expected error probability is bodnae

EP,(C) < P(€) + (1 - ]P’(E)) ]P’(Df(l, 1,i,1)

E)+P ( U Dy, 1,4,1) 50)

Ml

)
Pl
pH

+P | | Dl i @) E° [ +P U Dy, i,w)|€°

i1 #l, i, #l
W#1 e aRES

pH

+1P>(Dg(1,1)

SC)+]P’ U Dalmy. 1) +IP’( U Dl i) 5C>

—_— iy #1: a1
plt] mpEB(mi2)
Pl
Py
+P U Dol ma)Ee | |. (101)
Tﬁp;ﬁl,ﬁ’LQQ;él:
mPGB(mlg)
pi

Note that{PJ[k]}i:1 correspond to errors that occur at Decoglewhere;j = 1,2. We proceed with the following

steps:

1) PJ[”, for j = 1,2, approaches 0 as — oo by the LLN.
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2) For P!, consider the bound

PP < > P RAUCRILORUNC)
i, AL w#L

< gn(Bi+ R+ R)g—n(1(U1:Y1[U0) -5 (6))
= 2"(R1+R/+R—I(U1;Y1\U0)+‘5£3](5))
where (a) is because for everye 7, m; # 1 andw # 1, Uy (1,77, 1, w;, Cq) is independent oY, while

both U, (1,7, 1,;,C;) and'Y; are drawn conditioned olJy(1,Co). Moreover, we havégg] () = 0 as

e — 0. Hence, forPl[?’] to vanish as» — oo, we take:
R+ R + R < I(Uy; Y1|Up). (102)
3) For P1[4], we have

P < > o= (100,010 ~6" ()
iy # L, #1041

< 2n(Rp+R1+R'+R)2—71(1(U0,U1?Yl)—5£4](5))

_ on(Bpt Bat B+ R 1(U0, Ur:v1) 4611 (0))

where (a) follows since for everyc Z, m, # 1, m; # 1 andw # 1, Uy (1, Co) and Uy (i, 11, 7, W, Cy)
are jointly letter-typical with each other but independehiy;. Again, 6&4] () — 0 ase — 0, and therefore,

we havePl[‘” — 0 asn — oo if
R, + Ry + R + R < I(Uy, Up; V7). (103)

4) By repeating similar steps to upper bouﬁH], the obtained rate bound is redundant. This is since foryever
m, # 1 the codeworddU,(m,, Cy) and Uy (1, 1,4,1,Cq) are independent oY;. Hence, to ensure that

le vanishes as — oo, we take

R, < I(Uo,Up; Y1) (104)

and the RHS coincides with the RHS §f(103), while the LHS ithwespect taR, only. Clearly, [I0B) is
the dominating constraint.

5) By a similar argument, we have thﬁtgj], for j = 2, 3,4, vanishes withn if

Ry < I(Us; Ya|Uo) (105)

Rp+R22—R12 < I(UO,UQ;YQ). (106)

Summarizing the above results, and substitutityg= R, + R0, we find that the RHS of (I01) decays as the
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Fig. 11: (a) The FDG that stems froh (109 (108) follows siit = {X,} d-separatesd = {Y2,} from
B= {Ml, Mo, YT, Y;}Hl}. (b) The undirected graph obtained from the FDG after theipudations described in
Definition [51, Definition 1]. Both FDGs omit the dependenddte channel outputs on the noise.

blocklengthn — oo if the conditions in[(BD) are met.

APPENDIXE

PROOF OF THEMARKOV RELATION IN (69) AND (Z6)

We prove that[{69) and_(¥6) form Markov chains by using theomst of d-separation and fd-separation in
functional dependence graphs (FDGs), for which we use thaudation from [51].

A. Proof of [69)

By the definitions of the auxiliarieB andV, it suffices to show that
(Mo, My, Mo, My2, Y71 Y3 1, Y1) — Xy — Yay (107)
forms a Markov chain for every € [1: n]. In fact, we prove the stronger relation
(Mo, My, M, Y, Y3, 1) — Xy — Y, (108)

from which [I0T) follows becaus@f;, is a function of Y;*. Since the channel is SD, memoryless and without

feedback, for everymg, mi,ms) € Mo x My x Mo, (™, y},y5) € X™ x Vi x Y andt € [1 : n], we have
P(mo,my,mz, 2"y}, y5) = P(mo)P(m1)P(mz) P(2"[mo, my,ma) Py~ a1 P(ys 2" ™)
X P(y1lze) P(y2,elwe) P(y o a2ty 1) P(s o1l oi) (109)
Fig. [Id(a) shows the FDG induced by (109). The structure oGERllows one to establish the conditional
statistical independence of sets of random variables hygudiseparation. The Markov relation in (108) follows

by setting A = {Ya.:}, B = {Mo, My, M, Y", Y5, } andC = {X,}, and noting that’ d-separatesd from B
by applying the manipulations described in][51, Definitidn 1
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My M,y My My M, Mo My M,y M,

n n
X' X X

n n
Yl Y% Y

°
1 n n
Y, Yo Yilin Y3 Yo Y3l

@) (b) ©

Fig. 12: (a) The FDG that stems from (111): (110) follows sidg d-separatesd; from 5;, for j = 1,2. (b) The
undirected graph that correspondsAe, 5, and(C;. (c) The undirected graph that correspondsitg 52 andCs.
The FDGs omit the dependence of the channel outputs on tlse.noi

B. Proof of [76)

To prove [76), is suffices to show that Markov relations

(Mo, My, Y{™ Y5 1) — Xi — Vi (110a)

(Mo, M2, {71 Y3 1, X)) = Y1 — Yau (110b)
hold for everyt € [1 : n]. By the PD property of the channel, and because it is memssydad without feedback,

for every (mg, mi,ma) € Mg x My x My, (2", y7,y5) € X™ x Y x Yy andt € [1 : n], we have
P(mo,mi,ma,z",y7, y5) = P(mo)P(m1)P(mz) P(a" [mo, my,mz) P(y; ') P(ys~yi ™)

X Pyvelee) P(yz,elyr ) PL e 28 P (3 e (97 41)- (111)

The FDG induced by[{I11) is shown in FigJ12(a). St = {Yi.}, B1 = {Mo, M2, Yy~ Y, } and
Cr = {Xi}, and Ay = {Ya,}, By = {Mo, M2, Y'Y 1, X, } andC; = {Y1,,}. The relations in[{110) follow

by noting thatC; d-separatesi; from B;, for j = 1,2 by applying the manipulations described inI[51, Definition
1].
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