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We explore field theories of a single p-form with equations of motions of order strictly equal to
two and gauge invariance. We give a general method for the classification of such theories which
are extensions to the p-forms of the Galileon models for scalars. Our classification scheme allows
to compute an upper bound on the number of different such theories depending on p and on the
space-time dimension. We are also able to build a non trivial Galileon like theory for a 3-form with
gauge invariance and an action which is polynomial into the derivatives of the form. This theory
has gauge invariant field equations but an action which is not, like a Chern-Simons theory. Hence
the recently discovered no-go theorem stating that there are no non trivial gauge invariant vector
Galileons (which we are also able here to confirm with our method) does not extend to other odd p
cases.

I. INTRODUCTION

There has recently been a lot of interest in building and studying scalar theories on flat space-times which have
second order field equations non linearly depending on the field and its first and second derivatives (see [11] for the
complete construction and classification of these theories in arbitrary dimensions and e.g. [6] for a review of the
formal aspects of these theories). The interest for such theories, which are for a scalar what Lovelock theories are for
a metric (and are in fact known for a long time at least in 4 dimensions [1–4]), has been renewed by the discussions
around the so-called Galileons [5]: scalar fields on flat space-times with equations of motions only depending on second
derivatives . Such theories can be formulated conveniently [10] using the following tensor ǫ2(2m) defined by

ǫ
a1a2...amb1b2...bm
2(2m) ≡

1

(D −m)!
ǫ
a1a2...amc1c2...cD−m ǫ

b1b2...bm
c1c2...cD−m

(1)

where the totally antisymmetric Levi-Civita tensor is given (on flat space time)

ǫa1a2...aD ≡ δ
[a1

1 δ
a2

2 . . . δ
aD ]

D (2)

For future reference, we also stress here that we will denote ǫ2 as just ǫ2(2D) where D is the space time dimension.
Then, the Lagrangians for a scalar Galileon π can just be taken to be proportional to

ǫ
a1...amb1...bm
2 (∂a1πb2) (∂b1πa2) . . .

(

∂am−1πbm−1

)

(∂am
π) (∂bmπ) (3)

where πa ≡ ∂aπ, such that one has in particular ∂aπb = ∂bπa, but also the two key (but trivial for a scalar) properties

∂ai
∂[bjπbk] = 0 (4)

∂[ai
∂aj ]πbk = 0 (5)

where brackets means antisymmetrization. These properties first lead very simply to the conclusion that the field
equations derived from the Lagrangians (3) only contain second derivatives: indeed after varying one term proportional
to derivative(s) of π in (3) and integrating by part, the only possible way to distribute the derivative(s) acting on this
term is to let it (them) hit another π differentiated only once, all terms containing more than two derivatives after
this distribution will vanish as a consequence of the identities above where the antisymmetrization comes from the
contraction with the tensor ǫ2. These identities also lead to an easy generalization to p-forms (single or multifield)
explained in [12] (see also [13–18] for subsequent works on the multi-scalar case). Indeed, e.g. for a single p-form A

one just need to replace in (3) πa by some p-form field strength F = dA with components FA (where A now means
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as set of p+ 1 indices) and in the last two terms in (3) by the first derivatives the the form. E.g. for a 3 form A we
would get the action (needing 9 space-time dimensions)

S =

∫

M

d9xǫa1...a9ǫb1...b9 (∂a1FB1) (∂b1FA1) (∂a6AB2) (∂b6AA2) (6)

where here A1 = {a2, a3, a4, a5}, A2 = {a7, a8, a9} B1 = {b2, b3, b4, b5} and B2 = {b7, b8, b9}, A is by assumption
a 3 form and F = dA is the associated Field strength. The role of the first identity in (4) is here played by the
Bianchi identity for the field strength ∂[bFB] = 0, while the equivalent of the second identity still holds as it is just
a consequence of the commuting of partial derivatives on flat space-times. The above construction, spelled out in
Ref. [12], allows to get non trivial theories for single even-p-forms and multi p-forms retaining also gauge invariance,
however it fails for single odd p forms in particular. Indeed, e.g. the above action (6) has vanishing field equations.
In Ref. [7] it was in fact proven that no single vector Galileon could be constructed.1 I.e. under the assumption

that the theory had gauge invariance, had an action principle and had field equations depending only on derivatives
of order less or equal to two, it was shown that one could only obtain field equations linear in second derivatives. The
main purpose of this paper is to investigate the same issue for other odd p (i.e. p odd and larger than 1). In this
way we will provide a method that gives an upper bound on the number of different Galileon like theories of single
p-forms (and p of any parity). This will in particular provide a new proof of the results of [7] but also allows us to
construct a non trivial Galileon like theory for a 3-form.
The paper is organized as follows. In the following section, we derive necessary conditions in order for a single

p-form theory to have gauge invariant field equations containing derivatives of order less or equal to 2 and to have
an action principle. These conditions are expressed as symmetry conditions on the field equations as well as on
derivatives of the field equations. We then (section III) introduce some tools we use later to analyze these symmetries.
In the following section IV we derive an upper bound on the number of allowed theories fulfilling our criteria. In the
last section (section V) we show that our formalism allows one to give a simple proof of the no-go theorem stated in
Ref.[7] for vector Galileons and construct an example of a non trivial 3-form Galileon like theory. We then conclude
in section VI. We have gathered in the appendices various abstract (some standard and some less known) results used
in the course of our work in order to make it self contained.

II. NECESSARY CONDITIONS FOR THE EXISTENCE OF A NON TRIVIAL GALILEON P-FORM

A. Derivation

Our goal here is to first derive a set of necessary conditions for the existence of a Galileon p-form theory. I.e. we
look for a theory of a p-form A ∈

∧∧∧p
of components Aa[p] (denoting by

∧∧∧p
the set of p-forms), such that the field

equations of this p-form do not contain derivatives of order higher than two. Note that here and in the following a[p]
denotes an ordered set of p indices a1, a2, · · · ap carried by some object which is antisymmetric in all the indices in the
string of indices a[p], i.e., for the case at hand, such that for any permutation σ belonging to the permutation group Sp

of p objects, we have Aaσ(1)aσ(2)···aσ(p)
= ǫ(σ)Aa1a2···ap

where ǫ(σ) is the signature of the permutation σ. Similarly we

will denote simply by a{p} = {a1 . . . ap} an ordered string of indices carried by some object, and by a(p) such a string
assuming in addition that the object A which carries this string is symmetric into the corresponding indices, i.e. such
that for every permutation σ of the symmetric group Sp we have Aaσ(1)aσ(2)···aσ(p)

= Aa1a2···ap
≡ Aa(p). Sometimes,

we will have to pull out a given index out of such strings of indices and we will denote this operation by the following
notation: a[p] ≡ a[p− 1]ap meaning that the objects which carries the string a[p− 1]ap is antisymmetric on all indices
including ap, but also that the order of the first p − 1 indices is the same in a[p− 1] and a[p]. Furthermore, we will
always denote by lower case latin letters space-time indices and, in order to alleviate notations, with an upper case
latin letter a string of ”antisymmetric” indices such as a[p] ≡ A or b[p] ≡ B, and furthermore we will then use the
same notation to denote a string of p indices or of a different length, (i.e. B can denotes e.g. a string such as b[p] or
b[p− 1]) whenever there is no risk of ambiguity.2 We will also use the following notations to denotes derivatives of a
quantity such as Ea[p] ≡ EA with respects to Ab[p] ≡ AB or its successive partial derivatives3 (always denoted by a

1 Note however that non trivial vector Galileons can be obtain if one relaxes the hypothesis of gauge invariance [19–25]
2 For example a p-form A will always carry p ”antisymmetric” indices and hence its component will sometimes be denoted as AA or AB

when there is no ambiguity, or equivalently Aa[p] or Ab[p] when there are.
3 these derivatives being noted as usual as AA,b,AA,bc, . . .
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comma)

EA|B ≡ Ea[p]|b[b] ≡
∂Ea[p]

∂Ab[p]
≡
∂EA

∂AB
, (7)

EA|B,c ≡ Ea[p]|b[p],c ≡
∂Ea[p]

∂
(

∂cAb[p]

) ≡
∂Ea[p]

∂Ab[p],c
≡

∂EA

∂AB,c
, (8)

EA|B,cd ≡ Ea[p]|b[p],cd ≡
∂Ea[p]

∂
(

∂c∂dAb[p]

) ≡
∂Ea[p]

∂Ab[p],cd
≡

∂EA

∂AB,cd
. (9)

Having introduced these notations, we first adapt the derivation of [7] (valid for a 1-form) to the case of an arbitrary
p-form with an action

S =

∫

dDx L[AB ; ∂aAB; ∂a . . . ∂bAB ], (10)

yielding the equations of motion

EA ≡
δS

δAA
= 0. (11)

We demand that these equations do not contain derivatives of order higher than two, i.e.

EA = EA(AB;AB,a;AB,ab). (12)

The fact that EA derives from an action principle gives non trivial integrability conditions that we now derive. We
first use the commutativity of the functional derivatives

[

δ

δAB(y)
,

δ

δAA(x)

]

S = 0, (13)

which we can rewrite using

δ

δAB(y)

δ

δAA(x)
S ≡

δEA(x)

δAB(y)
. (14)

Here

δEA(x) =

∫

dDy′δAB(y
′)

{

δ(x− y′)EA|B(y′)−
(

δ(x− y′)EA|B,c
)

,c
+
(

δ(x− y′)EA|B,cd
)

,cd

}

, (15)

such that

δEA(x)

δAB(y)
= δ(x− y)EA|B(y)−

(

δ(x− y)EA|B,c
)

,c
+
(

δ(x− y)EA|B,cd
)

,cd
. (16)

Using a test function G(x) to integrate over (13) and subsequently integrating by parts we get

0 =

∫

dDy G(y)

{[

δ

δAB(y)
,

δ

δAA(x)

]

S

}

= G

{

EA|B − EB|A +
(

EB|A,c
)

,c
−
(

EB|A,cd
)

,cd

}

+G,c

{

EA|B,c + EB|A,c − 2∂dE
B|A,cd

}

+ G,cd

{

EA|B,cd − EB|A,cd
}

, (17)

where in the second equality above all the arguments are evaluated at the same space time point x. Since G(x) is
arbitrary we get the integrability conditions,

EA|B − EB|A +
(

EB|A,c
)

,c
−
(

EB|A,cd
)

,cd
= 0, (18)

EA|B,c + EB|A,c − 2∂d EB|A,cd = 0, (19)

EA|B,cd − EB|A,cd = 0. (20)
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By taking derivative of (19) with respect to AC,efg, we also get

EA|B1,
⌢
c1d1|B2,

⌢
c2

⌢

d2 = 0 = EA|B1,c1
⌢

d1|B2,
⌢
c2

⌢

d2 , (21)

where here and henceforth a horizontal parenthesis, ⌢, denotes a symmetrization on the corresponding indices. The
above constraints (18-21) just expresses that the field equations we consider, i.e. (11) derive from an action. Note
that (20) shows that EA|B,cd is symmetric under the exchange of the group of indices A and B. This extends further
to the derivatives of EA|B,cd with respect to the second derivatives of the form. E.g. consider EA|B,cd|C,ef , we have
by standard commutations of derivatives

EA|B,cd|C,ef = EA|C,ef |B,cd (22)

while (20) implies obviously that

EA|B,cd|C,ef = EB|A,cd|C,ef . (23)

These two identities can be used further to show the symmetry under the exchange of A and C as well as B and C
respectively as shown below

EA|B,cd|C,ef = EA|C,ef |B,cd = EC|A,ef |B,cd = EC|B,cd|A,ef (24)

EA|B,cd|C,ef = EB|A,cd|C,ef = EB|C,ef |A,cd = EC|B,ef |A,cd = EC|A,cd|B,ef = EA|C,cd|B,ef . (25)

This further shows (using the last identity above as well as (22)) that EA|B,cd|C,ef is also symmetric under commuta-
tions of the pair of indices {c, d} and {e, f}, namely that

EA|B,cd|C,ef = EA|B,ef |C,cd. (26)

We now derive some extra constraints demanding that these field equation shall be gauge invariant. This implies
invariance under,

A → A+ dC ≡ A′ C ∈

p−1
∧∧∧

;A,A′ ∈

p
∧∧∧

. (27)

In components, this induces the following transformation on A and it’s derivatives,

Aa[p−1]ap
→ Aa[p−1]ap

+ C[a[p−1],ap] ≡ A′
a[p−1]ap

, (28)

Aa[p−1]ap,c → Aa[p−1]ap,c + C[a[p−1],ap]c ≡ A′
a[p−1]ap,c

, (29)

Aa[p−1]ap,cd → Aa[p−1]ap,cd + C[a[p−1],ap]cd ≡ A′
a[p−1]ap,cd

. (30)

We thus demand that

EA(A′
A;A

′
A,c;A

′
A,cd) = EA(AA;AA,c;AA,cd). (31)

By taking derivative of (31) with respect to C[a[p−1],ap]cd, C[a[p−1],ap]c and C[a[p−1],ap] respectively and setting Ca[p−1] = 0
we get,

EA|b[p−1](bp,cd) = 0, (32)

EA|b[p−1](bp,c) = 0, (33)

EA|B = 0. (34)

Using (20) and (32) we have,

EA|b1...
⌢

br...bp,
⌢
c

⌢

d = 0 = Ea1...
⌢
as...ap|B,

⌢
c

⌢

d . (35)

We can use this to further show that EA|B,cd vanishes when symmetrized on any three arbitrary space-time indices.
Indeed, the above (35) implies obviously that

Ea[p−1]
⌢
ap|b[p−1]

⌢

bp,
⌢
c

⌢

d = 0, (36)
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which we can expand as

Ea[p−1]ap|b[p−1]
⌢

bp,
⌢
c

⌢

d + Ea[p−1]
⌢

bp|b[p−1]ap,
⌢
c

⌢

d + Ea[p−1]
⌢
c |b[p−1]

⌢

bp,ap

⌢

d + Ea[p−1]
⌢

d |b[p−1]
⌢

bp,
⌢
c ap = 0. (37)

The first two terms above vanish as a consequence of (35), while the trivial

EA|B,cd = EA|B,dc (38)

implies the equality of the last two terms on the left hand side of (37), yielding

Ea[p−1]
⌢
ap|b[p−1]

⌢

bp,
⌢
c d = 0. (39)

The above proven vanishing upon symmetrization of any three indices will play a key role in the following and in fact
extends to the derivatives of EA|B,cd with respect to the second derivative of the form, as we now show. We have
already obtained the relations (21). Now consider the relation

Ea[p−1]
⌢
ap|b[p−1]

⌢

bp,cd|c[p−1]
⌢
cp,

⌢
e f = 0 (40)

obtained from (39) and (22). Expanding this relation as

0 = Ea[p−1]ap|b[p−1]
⌢

bp,cd|c[p−1]
⌢
cp,

⌢
e f + Ea[p−1]

⌢

bp|b[p−1]ap,cd|c[p−1]
⌢
cp,

⌢
e f

+Ea[p−1]
⌢
cp|b[p−1]

⌢

bp,cd|c[p−1]ap,
⌢
e f + Ea[p−1]

⌢
e |b[p−1]

⌢

bp,cd|c[p−1]
⌢
cp,apf , (41)

and noticing that the first three terms vanish by virtue of (39) and (20), we get that

Ea[p−1]
⌢
ap|b[p−1]

⌢

bp,cd|c[p−1]
⌢
cp,ef = 0. (42)

From (35) and (22), we also have

Ea[p−1]
⌢
ap|b[p−1]

⌢

bp,cd|c[p−1]cp,
⌢
e

⌢

f = 0, (43)

which yields, using the same expansion technique as above,

Ea[p−1]
⌢
ap|b[p−1]

⌢

bp,cd|c[p−1]cp,
⌢
e f = 0. (44)

Similarly, from (21), we have

Ea[p−1]
⌢
ap|b[p−1]bp,

⌢
c d|c[p−1]cp,

⌢
e

⌢

f = 0, (45)

which yields, using the same expansion technique as above,

Ea[p−1]
⌢
ap|b[p−1]bp,

⌢
c d|c[p−1]cp,

⌢
e f = 0. (46)

A last property of importance can be obtained from the following relation which follows from (21) yielding

EA|B1,
⌢
c1

⌢

d1|B2,
⌢
c2d2|B3,

⌢
c3d3 = 0 (47)

which, after expanding, gives

EA|B1,
⌢
c1d1|B2,

⌢
c2d2|B3,

⌢
c3d3 = 0 (48)

In the following, we will denote as Em the tensor obtained by differentiating the field equation operator E with
respect to the second derivatives of the p-form m− 1 times. I.e., one has by definition E1 ≡ E and in full generality
Em is a rank (pm+ 2(m− 1)) contravariant tensor whose components given by

(Em)
AB1c1d1...Bm−1cm−1dm−1 = EA|B1,c1d1|...|Bm−1,cm−1dm−1 ≡

∂m−1EA

∂AB1,c1d1 . . . ∂ABm−1,cm−1dm−1

. (49)

As will be summarized in the next subsection, the relations derived above for m = 2, 3 and 4 extend in fact to arbitray
values of m, and this will be used below to show that, for a given space-time dimension D (and a given p), Em

vanishes for a large enough value of m. This means that under the hypotheses spelled out above, the field equations
have to be polynomial in the second derivatives. We will also further restrict the possible theories fulfilling these
hypotheses. Introducing here the integer mmax such that Emmax+1 vanishes but Emmax does not, the idea is then to
use the method exposed below to construct explicitly non trivial tensors Emmax which do not depend any more on
the second derivatives of the p-form. In the following, we will hence assume that mmax (and hence non trivial m) is
always larger or equal to 2, since otherwise, the field equations do not depend on second derivatives of the p-form at
all.
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B. Summary of the symmetries to be used

As stated at the end of the previous subsection, our strategy in the rest of the present paper is to seek an explicit
form of the tensor Emmax , which is mmax−1 th derivative of the field equation E with respect to the second derivatives
of the p-form. After that, we can integrate it mmax − 1 times with respect to the second derivatives of the p-form to
obtain E . In each step of integration, the integration “constant” may in principle depend on first derivatives of the
p-form. For simplicity, however, we shall not introduce such dependence on first derivatives since the main purpose of
the present paper is to develop a general formalism and just to show an explicit non-trivial example. The integration
“constants” cannot depend on the p-form itself without derivatives acted on it because of (34). Therefore, among
various symmetry conditions derived in the previous section, for our purpose it suffices to concentrate on those that
involve only the derivatives of E with respect to the second derivatives of the p-form and the starting point is the
series of relations derived in the previous subsection from the conditions on the field equations in order for them to
derive from an action (18-21), be of order at most two in the derivatives (12) and be gauge invariant (34-32). From
those relations it is easy to derive the corresponding relations satisfied by the tensor Em. It then turns out to be
convenient to divide these symmetry relations possessed by the tensor Em into three categories defined below. We
shall use the notation of equation (49) for the names and the order of the indices of Em.

1. The first set consists of

1.1. Antisymmetry within each group of p indices, A and Bi

1.2. Invariance of the tensor under the p-wise interchange of the group of indices: Bi ↔ Bj , i 6= j i, j ∈
{1, . . . , (m− 1)}, as well as under the exchange between A and any Bi.

2. The second set of symmetries consists of

2.1. Symmetry of each pair of indices (ci, di)

2.2. Invariance under the pairwise interchange of the indices : (ci, di) ↔ (cj , dj), i 6= j i, j ∈ {1, . . . , (m− 1)}

3. The last set of symmetries is the condition that symmetrizing over any 3 indices in Em yields a vanishing tensor.

Our goal here is to use these symmetries in order to further characterize the possible tensors Em and eventually
construct some explicit example. To do so, we will use the theory of representations of the symmetric group and its
link to tensor symmetries, some elements about these issues are given below as well as in appendices.

III. TENSOR SYMMETRIES AND PLETHYSMS

A. Generalities about tensor symmetries, symmetric and antisymmetric tensors

Here, we are mainly interested in characterizing the symmetries of the tensor Em and hence will only discuss the
case of contravariant tensors. We denote by V the tangent vector space of spacetime covectors at a given point and
stress again that we will work here only on flat space-time. We denote by V ⊗n = V ⊗ V ⊗ · · · ⊗V the vector space
(over the field R of real numbers) of rank n (contravariant) tensors considered as the n-th tensor product of the vector
space V . The vector space V ⊗n has simple vector subspaces given respectively by the set of totally symmetric rank
n tensors that we denote as Symn and the set of totally antisymmetric rank n tensors that we denote as

∧n. We also

define as {B1, . . . ,BD} (where D is the dimension of space-time) base vectors of the vector space V , and {B̃
1
, . . . , B̃

D
}

the dual basis of covectors (one-forms) such that B̃
c
(Bd) = δcd. Then, the n-tensor products of the B form a basis of

V ⊗n. To characterize symmetries of tensors in general, it is useful to use the fact that the permutation group Sn of
a set of n distinct elements acts in a natural way on a tensor T of components T a1...an , as, given a permutation σ
inside Sn,

σ : T ≡ T a1...an Ba1 ⊗ · · · ⊗Ban
→ T a1...an Ba

σ−1(1)
⊗ · · · ⊗Ba

σ−1(n)

= T aσ(1)...aσ(n)Ba1 ⊗ · · · ⊗Ban

≡ σ(T ), (50)

where Einstein summation convention is implied. I.e. for a given tensor T of components T a1...an , and a given
permutation σ of Sn, σ(T ) is the tensor of components [σ (T )]

a1...an = T aσ(1)...aσ(n) . The tensors σ(T ) are sometimes
called the isomers of T (see e.g. [32]). Note that this action is an action on the places of indices and not on their
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values; e.g. for a 3-tensor T a1a2a3 and the 3-cycle σ = (123), one has [σ (T )]112 = T 121, (and not T 223). Note further
that with such a definition, the composition of two permutations ρ and σ obviously acts as follows on a given tensor
T , [ρ (σ (T ))]

a1···an = T aρ(σ(1))···aρ(σ(n)) , i.e. it acts by left multiplication on the indices labels.
The linear transformations on V ⊗n which commute with the above defined action of the symmetric group Sn on

tensors play an important role in the following. These transformations are called bisymmetric transformations and
defined by the following action on a given tensor T

T ≡ T a1...an Ba1 ⊗ · · · ⊗Ban
→ Da1···an

b1···bn
T b1...bnBa1 ⊗ · · · ⊗Ban

, (51)

where the D2n real numbers Da1···an

b1···bn
verify the ”bisymmetry” condition

Da1···an

b1···bn
= D

aσ(1)···aσ(n)

bσ(1)···bσ(n)
, (52)

for any permutation σ belong to Sn. Among the bisymmetric transformations, the one given by Da1···an

b1···bn
=

Da1

b1
· · ·Dan

bn
where Da

b is an invertible matrix (considered here as a one time covariant and one time contravariant

tensor) correspond to the natural action of the general linear group GLD on a tensor T . The set of bisymmetric
transformations is the largest set of transformation which commute with the transformation of Sn defined as in (50),
and conversely, the set of the symmetric group transformations (50) is the maximal set of transformations which
commute with all the bisymmetric transformation (see e.g. [29] p 134-136). This property is at the heart of the
so-called Schur-Weyl duality which allows to simultaneously reduce the representations of the symmetric group and
of the general linear group on the space of tensors V ⊗n.
Tensor symmetries can in general be represented by one or several relations between tensor components, namely

one or several relations of the type

T a1a2···an =
∑

σ∈Sn

kσT
aσ(1)...aσ(n) , (53)

where kσ are real numbers indexed by elements σ of the symmetric group Sn. Relation (53) obviously reads, using the
above defined action of the symmetric group, T =

∑

σ∈Sn
kσ × σ (T ) . For future reference we also define the vector

space (inside V ⊗n) of symmetric tensors Symn, as the set of tensors T ∈ V ⊗n obeying σ(T ) = T , for any σ ∈ Sn,

Symn = span{T | σ(T ) = T for anyσ ∈ Sn}. (54)

Similarly, the set of antisymmetric tensors
∧n (i.e. n−forms) is the vector subspace of V ⊗n

n
∧

= span{T | σ(T ) = sign(σ)T for anyσ ∈ Sn}. (55)

where sign(σ) denotes the signature of the permutation σ. We can define tensor product spaces using these such as,

Symm ⊗

n
∧

= span{X ⊗Y | X ∈ Symm,Y ∈

n
∧

} (56)

Note that, as explained in appendix C2, symmetries of tensors as defined in (53) can be suitably dealt with using
the group algebra of the symmetric group Sn and its decompositions into irreducible spaces under the action of Sn.
The decomposition uses Young diagrams and tableaux which in turn are associated with irreducible components of
the so-called symmetry classes under the action of the bisymmetric transformations (51). For example the symmetry
class of totally symmetric tensors Symn is generated (in the sense explained in appendix C2) by the (only) Young
symmetrizer generated from the standard tableau with one line and n boxes filled with {1, 2, · · · , n}. More generally, as
explained in the same appendix, one can consider symmetry classes Vλ generated by some specific Young symmetrizers
corresponding to the tableau λ.

B. Plethysms

Another way to combine symmetric or antisymmetric tensors goes as follows. Consider first a set of k tensors
X i ∈

∧n
with i ∈ {1, . . . , k}. We can define a tensor X which is an element in the composite subspace denoted

Symk(
∧n

) by

X ≡
∑

σ∈Sk

X σ(1) ⊗ · · · ⊗X σ(k). (57)
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The tensor X can be written in components

X = X a1[n]...ak[n] (Ba1
1
⊗ · · · ⊗Ba1

n
)⊗ · · · ⊗ (Bak

1
⊗ · · · ⊗Bak

n
), (58)

where ai[n] ≡ {ai1 . . . a
i
n} ≡ Ai are groups of anti-symmetric indices and the following symmetry under the n-wise

exchange of indices holds,

XAσ(1)...Aσ(k)

= XA1...Ak

∀σ ∈ Sk. (59)

Similarly, considering now a set of l symmetric tensors of rank m, Yj with j ∈ {1, . . . , l}, we define an element Y of

the space
∧k

(Symm) by

Y =
∑

σ∈Sl

sign(σ) Yσ(1) ⊗ · · · ⊗Yσ(l). (60)

In components Y can be expressed as

Y = Ya1(m)...al(m) (Ba1
1
⊗ · · · ⊗Ba1

m
)⊗ · · · ⊗ (Bal

1
⊗ · · · ⊗Bal

m
), (61)

where aj(m) ≡ {aj1 . . . a
j
m} are groups of symmetric indices and the following anti-symmetry under m-wise exchange

of indices holds,

Yaσ(1)(m)...aσ(l)(m) = sign(σ) Ya1(m)...al(m) ∀σ ∈ Sl. (62)

The symmetries of tensors such as X or Y are examples of so-called Plethysms (see e.g. [30]).
More general plethysms can be constructed starting from a set of tensors T i with i ∈ {1, . . . , k} which each

belong to the same symmetry class generated by some Young symmetrizer associated with some young tableau λ, Vλ.

Considering now an other Young symmetrizer y
sym/anti
µ with k boxes associated with a tableau µ, we can construct

the tensor T µ◦λ defined by

T µ◦λ = ysym/anti
µ (T 1 ⊗ · · · ⊗ T k) , (63)

where the action of the Young symmetrizer y
sym/anti
µ is just given as in the first line of (50), where base vectors Bi

are replaced by tensors T i, i.e. it acts on places of tensors T i in the tensor product T 1 ⊗ · · · ⊗ T k. In components
it can be defined by treating the collective indices of each tensor T i as a single unit. The tensor symmetry class
corresponding to the symmetries of the tensor T µ◦λ is in general reducible (as a representation of the bisymmetric
transformations - see appendices C and D).
The symmetries 1. and 2. of section II B imply that Em has the symmetry of the plethysm

Symm(

p
∧

)⊗ Symm−1(Sym2), (64)

i.e. belong to the symmetry class VSymm(
∧

p)⊗Symm−1(Sym2), where the first plethysm entering in the tensor product,

i.e. Symm(
∧p

) is associated with the symmetries 1. of section II B concerning indices with capital letters A and Bi

(i.e. groups of p antisymmetric indices), and the second plethysm Sym(m−1)(Sym2) corresponds to symmetry 2. of
section II B and is associated with lower case indices.

IV. RESTRICTIONS ON THE FIELD EQUATIONS FROM THE SYMMETRIES 1. 2. AND 3.

After having shown how the different hypothesis made before lead to the conclusion that the tensor Em had the
symmetries 1, 2 and 3, summarized at the end of section II B, we will further use these symmetries to characterize
Em in a more detailed way. Our general method is just to decompose Em into pieces belonging to the irreducible
components of the symmetry class defined by the symmetries 1. 2. and 3. We first examine the consequence of Em

having the symmetry 3.
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A. Consequence of E
m having the symmetry 3.

In order to decompose Em into pieces belonging to the irreducible components of the symmetry class that it belongs
to, one can act on Em with Young symmetrizers, as explained in appendix C. Consider such as symmetrizer built
from a given Young diagram (see appendix B) with a number of columns equal to or larger than three. Such a
symmetrizer will be a linear combination of products of row group symmetrizers and column group antisymmetrizers
(see equations (B5-B6)). If the number of column is larger or equal to three, such an operation (irrespectively on the
choice made between the symmetric or antisymmetric presentation for the Young symmetrizers) will always involve
a symmetrization on at least three space-time indices of the tensor Em, which, as a consequence of the symmetry
3. of section II B, vanishes. Hence, we conclude that the only Young symmetrizers that can possibly enter into the
decomposition of Em into irreducibles are those coming from diagrams with one or two columns at most. In the
following, we will denote such a diagram appropriate to act on the tensor Em, which has a variance mp+ 2(m− 1)
(implying that the considered Young diagram should have mp+ 2(m− 1) boxes in total), as (mp+ 2(m− 1)− a, a)t

where a is a positive integer parametrizing the length of the second column and ”t” denotes the transpose of the
diagram with two lines, the first with mp+ 2(m− 1)− a boxes and the second with a boxes (see appendix B).
Having just shown that the irreducible representation of the symmetric group entering in the decomposition of the

tensor symmetry class of Em are just those characterized by Young diagrams of the kind (mp+2(m− 1)− a, a)t, the
next step is to determine the multiplicity ma of irreducibles each in one to one correspondence with a standard Young
tableau built from the Young diagram (mp+2(m− 1)− a, a)t entering into this decomposition. To do so we will use
the machinery of Schur functions to find out this multiplicity inside the plethysm (64) as explained in appendix D.

B. Multiplicity of irreducibles with two columns Young diagrams inside Symm(
∧p)⊗ Symm−1(Sym2)

In order to determine the multiplicity ma as defined above, we will proceed in two steps. First, we will determine

the multiplicity of irreducibles with two column diagrams inside the plethysms Symm(
∧p

) and Sym(m−1)(Sym2)
separately and then use the Littlewood Richardson rule to deal with the tensor product between these plethysms
(see appendix C3). This rule implies that indeed only diagrams with at most two columns inside each component

Symm(
∧p) and Sym(m−1)(Sym2) can be combined to yield an irreducible corresponding to a Young diagram with no

more than two columns inside the plethysm Symm(
∧p

) ⊗ Symm−1(Sym2). We first consider the first factor of the
tensor product Symm(

∧p).

1. Multiplicity of irreducibles with two columns Young diagrams inside Symm(
∧p)

As explained in appendix D, the Schur function corresponding to the symmetries of the plethysm Symm(
∧p

) is
given by s(m) ◦ s(1)p(x) and can be decomposed as

s(m) ◦ s(1)p =
∑

µ

mµsµ, (65)

where mµ gives the multiplicity of the irreducible representation characterized by the Young diagram µ inside the
plethysm Symm(

∧p
). Here we are only interested in the multiplicities corresponding to the Young diagrams µ entering

the above decomposition with at most two columns. This can be obtained as follows. First, we apply the Ω involution
operation (see appendix D) to the above decomposition (65). We get

Ω(s(m) ◦ s(1)p) =
∑

µ

mµΩ(sµ) =
∑

µ

mµsµt . (66)

Now we see that if we consider two particular variables, say x1 and x2, among those upon which the Schur functions
depend, the only monomials of the form xα1

1 xα2
2 (i.e. which only depend on x1 and x2 and not on the others xi, i 6= 1, 2)

which appear on the right hand side of the above equation (66) all come from the Schur functions corresponding to
Young diagrams µt with at most two rows (because any Schur function corresponding to a Young diagram with more
than two rows necessarily depend on more than two variables). And these monomials and their coefficients will be
the same if we just restrict ourselves to considering functions of just the two variables x1 and x2 and set to zero all
other contributions. This is what will be done in the following, enabling us to compute the multiplicities mµ of the
irreducibles corresponding to Young diagrams with at most two columns in the original decomposition (65).
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Notice however, using (D14), that we have

Ω(s(m) ◦ s(1)p) =

{

s(m) ◦ Ω(s(1)p) = s(m) ◦ s(p) if p is even

Ω(s(m)) ◦Ω(s(1)p) = s(1)m ◦ s(p) if p is odd
, (67)

hence, we shall distinguish the case of odd-p and even-p-forms.

2. Case of an even-p-form: decomposition of
(

s(m) ◦ s(p)
)

(x1, x2)

First we write s(p)(x1, x2) explicitly, giving

s(p)(x1, x2) =

p
∑

r=0

xp−r
1 xr2, (68)

and we define an ordered collection of variables yr by

yr = xp−r
1 xr2, for 0 ≤ r ≤ p. (69)

The plethysm s(m) ◦ s(p)(x1, x2) is given by the Schur function s(m)(yr(x)), namely using (D5),

s(m) ◦ s(p)(x1, x2) = s(m)(yr(x)) =
∑

0≤r1≤r2≤···≤rm≤p

yr1 . . . yrm . (70)

Note that the degree of s(m) ◦ s(p)(x1, x2) is mp. For a given a verifying 0 ≤ a ≤ mp, the coefficient of the term

xmp−a
1 xa2 in s(m) ◦ s(p)(x1, x2), which we denote as C(xmp−a

1 xa2), can be deduced from (70) to be the number of
(unordered) partitions of a into m non-negative integers within {0, 1, 2, . . . , p} with repetitions allowed. Furthermore
s(m) ◦ s(p)(x1, x2) has a unique expansion in terms of Schur functions that correspond to Young diagrams of at most
two rows. Namely,

s(m) ◦ s(p)(x1, x2) =

[mp
2 ]
∑

l=0

m(mp−l,l)s(mp−l,l)(x1, x2), (71)

where [. . . ] in the upper limit is the Gauss symbol, (mp − l, l) denotes the Young diagram with with the first and
second row of size mp − l and l respectively (in agreement with our notations of appendix B), and m(mp−l,l) is the
multiplicity of the Schur function

s(mp−l,l)(x1, x2) =

mp−l
∑

b=l

xmp−b
1 xb2, (72)

that corresponds to this Young diagram. In order to determine these multiplicities, we just need to use the right hand
side of the above equation to get

C(xmp−a
1 xa2) =

min(a,mp−a)
∑

l=0

m(mp−l,l). (73)

Now restricting to the case where 1 ≤ a ≤
[

mp
2

]

and using the above recursively we get that

m(mp−a,a) = C(xmp−a
1 xa2)− C(x

mp−(a−1)
1 xa−1

2 ), (74)

while

m(mp,0) ≡ m(mp) = C(xmp
1 ) = 1. (75)
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3. Case of an odd-p-form: decomposition of s(1)m ◦ s(p)(x1, x2)

The decomposition can be performed by using the similar method as above. Starting as above from equations (68)
and (69) and using (D6) we get

s(1)m ◦ s(p)(x1, x2) = s(1)m(yr(x)) =
∑

0≤r1<r2<···<rm≤p

yr1 . . . yrm (76)

Notice that the crucial difference between this equation and (70) is that the variables yi have here to be distinct in

the summation. As before, for a given a verifying 0 ≤ a ≤ mp, let us consider the coefficient C̄(xmp−a
1 xa2) of the

term xmp−a
1 xa2 occurring in this expansion. We find this to be equal to the number of (unordered) partitions of a into

m distinct non-negative integers within {0, 1, . . . , p}. Expressing now the plethysm s(1)m ◦ s(p)(x1, x2) in the Schur
function basis we have

s(1)m ◦ s(p)(x1, x2) =

[mp
2 ]
∑

l=0

m̄(mp−l,l)s(mp−l,l)(x1, x2), (77)

where the notations are as before and we are after the multiplicities m̄(mp−l,l). The coefficient C̄(xmp−a
1 xa2) verifies

as above

C̄(xmp−a
1 xa2) =

min(a,mp−a)
∑

l=0

m̄(mp−l,l). (78)

Now we can conclude as before that for 1 ≤ a ≤
[

mp
2

]

m̄(mp−a,a) = C̄(xmp−a
1 xa2)− C̄(x

mp−(a−1)
1 xa−1

2 ), (79)

while in this case we have

m̄(mp,0) ≡ m̄(mp) = C̄(xmp
1 ) = 0. (80)

To summarize what has been achieved above, we have shown that the multiplicity m(mp−a,a)t of the irreducible

representation corresponding to the Young diagram (mp− a, a)t inside Symm(
∧p

) is given by the following formula

m(mp−a,a)t =

{

Np
a,m −Np

a−1,m if p is even

Np,distinct
a,m −Np,distinct

a−1,m if p is odd
, (81)

where for r ≥ 0, Np
r,s is the number of (unordered) partitions of r into s non-negative integers within {0, · · · , p} with

repetitions allowed and Np,distinct
r,s is the number of (unordered) partitions of r into s distinct non-negative integers

within {0, · · · , p}; and we have Np
r,s = 0 and Np,distinct

r,s = 0 for negative r.

4. Multiplicity of irreducibles with two columns Young diagrams inside Sym(m−1)(Sym2)

We proceed as above first applying the Ω involution operation to the Plethysm of Schur functions s(m−1) ◦ s(2). We
have

Ω
(

s(m−1) ◦ s(2)
)

= s(m−1) ◦ s(1)2 . (82)

Then we restrict the variables to (x1, x2) and get for the second factor above

s(1)2(x1, x2) = x1x2. (83)

Thus we have only one variable yi to consider in the following step. Hence we get the very simple decomposition

s(m−1) ◦ s(1)2(x1, x2) = xm−1
1 xm−1

2 = s(m−1,m−1)(x1, x2), (84)

which leads us to conclude that inside Sym(m−1)(Sym2) there is only one irreducible corresponding to Young diagrams
with up to two columns and it is characterized by the Young diagram with two columns of equal size equal to (m−1),
i.e. the diagram (m− 1,m− 1)t.
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5. Final result: application of the Littlewood Richardson rule

In order to obtain the multiplicity we are after we just need to consider the tensor product of a given two column
diagram (mp−a, a)t corresponding to one given irreducible inside Symm(

∧p
) by the two column diagram (m−1,m−1)t

(which itself corresponds to the only irreducible with at most two columns inside Sym(m−1)(Sym2) indexed by the
diagram (m − 1,m − 1)t), and focus only on the Young diagram which have one or two columns. A very simple
application of the Littlewood Richardson rule yields only one such diagram: the one where the first column of
(m − 1,m− 1)t is glued at the end of the first column of the diagram (mp − a, a)t and where the second column is
glued at the end of the second column of (mp − a, a)t (this is because the Littlewood Richardson rule imposes that
no boxes stemming from the same row can be glued to a column where a similar box has already been glued). Hence
for one given irreducible indexed by the diagram (mp− a, a)t inside Symm(

∧p
) we get only one irreducible inside the

plethysm Symm(
∧p

) ⊗ Symm−1(Sym2) indexed by a diagram (m(p + 1) − a − 1, a +m − 1)t. Hence, by changing
a +m − 1 into a, we get the multiplicity M(mp+2(m−1)−a,a)t of the irreducible corresponding to the Young diagram

(mp+ 2(m− 1)− a, a)t inside the plethysm Symm(
∧p

)⊗ Symm−1(Sym2) given by

M(mp+2(m−1)−a,a)t = m(mp−a+m−1,a−m+1)t =

{

Np
a−m+1,m −Np

a−m,m if p is Even

Np,distinct
a−m+1,m −Np,distinct

a−m,m if p is Odd
, (85)

where the numbers Np
r,s and N

p,distinct
r,s are defined as in equation (81). Note in particular that in order for Np,distinct

r,s

to be non zero we need obviously to have s ≤ p+1 (otherwise there are less integers inside {0, · · · , p} than necessary
to get a partition of r into s distinct such integers), this translate for the odd p case to the very important condition

m ≤ p+ 1. (86)

The origin of this condition can be traced back to the step 3 of the above derivation: when condition (86) is not
fulfilled there are less variables yr than the number of boxes in the single column of the Young diagram (1)m and
hence one cannot build the Schur function s(1)m(yr(x)).

V. EXPLICIT CONSTRUCTION OF P-FORM GALILEON THEORIES

The above derived restrictions on the tensor Em allows to count the maximum number of possible theories of
Galileon p-forms with specific properties. We will differ the full analysis of this question to an other work but we
would like here to consider two particular cases, the one of a vector (corresponding to p = 1) and the first non trivial
case of an odd-p-form with p = 3.

A. Vector Galileon: no-go

The case p = 1 has already been studied in [7] where it was shown that no such non trivial Galileon theory existed.
This results can be obtained here in a very simple way using the above results. Indeed, for p = 1 we find from (86)
that we must have m ≤ 2 in order to have a non vanishing multiplicity (mp+ 2(m− 1)− a, a)t inside the plethysm
Symm(

∧p
)⊗ Symm−1(Sym2). Recalling that (m− 1) gives the order of the taken derivatives of the field equation E

with respect to the second derivative of the gauge field, we find that, under our hypotheses, the field equations can
only depend on the second derivative of the gauge field linearly which matches the results of [7].

B. A non trivial 3-form theory

The next interesting case for odd p corresponds to p = 3 which we investigate here. In this case, obviously from
(86), we must have m ≤ 4 in order to have a non vanishing interesting tensor Em. Moreover, when p = 3 the rank of
this tensor is

(mp+ 2(m− 1)) = 5m− 2. (87)

By taking large enough m (i.e. enough number of derivatives with respect of the second derivatives of the p−form),
and since we are looking at theories where the field equations only depend on second derivatives of the form, we
should be able to end up with a tensor Emmax which is solely built from the metric ηab and the ǫ tensor which are
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the only tensors available besides the second derivatives of the form. Here we focus on the first case, and one must
then have Emmax+1 = 0. However, ηab has obviously an even rank, this should hence be true as well for the tensor
Emmax obtained as we just explained. Hence, in the p = 3 case, we are left with the only two possibilities mmax = 2
and mmax = 4 (see equation (87) and (86)). The first possibility does not lead to any interesting Galileon-like theory
of a 3-form since in that case E3 vanishes which means again that the field equations are at most linear in second
derivatives of the 3-form. So the only left over case is for mmax = 4. In this case, we have from (87) that E4 has rank
18 and should only depend on ηab.
The starting point of our construction is hence the tensor product η9 = η⊗ · · ·⊗ η (9 factors), from which we want

to build a tensor having all the required symmetries 1. 2. and 3. summarized in section II B. The tensor η9 belong
by construction to the symmetry class of the plethysm Sym9(Sym2) and using the results of section IVB4 we see
that there is only one irreducible inside this plethysm corresponding to a two column diagram with two columns of
equal size. It is easy to see how the corresponding irreducible representation of S18 can be constructed. Indeed, we
can consider the Young symmetrizer yanti

λk
where λk corresponds to the standard filling of the two column diagram

(2)9 where a given row contains the pair of indices of one given factor η of the tensor product η9. The action of
yanti
λk

on η9 then simply gives the tensor ǫ2(18) = ǫ2 (where here and below, we consider the simplest case where
space-time has the required minimum D=9 number of dimensions, see eq. (1)) up to an overall constant, i.e. we have
yanti
λk

η9 = −29 · 9! · ǫ2, which can be seen using the identity

∑

σ∈S9

sign(σ)ηaσ(1)b1ηaσ(2)b2 . . . ηaσ(9)b9 = −ǫa[9] ǫb[9] = −ǫ
a[9]b[9]
2 . (88)

Now, because ǫ2 is obviously non vanishing, we can use the statements of appendix C 1 showing that R[S18]ǫ2 ≡ Mǫ2

provides an irreducible representation of S18 indexed by the Young diagram (2)9. Using the results of section IVB5

we see that the plethysm of interest here, given by (for m = 4 and p = 3) Sym4(
∧3)⊗ Sym3(Sym2), contains one and

only one equivalent representation indexed by the same diagram (9, 9)t = (2)9. This follows from equation (85) with

a = 9,m = 4, p = 3 yielding N3,distinct
6,4 = 1 and N3,distinct

5,4 = 0 simply because 6 = 0 + 1 + 2 + 3. Let us consider

one given non vanishing tensor T belonging to this irreducible and to the symmetry class Sym4(
∧3

)⊗ Sym3(Sym2),
then, using results summarized in appendices C 1 and C2 we have that this irreducible is just given by MT . Schur’s
lemma and its corollaries exposed in appendix A3 then show that there is a unique (up to scalar multiplication)
S18-isomorphism between MT and Mǫ2 , which we call ψ. Our next aim is to use ψ to build the explicit form of a

suitable non vanishing E4 inside Sym4(
∧3

)⊗ Sym3(Sym2).
We first note that if we consider a given S18-isomorphism φ between MT and Mǫ2 , this map is entirely defined

by the image of the tensor T , φ (T ). Indeed, once this image is defined, the image of any tensor belonging to MT

defined by
∑

σ∈S18
f(σ)σ (T ), is just given by (using the notations of appendix B 1 as well as the fact that φ is an

intertwiner)

φ

(

∑

σ∈S18

f(σ)σ (T )

)

=
∑

σ∈S18

f(σ)σ (φ (T )) . (89)

Hence, we see that a complete set of intertwiners for the vector space of intertwiners between MT and Mǫ2 is just
given by the intertwiners φσ defined by

φσ (T ) = σ (ǫ2) , σ ∈ S18. (90)

Namely, any intertwiner between MT and Mǫ2 can be written as
∑

σ∈S18
F (σ)φσ , where F (σ) is a function on S18.

Let us then choose a specific order and labeling for the 18 indices of T which corresponds to the order of the indices
of E4 given in equation (49) for m = 4 and p = 3. As T belongs to Sym4(

∧3) ⊗ Sym3(Sym2), it has in particular
the symmetries 1. and 2. defined in section II B. In order to picture these symmetries here it turns out easier to first

define (for generic p and m) operators O
(m,p)
1 and O

(m)
2 acting as defined below on an arbitrary tensor X . In order to

simplify notations, we first define the following shortcut X
(m,p)
comp to denote the component of the tensors X with the

following specific labeling

X (m,p)
comp ≡ X a{p}b1{p}c1d1...bm−1{p}cm−1dm−1 , (91)
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where a{p} = {a1, · · · , ap} and bi{p} = {bi,1, · · · , bi,p}. The operators O
(m,p)
1 and O

(m)
2 are then defined as

(

O
(m,p)
1 (X )

)AB1c1d1...Bm−1cm−1dm−1

≡ Sym(a{p},b1{p},...,bm−1{p})Λ(a{p})

m−1
∏

i=1

Λ(bi{p})

(

X (m,p)
comp

)

, (92)

(

O
(m)
2 (X )

)a{p}b1{p}c1d1...bm−1{p}cm−1dm−1

≡ Sym({c1,d1},...,{cm−1,dm−1})

m−1
∏

i=1

Sym(ci,di)

(

X (m,p)
comp

)

, (93)

where A = a[p] and Bi = bi[p] are sets of antisymmetric indices made respectively of a{p} and bi{p}, Sym(α1,...,αk)

means a symmetrization on the arguments α1, . . . , αk and Λ(α1,...,αk) an antisymmetrization on the arguments αi,
these arguments being either space-time indices (e.g. when {α1, . . . , αp} = a{p} = {a1, . . . , ap}) or list of indices (e.g.
when {α1, . . . , αm} = {a{p}, b1{p}, . . . , bm−1{p}}). One then has

O
(4,3)
1 (T ) = T , (94)

O
(4)
2 (T ) = T , (95)

as a consequence of the fact that T has the symmetries 1 and 2. Note that these operators commute (as they
do not act on the same indices) and are also idempotent elements (once properly normalized) of the group algebra
R[S18]. Their product acts as a projector on the plethysm Symm(

∧p
)⊗ Symm−1(Sym2) and constitutes a generating

idempotent of the tensor symmetry class corresponding to this plethysm as defined in (C6). Let us then introduce
σ0 ∈ S18 so that it maps ǫ2 to

(σ0 (ǫ2))
a{3}b1{3}c1d1b2{3}c2d2b3{3}c3d3 = ǫ

c{3}a{3}b1,1b1,2b2,1d{3}b1,3b2,2b2,3b3{3}
2 , (96)

which corresponds to the filling λ0 of the Young tableau (2)9. Here, λ0 is defined by

λt0 =
c1 c2 c3 a1 a2 a3 b1,1 b1,2 b2,1

d1 d2 d3 b1,3 b2,2 b2,3 b3,1 b3,2 b3,3
,

and we have defined a{3} = {a1, a2, a3}, c{3} = {c1, c2, c3}, d{3} = {d1, d2, d3} and bi{3} = {bi,1, bi,2, bi,3} for
1 ≤ i ≤ 3. Concretely, σ0 ∈ S18 is defined as σ0(i) = 5i + 2, σ0(3 + i) = i, σ0(7) = 4, σ0(8) = 5, σ0(9) = 9,
σ0(9 + i) = 5i+ 3, σ0(13) = 6, σ0(14) = 10, σ0(15) = 11, σ0(15 + i) = 13 + i, where i = 1, 2, 3.
Let us then consider the intertwiners φσ defined above as in (90). Because φσ is an intertwiner, one has

O
(4,3)
1 O

(4)
2 (φσ (T )) = φσ

(

O
(4,3)
1 O

(3)
2 (T )

)

= φσ (T ) = O
(4,3)
1 O

(4)
2 (σ (ǫ2)) (97)

where the first equality follows from the fact φσ is an intertwiner and the second from the fact T belongs to the
symmetry class of Symm(

∧p
) ⊗ Symm−1(Sym2). Now it is easy to see that for any σ such that σ−1σ0 belong to

the column group of the diagram λ0 (i.e is such that the filling of the tableau (2)9 corresponding to σ (ǫ2) and the
filling corresponding to σ0 (ǫ2) only differ by the order of the indices in each columns) is such that σ (ǫ2) and σ0 (ǫ2)
are equal up to a factor ±1 due to the antisymmetry of the two factor ǫ entering into the definition of ǫ2. On the

other hand, whenever σ−1σ0 does not belong to the column group of the diagram λ0, one has O
(4,3)
1 O

(4)
2 (σ (ǫ2)) = 0.

Indeed, in this case, the filling of the tableau (2)9 corresponding to σ (ǫ2) is such that either (i) one column contains
strictly more than three indices in the set c{3}∪d{3} (and hence at least two of these indices ci and di carry the same

subindex i in which case σ (ǫ2) is annihilated by the action of O
(4)
2 ) or if it not the case one can first assume that,

due to the action of the symmetrization inside O
(4)
2 all index in c{3} and all index in d{3} of σ (ǫ2) are in a different

column as in λ0 and then either (ii) at least one column contains the same number of indices each belonging to two

sets among {a{3}, b1{3}, b2{3}, b3{3}} (in which case σ (ǫ2) is annihilated by the combined action of O
(4)
2 and O

(4,3)
1 )

or (iii) this is not the case in which case the action of O
(4)
2 O

(4,3)
1 on σ (ǫ2) is just proportional to O

(4)
2 O

(4,3)
1 (σ0 (ǫ2)).

As a consequence of the above, of equation (97), and of the fact we know that there exists a unique (up to a constant)

non vanishing intertwiner between MT and Mǫ2 , we reach the important conclusion that O
(4,3)
1 O

(4)
2 (σ0 (ǫ2)) cannot

vanish. Hence we can set E4 to be equal to

(

E4
)AB1c1d1B2c2d2B3c3d3

= O
(4,3)
1 O

(4)
2

(

ǫ
c{3}a{3}b1,1b1,2b2,1d{3}b1,3b2,2b2,3b3{3}
2

)

, (98)
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where A = a[3] and Bi = bi[3] are sets of antisymmetric indices made of a{3} and bi{3}, respectively. It is easy
to see explicitly that this tensor does not vanish. For this purpose it suffices to show that the component with

ci = di = i, ai = b3,i = 3 + i, b1,i = b2,i = 6 + i (i = 1, 2, 3) is non-vanishing. First, the operator O
(4)
2 acted on this

component is equivalent to the multiplication by 3! · 23. Second, Λ(a{p})Λ(b3{p}) is equivalent to the multiplication by

(3!)2. Third, in order to show that Sym(a{p},b1{p},b2{p},b3{p}) is also reduced to a multiplication by a non-vanishing

constant, let us rewrite it as a simple sum over α ∈ S4 acted on labels {1, 2, 3, 4}, where the label 1 corresponds to
a{p} and the labels 1 + i correspond to bi{p} (i = 1, 2, 3). Then, for the specific component that we are currently
considering it is obvious that Sym(a{p},b1{p},b2{p},b3{p}) is reduced to the summation over {α ∈ S4 s.t. (α(1), α(4)) =

(1, 4) or (4, 1) or (2, 3) or (3, 2)}, and thus is equivalent to the multiplication by 4 · 2. Finally, in order to show that
Λ(b1{p})Λ(b2{p}) is also a multiplication by a non-vanishing constant, let us rewrite it as a weighted sum over β ∈ S3

and γ ∈ S3 with the weight sign(β) sign(γ). For the component of interest it is then easy to see that Λ(b1{p})Λ(b2{p})

is reduced to the simple sum over β = γ ∈ S3 followed by the multiplication by 2, where the factor 2 takes care of the
interchange between γ(1) and γ(2) relative to β(1) and β(2). Thus Λ(b1{p})Λ(b2{p}) is equivalent to the multiplication

by 2 · 3!. This completes the explicit proof that the tensor E4 defined above does not vanish.
To get the equation of motion we integrate this tensor three times with respect to the second derivative of the

3-form and thus we get (omitting integration constants which will be discussed in a future publication as well as

symmetrizations antisymmetrizations inside the operators O
(4,3)
1 O

(4)
2 which are redundant with the contraction with

the second derivatives of the form)

EA =
(

Sym(A,b1{3},b2{3},B3)ǫ
c{3}Ab1,1b1,2b2,1ǫd{3}b1,3b2,2b2,3B3

)

AB1,c1d1AB2,c2d2AB3,c3d3 . (99)

Here, as already stated at the beginning of section II B, we have not introduced dependence of the integration
“constants” on first derivatives of the p-form for simplicity. Also as already stated, the integration “constants”
cannot depend on the p-form itself without derivatives acted on it because of (34). These equations of motion derive
from the following action (up to an overall constant and a total derivative)

S =

∫

M

ǫc{3}Ab1,1b1,2b2,1ǫd{3}b1,3b2,2b2,3B3AAAB1,c1d1AB2,c2d2AB3,c3d3 (100)

where the left over operator Sym(A,b1{3},b2{3},B3) has just been removed as keeping it would yield an equivalent action
up to a boundary term. Hence we have obtained a non trivial Galileon like theory for a 3 form necessitating at least 9
space-time dimensions. This theory fulfill our initial criteria: it has an action principle, has field equations (99) which
only contain second derivatives and which are gauge invariant. The gauge invariance, although guaranteed by our
formalism, can also be explicitly checked from the field equations (99). Indeed, any replacement there of one A by the
exterior derivative dC of a two form C yield a vanishing expression because the index of the derivative coming from
the operator d is contracted with one epsilon tensor ǫ which also contains one of the index of the second derivatives
acting on the replaced A in equation (99). It is interesting also to stress that the action is only gauge invariant up
to a boundary term which in fact makes our theory similar to Chern-Simon’s. To further investigate this question,
one notices that the above action can be written after suitable integration by part and relabeling as (leaving aside an
overall sign of combinatorial origin)

S =

∫

M

d9xǫa[9]ǫb[9] (∂a1FB1) (∂b1FA1) (∂a6Ab7b8a9) (∂b6Aa7a8b9) (101)

where here B1 = {b2, b3, b4, b5} and A1 = {a2, a3, a4, a5}, A is by assumption a 3 form and F = dA is the associated
field strength. This can be contrasted with the action found in [12] which was reminded in the introduction, Eq. (6)
where the structure of the index contraction is different for what concerns the first derivatives.

VI. CONCLUSION

In this work we have investigated Galileon like p-form theories and provided a first step towards their full classifi-
cation. Focusing on the case of single p-forms with gauge invariant pure second order field equations deriving from an
action principle, we have exposed a method to get an upper bound on the number of such non trivial theories. This
allowed us in particular to give a new proof of the no-go theorem obtained in [7] for gauge invariant vector Galileons
corresponding to p= 1. We also constructed explicitly a non trivial theory for a single 3-form, making explicit that
this no-go theorem does not extend to higher odd p. This work can obviously be extended in various directions. First,
it should be possible to compute the multiplicities obtained at the end of section IV for all single p-form theories
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and say ”reasonable” space-time dimensions (say e.g. D ≤ 11) and possibility to construct all of them following
the method exposed here. In particular one should be able to investigate the issue of uniqueness of the even-p-form
theories found in [12]. A second direction of investigation is to covariantize these theories in the spirit of what has
been done in [9] for the scalar case and in [12] for p-forms.
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Appendix A: Some elements about real and complex linear representations of finite groups

Let V be a vector space over the field of real numbers R or the field of complex numbers C. We note as usual
GL(V ) the vector space of linear and invertible endomorphisms of V (i.e. of automorphisms of V ), and we spell out
in this appendix some standard (and some less standard) results and definitions about linear representation theory of
finite group that we will use in this work (see e.g. [34]).

1. Generalities

Suppose G is a finite group. A linear representation of G into V is a homomorphism, ρ : G → GL(V ). I.e. ρ
is a map from G to GL(V ) which preserves the group structure and hence verifies

ρ(g1g2) = ρ(g1)ρ(g2) for all g1, g2 ∈ G (A1)

Below, we will sometimes also use the notation ρg to denote the image of g by ρ, ρ(g) ≡ ρg (such that one has
ρg1g2 = ρg1ρg2) as well as the more correct ”(V , ρ)” to designate the representation of G under consideration.
Consider (V , ρ), (W , ρ′), two representations of the group G. A linear map φ : V → W , that commutes with the

group action, i.e. such that

ρ′gφ(V) = φ(ρgV) ∀g ∈ G and ∀V ∈ V (A2)

is called an intertwiner map from V to W (such a map is also said to be equivariant or also a G-map or a
G-homomorphism).
Let V ,W be vector spaces of equal dimension and φ : V → W be a vector space isomorphism. Given a represen-

tation ρ of group G on V , the map φ induces a unique representation ρ′ of G on W via

ρ′g = φ ◦ ρg ◦ φ
−1 g ∈ G (A3)

The two representations ρ and ρ′ are said to be equivalent.
Let U ⊂ V be a vector subspace of V and ρ be a representation of G acting on V . We say that U is an invariant

subspace of V under ρ (or that U is stable under ρ), iff

ρ(g)V ∈ U ∀V ∈ U , ∀g ∈ G (A4)

Obviously, then ρ provides a representation of G into the vector space U . If U is such that it does not contain any
subvector space other than itself (and the trivial {0}) that is stable under G, we say, U furnishes an irreducible
representation of G.
An important theorem states that any representation of a finite group is a direct sum of irreducible

representations. I.e. the vector space V defining the representation under consideration can always be written as

V =
⊕

i

Wi (A5)
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where, Wi are irreducible representations of the group G. Another way to state this result is that any representation
of a finite group is completely reducible. Note that this decomposition is not unique, however any other similar
decomposition gives a decomposition into irreducible representations. Moreover, some of the Wi entering the direct
sum in (A5) can give equivalent representations. Hence, we can denote by W̄ j the vector spaces entering into the
direct sum (A5) which furnish inequivalent representations (i.e. such that W̄i and W̄j are inequivalent irreducible
representations whenever i 6= j). This implies that for a given irreducible representation W̄ j , there are mj (with
mj ≥ 1) equivalent irreducibles entering into the direct sum (A5), which we can write as

V =
⊕

j

W̄
⊕mj

j . (A6)

The number mj of vector spaces W̄j contained in V corresponding to the same irreducible up to equivalence is called
the multiplicity of W̄j .
A simple lemma given below will also be used in the following: let us consider two representations (V , ρ), (W , ρ′)

and a G-homomorphism ψ between them, and assume that V is irreducible. Then (i) the image Im(V ) of V by ψ is
an invariant subspace of W and (ii) if Im(V ) does not reduce to 0 it is irreducible. Indeed, consider first an arbitrary
element W of Im(V ), then there exists V ∈ V such that W = ψ(V). For an arbitrary element g of G, one thus has
ρ′g (W) = ρ′g (ψ(V)) = ψ(ρg(V)). But since V is irreducible, then it is also invariant and hence ρg(V) ∈ V , which
proves (i). Similarly, consider now an invariant subspace W ′ inside Im(V ), then it is easy to see its reciprocal image
ψ−1 (W ′) is an invariant subspace of V . However, since we have assumed that V is irreducible, its only non trivial
invariant subspace is itself, which means that one must have W ′ = Im(V ) which ends the proof of (ii).

2. Absolute Irreducibility

Let us now assume further that the base field of V is the field of real numbers R (and, we stress, not its algebraic
closure C). In order to make this clear we denote as VR the vector space V with R as a base field. We assume that
(VR, ρ) is a representation of the group G over VR. The vector space VR can be extended (or ”complexified”) to
become a vector space VC over C. Formally, the complexification VC of VR is defined as

VC = C ⊗R VR (A7)

where the tensor product above can just be considered as a tensor product between two vector spaces VR and
C over the field of real numbers (hence the notation ⊗R). Hence, an arbitrary vector in VC is just given by an
arbitrary linear combination of some tensor product z ⊗R V where z ∈ C and V is some vector in VR. For three
arbitrary complex numbers z1, z2 and z3 and two arbitrary vectors V1 and V2 inside VR, the composition law
z1 ((z2 + z3)⊗R (V1 + V2)) = (z1z2 + z1z3) ⊗R (V1 + V2) gives to VC a structure of a C-vector space. A simpler
notation for an arbitrary vector V of VC is just V = l1V1 + i l2V2 where l1 and l2 are real numbers and V1 and V2

are elements of VR. Furthermore, we can write VC ≡ C ⊗R VR = VR ⊕ i VR. An endomorphism φ of VR can also
be ”complexified” into an endomorphism φC of VC defining φC (z ⊗R V) ≡ z ⊗R φ (V) = Re(z)φ (V) + i Im(z)φ (V)
and extending this by linearity. Now considering a representation (VR, ρ) of the group G on the vector-space VR

realized over the field R, we obtain a new representation of G, (VC, ρ
C), on the vector space VC by defining for all

g ∈ G, ρC(g) = (ρ(g))
C
. If an irreducible representation (VR, ρ) is such that (VC, ρ

C) is also irreducible, we say that
it is absolutely irreducible. That is, an irreducible vector space remains irreducible under the ”complexification”
described above.4 This can be shown to be the case for representations of the symmetric group.5

3. Schur’s lemma and some corollaries

Let (V , ρ), (W , ρ′) be two irreducible representations of the group G and φ : V → W be a linear map that
intertwines with the group action, i.e. which is an intertwiner map as defined in the above subsection A1 then

1. φ is either 0 or an isomorphism

4 The notions introduced in this subsection and in the following one can be extended to vector spaces over an arbitrary fields F and and
an arbitrary field extension of it.

5 This is a consequence of the fact that irreducible representations of the symmetric group are defined on Q and stay irreducible on any
extensions of Q of characteristic 0 such as R and C .
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2. In the particular case when (V , ρ) = (W , ρ′), and the base field of the vector space V is C, then φ = λ 1, with
λ ∈ C and 1 the identity in GL(V ). That is φ is a scalar multiple of the identity.

The proof of the above lemma can be found in a variety of references (e.g. in [34]), however, for the sake of clarity
and of the understanding of the remaining of this subsection, we found it useful to give it explicitly below.

Proof. The map φ = 0 is a trivial intertwiner. Suppose φ 6= 0 and consider the kernel of φ, Ker(φ). If V ∈ Ker(φ)
then 0 = ρ′g(φ(V) ≡ 0) = φ(ρg(V))∀g ∈ G. Hence Ker(φ) ⊂ V is an invariant subspace of the representation (V , ρ).
Since this representation is irreducible by hypothesis, any invariant subspace is either the null space or the entire
space V ; the second case i.e. the case with Ker(φ) = V is excluded as φ 6= 0. By a similar argument we can conclude
that the image of φ is the entire space W , i.e. Im(φ) = W . The properties Ker(φ) = 0 and Im(φ) = W imply that
φ is a G-isomorphism which proves the first part of the lemma. Consider now the case where V = W and ρ = ρ′, and
define the map φ′ ≡ φ − λ 1 where λ ∈ C is a non zero eigenvalue of φ (which always exists since C is algebraically
closed). Then φ′ is an intertwiner and has a non-zero kernel. These properties can only be satisfied if φ′ = 0 which
implies that φ = λ 1.

The above Schur lemma also extends as follows to the case of an absolutely irreducible representation on the real
field. Indeed, let (VR, ρ) be an absolutely irreducible representation. Then, any G-homomorphism φ : VR −→ VR is
necessarily a scalar multiple of the identity inside R, i.e.,

φ = λ 1 λ ∈ R (A8)

Proof. Let us consider the representation (VC, ρ
C) as defined above and the complexification φC of the map φ.

The map φC is a G-homomorphism of the irreducible representation (VC, ρ
C), hence Schur’s lemma states that

it must be of the form φC = λ 1, with λ some complex number. Hence, for an arbitrary non-vanishing com-
plex number z and vector V of VR one has φC (z ⊗R V) = λ (z ⊗R V) which reads also (Re(z) + i Im(z))φ (V) =
(Re(λ) + i Im(λ) (Re(z) + i Im(z))V = (Re(z)Re(λ)− Im(z)Im(λ))V + i (Re(z)Im(λ) + Im(z)Re(λ))V and im-
plies Im(λ) = 0 and also φ (V) = λV ending the proof.

The above lemmas lead to the following corollaries. First, Let (V1, ρ1), (V2, ρ2) be equivalent irreducible representa-
tions over C or equivalent absolutely irreducible representations over R, then the G-isomorphism that exists between
them is unique up to scalar multiplication. Indeed, Let φi : V1 −→ V2 i = 1, 2 be two G-isomorphisms. Then the
map φ−1

2 ◦ φ1 : V1 −→ V1 is a G-automorphism. It follows from Schur’s lemma that one must have φ−1
2 ◦ φ1 = λ 1

implying φ1 = λ φ2, λ ∈ C (or R).
Secondly, let us consider an irreducible representation (V , ρ) and let W = V1 ⊕ · · · ⊕Vm where Vi is isomorphic to

V ∀i ∈ {1, · · · ,m}, then the number of linearly independent G-homomorphisms ψi : W −→ V is exactly m. Indeed,
let φi : Vi −→ V be non-zero G-isomorphisms (which are guaranteed to exist since Vi ≃ V ). Let π̃i : W −→ Vi, be
the canonical projections on Vi, and we further define πi : W −→ W such that ∀W ∈ W , πi (W) = π̃i (W) (i.e.
πi are the compound of π̃i by the inclusion map of Vi inside W ). The identity map inside W , 1W , is just given by
1W =

∑

i πi. Now consider an arbitrary G-homomorphism ψ : W −→ V . One has using the above decomposition of
1W ,

ψ ≡
m
∑

i=1

ψi (A9)

where ψi = ψ ◦ πi are maps between W and V . The restriction of ψi to Vi, defined to be ψ̃i, is a G-homomorphism
and hence, thanks to the preceding lemma, we have that ψ̃i = λiφi, with λi some real number, which ends the proof.

Appendix B: The group algebra of the symmetric group and its regular representations

1. Definitions of the group algebra of Sn

The so-called group algebra (also called the Frobenius algebra [see e.g. [33] p43] or the group ring) of Sn,
that is usually noted as R[Sn] (for reasons that will also appear clear below) plays a crucial role in elucidating the
link between tensor symmetries and representations of the symmetric group that we use in this work.
A first definition of the group algebra is as follows: first, out of Sn we can define a vector space VSn

over R by
considering each different element σi of Sn as a base vector noted here eσi

(note that in the following we will sometimes
use the slight abuse of notation consisting in identifying the permutation σi with eσi

the corresponding basis element
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of R[Sn]) and defining the elements of VSn
(which will turn out to be identical6 to R[Sn]) as just arbitrary linear

combinations of the eσi
with real coefficients of the form

∑i=n!
i=1 lσi

eσi
where lσi

are n! real numbers (and the product
and sum appearing in this definition are so far formal - see below). The addition of two such vectors and multiplication
by a real number, l, are just then defined in a natural way as

(

i=n!
∑

i=1

kσi
eσi

)

+

(

i=n!
∑

i=1

lσi
eσi

)

=

i=n!
∑

i=1

(kσi
+ lσi

) eσi
(B1)

l

(

i=n!
∑

i=1

kσi
eσi

)

=

i=n!
∑

i=1

lkσi
eσi

. (B2)

Using then the composition law of Sn as a internal composition law on VSn
as (note that below and in the following

we note this law with the × symbol, but we will also later omit this symbol in order to alleviate notations)





j=n!
∑

j=1

kσj
eσj



×

(

i=n!
∑

i=1

lσi
eσi

)

=

j=n!
∑

j=1

i=n!
∑

i=1

(

kσj
lσi

)

eσjσi
(B3)

gives to VSn
the structure of an algebra. We note that Sn is obviously included into its group algebra R[Sn], and, if

we consider the element of the group algebra in the left parenthesis of the left-hand side of equation (B3) just to be
given by an element of Sn (i.e. setting all but one kσj

to zero), we can interpret (B3) as defining a representation of
the permutation group Sn on the vector space VSn

where the action of a group element on an element of the group
algebra (considered as a vector space) is simply given here by the left product of the group element by the vector. This
representation is called the (left) regular representation of Sn. The same action (now extended to a given element
of the group algebra in the left parenthesis of the left hand side of equality (B3) - i.e. allowing for arbitrary kσj

) clearly
also provides a representation of the full group algebra acting on itself (as a vector space) by left multiplication. In
general every representation of the group algebra also contains one of the group itself (because the group is contained
into the group algebra) and conversely for any representation of the group there exists a unique representation of the
group algebra in which it is contained (which is just obtained by considering formal linear combinations of matrices
associated with the considered group representation. One can further show that if a representation is irreducible or
reducible as a representation of the group algebra, then it has the same property as a representation of the group.
There is another definition of the group algebra which is handy for us. R[Sn] can just be defined as the set of

real functions on the symmetric group Sn. Indeed, because Sn is finite, any such function f is fully defined by n!
real numbers f(σi) where σi runs over all the elements of Sn. This provides a one to one map between the set of

real functions on Sn and R[Sn], which sends a given function f to the group algebra element
∑i=n!

i=1 f(σi)eσi
. Using

this definition, there is a natural operation that can be defined on the group algebra and which will play a role in

the following: it is called the ”∗” involution map : it sends the group algebra element a =
∑i=n!

i=1 f(σi)eσi
to

a∗ =
∑i=n!

i=1 f(σi)eσ−1
i

.

2. Young diagrams, Young tableaux and Young symmetrizers

As it will be recalled later, the regular representation of the group algebra R[Sn] is fully reducible and its decom-
position into irreducibles allows to fully classify tensor symmetries and operate a similar decomposition of a given
space-time tensor. This decomposition in practice relies on the use of special elements of the group algebra which are
called Young symmetrizers and which will be defined below. To do so, we first need to introduce some basic notions
about partitions, Young tableaux and diagrams. These notions, as well as some properties to be given below, will also
be used in this article when dealing with plethysms and symmetric functions as well as to derive our main results.
We first recall that, given a positive integer n, a partition λ of n, denoted by λ ⊢ n, is a sequence of positive

integers, (λ1, λ2, . . . λr), such that λ1 ≥ λ2 ≥ · · · ≥ λr and λ1 + λ2 · · ·+ λr = n.
A Young diagram is a finite collection of boxes arranged in left-justified rows, with the row sizes weakly

decreasing (this being the so-called ”english” notation for Young diagram, while the ”french” convention is upside

6 In the following we use sometimes the notation VSn
instead of R[Sn] when we want to stress that we only use the vector space structure

of the group algebra, but we stress here again that the two sets VSn
and R[Sn] are just identical. In the literature, R[Sn] is usually

called either the group algebra, the group ring, or the Frobenius algebra associated with Sn
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down with respect to the ”english” one).7 Each Young diagram corresponds uniquely to a partition and will
sometimes be noted as the corresponding partition λ = (λ1, λ2, . . . λr). The Young diagram associated to a given λ,
is the one that has r rows (using the notation of the above definition) and λi boxes on i’th row. For example, the
partition (3,2,2) corresponds to the following Young diagram.

With the above notation, a Young diagram with one line of m boxes with just be denoted (when it is clear
from the context that we consider a Young diagram and not an integer) as (m). We will sometimes use a simplifying
notation to designate Young diagrams with several lines each of the same length m. Such a diagram with p
such lines will be denotes as (m)p.
Given a Young diagram corresponding to a partition (λ1, . . . λr), the conjugate or transpose of this Young

diagram is given by the reflection of the original diagram along its main diagonal, denoted (λ1 . . . λr)
t where the

superscript ”t” stands for transpose. The transpose of our above example is simply (3, 2, 2)t and corresponds to the
following Young diagram

Given n ordered labels such as a{n} := {a1, . . . , an}, a Young tableau λk ≡ λa{n} is a filling of the Young diagram
λ with labels ai, one in each box and such that a given label ai can be used several times to fill a box. In the notation
λk, the subscript ”k” labels different Young tableaux derived from the same Young diagram λ but different fillings.
For example given the labels, {1, 2, 3} and a partition (2, 1), admissible Young tableaux are

2 1

3

2 2

2

1 2

2

3 1

2
· · ·

A standard Young tableau is a Young tableau filled such that the order is preserved strictly along the rows (from
left to right) and the columns (from top to bottom) and that each label occurs at most once. For example given
the labels, {1, 2, 3} (ordered using the natural order on N) and a partition (2, 1) all the associated standard Young
tableaux are

1 2

3

1 3

2

For a given young diagram λ (and a set of labels) we denote by STλ the set of all standard Young tableaux built
from λ.
A semi-standard Young tableau is a Young tableau filled such that the order is preserved strictly along columns

but only weakly along the rows. E.g. all the semi-standard Young tableaux built from the partition (2, 1) and with
entries in the labels, {1, 2, 3} are

1 2

3

1 3

2

1 1

2

1 1

3

2 2

3

1 2

2

1 3

3

2 3

3

Considering a given semi-standard Young tableau filled with integers {1, 2, 3, · · · }, this tableau is said to have type
α = (α1, α2, · · ·) if the number of occurrence of the integer i is equal to αi.

7 See e.g. Refs [35, 36] for nice reviews on Young diagrams and tableaux.
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Consider now a given Young diagram λ and some Young tableau λk ≡ λa{n} obtained from it and an ordered list

of label a{n}. There is a natural action of Sn on λk defined (with obvious notations) by σ
(

λa{n}
)

= λ{aσ(1),··· ,aσ(n)},
where σ is an element of Sn and this action is simply defined by the permutation of the labels of the boxes of the
tableau using σ. Furthermore, let Rλk

⊂ Sn, be the row group associated to the Young tableau λk defined as
the subgroup of Sn which leaves the set of elements in each row invariant (i.e. it can only change the order of the
elements in a given row). Similarly, let Cλk

⊂ Sn, be the column group , i.e. the subgroup of Sn that preserves
the set of elements of each column. Out of Rλk

and Cλk
associated to a given tableau, we can define the following

elements belonging to the group algebra R[Sn]

rλk
=

∑

σ∈Rλk

eσ cλk
=
∑

σ∈Cλk

sign(σ)eσ. (B4)

For a given tableau λk, one can further define a (”symmetric”) Young symmetrizer as the element of the group
algebra given by

y
sym
λk

≡ rλk
× cλk

. (B5)

Due to the order of the multiplication above, this element is such that it is automatically symmetric in the labels
corresponding to the rows of the Young tableau, which justifies the upper ”sym” in our notation. This corresponds
to the definition of Young symmetrizers used in most references, however, another set of Young symmetrizers can
be used which are this time explicitly antisymmetric in the labels corresponding to columns. These ”antisymmetric”
Young symmetrizers are defined by

yanti
λk

≡ cλk
× rλk

. (B6)

By the action of the ∗ involution on a given Young symmetrizer, one has obviously (rλk
)∗ = rλk

, (cλk
)∗ = cλk

and
(V1 × V2)

∗ = (V2)
∗ × (V1)

∗ ∀V1,2 ∈ R[Sn], and thus

(

y
sym
λk

)∗
= yanti

λk
and

(

yanti
λk

)∗
= y

sym
λk

. (B7)

A Young symmetrizer is what is called an essentially idempotent of the group ring, i.e. an element y of R[Sn]
which verifies y2 = ly where l is a real number. It is such that ỹ = y/l is an idempotent , i.e. verifies ỹ2 = ỹ (see

e.g. [29] p 103). Accordingly, we call ỹ
sym/anti
λk

the idempotent associated to the essentially idempotent y
sym/anti
λk

.

3. Ideals of R[Sn] and the full reduction of the regular representation

We first recall that a left (respectively right) ideal inside a ring X (for us, the relevant ring to consider here is
the group ring which is the same as the group algebra R[Sn]) is a subset I of the ring such that i/ it is a subgroup of
the ring for the addition law (i.e. the internal law for which X is a group) and ii/ for any x belonging to X and any i

belonging to I the product x× i (respectively i× x, where × denotes the internal product of the ring) belongs to I.
A two-sided ideal is an ideal which is at the same time a left and a right ideal. An ideal (left, right or two-sided)
is said to be minimal when it contains no other ideal (of the same kind) besides the trivial ideals, i.e. itself and the
null ideal.
There is an easy way to construct ideals: consider a given element g of the group algebra and then the set of all

the right product of an arbitrary element x of R[Sn] with g, i.e. {x × g, x ∈ R}. This set can be noted R[Sn]g
and is obviously a left ideal. It is said to be generated by g. Similarly, the set of the solutions x of the equation
x× g = 0 (where 0 is the null vector and g is a given element of the ring) also constitutes a left ideal. One can show
that every ideal can be generated in both ways. In particular, it can be shown that every left ideal I of R[Sn] contains
an element e such that e is an idempotent (i.e. verifies e2 = e) and generates I (i.e. I = R[Sn] e) (see [29] p 58-59).
The element e is called a generating idempotent of I. If the ideal I is minimal, then every generating idempotent
of I is primitive.8 And conversely any primitive idempotent e generates a minimal left ideal R[Sn] e. Note also that
the intersection of a finite number of left (respectively right or two-sided) ideals is an ideal of the same type.

8 See [29] p 60 for a proof. A primitive idempotent g is an idempotent which cannot be written as a sum of two different (and non
vanishing) idempotent g′ and g” which would in addition be orthogonal, i.e. verify g′ × g” = 0 and g”× g′ = 0.
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The ideals of the group ring R[Sn] play a crucial role in the decomposition of the regular representation defined
above. Indeed, the invariant subspaces of this representation can be shown to be left ideals while irreducible
spaces are minimal such ideals. The whole group ring is a direct sum of minimal left ideals. This decomposition is
unique except for the order and up to equivalence between minimal left ideals.9 Indeed, the group algebra can be
decomposed in the following way

R[Sn] =
⊕

λ⊢n

Iλ (B8)

where the sum runs over all the partitions λ of n (which are in one to one correspondence with Young diagrams, and
which we note here as λ ⊢ n) and Iλ is a two sided ideal in one to one correspondence with a given Young diagram
λ. Each ideal Iλ can be further decomposed in a direct sum of left ideals Lλk

as follows

Iλ =
⊕

λk∈STλ

Lλk
, Lλk

= R[Sn] y
sym/anti
λk

, (B9)

where the sum now runs over the set of all standard Young tableaux STλ which can be built out of a given partition

λ, and y
sym/anti
λk

is the Young symmetrizer constructed from the standard Young tableau λk in the antisymmetric

or symmetric presentation10. Each Young symmetrizer y
sym/anti
λk

is a generating essentially idempotent of the ideal

Lλk
≡ R[Sn] y

sym/anti
λk

, and this ideal is minimal. Note further that while Young symmetrizers associated to different
Young diagrams are mutually orthogonal, the young symmetrizers associated to the same Young diagram but different
standard tableaux are not mutually orthogonal. Putting all together we then have the full decomposition of the regular
representation into irreducible representations of the symmetric group (or of the group algebra) each defined by the

left action (B3) on the irreducible spaces R[Sn] y
sym/anti
λk

given by

R[Sn] =
⊕

λ⊢n

⊕

λk∈STλ

R[Sn] y
sym/anti
λk

. (B10)

One can show that for a given Young diagram λ, the dimension of R[Sn] y
sym/anti
λk

as a vector space over R is the
same as the number of different standard Young tableaux that can be built out of λ which also gives the number of

isomorphic (but inequivalent) left ideals R[Sn] y
sym/anti
λk

entering into the decomposition of the group ring.

A similar decomposition can be obtained using right ideals (i.e. decomposing the two sided ideals Iλ into direct
sums of right ideals). Indeed, one has analogously to (B8)

R[Sn] =
⊕

λ

⊕

λk∈STλ

y
anti/sym
λk

R[Sn]. (B11)

This decomposition can be obtained by applying the ∗ involution map to (B10) and using (B7). Indeed, the ∗
involution map maps idempotents to idempotents, direct sums of left (right) ideals to direct sums of right (left) ideals
and minimal ideals to minimal ideals.
If one multiplies to the right the above equality (B8) by some arbitrary element g of the group algebra, one obtains

a decomposition of the left ideal L ≡ R[Sn] g generated by g (i.e. of any left ideal of R[Sn], since any such ideal has
a generating idempotent) as

L ≡ R[Sn] g =
∑

λ

∑

λk∈STλ

R[Sn] y
sym/anti
λk

× g (B12)

however, the sum on the right hand side above is no longer direct. Still, this can be used to obtain a decomposition
of L into a direct sum of minimal left ideals. This decomposition can be obtained from the above (B12) just by

removing there a sufficient number of the minimal ideals R[Sn] y
sym/anti
λk

× g (one can indeed show that these ideals

are minimal). Fiedler [31, 32] gives an algorithm to carry out this decomposition. It uses the fact that the minimal

9 Two ideals are said to be equivalent in this context if there is a linear map between them which is compatible with left multiplication.
I.e. if for any element i of one ideal mapped to the element i′ of the other ideal, then x× i is mapped to x× i′ for any x belonging to
the group ring R[Sn]. One can show that any such map is a right multiplication.

10 Note that the same presentation should be chosen for all the Young symmetrizers entering into the decomposition
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left ideals R[Sn] y
anti/sym
λ × g and R[Sn] y

anti/sym
µ × g are in direct sum if µ and λ are standard tableaux each

corresponding to different partitions of n (i.e. to different Young diagrams). Hence, it is only the ideals of the form

R[Sn] y
anti/sym
λk

×g with the λk corresponding to the same young diagram (but to different standard tableaux) which
are not necessarily in direct sum in the expression above, depending on the considered element g of the group algebra.
This means in particular that it is only whenever, for a given fixed young diagram, there is more than one standard
young tableau entering in the sum (B9) that one has possibly to remove corresponding terms in the sum (B12). The
algorithm devised by Fiedler goes then as follows: for a given partition λ ⊢ n, keep the first non vanishing ideal

R[Sn] y
anti/sym
λk

× g entering in the sum on the right hand side of (B12), and call it L1. The next non vanishing ideal
in the sum can be shown to be either contained in L1 or not. In the latter case, call it L2. L1 and L2 are in direct sum
and one can call L̃2 their direct sum. The algorithm continues then in the same way by replacing L1 by L̃2 until one
has exhausted all the left ideals on the right hand side of (B12) corresponding to the same partition λ of n, the ideals
corresponding to different partitions being automatically in direct sum. The algorithm given in [31, 32] enables also
to construct a generating idempotent e of the left ideal L and its decompositions into primitive pairwise orthogonal
idempotents ei such that e = e1 + · · ·+ ek and that the ideals Lk generated by each ek are in direct sum and sum
up to L.
A similar decomposition can also be achieved for right ideals. Indeed, one way to proceed considering an arbitrary

right ideal R is to decompose the left ideal L = R∗ as shown above and then come back to R by acting again on the
decomposition of L into direct sum of minimal left ideal with the ∗ involution map.
This decomposition for left or right ideals can be used to decompose any space-time tensor into components with

given symmetries, as we now explain.

Appendix C: Tensors, Tensor symmetries and the group algebra R[Sn]

1. From abstract and space-time tensors to the group algebra of Sn

The group algebra can be defined in a way that makes its links to tensor more explicit, namely as follows: con-
sider first a chosen ordered list of labels a{n} = {a1, · · · , an} which do not yet have any meaning as space-time
indices. Then we can identify the identity inside Sn with this list and further any permutation σ of Sn with the
ordered list {aσ(1)aσ(2) · · · aσ(n)}. We can then think as these lists to be carried by some object T, such that the list
{aσ(1)aσ(2) · · · aσ(n)} is just identified with the list carried by T that we note as T aσ(1)aσ(2)···aσ(n) . Here the object T
has not to be considered as a space-time tensor, but just as an ”abstract tensor” in the spirit of Ref. [28], i.e. just
an object of undetermined nature indexed by a string of character. With such an identification, the group algebra
is isomorphic (as an algebra) to the set of all (formal) linear combinations with real coefficients of all the indexed
objects T aσ(1)aσ(2)···aσ(n) when σ varies over Sn , which can also be defined as the set MT = span{σ(T)|σ ∈ Sn} where
”span” means that we take the set of all possible linear combinations with real coefficients, and T and σ(T) are
defined (formally, since here, so far we deal only with abstract tensors T as opposed to space-time tensors noted with
curly characters such as T ) as in (50). As defined, MT is just the same as the group algebra R[Sn]. So defined, we
also have an action of Sn on this set defined by ρ ∈ Sn : T a{σ(p)} → T a{ρ×σ(p)} which is also identical to the action
discussed above of Sn on a given Young tableau (which can be considered as an abstract tensor in the sense above).
A set like MT also makes sense if we now consider a given space-time tensor T . More precisely, given a space-time

tensor T we define the set

MT ≡ span{σ(T )|σ ∈ Sn} = R[Sn]T (C1)

and σ(T ) defined as in (50). This set MT is a vector subspace (linear subspace) of the vector space of tensors V ⊗n.
It is also the orbit of T under the left action of the group algebra R[Sn] of Sn, where the left action is defined through
(50) and its natural linear extension. As such it provides a representation of R[Sn] (see e.g. Ref. [34] p.5). The
map ψ : R[Sn] → MT , which sends a permutation σ to σ (T ) and is extended by linearity to linear combinations, is
trivially an Sn-homomorphism.
Note that the MT and MT should not be confused. On one hand, MT is equivalent to the group algebra R[Sn].

On the other hand, as a vector space on R, the group algebra has dimension n!, V ⊗n has dimension Dn, and thus in
general MT is not isomorphic (as a vector space) to R[Sn]. (Consider e.g. the case with n! > Dn, and also the cases
where the space-time tensor T appearing in the definition of MT obeys some relations of the type (53) - in this case
the images of all the σ by ψ are not all independent - moreover, in general a space-time tensor is not the same as an
abstract tensor, since the former has real components while the latter is just a list of labels.) However, the fact that
the map ψ defined in the previous paragraph is an Sn-homomorphism allows one to decompose MT into irreducible
representations of Sn, which corresponds, as we will see below, to subspaces of so-called tensor symmetry classes.
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Indeed, according to the last lemma of appendix A1, and using the decomposition of the group Algebra (B10), one

sees that for any tensor T such that y
sym/anti
λk

T does not vanish, the image of the left ideal R[Sn]y
sym/anti
λk

by ψ,

that we can note R[Sn]y
sym/anti
λk

T , provides an irreducible representation of Sn (see e.g. Ref. [36] page 73).
Given a tensor T there is another useful way to build a corresponding subset inside the group algebra. Consider

indeed first an arbitrary set of n one forms Ṽ ≡ {Ṽ
1
, . . . , Ṽ

n
}, where we allow repetition and linear dependence

among the forms Ṽ
1
, . . . , Ṽ

n
. Out of T and the n-uplet Ṽ we can easily build a function on Sn as follows: to each

permutation σ we associate the real number TṼ (σ) ≡ T b1···bnṼ
σ(1)

b1 · · · Ṽ
σ(n)

bn . We identify then this function with the

element of the group algebra given by
∑i=n!

i=1 TṼ (σi) eσi
which we denote as TṼ . Note that if we choose a given ordered

list of space-time indices values a{p} (i.e. where each of the ai is an integer between 1 and D), and the set Ṽ
i
to be

equal to the dual base covector B̃
ai

(for which we have B̃
ai

µ = δai
µ ) we have that TṼ (σ) = T b1···bnṼ

σ(1)

b1 · · · Ṽ
σ(n)

bn =

T aσ(1)···aσ(n) = (σ (T ))
a1···an (see (50)). It is quite obvious that two tensors T and S (of the same valence) are equal

iff they verify T Ṽ = SṼ for any Ṽ [32]. Another result of interest for us is the following formula (demonstrated in
[32]) valid for any element a of the group algebra acting on a tensor T

(aT )Ṽ = TṼ × a∗. (C2)

2. Tensor symmetries and tensor symmetry classes

Our main tool in this work is the characterization of tensor symmetries and the purpose of this subsection is to
explain how such symmetries are connected to the decomposition of the group algebra into irreducible representations
of the symmetric group. To this aim, consider a tensor T fulfilling one or several identities of the form (53) which
can also be encoded as

uj (T ) = 0, for j = 1, · · · ,m (C3)

where the uj are m elements of the group algebra R[Sn] and where the action of uj on T is defined by (50) and
linearity. Alternatively, these identities encoding the symmetries of T can be written as

vj (T ) = T , for j = 1, · · · ,m (C4)

where vj are m elements of the group algebra R[Sn]. The group algebra elements uj or vj characterize the symmetry
of the considered tensor T and for future reference we define the set u and v as the sets of group algebra elements
u = {u1, · · · ,um} and v = {v1, · · · ,vm} respectively. It is then natural to define the set of tensors of V ⊗n which
are invariant under the same symmetries as T , i.e this set can be defined as V ⊗n

v by

V ⊗n
v = {X ∈ V ⊗n, ∀vi ∈ v vi (X ) = X}. (C5)

It is easy to see that V ⊗n
v is a linear subspace of V ⊗n that is invariant under the action of the bisymmetric

transformations (51), simply because any such transformation commutes with any element of R[Sn] and in particular
with the elements of v. Now consider a subspace W of V ⊗n invariant under the bisymmetric transformations. It
can be shown [29] that (i) this subspace possesses generating idempotents e ∈ R[Sn], in the sense that

∀X ∈ V ⊗n, e(X ) ∈ W and ∀X ∈ W , e(X ) = X . (C6)

The so-defined indempotent e is also generating idempotent of the group algebra R[Sn].
11 One can also show (ii) that

W is such that the set R of elements r of R[Sn], defined by

R = {r ∈ R[Sn], such that ∀X ∈ V ⊗n r(X ) ∈ W }, (C7)

is a right ideal which is generated by any idempotent of W as defined above. When R is built as above from the
invariant subspace V ⊗n

v corresponding to a given set of symmetries v of some given tensor T , we will denote it as

Rv. Given a right ideal R inside R[Sn], we can define the set V ⊗n
R as

V
⊗n
R = {r(X ), for all r ∈ R and X ∈ V ⊗n}. (C8)

11 A practical way to construct such an idempotent is to consider the projection on W along any other linear space with which W is in
direct sum to the full tensor space V ⊗n. This projection is then given by the product of some element of R[Sn] and the idempotent
that one is looking for.
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This set is called a tensor symmetry class and is invariant under the bisymmetric transformations. When con-
sidering such a set built from an ideal Rv, we will note the associated tensor symmetry class as Vv instead of the
heavier V

⊗n
Rv

. We will use an alternative notation when the symmetries considered in v is of the Plethysm type

defined in section III B. E.g. when we consider the plethysm Symm(
∧p

) ⊗ Symm−1(Sym2), we will denote by
RSymm(

∧
p)⊗Symm−1(Sym2) and VSymm(

∧
p)⊗Symm−1(Sym2) the corresponding right ideal and symmetry class. Similarly,

when considering the right ideal Rλk
≡ y

sym/anti
λk

× R[Sn] generated by some specific Young symmetrizer y
sym/anti
λk

associated with a given Young tableau λk, we will denote as Vλk
the corresponding symmetry class.

What matters for us is that Rv and the associated symmetry class V ⊗n
Rv

can be simultaneously reduced respectively
as representations of Sn and of the bisymmetric (or GLD) transformations. One way to proceed is to decompose the
right ideal Rv into a direct sum of minimal ideals Rek

, Rv = ⊕ek
Rek

, each generated by the idempotent ek (e.g.

using the method explained at the end of B 3), then V
⊗n
Rv

is decomposed into a direct sum of vector subspace each
generated by one ek in the sense of (C6), each if these subspace being an irreducible vector space under the action of
the bisymmetric transformations.
Alternatively, in order to use left ideals which are more easily connected with irreducible representations of the

group algebra, one can use the following correspondence between tensor symmetry classes and left ideal essentially
due to Weyl (see e.g. [40]) and nicely explained in [29, 31, 32]. For a given tensor T and its associated symmetry

set u defined as above, as well as a given n-uplet Ṽ defined as above, all TṼ belong to the left ideal L defined as the
intersection of the ideals Lj defined by the set of elements of the group algebra which are annihilated by the group
algebra elements u∗

j . I.e. Lj = {u ∈ R[Sn] such that u×u∗
j = 0}. Using (C2) one can then show that the relations

(C3) are equivalent to

∀Ṽ , TṼ × u∗
j = 0 for all j = 1, · · · ,m. (C9)

This shows that for a tensor obeying the symmetries (C3) all the TṼ belong to the intersection L of the ideals Lj . Using
the results summarized after Eq. (B8), one can find a generating idempotent e of this ideal which can be decomposed
into primitive pairwise orthogonal idempotents ek such that e = e1 + · · · em. These idempotents decompose every
TṼ as

TṼ = TṼe = TṼe1 + · · ·+ TṼem. (C10)

This decomposition is equivalent to

T = e∗1T + · · ·+ e∗mT , (C11)

and gives a decomposition of the tensor T into tensors each belonging to a symmetry class [29] generated by the
idempotent e∗k and in one to one correspondence with an irreducible representation of Sn [31, 32].

3. Tensor product and the Littlewood-Richardson rule

Consider two tensors each belonging to some tensor symmetry class generated by some standard tableaux λ and
µ respectively (i.e, speaking more properly, generated by the Young Symmetrizers associated with the corresponding
standard Young tableaux). As such, these symmetry classes are irreducible but the tensor product of these two tensors
belong to a symmetry class which is in general reducible. The rule to obtain the decomposition of the tensor product
into irreducibles is known as the Littlewood-Richardson rule and goes as follows.

• Since tensor products are commutative (and associative) one can choose a convenient order of the tensor product.
Then Label all the boxes of each row of the second tableau with the same letter following some canonical order,
e.g., a, b, c, . . . , and going from top to bottom.

• Add the boxes of the second tableau one by one, starting from a′s then b′s. and so on, to the first Young
diagram such that (i) the resulting diagram is a valid Young diagram, (ii) no column contain the same label,
and (iii) in the resulting diagram, when read from right to left and top to bottom, the number of a’s encountered
≥ the number of b’s encountered ≥ . . . .

Applying this rule, we obtain a set of Young diagrams (filled in part with letters a, b, c, . . . ) each representing one
particular irreducible component in direct sum decomposing the tensor product of the symmetry classes corresponding
to the two tensors considered initially. In particular, the multiplicitymρ corresponding to the representation associated
with a given Young diagram ρ is given by the number of times (counted after the removal of the letters a, b, c, . . . )
this diagram ρ is created by the application of the Littlewood Richardson rule.
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As an example, the tensor product (denoted here by ⊗)

⊗ a a

b
(C12)

is decomposed as follows into irreducibles

a a

b
⊕ a a

b

⊕ a

a

b

⊕ a

b

a

⊕ a

a b
⊕ a

a

b

⊕
a

a b

⊕
a

a

b

.

We see in particular that the Young diagram appears two times above and hence the corresponding

representation has multiplicity two in the tensor product (C12).
The above described method does work for mere tensor products, however it is not appropriate to decompose

plethysms. Indeed, due to the extra symmetry existing for Plethysms as compared to simple tensor products, a
Plethysm has in general a decomposition in terms of irreducibles that is smaller than the mere tensor product it is
built from. In order to decompose Plethysms, we will use in this work the link between symmetric functions and
representations of the symmetric group summarized in the next section.

Appendix D: Symmetric Functions, Representation of the permutation group and Plethysms

1. Symmetric and Schur functions

We first define an ordered partitions of an integer n which, in the context of this work, is a sequence of positive
(and, we stress, possibility null, i.e. element of N) numbers α = (α1, α2, . . . ) whose sum equals to n and where
the order of the numbers αk matters, i.e. partitions containing the same integers {α1, α2, . . . } in a different order
are considered as different. It is easy to see that the set of all the types of all semi standard Young tableaux
built from a given Young diagram µ with n boxes filled with integers {1, 2, 3, · · · } is a subset of the set of all

ordered partition of n and we shall call this set ℵµ. For example, considering the Young diagram µ = ,

we get , filling it in a semi-standard way with entries in the labels {1, 2, 3}, the set of ordered partitions ℵµ =
{(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 2, 1), (0, 1, 2), (1, 1, 1)}. Notice e.g. that the partition (3, 0, 0) does not
belong to this set but also that the partition {1, 1, 1} does appear twice as it corresponds to the two different standard

Young tableaux 1 2

3
and 1 3

2
.

A homogeneous symmetric function of degree n is a formal power series of a set of variables x = (x1, x2, . . . )

f(x) =
∑

α

cαx
α (D1)

where α = (α1, α2, . . . ) is an ordered partition of n, xα denotes the monomial xα1
1 xα2

2 . . . and the coefficients cα are
chosen such that any permutation of the variables leaves the function invariant. For example consider n = 2 and
x = (x1, x2). Then α ranges over the ordered partitions of 2 given by (0, 2), (2, 0), (1, 1) and we choose c(0,2) = c(2,0)
in order to obtain the symmetric function of degree two in two variables given by

g(x1, x2) = c(1,1)x1x2 + c(2,0)
(

x21 + x22
)

, (D2)

A Schur function sλ (see e.g. [39]) corresponding to a Young diagram λ is a special kind of homogeneous symmetric
function defined by

sλ =
∑

α∈ℵλ

xα (D3)
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where the sum ranges over elements of the set ℵλ which are in one to one correspondence with the semi-standard
Young tableaux generated by filling the Young diagram, λ. For example, when x = (x1, x2, x3) and for the Young
diagram µ defined above we have the corresponding Schur function

sµ = x21x2 + x21x3 + x1x
2
2 + x1x

2
3 + x22x3 + x2x

2
3 + 2x1x2x3. (D4)

Other examples of Schur functions that will be used here are those corresponding respectively to the Young diagrams
(m) and (1)m. Applying the above definition, we get for these two cases and p variables xi, 1 ≤ i ≤ p

s(m)(xi) =
∑

1≤i1≤i2≤···≤im≤p

xi1 . . . xim , (D5)

s(1)m(xi) =
∑

1≤i1<i2<···<im≤p

xi1 . . . xim , (D6)

where one sees in particular that the Schur function s(1)m(xi) is only non trivial if the number of variables xi is larger
than or equal to m. One can show that the Schur functions form a basis of the homogeneous symmetric functions
(see e.g. [35] section 6).

2. Schur functions, representation of the permutation group and tensors

Schur functions provide a powerful way of describing the representations of the permutation group which can be
used to decompose tensor symmetry classes into irreducibles.
Let us first consider the case of tensor products between elements of the symmetry classes Vλ and Vµ each corre-

sponding to some specific Young diagrams λ (with n boxes) and µ (with m boxes). The decomposition of this tensor
product into irreducible spaces (corresponding to minimal ideals irreducible under the action of Sn+m) is obtained
from the Littlewood Richardson rule, as explained above. The use of the Schur functions allows to compute as well this
decomposition (including the multiplicities mρ of the irreducible representation characterized by the Young diagram
ρ in the tensor product). To do so is enough to consider the ordinary product of Schur functions corresponding to
the Young diagrams λ, µ,

sλsµ =
∑

ρ

mρsρ, (D7)

from which mρ can be read (see e.g. [35] section 5). By the definition of the Schur functions it is obvious that the
number of variables in both sides of this equation agrees with the number of labels from which the entries in the
semi-standard Young tableau with the shapes λ and µ are chosen. Since all entries in a column in semi-standard
tableau must be distinct, a Schur functions sρ(x) on the right hand side identically vanish if the number of rows in ρ
is greater than the number of variables. This implies that the formula (D7), when restricted to a specific number or
variables, does not provide a way to calculate the multiplicity mρ for a particular Young diagram ρ if the number of
rows in ρ is greater than the number of variables. The formula (D7) itself is valid for any numbers of variables.
Schur functions are also very useful to decompose plethysms into irreducibles. Indeed, consider a given plethysm

µ◦λ as introduced in section III B (where µ◦λ just denotes the symmetries of the tensor symmetry class corresponding
to T µ◦λ introduced there), there is a corresponding homogeneous symmetric function denoted sµ◦sλ and obtained via
the so-called characteristic map (see e.g. [38] and [37] pp 167-169, 175) denoted sµ◦sλ. It can be given a combinatorial
formulation as follows. We consider sλ as defined in (D3), and choose some ordering for the element α of the set ℵλ

entering the sum in (D3). We call α(i) the i − th ordered partition α in this set (note that α(i) is a partition, and

hence a sequence of integers α(i) = (α
(i)
1 , α

(i)
2 , . . . )), and we define the variables yi as numerous as the α(i). Then

we considered the Schur function sµ in the ordered variables yi. The plethysm sµ ◦ sλ is then just obtained from

this function sµ where yi is replaced by xα
(i)

. This yields a symmetric function in the variables xj . This symmetric
function can then be decomposed on the basis of Schur functions as

sµ ◦ sλ(x) =
∑

ρ

mρsρ(x). (D8)

This gives both the decomposition of the Plethysm µ ◦ λ into irreducibles corresponding to the Young diagrams ρ
which appear in the right hand side of the above, as well as the multiplicity mρ of the corresponding representation.
An identical decomposition with the same multiplicity holds for the decomposition of the tensor symmetry class Vµ◦λ.
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In order to illustrate this, let us consider the following plethysm s(2) ◦ s(1)2(x1, x2) in two variables x1, x2. We have

s(1)2(x1, x2) = x1x2 (D9)

taking y1 = x1x2 we write s(2) ◦ s(1)2 as s(2) in one variable y1

s(2)(y1) = y21 = x21x
2
2 = s(2) ◦ s(1)2(x1, x2). (D10)

We further have that

s(2) ◦ s(1)2(x1, x2) = s(2)2(x1, x2), (D11)

which shows that the only irreducible inside the plethysm (2) ◦ (1)2 is given by one irreducible representation char-

acterized by a specific standard filling of the Young diagram, . This corresponds to the symmetries of the

Riemann tensor.

3. Involution on symmetric functions

In this work we will use the following map inside the set of homogeneous symmetric functions that will be called
the involution map Ω (as it turns out to be an involution, i.e. it verifies Ω2 = 1). Consider a homogeneous symmetric
function f(x) which has the following expansion in terms of Schur functions sµ. Since Schur functions furnish a basis
for the homogeneous symmetric functions (see e.g. [35] section 6), one can always obtain such a decomposition.

f(x) =
∑

µ

kµsµ(x), (D12)

where kµ are real numbers indexed by the Young diagrams µ. Then we define Ω(f) = g as the homogeneous symmetric
function defined by

Ω(f)(x) ≡ g(x) =
∑

µ

kµsµt(x) (D13)

where we recall (see appendix B) that µt is the conjugate of the Young diagram µ.
So defined, the map Ω is obviously linear and it acts in a non trivial way on plethysms. Indeed, if sλ, sµ are Schur

functions of degree m,n respectively, then (see e.g. [38] page 136)

Ω(sλ ◦ sµ) =

{

sλ ◦ Ω(sµ) if n is even,

Ω(sλ) ◦ Ω(sµ) if n is odd
(D14)
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