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Abstract

A severe application of stress on articular cartilage can initiate a cascade of biochemical reactions that
can lead to the development of osteoarthritis. We constructed a multiscale mathematical model of the
process with three components: cellular, chemical, and mechanical. The cellular component describes
the different chondrocyte states according to the chemicals these cells release. The chemical component
models the change in concentrations of those chemicals. The mechanical component contains a simulation
of pressure application onto a cartilage explant and the resulting strains that initiate the biochemical
processes. The model creates a framework for incorporating explicit mechanics, simulated by finite ele-
ment analysis, into a theoretical biology framework.

Key words: articular cartilage, osteoarthritis, mathematical modeling, simulation, Abaqus, age-
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1 Introduction

The most common joint disease is osteoarthritis (OA), which causes joint pain and disability in those
affected. It represents a growing cost to the healthcare system as the incidence is expected to increase
from roughly 48 million people in 2005 to 65 million by 2030 [21]. A subset of these cases develop after a
known trauma and are then labeled post-traumatic OA (PTOA), and despite being heavily researched,
the treatment options to prevent the occurrence of OA after an injury remain limited [1].

This is partly because the response of articular cartilage to compressive stress is complex. Moderate
physiological stresses are known to be beneficial, causing the cells in cartilage, chondrocytes, to increase
production of cartilage matrix molecules [28,30,33]. Severe applications of stress, such as a blunt impact
injury or intra-articular fracture, cause chondrocyte death and eventual cartilage deterioration leading to
PTOA development [1]. However, the direct cell death from these impact injuries seems to be minor, as
the majority of the cell death happens hours to days after the injury [19,25,31,32]. A complex interplay
between reactive oxygen species (ROS), pro-inflammatory cytokines (PIC), and erythropoietin (EPO)
seems to dominate if/how this cell death occurs and spreads [17, 19, 20, 25, 35]. Creating a model that
describes this pathway and determines thresholds that can cause the cell death to spread would provide
an invaluable tool for identifying injuries that are at risk for PTOA lesion development or extrapolate
treatment effects at varying doses or time scales that might not be feasible experimentally.

To that end, in the current article we present a multiscale mathematical model of the mechanotrans-
ductive processes that result from applying pressure with a metal indenter onto a cylindrical cartilage
explant. The model consists of three scales: mechanical (tissue-level), cellular, and chemical. The me-
chanical component, external to the core biomathematical model and simulated with the finite element
solver AbaqusTM, estimates the strains resulting from the pressure on the cartilage explant. The cellular
component categorizes the behavior and states of chondrocytes under different chemical signals. The
chemical component describes these chemical signals, as well as the cytokines the chondrocytes release.

Previous attempts to model the properties of cartilage only considered its mechanical behavior, for
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example [23, 26, 27]. We aim to build on the biomechanical approach by adding the interplay between
the chondrocytes and cytokines, resulting in articular cartilage lesions. In previous work on this topic,
the model in [34] considered constant cyclic loading on the cartilage, which has a different effect than the
singular pressure that we are concerned with in the current study. In [20] and [34], the authors used delay
differential equations to describe the time delay in the switch of chondrocytes from one state to another.
In [35], the authors present an age-structured model that allows that switch to happen after a chondrocyte
has been in a certain state for a certain amount of time. Age in this context is not actual cell age but how
long a cell has been in its current state. This approach has led to faster computation times and greater
model flexibility, and as such is used in the model in this paper. What is fundamentally different in the
current model is that, unlike [35], we integrate explicit mechanics into a biomathematical model in order
to simulate the strain response of the tissue under pressure loading. This mechanical component uses
explicit finite element analysis by computing the propagation of strain through the tissue from the applied
pressure and calculates the starting density distribution of necrotic cells, which initiate the cellular and
chemical components of the model.

This paper is organized as follows: Section 2 introduces the model’s equations and the numerical
methods used for their solution. Section 3 describes the numerical results, and Section 4 is Discussion.

2 Methods and Materials

This section describes the mathematical model and the implemented numerical methods.

2.1 Mathematical model

The cartilage explant is modeled as a cylinder, with the assumption of circular symmetry. This assumption
reduces the model to two dimensions in space: radial (r) and axial (z, representing the depth of the
cylinder). The independent variables of the system are radius (r), depth (z), time (t), and cell-state age
(a).

2.1.1 Components of the model

A schematic of the system is presented in Figure 1. The pressure load causes necrosis of the chondro-
cytes. Necrotic chondrocytes release damage-associated molecular patterns (DAMPs), which cause the
chondrocytes to release pro-inflammatory cytokines (PIC), such as tumor necrosis factor α (TNF-α) and
interleukin 6 (IL-6). Inflammation leads to cell apoptosis and the degradation of the extracellular matrix
(ECM). However, it also signals the release of reactive oxygen species (ROS). ROS are precursors for the
release of erythropoietin (EPO), which is an anti-inflammatory cytokine that counteracts the effects of
inflammation. This complex feedback cycle requires two main components in our system of equations,
cellular and chemical. The elements of the cellular component are:

• CU (r, z, t): population density (cells per unit area) of unsignaled healthy cells at a given time and
location.

• CT (r, z, a, t): population density of healthy cells signaled by DAMPs and in the process of becoming
catabolic cells. In the presence of ROS they may be signaled to release EPO (by moving to the CE
class) in 20-24 hours.

• CE(r, z, t): population density of healthy cells signaled by ROS and starting to produce EPO.

• ST (r, z, a, t): population density of cells in the catabolic state. Healthy cells signaled by alarmins
(DAMPs) and PIC enter into the catabolic state. Catabolic cells synthesize cytokines associated
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with inflammation, and also produce ROS. ST cells can be signaled by the PIC to become EPOR-
active cells (SA). There is a 8-12-hour time gap before a cell expresses the EPO receptor after being
signaled to become EPOR-active.

• SA(r, z, t): population density of EPOR-active cells. EPOR-active cells express a receptor for EPO.
Catabolic cells signaled by PIC enter the EPOR-active state and may switch back to healthy state
CU when signaled by EPO.

• DA(r, z, t): population density of apoptotic cells. Catabolic cells are signaled by DAMPs and PIC
to enter the apoptotic state. EPOR-active cells will also turn to apoptosis after signaled by PIC.
Apoptotic cells are omitted in the system.

• DN (r, z, t): population density of necrotic cells. In this model, necrotic cells emerge only due to
the initial load. They release alarmins (DAMPs) into the system.

Chondrocytes exhibit minimal motility inside the ECM, so the cellular equations do not feature diffusion
terms or other motility.

The elements of the chemical component are:

• R(r, z, t): concentration of reactive oxygen species (ROS). In our model, ROS signal the pre-
catabolic CT cells to start releasing EPO.

• M(r, z, t): concentration of alarmins (DAMPs) released by necrotic cells and ECM degradation.
DAMPs signal healthy cells to enter a catabolic state, and together with pro-inflammatory cytokines,
cause the catabolic cells ST to become apoptotic.

• F (r, z, t): concentration of general pro-inflammatory cytokines (PIC), e.g. TNF-α and IL-6, pro-
duced by catabolic cells (ST ). They have the following effects on the system:

− signal healthy cells (CT ) to enter the catabolic state (ST ),

− signal catabolic cells (ST ) to enter the EPOR-active state,

− cause both catabolic and EPOR-active cells to become apoptotic,

− degrade the ECM, which in turn increases the level of DAMPs, resulting in further damage to
the cartilage,

− limit the production of EPO.

• P (r, z, t): concentration of erythropoietin (EPO), exclusively produced by CE cells in this model.
Inflammation can suppresses this process. EPO helps EPOR-active cells (SA) to switch back to
the healthy state CU . The effects of EPO depend on its concentration. When the concentration
of EPO passes the threshold Pc [14], the spread of inflammation can be slowed by terminating the
effect of the pro-inflammatory cytokines and DAMPs on the system. We also assume that CE cells
revert to the CU state when the EPO level exceeds the Pc threshold.

We assume that the chemicals diffuse through the entire region. The pro-inflammatory cytokines (PIC),
such as TNF-α and IL-6, are the main promoter of cartilage lesion formation in this model, while EPO pro-
motes cell recovery and limits the inflammation [14,18,36]. The balance between these pro-inflammatory
and anti-inflammatory cytokines is essential for understanding the underlying causes of OA and is an
important feature of the model.

• U(r, z, t): density of the extracellular matrix (ECM). ECM is degraded by pro-inflammatory cy-
tokines and releases DAMPs. The degradation of ECM is measured by the decrease in the concen-
tration of SO4 [29].
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ECM degradation by proteases is simplified here to be related solely to pro-inflammatory cytokines, and
expressed in terms of decreased suflate (SO4) concentration. In cartilage, the proteoglycan groups, which
comprise the majority of the ECM, contain sulfate groups and the measurement of sulfate concentration is
related to ECM integrity or loss thereof. The average concentration of SO4 in normal undamaged cartilage
is 30 g/L [29], which is the initial weight of ECM in this model. Sufficiently high EPO concentration can
also block ECM degradation.

2.1.2 Equations

The equations for the chemical concentrations are

∂tR(r, z, t)︸ ︷︷ ︸
ROS

=
1

r
∂r(rDRRr) + ∂zzDRR︸ ︷︷ ︸

diffusion

− δRR︸︷︷︸
natural decay

+ σRST︸ ︷︷ ︸
production by ST

, (1a)

∂tM(r, z, t)︸ ︷︷ ︸
DAMPs

=
1

r
∂r(rDMMr) + ∂zzDMM︸ ︷︷ ︸

diffusion

− δMM︸ ︷︷ ︸
natural decay

+ σMDN︸ ︷︷ ︸
production by DN

+ σUU
F

λF + F︸ ︷︷ ︸
production by ECM

, (1b)

∂t F (r, z, t)︸ ︷︷ ︸
PIC

=
1

r
∂r(rDFFr) + ∂zzDFF︸ ︷︷ ︸

diffusion

− δFF︸︷︷︸
natural decay

+ σFST︸ ︷︷ ︸
production by ST

, (1c)

∂t P (r, z, t)︸ ︷︷ ︸
EPO

=
1

r
∂r(rDPPr) + ∂zzDPP︸ ︷︷ ︸

diffusion

− δPP︸︷︷︸
natural decay

+ σPCE
R

λR +R

Λ

Λ + F︸ ︷︷ ︸
production by CE controlled by PIC

, (1d)

with no flux boundary conditions on the spatial domain 0 ≤ r ≤ rmax and 0 ≤ z ≤ zmax. The initial
conditions are

R(r, z, 0) = M(r, z, 0) = F (r, z, 0) = P (r, z, 0) = 0. (1e)

The Heaviside function used in several equations below is defined as

H(θ) =

{
1, θ ≥ 0,

0, θ < 0.

We use the Heaviside function to represent the cessation of inflammation when EPO exceeds a critical
threshold (P > Pc).

The equation for the ECM density is

∂t U(r, z, t)︸ ︷︷ ︸
ECM

= −δUU
F

λF + F
H(Pc − P )︸ ︷︷ ︸

degradation by PIC under the control of EPO

, (2a)

with initial condition

U(r, z, 0) = 30mg. (2b)
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The equations for the healthy cell population densities are

∂tCU (r, z, t) = α1SA
P

λP + P︸ ︷︷ ︸
SA

EPO−−−→CU

+α2H(P − Pc)CE︸ ︷︷ ︸
CE

EPO−−−→CU

−β13CU
M

λM +M︸ ︷︷ ︸
CU

DAMPs−−−−−→CT

, (3a)

∂tCT (r, z, a, t) + ∂aCT (r, z, a, t) = −β11
M

λM +M
H(Pc − P )CT (r, z, a, t)︸ ︷︷ ︸
CT

DAMPs−−−−−→ST

(3b)

−β12
F

λF + F
H(Pc − P )CT (r, z, a, t)︸ ︷︷ ︸
CT

PIC−−→ST

−κ1γ(a− τ2)
R

λR +R
CT (r, z, a, t)︸ ︷︷ ︸

CT
ROS−−−→CE

,

∂tCE(r, z, t) =

∫ ∞
0

κ1γ(a− τ2)
R(r, z, t)

λR +R(r, z, t)
CT (r, z, a, t)da︸ ︷︷ ︸

CT
τ2 delay−−−−−→CE

−α2H(P − Pc)CE︸ ︷︷ ︸
CE

EPO−−−→CU

. (3c)

The function γ(a) above represents the sharp age-dependent transition of cells from one state to
another (in (3b) the transition from CT to CE and later, in (4a), the transition from ST to SA), in order
to model the delay between the signal and the state-switch. It is given by:

γ(a− amax) =
γ0

σ

(
tanh

(
a− amax

σ

)
+ 1

)
, (1)

where amax is the state-age at which the cells switches states, γ0 gives the height and σ gives the spread
of the function. The form of the function is taken from [35] and the γ0 and σ values are given in Table
2.

The tissue strains resulting from the pressure are only featured in the initial conditions, since there
is no subsequent loading. Excessive strain causes necrosis in the initial population of healthy cells. The
fraction of cells that die is dependent on the strain the cells withstand and is expressed through the
function

Γ(ε, r, z) = 0.01p0(eKU ε − e10KU ),

where ε is the absolute value of the position dependent axial (vertical) strain resulting from the deforma-
tion of the cartilage from the initial load, in %. The constants p0 and KU are parameter fitting constants.
The form of the function is taken from [15]. Therefore, the initial number of healthy cells is

CU (r, z, 0) = (1− Γ(ε, r, z))100, 000 cells/cm
2
. (3d)

The remaining initial and boundary conditions are

CT (r, z, 0, t) = β13CU
M

λM +M︸ ︷︷ ︸
CU

DAMPs−−−−−→CT

, (3e)

CT (r, z, a, 0) = CE(r, z, 0) = 0. (3f)
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The equations for the sick cell population densities are

∂tST (r, z, a, t) + ∂aST (r, z, a, t) =− µST
F

λF + F

M

λM +M
ST (r, z, a, t)︸ ︷︷ ︸

ST
PIC, DAMPs−−−−−−−−→DA

(4a)

− κ2 · γ(a− τ1)
F

λF + F
ST (r, z, a, t)︸ ︷︷ ︸

ST
PIC−−→SA

,

∂tSA(r, z, t) =

∫ ∞
0

κ2 · γ(a− τ1)
F

λF + F
H(Pc − P )ST (r, z, a, t)da︸ ︷︷ ︸

ST
τ1 delay−−−−−→SA

−α1SA
P

λP + P︸ ︷︷ ︸
SA

EPO−−−→CU

(4b)

− µSA
F

λF + F
H(Pc − P )SA︸ ︷︷ ︸

SA
PIC−−→DA

,

with initial and boundary conditions

ST (r, z, 0, t) =

∫ ∞
0

(β11
M

λM +M
H(Pc − P )︸ ︷︷ ︸

CT
DAMPs−−−−−→ST

+β12
F

λF + F
H(Pc − P )︸ ︷︷ ︸

CT
PIC−−→ST

)CT (r, z, a, t)da, (4c)

ST (r, z, a, 0) = SA(r, z, 0) = 0. (4d)

We track necrotic cells using

∂tDN (r, z, t) = − µDNDN︸ ︷︷ ︸
natural decay

, (5a)

with initial condition

DN (r, z, 0) = Γ(ε, r, z)100, 000 cells/cm
2
. (5b)

There is no equation for apoptotic cells; these are considered removed from the system.
Short descriptions of all variables are in Table 1

2.1.3 Numerical Implementation

Our computations are done in two main stages: a finite element analysis of the strain due to the initial
load using the commercial software AbaqusTM, followed by a simulation of the cellular and biochemical
response of the explant using our own software.

AbaqusTMis a finite element analysis (FEA) software developed by Dassault Systèmes. It is generally
used in a variety of engineering projects, particularly for predicting mechanical stresses and strains on
automotive designs under static and dynamics loads. Because of its accuracy and wide material modeling
capability it has become one of the most widely used finite element solvers in biomedical fields.

Our in-house software features a step-doubling alternating-direction implicit (ADI) method, described
in mathematical detail in [9, 13], for the time and 2D space integration. The age discretization is done
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Variable Description
CU Healthy unsignaled chondrocytes.
CT Chondrocytes signaled by DAMPs to become catabolic.
CE Chondrocytes that produce EPO.
ST Catabolic cells that release PIC and ROS.
SA EPOR-active cells, can switch back to CU if signaled by EPO.
DN Necrotic cells. Formed by initial strain, release DAMPs.
DA Apoptotic cells, not included in the model.
R (ROS) Reactive oxygen species. Signal CE cells to release EPO.
M (DAMPs) Damage-associated molecular patterns. Alarmins released by DN and the ECM as a

result of the loading.
F (PIC) Pro-inflammatory cytokines. Signal healthy cells to become catabolic and catabolic cells

to become apoptotic. Degrade the ECM.
P (EPO) Erythropoietin. Anti-inflammatory cytokine. Diminishes the effects of inflammation.
U (ECM) Extracellular matrix. Chondrocytes live within it. Subject to degradation from

the stress application and PIC.

Table 1. Cell types and variable meaning.

through a “natural-grid” Galerkin method, which to our knowledge remains the state of the art for
solving partial differential equations that depend on age as well as time and space. The mathematical
underpinnings and general description of the natural-grid methods are in [2, 4, 8, 10]. The natural-grid
approach has been used for the modeling and simulation of a range of systems, such as Proteus mirabilis
swarm colony development [3, 5, 6], avascular tumor invasion [13], biofilm persistence and senescence
[11,22], bacterial dormancy [7, 12], and now articular cartilage lesion formation [35].

2.1.4 Mechanical Component and Strain Simulation

The mechanical component of the modeling and simulation involves the calculations of different strains
across the spatial domain of the cartilage explant, and is used in the initial conditions (3d) and (5b)
above. For the purposes of the current model, cartilage is considered to be homogeneous tissue, although
in reality it is composed of several layers with different mechanical stiffness. Another assumption is that
the cartilage disk exhibits linearly elastic behavior. Linear elasticity is generally modeled using hyperbolic
partial differential equations. Since the external pressure only affects the initial conditions, there is no
feedback between our parabolic system and the strains resulting from the initial load. Therefore, the strain
at each points is constant relative to the system. The commercial finite element solver AbaqusTMwas
used to simulate a static pressure onto a rectangular block and record the resulting displacements over
the spatial domain, from which we then calculated the axial strains. The axial strains were calculated
by computing the ratio of vertical displacement and the vertical position of the node at which the
displacement was measured. The axial strains depend on the pressure, as well as the radial and depth
positions. The AbaqusTMsimulation was done using a rectangle of dimensions 2.5 cm×1.0 cm. A pressure
of 0.4 MPa was applied onto a line of length 5.5 mm (to simulate an indenter) in the center top side
of the rectangle. Since our model is two-dimensional in space, a two-dimensional AbaqusTMsimulation
is sufficient. In order to simulate the pressure applied by the indenter, the load is of the instantaneous
pressure type. The AbaqusTMoutput is the axial displacement, U2, at each point of the rectangle. The
mesh contains over 250000 grid points. Because of the symmetry of the results, we only recorded the
right half of the rectangle’s strains and used those data in the initial conditions of our model. The
AbaqusTMdisplacement output can be seen in Figure 2. The calculated strains are in Figure 3.
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3 Results

3.1 Parameter estimation

All parameters and a reference for their value are listed in Table 2. A detailed reasoning for selecting
some of the parameters based on the literature is presented in [34]. The strain distribution across the
simulated cylinder was computed by AbaqusTMand required several parameters related to the physical
properties of cartilage: Young’s modulus, Poisson ratio, and density. Since cartilage has a heterogeneous
structure, these parameters can be estimated within a range. The values we used for the simulation were
chosen as a combination of known values taken from [24] and values within that range that corresponded
to the findings related to pressure, strain, and cell death in [15]. The Young’s modulus, Poisson ration,
and density used in the computations are also in Table 2.

3.2 Computational results and experimental validation

The results of the simulations with the default parameters are presented in Figures 4 - 10. Figure 4
presents contour plots of the density of the CU cells initially and at days 1, 7, and 14. It shows the
decrease in cellular density as time progresses and the CU cells are signaled to transition. Figures 5, 6,
7, 8, 9, and 10 present the average values of the cellular and chemical concentrations at different radial
distances. Overall, a pressure application of 0.4 MPa does not seem to cause significant damage to the
ECM during the first 14 days, as indicated by Figure 10. However, the pressure is still sufficient to
trigger the cascade of chemical processes that can lead to the development of OA. In particular, there are
small amounts of PIC (evident in Figure 8) and ROS (Figure 9) released and there is a transition of CU
cells into pre-catabolic (CT ) and eventually catabolic (ST ) cells (Figures 6 and 7). There is a chemical
response to the pressure application, but in this particular case, it does not cause disease, at least as
indicated at the 14 day mark. The model qualitatively captures the expected behaviors of the chemicals,
particularly the PIC and EPO - higher concentrations near the area of contact and diffusion along the
cartilage radius, increasing the overall concentrations with time.

3.3 Error analysis

We compared the presented results to three runs using refined discretization: with halved ∆a, with both
∆r and ∆z halved, and halving the time step tolerance (essentially halving ∆t). For each comparison,
the relative errors were calculated by comparing the values of CU , ST , and EPO at the final time node
(14 days) by the formula rel err = max(r,z)abs[(Xb(r, z)−Xc(r, z))]/(Xb(r, z) + 0.0000001), where Xb is
the value of CU , ST , EPO from the default parameter run at spatial node (r, z) and Xc is the respective
value from the comparison run. A value of 0.0000001 was added to avoid division by zero. The max was
taken over all spatial nodes. The reported relative error was the maximum of the three relative errors.
The maximal relative error for the half ∆a was 0.0004. The maximal relative error for the halved ∆r
and ∆z was 0.016 and the maximal relative error for the halved time interval tolerance was 0.0002.

3.4 Sensitivity analysis

While some of the variables were derived from the experimental literature, fourteen were estimated from
previous computational work. Table 3 presents the parameters and their respective default values and the
values within the range over which they caused significant changes in the model’s results. When varying
a parameter, we set all other parameters at their default values. Table 3 also presents cell population
and chemical concentration results from increasing/decreasing the set parameters, according to relative
comparison to the default case. The vast majority of parameter perturbations did not lead to significant
qualitative changes in the behavior of the system; the changes did not generally alter the shape of the
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Parameter Value Units Reason

DR 0.1 cm2

day Determined in [20]

DM 0.05 cm2

day Determined in [20]

DP 0.005 cm2

day Determined in [20]

DF 0.05 cm2

day Determined in [20]

δR 60 1
day Determined in [34]

δM 0.5545 1
day Determined in [34]

δF 0.1664 1
day Determined in [34]

δP 3.326 1
day Determined in [34]

δU 0.0193 1
day Determined in [34]

σR 0.0024 nanomolar·cm2

day·cells Determined in [34]

σM 5.17×10−7 nanomolar·cm2

day·cells Determined in [34]

σF 2.35×10−7 nanomolar·cm2

day·cells Determined in [34]

σP 4.2×10−5 nanomolar·cm2

day·cells Determined in [34]

σU 0.0154 nanomolar·cm2

day·cells Determined in [34]

Λ 0.5 nanomolar Estimated
λR 5 nanomolar Estimated
λM 0.5 nanomolar Estimated
λF 0.5 nanomolar Estimated
λP 0.5 nanomolar Estimated
α1 1 1

day Estimated

α2 1 1
day Estimated

β11 100 1
day Estimated

β12 50 1
day Estimated

β13 10 1
day Estimated

κ1 10 1
day Estimated

κ2 10 1
day Estimated

Pc 1 nanomolar Determined in [34]
µST 0.5 1

day Estimated

µSA 0.1 1
day Estimated

µDN 0.05 1
day Estimated

τ1 0.5 days Determined in [20]
τ2 1 days Determined in [20]
γ0 1 Determined in [35]
σ 0.1 Determined in [35]
p0 1 Determined in [15]
KU 0.0545 Determined in [15]

AbaqusTMCartilage density 1600 kg/m3 Taken from [24]
AbaqusTMCartilage Young’s modulus 5× 105 Pa Taken from [24]

AbaqusTMCartilage Poisson ratio 0.25 Taken from [24]

Table 2. Table of parameters
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Parameter (base value) Perturbed value Positive effect Negative effect
β11(100) 50 - ST , SA, EPO-,PIC, ROS

75 - ST , SA
150 ST , SA, EPO, DAMPs, PIC, ROS -

β13(10) 1 - CE-, CT -, ST -, SA-, EPO- -,
DAMPs, PIC-, ROS- -

5 - CE , CT , SA, EPO-, PIC,
ROS

15 CT , CE , ST , SA, EPO, PIC, ROS -
20 CT , CE+, ST , SA+, EPO+, -

DAMPs, PIC+, ROS
κ1 (10) 1 CT , ST+, SA+, EPO, DAMPs, CE

PIC+, ROS+
5 CT , ST , SA -

κ2(10) 1 CT , ST+, SA+, EPO, DAMPs, CE
PIC+, ROS+

5 EPO SA
20 SA EPO

λF (0.5) 0.1 CT+, CE , ST+, SA++, EPO+, ECM
DAMPs++, PIC+, ROS+

0.3 SA, EPO, DAMPs, PIC -
0.9 - SA

λM (0.5) 0.1 CE , ST++, SA+++, EPO++, CT , ROS-, ECM
DAMPs++, PIC++

0.3 CT , CE , ST+, SA+, EPO+, -
DAMPs+, PIC+, ROS+

0.7 - CE , ST , SA, EPO-, PIC,
ROS

0.9 - CE , ST , SA-, EPO- -,
DAMPs, PIC, ROS-

λR (5) 1 EPO+ SA, PIC, ROS
3 EPO -
7 - EPO
9 - EPO

µDN (0.05) 0.01 ST , SA, EPO, DAMPs, ROS -
0.09 - EPO, DAMPs

Table 3. Table of parameter perturbation and its effect on numerical outcomes in cellular density and
chemical concentration. Positive effect is increasing the compound, negative is decreasing it. A +/-
indicates a significant relative increase/decrease of the value. CU cells were not included in the table.
Only significant effects (at least a ±30% change) of perturbation relative to the base case are included.
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graphs or the relationship between the values. There were some quantitative differences between runs.
Given that many of our parameters are estimated, better approximations can be a topic for future work.
However, the model captures, at least qualitatively, expected chemical and cellular behaviors that can
result after an injurious pressure load.

Notable mentions among the parameters that produced large changes are λF and λM . Low λF
allows higher saturation of PIC, which leads to more transition of healthy cells into sick cells, as well
as higher degradation of the ECM. Therefore, it is not surprising that SA, ST , ROS, and DAMPs all
significantly increase when λF is 0.1. Low λM allows for higher saturation of DAMPs. Considering that
DAMPs released by the necrotic cells after the loading triggers the whole system, the significant effect of
λM perturbations on the system is expected. Some differences that resulted from low λM are the near
eradication of CU cells and a more pronounced diffusion of the chemicals by day 14. To see the significant
changes in behavior in the system when λM is 0.1, refer to Figures 11 - 15.

4 Discussion

We presented a multiscale mathematical model of the balancing act between the pro- and anti- inflam-
matory cytokines released by the chondrocytes in articular cartilage under the application of pressure
from an indenter onto a cylindrical cartilage explant. Our current model differs from previous work
by incorporating a mechanical finite element simulation and analysis to estimate the role of the initial
loading on the biochemical components of the model. This addition also requires an extra spatial dimen-
sion for the cartilage (depth). The model includes three components, chemical, cellular, and mechanical
(tissue-scale), instead of the two components of the previous work. The mechanical component describes
the strain and cell death resulting from the initial pressure application. The cellular component describes
the different states of the chondrocytes (healthy, sick, dead), and the different chemicals being in these
states makes them release. The chemical component represents the interplay between chemicals, their
signaling to cells to switch states, and their release by the chondrocytes in a particular state. The me-
chanical component was modeled using linear elasticity, solved with the finite element solver AbaqusTM.
The chemical component was modeled by reaction-diffusion equations, and the cellular component was
modeled by age-structure, to capture the cellular age of state-switching.

The numerical results of the model simulated the anticipated chemical and cellular behaviors well.
Concentrations of chemicals and different cellular states are highest around the center of the cylinder,
which was expected, given that this is the position of the pressure application. Therefore, the model is
successful in qualitatively estimating the effect of injurious pressure application on the cartilage explant
for 14 days. For a better quantitative estimates we would need a better parametrization, a better
understanding of the sensitivity of the system to perturbations of the unknown parameters and the
initial strains, and experimental validation. Longitudinal data over a longer time frame would further
allow us to validate and calibrate our model to capture the development of OA in the long run.

The sensitivity analysis provided no surprises; the model’s responses to perturbations were all biolog-
ically reasonable and expected given the equations and their dependence on the perturbed parameters.
The only parameter change that produced a vastly different system behavior was setting λM to 0.1 (see
Figures 11 - 15).

One limitation of the model is that it does not include cartilage heterogeneity. Making the model seem
more mechanistic by using biphasic elasticity would introduce additional modeling and computational
complexity. In the end, we may not have a significantly more accurate model. Furthermore, linear
elasticity seems to be a sufficient approximation for the behavior of cartilage under many physiological
loading conditions [16]. A possible inclusion of more complicated mechanical properties can be a topic
for future work.

The main goal of the presented model was the integration of the explicit mechanics, using finite element
analysis, into a biomathematical model. The interaction between the finite element simulations and
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the mathematical modeling of biochemical processes presents an important framework for collaboration
between biomedical engineering and mathematical modeling and simulation, and can lead to fruitful
collaborations resulting in understanding, preventing, and treating OA.
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Signaling involved in cartilage injury response
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Figure 1. Schematic of the articular cartilage lesion formation process due to one-time pressure load.
The initial injury causes cell death. As a result the necrotic cells (DN ) release DAMPs, which initiate
the chemical cascade leading to OA. Figure adapted from [35]. Table 1 contains a short description of
the cell types and chemicals seen in the flowchart.
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Figure 2. Axial displacement on the cartilage rectangle, plotted with MATLAB, using raw data from
AbaqusTM.
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Figure 3. Axial strain on the cartilage rectangle, calculated from raw displacement data from
AbaqusTM.
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Figure 4. A contour graph of the density of the CU cells in the 2D model at 0, 1, 7, and 14 days. The
contour plot shows the decrease of CU cell density in the rectangular representation of the cylindrical
explant. The lowest number of cells is in the upper left corner, the area of the initial contact.
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Figure 5. Average density of CU cells along the radius of the model cylinder at 0, 1, 7, and 14 days.
The CU cells are less dense near the area of contact.
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Figure 6. Average density of CT and CE cells along the radius of the model cylinder at 0, 1, 7, and 14
days. The density of CE cells is higher near the contact area, while the density of the CT cells is more
evenly distributed.
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days. The densities of both cell states are higher near the contact area.
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days. The concentrations are higher near the area of contact.
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Figure 10. Average concentrations of ECM along the radius of the model cylinder at 0, 1, 7, and 14
days. The pressure applied is not enough to produce high deterioration of the ECM.
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Figure 11. The densities of healthy cells (CU , CT , and CE) when λM = 0.1 at 0, 1, 7, and 14 days.
The densities of CU cells are close to zero at day 14.
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Figure 12. The densities of sick cells (ST and SA) when λM = 0.1 at days 0, 1, 7, and 14. The density
of SA cells is around 80 times as great as in the default parameter case (Figure 7).
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Figure 13. The concentrations of EPO, DAMPs, and PIC when λM = 0.1 at days 0, 1, 7, and 14. All
chemical concentrations are an order of magnitude higher and more evenly distributed along the radius
than in the default parameter case (Figure 8).



22

cm
0 0.5 1

na
no

m
ol

ar

0

0.2

0.4

0.6

0.8

1
t=0

ROS

cm
0 0.5 1

na
no

m
ol

ar

0

0.2

0.4

0.6

0.8

1
t=1

cm
0 0.5 1

na
no

m
ol

ar

0

0.2

0.4

0.6

0.8

1
t=7

cm
0 0.5 1

na
no

m
ol

ar

0

0.2

0.4

0.6

0.8

1
t=14

Figure 14. The concentrations of ROS when λM = 0.1 at days 0, 1, 7, and 14. The concentration of
ROS around the impact site peaks at day 7 and then diffuses significantly by day 14.
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Figure 15. The ECM concentrations when λM = 0.1 at days 0, 1, 7, and 14. The ECM has sustained
more damage than in the default parameter case (Figure 10).
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