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Abstract

The bright soliton solutions and singular solutions are constructed
for space-time fractional EW and modified EW equations. Both equa-
tions are reduced to ordinary differential equations by the use of
fractional complex transform and properties of modified Riemann-
Liouville derivative. Then, implementation of ansatz method the so-
lutions are constructed.
Keywords: Fractional EW equation, Fractional MEW equation, bright
soliton, singular solution.

1 Introduction

Several decades ago, more generalized forms of differential equations are de-
scribed as fractional differential equations. Various phenomena in many nat-
ural and social sciences fields like engineering, geology, economics, meteo-
rology, chemistry and physics are modeled by those equations [1, 2]. The
descriptions of diffusion, diffusive convection, Fokker-Plank type, evolution,
and other differential equations are expanded by using fractional derivatives.
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Some well known fractional partial differential equations (FPDE) in liter-
ature can be listed as diffusion equation, nonlinear Schrödinger equation,
Ginzburg-Landau equation, Landau-Lifshitz, Boussinesq equations, etc. [2].
Even though there exist general methods for solutions of linear partial dif-
ferential equations, the class of nonlinear partial differential equations have
usually exact solutions. Sometimes it is also possible to obtain soliton-type
solitary wave solutions, which behaves like particles, that is, maintains its
shape with constant speed and preserves its shape after collision with an-
other soliton, for partial differential equations. The famous nonlinear par-
tial differential equations having soliton solutions in literature are KdV, and
Schrödinger equations. Soliton type solutions have great importance in op-
tics, fluid dynamics, propagation of surface waves, and many other fields of
physics and various engineering branches.
The integer ordered form

Ut(x, t)− U(x, t)Ux(x, t)− Uxxt(x, t) = 0 (1)

was named as the Equal-width Equation (EWE) by Morrison et al. [3] due
to having traveling wave solutions containing sech2 function. The EWE has
only lowest three polynomial conservation laws and they were determined
in the same study. The single traveling wave solutions to the generalized
form of the EWE are classified by implementing the complete discrimination
system for polynomial [4]. Owing to having analytical solutions, the EWE
also attracts many researchers studying numerical techniques for partial dif-
ferential equations. So far, various numerical methods covering differential
quadrature, Galerkin and meshless methods [5], lumped Galerkin methods
based on B-splines [6, 7], septic B-spline collocation [8], the method of lines
based on meshless kernel [9] have been applied to solve the EWE numerically.
Recently, parallel to developments in symbolic computations, lots of new
techniques have been proposed to solve nonlinear partial differential equa-
tions exactly. Some of those methods covering the first integral method, the
sub-equation method, Kudryashov method, and ansatz methods have been
applied for exact solutions for not only integer ordered and but also fractional
ordered partial differential equations [10–14]. Some recent studies including
various methods for exact solutions of fractional partial differential equations
in literature can be found in [15–22].

This study aims to generate exact solutions for the space-time fractional
equal-width equation (FEWE) and modified fractional equal-width equation
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(MFEWE) of the forms

Dα
t u(x, t) + εDα

xu
2(x, t)− δD3α

xxtu(x, t) = 0 (2)

and
Dα
t u(x, t) + εDα

xu
3(x, t)− δD3α

xxtu(x, t) = 0 (3)

where ε and δ are real parameters and the modified Riemann-Liouville deriva-
tive (MRLD) operator of order α for the continuous function u : R → R
defined as

Dγ
xu(x) =


1

Γ(−γ)

x∫
0

(x− η)−γ−1u(η)dη, γ < 0

1

Γ(−γ)

d

dx

x∫
0

(x− η)−γ[u(η)− u(0)]dη, 0 < γ < 1

(u(p)(x))(γ−p), p ≤ γ ≤ p+ 1, p ≥ 1

(4)

where the Gamma function is given as

Γ(γ) = lim
p→∞

p!pγ

γ(γ + 1)(γ + 2) . . . (γ + p)
(5)

[23].

2 The properties of the MRLD and Method-

ology of Solution

Some properties of the MRLD can be listed as

Dα
xx

c =
Γ(1 + c)

Γ(1 + c− α)

Dα
x{aw(x) + bv(x)} = aDα

x{w(x)}+ bDα
x{v(x)}

(6)

where a, b are constants and c ∈ R [24].
Consider the nonlinear FPDEs of the general implicit polynomial form

F (u,Dα
t u,D

θ
xu,D

α
t D

α
t u,D

α
t D

α
t u,D

α
t D

θ
xu,D

θ
xD

θ
xu, . . .) = 0, 0 < α, θ < 1

(7)
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where α and θ are orders of the MRLD of the function u = u(x, t). The
fractional complex transform

u(x, t) = U(ξ), ξ =
k̃xθ

Γ(1 + θ)
− c̃tα

Γ(1 + α)
(8)

where k̃ and c̃ are nonzero constants reduces (7) to an integer order differ-
ential equation [25]. One should note that the chain rule can be calculated
as

Dα
t u = σ1

dU

dξ
Dα
t ξ

Dα
xu = σ2

dU

dξ
Dα
xξ

(9)

where σ1 and σ2 fractional indices [26]. Substitution of fractional complex
transform (8) into (7) and usage of chain rule defined (9) converts (7) to an
ordinary differential equation of the polynomial form

G(U,
dU

dξ
,
d2U

dξ2
, . . .) = 0 (10)

3 Solutions for fractional EW equation

Consider the FEWE equation

Dα
t u(x, t) + εDα

xu
2(x, t)− δD3α

xxtu(x, t) = 0

t > 0, 0 < α ≤ 1
(11)

The use of the transformation (8) reduces the FEWE (11) to

− cU ′ + εk(U2)′ + δck2U ′′′ = 0 (12)

where k = k̃σ2 and c = c̃σ1

3.1 Bright soliton solution

Let A, k̃ and c̃ be arbitrary constants. Then, assume that

U(ξ) = A sechp ξ, ξ =
k̃xα

Γ(1 + α)
− c̃tα

Γ(1 + α)
(13)
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solves Eq. (12). Substituting the solution into the equation (12) leads to

(−δ cpk2A− δ cp2k2A) sechp+2 ξ + εkA2 sech2p ξ + (δck2p2 − cA) sechp ξ = 0
(14)

Equating the powers p+ 2 = 2p gives p = 2. Substituting p = 2 into Eq.(14)
reduces it to(

−6 δ ck2A+ ε kA2
)

sech4 ξ +
(
4 δ ck2A− cA

)
sech2 ξ = 0 (15)

and solving Eq.(15) for nonzero sech4 ξ and sech2 ξ gives

A = ∓3c

√
δ

ε

k = ∓1

2

√
1

δ

(16)

Thus the bright soliton solution is formed as

u(x, t) = A sech2

(
k̃xα

Γ(1 + α)
− c̃tα

Γ(1 + α)

)
(17)

where A is given in (16). The simulations of motion of bright solitons for
various values of α are demonstrated in Fig(1(a)-1(d)) for δ = 1, ε = 3 and
c = 1.

3.2 Singular Solution

Let

U(ξ) = A cschp ξ, ξ =
k̃xα

Γ(1 + α)
− c̃tα

Γ(1 + α)
(18)

be a solution for the equation (12) with A, k̃ and c̃ arbitrary constants. Since
the solution has to satisfy the equation (12), substituting it into the equation
gives(
δpck2A+ δp2ck2A

)
cschp+2 ξ +

(
δp2ck2A− Ac

)
cschp ξ + εkA2 csch2p ξ = 0

(19)
Choosing p+ 2 = 2p gives p = 2 and reduces (19) to(

6 δ ck2A+ ε kA2
)

csch4 ξ +
(
4 δ ck2A− Ac

)
csch2 ξ = 0 (20)
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(a) α = 0.25 (b) α = 0.50

(c) α = 0.75 (d) α = 1.00

Figure 1: Bright soliton solutions of FEWE for various values of α
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Solution of (20) for nonzero csch function give

A = ±3c
√
δ

ε

k = ±1

2

√
1

δ

(21)

Thus the singular solution of Eq.(12) becomes

U(ξ) = A cschp
k̃xα

Γ(1 + α)
− c̃tα

Γ(1 + α)
(22)

where A and k are given (21). The singular solution simulations for various
α values and ε = 3, δ = c = 1 are plotted in Fig.(2(a)-2(d)).

4 Solutions for fractional modified EW equa-

tion

Consider space-time fractional modified equally width equation of the form

Dα
t u(x, t) + εDα

xu
3(x, t)− δD3α

xxtu(x, t) = 0 (23)

The use of the transformation (8) converts the MFEWE (23) to

− cU ′ + εk(U3)′ + δck2U ′′′ = 0 (24)

where k = k̃σ2 and c = c̃σ1.

4.1 Bright Soliton Solution

Assume that the FMEWE (23) has a solution of the form (13). Substitution
of (13) into the FMEWE (23) generates the equation(
−δcAk2p− δck2Ap2

)
sechp+2 ξ+

(
δcAk2p2 − cA

)
sechp ξ+ εkA3 sech3p ξ = 0

(25)
Equating the powers p + 2 = 3p gives p = 1. Substituting p = 1 into (25)
and rearrangement gives the equation(

εkA3 − 2δck2A
)

sech3 ξ +
(
δck2A− cA

)
sech ξ = 0 (26)
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(a) α = 0.25 (b) α = 0.50

(c) α = 0.75 (d) α = 1.00

Figure 2: Singular solutions of FEWE for various values of α
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Solving the coefficients of (26) for A and k under the assumption sech ξ 6= 0
gives

A = ±
√

2

√
±c
√
δ

ε

k = ± 1√
δ

(27)

Thus, the bright soliton solution for the FMEWE is constructed as

u(x, t) = A sech

(
k̃xα

Γ(1 + α)
− c̃tα

Γ(1 + α)

)
(28)

where A is given as above. The simulations of bright solitons are depicted
for various α values in Fig(3(a)-3(d)).

4.2 Singular Solution

Assume that

U(ξ) = A cschp ξ, ξ =
k̃xα

Γ(1 + α)
− c̃tα

Γ(1 + α)
(29)

is a solution for the equation (24) with A, k̃ and c̃ arbitrary constants. Sub-
stitution of the solution (29) into the equation (24) gives(
δck2Ap+ δck2Ap2

)
cschp+2 ξ +

(
δck2Ap2 − cA

)
cschp ξ + εkA3 csch3p ξ = 0

(30)
Choice of p = 1 gives(

A3εk + 2Acδk2
)

csch3 ξ +
(
Acδk2 − Ac

)
csch ξ = 0 (31)

Solving the equation for nonzero csch ξ gives

A = ±

√
±2

c
√
δ

ε

k = ± 1√
δ

(32)
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(a) α = 0.25 (b) α = 0.50

(c) α = 0.75 (d) α = 1.00

Figure 3: Bright soliton solutions of MFEWE for various values of α
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Thus, the singular solution of the FMEWE is formed as

u(x, t) = A csch

(
k̃xα

Γ(1 + α)
− c̃tα

Γ(1 + α)

)
(33)

where A and k are given in Eq.(32). The singular solution simulations for

various α values and ε = δ = c = 1 with k = 1/
√
δ and A =

√
2c
√
δ/ε are

plotted in Fig.(4(a)-4(d)).

5 Conclusion

In the study, the bright soliton solutions and singular solutions for space-
time fractional EW equation and modified EW equation are obtained by
ansatz method. After reducing both equations to integer-ordered ordinary
differential equations, the sech and csch type solutions are investigated. Sub-
stituting ansatzs into the integer-ordered ordinary differential equations, the
nonzero coefficients in solutions are determined. The graphs of all solutions
are depicted for suitable coefficients.
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