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Abstract. Marginally stable circular orbits (MSCOs) of a massive test particle are inves-
tigated in the spacetime geometry of Schwarzschild black hole surrounded by quintessence.
For that matter we consider three important scenarios where the equation of state param-
eter ωq, has one of the following forms (i) ωq = −1 (ii) ωq = −2/3 and (iii) ωq = −1/3.
The existence of such marginally stable circular orbits in these scenarios depend on the
range of normalization factor α. Briefly, we show that in the first case such orbits exist
only if 0 < α < 4/16875. Moreover in the second case which is a special Kiselev black
hole it is found that MSCOs exist when the value of the normalization factor satisfy
0 < α ≤ 0.00536165238. In the last case the MSCOs are also shown to exist.

Key words : Marginally stable circular orbits; Schwarzschild black hole; Quintessence
matter; Normalization factor.

1. Introduction

Motion of particles in the spacetime geometry of black holes is an active topic of research
for theoretical physicists. It may be helpful in understanding gravitational field around
black holes. In this regard several black hole spacetimes have been investigated in the
literature [1]-[26]. In the theory of general relativity the radius of circular orbits of particles
in the vicinity of black holes has a lower bond which are known as inner most stable circular
orbits (ISCOs). While the circular orbits with the upper bound on its radius are called
outer most stable circular orbits (OSCOs). These two types of orbits form a boundary
between the two regions, i.e., a stable region and an unstable region respectively. In the
literature this boundary is known as the MSCO [26]. If in a spacetime geometry the
number of MSCOs is only two then the smaller is called the ISCO and the larger is known
as the OSCO. On the other hand if the number of MSCOs is greater than two then the
smallest will be the ISCO and the largest will be the OSCO. A study of the ISCO for the
Schwarzschild black hole can be found in the literature (see fre example [27, 28]).
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The existence of ISCOs may play an important role in the study of gravitational waves
[29]. It is believed that a super massive black hole exists at the centre of each galaxy
[30, 31, 32]. In the process of generation of gravitational waves, ISCOs are considered to
be the location where an orbiting compact object e.g, another black hole orbiting around
the super massive black hole goes from the inspiralling phase to the merging phase [29, 33].
ISCOs have their own importance in high energy astrophysics where the existence of
these orbits is related to the inner edge of the accretion disks around black holes [34].
Therefore, the study of the ISCOs can provide useful information about the nonlinear
spacetime geometry which is beyond the local tests of our solar system. The OSCO for
a test particle in the vicinity of Kottler black hole spacetime has been investigated by
Stuchlik and Hledik [1].

Cosmological observations like the Supernovae Ia, the Cosmic Microwave Background
radiation anisotropies and X-ray experiments support the accelerated expansion of our
Universe [35, 36, 37]. It is believed that dark energy is responsible for this accelerated ex-
pansion of our Universe. Several phenomenological models have been proposed to describe
dark energy of which there is one model which examine the possibility of the presence
of a scalar field known as quintessence (see e.g., [38]). This scalar field is defined by the
equation of negative state parameter, which is the ratio of the pressure and density [39].
Kiselev derived a black hole solution of the Einstein field equations with quintessence
matter [40]. This solution reduces to the Schwarzschild solution of the Einstein field
equations when the quintessence term disappears. Null geodesics for the Schwarzschild
black hole surrounded by quintessence have been investigated by Sharmanthie Fernando
for particular values of the equation of state parameter ωq = −2/3 and the normalization
factor α = 0.1, 0.01, 0.005 [11] (the normalization factor is given in the metric coefficient
of the time element of the quintessence black hole in the third section). For the same black
hole time-like geodesics have been studied by Rashmi et. al [25]. They have considered
three different values of the equation of state parameter ωq = −1, −2/3, −1/3 and four
different values of the normalization factor α = 0.1, 0.08, 0.05, 0.005. For unit mass of
the black hole with ωq = −1/3, −2/3 and α = 0.1 Rashmi et. al have shown that the
radius of the ISCO has shifted to a larger distance from centre as compared to the pure
Schwarzschild black hole. In the present study we are interested to analyze the MSCOs
in the Schwarzschild back hole surrounded by quintessence scalar field for three different
cases of the equation of state parameter ωq = −1, −2/3, −1/3. In particular we obtain
upper and lower bounds on the value of the normalization factor α to find the radius of
the MSCOs in the background of above geometry.

In the next Section we give the necessary and sufficient conditions for the existence
of MSCOs in the case of a spherically symmetric static spacetime. In Section 3 we
study MSCOs in the spacetime geometry of the Schwarzschild back hole surrounded by
quintessence matter. A summary of the discussion is given in the last Section. In this
paper we use G = c = 1. From here onwards we refer qSBH as a Schwarzschild black hole
surrounded by quintessence.
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2. Necessary and Sufficient Conditions for MSCOs

The line element for the general spherically symmetric static spacetime is given by [27]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + h(r)(dθ2 + sin2 θdφ2) , (1)

where f(r) > 0 and h(r) > 0, resulting in the signature (-,+,+,+) of spacetime. In the
above line element, h(r) could be set equal to r2, without loss of generality. All other cases
can be mapped to this case by an appropriate coordinate transformation which is not the
main topic of discussion here. The necessary condition for the existences of MSCOs is
given in terms of a second-order differential equation involving both h(r) and f(r) [22, 26]

d

dr

( 1

f(r)

) d2

dr2

( 1

h(r)

)

− d

dr

( 1

h(r)

) d2

dr2

( 1

f(r)

)

= 0. (2)

For a given geometry of the black hole the functions f(r) and h(r) are specified and
the above equation reduces to an algebraic equation in r, whose solutions provide us the
required information about MCSOs. If in a spacetime, an MSCO exist then the solution
of (2) gives us the radius of such an orbit. The constants of motion E and L are given by
[26]

E2 = − 1

D

d

dr

( 1

h(r)

)

, (3)

L2 = − 1

D

d

dr

( 1

f(r)

)

, (4)

where

D =
1

h(r)

d

dr

( 1

f(r)

)

− 1

f(r)

d

dr

( 1

h(r)

)

6= 0. (5)

For any root of the equation (2) the sufficient condition for MSCO to exist, is that both
constants of motion remains bounded, i.e.,

0 ≤ E2 < ∞, 0 ≤ L2 < ∞. (6)

If the condition given by (6) is satisfied for a root r of (2) then such a root is the radius
of MSCO. Otherwise the root r is unphysical. The existence of such orbits for both
Schwarzschild and Kottler black holes was proved in [26] with the application of Strum’s
theorem. They also applied the analysis on spherically symmetric spacetimes in the Weyl
conformal gravity. Here our purpose is to study the effect of quintessence on the stability
of the circular orbits in a given black hole geometry. We now investigate the stability of
such orbits in the Schwarzschild black hole geometry which is subjected to a quintessence
field.
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3. MSCOs in qSBH

For a Schwarzschild black hole surrounded by a quintessence matter field, the functions
f(r) and h(r) in the equation (1) assumes the form [40]

f(r) = 1− rg
r
− α

r3ωq+1
, h(r) = r2. (7)

Here rg = 2M and M is the mass of the black hole and the normalization factor satisfy
0 < α < 1 [25]. Note that for α = 0, this black hole reduces to the case of pure (without
quintessence) Schwarzschild black hole. The critical power value ωq = −1/3, reduces the
quintessence term equal to a constant and we show that there exists an MSCO in this
case. For ωq = −1, this black hole spacetime becomes the Schwarzschild black hole with
the cosmological constant. For the horizon structure and other properties of this black
hole one my study for example [11, 40]. Here we investigate MSCOs in the Schwarzschild
black hole with quintessence by studying the necessary and sufficient conditions given by
(2) and (6) for three different values of ωq appearing in f(r) given by (7).

3..1 qSBH with Equation of State (ωq = −1/3)

The condition given in the equation (2) becomes

r − αr − 3rg = 0, (8)

where the case α = 0, gives the equation for the Schwarzschild black hole. For unit mass
of the black hole, rg = 2 and we get

r =
6

1− α
. (9)

In this case the constants of motion (3) and (4) simplifies into

E2 = −(2 + r(α− 1))2

r(3 + r(α− 1)
, (10)

L2 = − r2

3 + r(α− 1)
, (11)

Note that as we have assumed rg = 2, therefore in the above inequalities r carries a
dimensionless form. Using the equation (9) we obtain

E2 =
8

9
(1− α) . (12)
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Since α < 1, thus the above quantity satisfy the first sufficient condition (6). We now
investigate the second constant of motion which becomes

L2 =
12

(α− 1)2
. (13)

This is again a positive quantity. Therefore an MSCO exist for the qSBH at r = 6/(1−α).
This will give the radius of an ISCO if α → 0. Similarly it specifies the radius of an OSCO
if α → 1, which will be a sufficiently large number.

3..2 qSBH with ωq = −1 (Cosmological Constant)

In this case the condition (2) takes the following form

8αr4 − 15αrgr
3 − rgr + 3r2g = 0. (14)

It is convenient to write above equation in a dimensionless form, we introduce x = r/rg
and λ = αr2g. Then (14) becomes

8λx4 − 15λx3 − x+ 3 = 0. (15)

The above equation coincides with the equation obtained for the Schwarzschild-de Sitter
spacetime [26]. From the applications of Sturm’s theorem Toshika et. al [26], have shown
that only for 0 < λ < 16/16875, the necessary and sufficient conditions (2) and (6) are
satisfied and two MSCOs exist. There is one ISCO and the other is the OSCO. From
this we obtain bounds on the normalization factor as 0 < α < 4/16875. Thus we can
say that when ωq = −1, then for the unit mass of the the Schwarzschild black hole with
quintessence the MSCOs exist if 0 < α < 4/16875.

3..3 qSBH as a Kiselev Black Hole (ωq = −2/3)

This is a simplest nontrivial case of the Kiselev black hole [40], where the geometry is
governed by the line element

ds2 = −
(

1− rg
r
− αr

)

dt2 +
dr2

(

1− rg
r
− αr

) + r2(dθ2 + sin2 θdφ2) , (16)

which has the scalar curvature R = 6α/r, where the inner and outer horizons exist at the
coordinate singularities

rin =
1−

√

1− 4αrg

2α
, rout =

1 +
√

1− 4αrg

2α
, (17)
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provided 4rgα < 1 and the two coincides if 4rgα = 1, in which case we arrive at an
extremal black hole. For a unit mass black hole, it results into α < 1/8 and α = 1/8,
respectively.

The problem is to find the positive roots (r > 0) of the equation (2) with f(r) and h(r),
defined in the above metric such that it also satisfies two additional constraints (6) in the
form of inequalities given by

E2 = − 2(αr2 − r + rg)
2

r(αr2 − 2r + 3rg)
> 0 , (18)

L2 = −
r2
(

rg − αr2
)

αr2 − 2r + 3rg
> 0 . (19)

Before solving equation (2) for the above Kiselev black hole it is better to obtain the
critical bounds on r on the positive r−axis for which there exists a solution. Let us
determine the critical bounds on r using sufficient conditions. Note that in the first
inequality (18) the numerator is a positive number so the inequality is true only if

αr2 − 2r + 3rg < 0, (20)

which can be factorized as follows

(r − r
−
)(r − r+) < 0, (21)

where r
−
and r+ are given below

r
−
=

1−
√

1− 3αrg

α
, r+ =

1 +
√

1− 3αrg

α
. (22)

This implies that α < 1/3rg, as otherwise we obtain complex constants of motion and
both inequalities (18) and (19) are violated. In order to hold true the inequality (20)
implies that both factors in (21) have opposite signs which is only possible when the
value of r lies in the interval

(

r
−
, r+
)

. Since α is arbitrary therefore it can be used to
identify the local bounds on r

−
and r+, for which (20) is valid. We now employ Taylor

expansion as 3rgα < 1, to get

r
−
=

1

α

(

1−
(

1− 3αrg
2

− (3αrg)
2

8
−O(ǫ3)

))

, (23)

=
3rg
2

+
9r2gα

8
+ O(ǫ3), ǫ = 3αrg. (24)

Therefore the least value of r
−
is 3rg/2, as r− > 3rg/2. Similarly

r+ =
1

α

(

1 +

(

1− 3αrg
2

− (3αrg)
2

8
−O(ǫ3)

))

, (25)

=
2

α
− 3rg

2
−

9r2gα

8
+ O(ǫ3), (26)

6



thus r+ < 2/α, so the largest value of r+ is 2/α, hence we obtain

r ∈
(

3rg
2

+
9r2gα

8
,
2

α

)

, (27)

where the first constant of motion satisfy E2 > 0, in (18). Since the denominator in the
first inequality (18) is negative therefore the other inequality (19) holds true if we have

rg − αr2 > 0, (28)

which holds when
√

rg
α

> r . (29)

Since r+ < 2/α, which follows from the condition (27) and as

√

rg
α

<
2

α
, ∀ α <

1

4rg
(30)

therefore the upper bound r+ is irrelevant for our purpose. Thus both inequalities (18)
and (19) hold true provided the following lemma holds.

Lemma 1. For a unit mass Schwarzchild black hole (M = 1) surrounded by a quintessence
field with inner and outer horizons, the roots of equation (2) satisfy the inequalities (19),
provided they satisfy the global bound

r ∈
(

3rg
2

+
9r2gα

8
,

√

rg
α

)

. (31)

The above lemma provides a range on r for which both constants of motion satisfy the
positivity criteria (18) and (19). Note that for an extremal Schwarzschild black hole
surrounded by quintessence the above range reduces to

r ∈
(

3rg
2

+
9r2g
64

, 4

)

, (32)

which for a unit mass of the black hole gives r ∈ (3.5625 , 4).

Note that since α < 1/3rg, therefore the upper bound in (31) sharply moves away from
origin as the value of α is chosen close to zero. However the lower bound contains α
in the numerator which only contribute a small change in it. Therefore we expect to
get more number of MSCOs in our analysis if the value of α lies in the close vicinity of
zero. Indeed further analysis provide us sharper bounds on the values of α that yields
a complete classification of MSCOs in Kieslev black holes. Thus, we only look for the

7



roots of algebraic equation which satisfy Lemma 1. In this case, we obtain the following
constraint from equation (2)

α2r4 − 3αr3 + 6αrgr
2 + rgr − 3r2g = 0. (33)

As required, for α = 0, the above equation reduces to the equation for the Schwarzschild
balck hole. We write it in dimensionless form by defining x = r/rg and λ = αrg

λ2x4 − 3λx3 + 6λx2 + x− 3 = 0. (34)

We now proceed to find the roots of quartic equation (34) using Maple and it turns out
that these can be converted into radicals

x =
3σ

1/6
ω κ

1/4
σ + κ

3/4
σ +

√

(54− 160λ)σ
1/2
ω + ((18− 32λ)σ

1/3
ω − 4λ1/2)κ

1/2
σ − 4(λκσ)1/2σ2/3

4κ
1/6
σ σ

1/4
ω

,

(35)
where ω, κσ and σω are defined below

ω = 1024λ3 − 640λ2 + 100λ− 1 , (36)

σω = 32λ3/2 +
√
ω − 10

√
λ , (37)

κσ = 4
√
λσ2/3

ω − 16σ1/3
ω λ+ 9σ1/3

ω + 4
√
λ . (38)

Note that the main term in the radical (35) is ω, while rest of the terms σω and κσ are
defined in terms of it. Furthermore, the main equation of ω, depends entirely on λ, which
can be used to characterize the ranges of λ that yield feasible MSCOs. Therefore, we now
consider ω, as a function of λ,

ω(λ) = 1024λ3 − 640λ2 + 100λ− 1, (39)

which is a third degree equation in λ. We now examine the behavior of function ω(λ) in
terms of λ, where we already have that λ > 0. Note that ω(λ) starts with a negative value
ω(0) = −1, and increases afterwards therefore the exact value of λ where after the graph
of ω(λ) is positive can be obtained by finding the roots of above equation, i.e. ω(λ) = 0
which gives

λ1 =
3− 2

√
2

16
, λ2 =

1

4
, λ3 =

3 + 2
√
2

16
. (40)

Note that the above values of λ satisfy λ1 < λ2 < λ3, therefore the least value of λ is
λ = λ1 = 0.0107233048. The graph of the function is given in Figure 1. From the graph
it is clear that ω(λ) > 0 for all λ ∈ (λ1, λ2), after which it again becomes negative in the
interval λ ∈ (λ2, λ3). Lastly for all λ ∈ (λ3, 1), the function ω is positive. We have found
that in the intervals where ω, is positive gives rise to two real (in which one is positive
and the other is negative) and two imaginary roots. However, there are three positive
and one negative real root in the ranges where ω is negative. In short the feasible regions
include a union of two disjoint intervals, i.e.

ω(λ) > 0, ∀ λ ∈
(

0, 0.0107233048
)

∪
(

0.25, 0.3642766952
)

, (41)
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which in terms of the value α becomes (where λ = 2α)

ω(α) > 0, ∀ α ∈
(

0, 0.00536165238
)

∪
(

0.125, 0.1821383476
)

. (42)

We now examine above regions in the light of Lemma 1. Note that α < 1/3rg, which for

Figure 1: The graph of ω(λ), where it has three real roots.

a unit qSBH becomes α < 1/6, i.e. α < 0.1666666667. Since the value 0.1666666667 is
smaller than 0.1821383476, therefore it provides a sharper upper bound on the range of α.
It is easy to verify that in the interval α ∈

(

0.125, 0.1666666667
)

, we obtain four MSCOs
(three positive and one negative) all of which fail to satisfy Lemma 1. Therefore, the
only interval of interest is

(

0, 0.00536165238
)

, in which the condition of Lemma 1 is also
fulfilled. In order to find the MSCOs we have to solve the quartic equation (34) and we
find that in the regions where ω(λ) is positive it yields two real and two imaginary roots.
On the other hand in the regions where ω(λ) is negative the equation results into three
positive and one negative real root. We now consider a few particular cases to show that
MSCOs exist. For example assume that λ = 0.002, i.e., α = 0.001, then (34) becomes

0.000004x4 − 0.006x3 + 0.012x2 + x− 3 = 0. (43)

The real positive roots of this equation are obtained after using (36-38) are

x1 = 3.059118379, x2 = 12.32978727, x3 = 1497.885976, (44)

where we have discarded one negative root. Now for unit mass of the black hole this gives

r1 = 6.118236758, r2 = 24.65957454, r3 = 2995.771952, (45)

which means that both r1 and r2 lies in the required interval (3, 44.72135) of Lemma 1.
Since, r3 does not lie in the interval therefore fail to satisfy Lemma 1. Therefore here
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we have two MSCOs. One as ISCO with rISCO = 6.119 and the other as OSCO with
rOSCO = 24.66.

For another value of λ = 0.01, i.e. for α = 0.005, we get two MSCOs. The ISCO with
rISCO = 7.2378 and OSCO with rOSCO = 9.1628. One can easily check that for other
values α = 0.002, α = 0.003 and α = 0.004 there exist MSCOs. Similarly if we consider
α = 0.006, then we get one positive real root of (2) for which E2 < 0. Hence it is
unphysical and no MSCO exist.

4. Summary

In this brief communication we have analyzed the MSCOs of a test particle in the vicinity
of the Schwarzschild black hole with quintessence matter to obtain bounds on the value
of the normalization factor α, for which such orbits exist. We have considered three
different cases for the value of the equation of state parameter, i.e. ωq = −1, ωq = −1/3
and ωq = −2/3. In the case when ωq = −1, we have obtained 0 < α < 4/16875, for which
there exist two MSCOs. For ωq = −1/3, we have seen that MSCO exists for all α ∈ (0, 1).
While in the case of ωq = −2/3, we see that MSCOs exist if 0 < α ≤ 0.00536165238.

Another observation is that in the presence of a quintessence field (wq = −1,−2/3), the
radius of the MSCOs gets lager as compared to the radius of MSCO of a pure unit mass
Schwarzschild black hole for which it is 6. Recently the effect of a quintessence model on
the energy content of the Riessner-Nordstrom black hole surrounded by the quintessence
matter has been investigated in [41]. Both upper and lower bounds were obtained on the
value of the normalization factor α, i.e. 0 < α < 1. The same bonds on the normalization
factor α were also obtained for the Schwarzschild black hole with quintessence matter in
a totally different scenario [25]. Therefore, it is worth exploring to check whether the
same bounds on the normalization factor α obtained here, also exist in the case of the
Riessner-Nordstrom black hole with quintessence matter.
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