
Artificial Intelligence CS 221
Final Project

Angrier Birds: Bayesian reinforcement learning
Imanol Arrieta Ibarra1, Bernardo Ramos1, Lars Roemheld1

Abstract
We train a reinforcement learner to play a simplified version of the game Angry Birds. The learner is provided
with a game state in a manner similar to the output that could be produced by computer vision algorithms.
We improve on the efficiency of regular ε-greedy Q-Learning with linear function approximation through more
systematic exploration in Randomized Least Squares Value Iteration (RLSVI), an algorithm that samples its
policy from a posterior distribution on optimal policies. With larger state-action spaces, efficient exploration
becomes increasingly important, as evidenced by the faster learning in RLSVI.

Keywords
Reinforcement Learning — Q-Learning — RLSVI — Exploration

1Department of Management Science and Engineering, Stanford University, California, United States

Contents

Introduction 1

1 Model 1

2 Algorithms 2

2.1 Q-Learning (linear function approximation) 2
2.2 Randomized Least Squares Value Iteration 3
2.3 Feature extractors . 3

Pig Position Values • Pig Position Indicator (PP) • Nested Pig
Position Counter (NPP) • Nested Pig Positions: Shifted Counters
(NPPS) • Nested Pig Positions Counters with Obstacles (NPPO)

3 Results and Discussion 4

3.1 Comparison of feature extractors 4
3.2 RLSVI vs. regular Q-Learning 4
3.3 Learning success . 4

4 Conclusions and Future Work 5

References 6

Introduction
Angry Birds has been a wildly successful internet franchise
centered around an original mobile game in which players
shoot birds out of a slingshot to hit targets for points. Angry
Birds is largely a deterministic game: 1 a complex physics
engine governs flight, collision and impact to appear almost
realistically. As such, optimal gameplay could be achieved
by optimizing a highly complex function that describes tra-
jectory planning – instead, we train several reinforcement
learning algorithms to play the game, and compare their final
performance and learning speeds with that of a human-play
oracle.

1In our simulation, the physics engine actually seemed to produce semi-
random results: the same sequence of moves was not guaranteed to yield the
exact same outcomes.

To simulate gameplay, we adapted an open-source project
to recreate Angry Birds in Python [1] using the Pygame frame-
work. After adapting the base code for our needs, we designed
an API which exposed the game as a Markov Decision Pro-
cess (MDP), largely following the conventions of our class
framework.

The Python port we used is a simplified version of the
original Angry Birds game: it includes 11 levels, only one
(standard) type of bird, only one type of target, and only one
type of beam. A level ends whenever there are either no
targets or no more birds on the screen. If all targets were
destroyed then the agent advances to the next level, otherwise,
the agent loses and goes back to the first level. Each level’s
score is calculated according to three parameters: number of
birds left, shattered beams and columns and destroyed targets.
If the agent loses, it incurs an arbitrary penalty.

This somewhat reduced state-action space allowed a rel-
atively straightforward proof-of-concept – we believe that
very similar algorithms and models would also work for more
complex versions of the game.

1. Model
The game state exposed by our API is composed of the fol-
lowing information. This state representation fully describes
the relevant game situation from the player’s perspective and
therefore suffices to interface between the learner and the
game. We note that all parts of the game state could be ob-
tained from computer vision algorithms, so that in principle
no direct interaction with the game mechanics would be nec-
essary.

• Number of birds left (“ammunition”)

• Number of targets (“pigs”), and their absolute positions
on the game map

ar
X

iv
:1

60
1.

01
29

7v
2

 [
cs

.A
I]

 7
 J

an
 2

01
6

Angrier Birds: Bayesian reinforcement learning — 2/6

Figure 1. Angry Birds gameplay: the stationary slingshot on the left is used to hit the targets on the right. The beam structures
can be destroyed, allowing for more complex consequences and interactions of chosen actions.

• Number of obstacles (“beams”), and their absolute po-
sitions on the game map

• The game score and level achieved by the player so far.

We further simplified game mechanics by making the
game fully turn-based: the learner always waits until all ob-
jects are motionless before taking the next action. This as-
sumption allowed us to work on absolute positions only.

The set of possible actions is a pair (angle, distance), de-
scribing the extension and aiming of the slingshot and thereby
the bird’s launching momentum and direction. To some-
what accelerate learning, we allowed only shooting forwards.
Within that constraint, we allowed all possible extensions and
angles – we compare discretizations of the action space in
varying levels of granularity. Our base discretization used 32
different (evenly spaced) actions.

2. Algorithms
Reinforcement learning is a sub-field of artificial intelligence
that describes ways for a learning algorithm to act in unknown
and unspecified decision processes, guided merely by rewards
and punishments for desirable and unwanted outcomes, re-
spectively. As such, reinforcement learning closely mirrors
human intuition about learning through conditioning, and al-
lows algorithms to master systems that would otherwise be
hard or impossible to specify.

A standard algorithm in reinforcement learning is ε-greedy
Q-learning. While very effective, this algorithm relies on an

erratic exploration of possible actions. We implemented a
variation which updates a belief distribution on optimal poli-
cies, and then samples policies from this distribution [2]. This
implies more systematic exploration, since policies that seem
unattractive with high confidence will not be re-tried.

After introducing the two algorithms, we discuss various
iterations to find optimal feature extractors.

2.1 Q-Learning (linear function approximation)
As exposed in [3], Q-Learning is a model-free algorithm that
approximates a state-action value function Qopt(s,a) in order
to derive an optimal policy for an unknown decision process.
In order to learn optimal behavior in an unknown game, a
Q-Learner needs to both explore the system by choosing pre-
viously unseen actions, and to exploit the knowledge thus
gathered by choosing the action that promises best outcomes,
given previous experience.

Balancing efficient exploration and exploitation is a main
challenge in reinforcement learning: the most popular method
in literature is the use of ε-greedy methods: with probability
ε , the algorithm would ignore its previous experience and
pick an action at random. This method tends to work well in
practice whenever the actions needed to increase a payoff are
not too complicated. However, when complex sets of actions
need to be taken in order to get a higher reward, ε-greedy
tends to take exponential time to find these rewards (see [2],
[4], [5].)

To aid generalization over the Angry Birds state space, we
used linear function approximation: we defined Qw(s,a) =

Angrier Birds: Bayesian reinforcement learning — 3/6

wT φ(s,a), where w ∈ R f , and φ : S×A→ R f is a feature
extractor that calculates f features from the given state-action
pair. This allows the exploitation step to be an update only
on the weights vector w, which we performed in a fashion
similar to stochastic gradient descent (following the standard
algorithm from [3]).

2.2 Randomized Least Squares Value Iteration
Osband et al. propose Randomized Least Squares Value Iter-
ation (RLSVI) [2], an algorithm that differs from our imple-
mentation of Q-Learning in two points:

1. Instead of using gradient descent to learn from experi-
ence in an online fashion, RLSVI stores a full history
of (state, action, reward, new state) tuples to derive an
exact ”optimal” policy, given the data.

2. Given hyperparameters about the quality of the linear
approximation, Bayesian least squares is employed to
estimate a distribution around the ”optimal” policy de-
rived in 1. The learner then samples a policy from this
distribution – this replaces ε-greedy exploration.

Specifically, RLSVI models the state-action value function
as follows:

Qw(st ,at) = Reward(st ,at)+ γ max
at+1

Qw(Successor(st ,at),at+1)

≈ wT
t φ(st ,at)+ν

where γ is an arbitrary discount factor, ν ∼ N(0,σ2), and σ

is a hyperparameter.
Given a memory of (state, action, reward, new state) tu-

ples, we can use Bayesian least squares to derive w̄t , the
expected value of the optimal policy and Σt = Cov(wt), the
covariance of the optimal policy (the details of which are fairly
straight-forward, and can be found in [2]). Note that given the
assumption of linear approximation, a weights vector wt fully
specifies a Q-function, and thereby a policy.

The learner then finally picks a policy by sampling

ŵt ∼ N(w̄t ,Σt)

and taking the action such that Qŵt predicts the highest reward.
Instead of taking entirely random actions with probability
ε , the algorithm thus always samples random policies, but
converges to optimal means as more data is accumulated and
variances shrink. Therefore, less time may be expected to be
”wasted” on policies that are highly unlikely to be successful.

To keep this algorithm from erratic policy changes when
only few observations have been made yet, we initialize with
an uninformed prior. Furthermore, inspection showed that Σ

was almost diagonal. To save computation, we therefore de-
cided to sample using only variances of the individual weights
(ignoring covariance between weights).

Osband et al. propose RLSVI in the context of episodic
learning, i.e. they suggest updating the policy only at the
end of episodes of a fixed number of actions. This helps

steady the algorithm – unfortunately, our game simulation was
computationally expensive, and the relatively small number
of actions to be simulated forced us to learn in a continuous
context.

2.3 Feature extractors
In designing our feature extractors φ(s,a), we followed two
premises: first, given that our value function approximation
was linear, it was clear that interaction between features would
have to be linear; in particular, separating the x and y compo-
nents of locations would not work. Second, we wanted to give
away as little domain knowledge about the game as possible
– the task for the algorithm was to understand how to play
Angry Birds without previously having a concept of targets or
obstacles.

These two premises effectively impose a constraint on
strategies, as there is no reliable way for the algorithm to
detect -for example- whether an obstacle is just in front or just
behind a target. Regardless, our learner developed impressive
performance, as will be seen later. One reason for this may be
that the levels in our simulator were relatively simple.

We iterated over the following five ideas to form mean-
ingful features. Due to the relatively complex state-action
space, our feature space was fairly big, quickly spanning sev-
eral thousand features. This turned out to be a problem for
RLSVI, as memory and computational requirements grew to
be intractable. Rewriting the algorithm to run on sparse ma-
trices offered some help, but ultimately we found reasonable
performance with only the best-functioning features.

2.3.1 Pig Position Values
In a first attempt, we used rounded target positions as feature
values: for every pig i in the given state S, we would have
feature values pi = (x,y,xy)T . The features were repeated for
every action a, and would be non-zero only for the action that
was taken. This allows different weights for different position-
action combinations, which ultimately implies learning the
best position-action combinations.

By including the interaction term xy, we had hoped to
capture the relative distance of the target to the slingshot
(which x and y couldn’t establish by themselves in a linear
function): this would have allowed fast generalization of target
positions. Unfortunately, if in hindsight not surprisingly, this
approach failed very quickly and produced practically no
learning.

2.3.2 Pig Position Indicator (PP)
The next approach was an indicator variable for a fine grid of
pig positions: we created a separate feature for every possible
pig position and again included the action taken. This created
an impractically large feature space, yet worked relatively
well. It did, however, clearly ”over-fit” – once a successful
series of actions was found, the algorithm would reliably
complete a level over and over again. If a target had moved
only a few pixels, however, the algorithm would have to be
retrained completely.

Angrier Birds: Bayesian reinforcement learning — 4/6

2.3.3 Nested Pig Position Counter (NPP)
In order to solve the over-fitting problem we developed a
nested mechanism that would generalize to unobserved states.
To achieve this, we defined 3 nested grids over the game screen
as exemplified in Figure 2. The three grids are progressively
smaller, and each square of each grid is a count of the number
of targets contained in it.

This solved the generalization issue while maintaining
some of the nice properties of the previous feature extractor.
While the larger grids helped to generalize, the finer ones
provided a way to remember when a level had already been
observed.

Figure 2. NPP and NPPO grid structure: progressively
smaller grids create squares within squares, extracting both
specific location information and allowing for generalization.

2.3.4 Nested Pig Positions: Shifted Counters (NPPS)
One issue with NPP is that especially for the larger squares,
targets that are close to a square boundary are not captured
adequately. To improve on this, we created a copy of each
grid, shifted diagonally by half a square size. Now every
target lay in exactly two squares, allowing to judge whether a
target is further to the left or the right within a square.

NPPS was therefore a feature set of two sets of three over-
lapping square grids each. To our surprise, NPPS performed
worse than the simpler NPP. We assume that this is due to the
much bigger feature space, and the fact that we could not learn
the algorithms until full convergence due to computational
limits.

2.3.5 Nested Pig Positions Counters with Obstacles (NPPO)
Finally, we tried to address the issue of obstacles: as described,
we did not want to give away gameplay-related information by
representing a fixed relationship between targets and obstacles.
We therefore added counters for obstacles in the same way

that we used them for targets, hoping that the algorithm would
learn to prefer areas with a high targets

obstacles ratio.
Just as in the case of NPPS, we were surprised that adding

information about obstacles was detrimental to learning suc-
cess – indeed, adding obstacle information stopped learning
altogether. As in NPPS, we suspect that NPPO may work well
if given more time to converge in the bloated feature space.

3. Results and Discussion
The somewhat crude feature extractor NPP provided best
results, and RSLVI did indeed outperform the regular ε-greedy
Q-Learner. RLSVI was particularly impressive for its ability
to clear levels at almost the same speed as an (untrained)
human player.

We could not simulate the gameplay until convergence
as a result of computational limitations: the game engine we
used was not intended for big simulations, and did not even
speed up significantly when graphics were disabled.

3.1 Comparison of feature extractors
We compared our five different feature extractors on the Q-
Learning baseline algorithm, as displayed in figure 3.

It is noteworthy that PP starts on a high baseline score,
but does not improve much from there: this is due to the fact
that the learner very quickly masters a level, but then does not
generalize to following levels. As a consequence, PP tends to
get stuck and achieve relatively constant game scores in the
first few levels.

In contrast, NPP learns to master easy levels equally fast,
but then carries over to harder levels better, yielding higher
total scores per attempt.

NPPS shows a very similar slope to NPP, supporting the
explanation that the sheer number of features slows the learn-
ing process down. However, NPPS is clearly outperformed
by NPP within our simulation time frame. We are somewhat
surprised at the complete failure of NPPO to improve over
time.

3.2 RLSVI vs. regular Q-Learning
Exploring the state-action space according to posterior beliefs
did indeed produce better results than the ε-greedy Q-Learner.
We trained both algorithms on the same feature extractor
(NPP) and compared a moving average game score per at-
tempt. RLSVI achieved higher scores overall in the simulated
time frame, and learned more quickly. A comparison of the
two algorithms is given in figure 4.

It should be noted that in our implementation, RLSVI
required significantly more memory and computation than
the regular Q-Learner, since it required keeping a complete
history of observed features, and matrix operations on large
data blocks.

3.3 Learning success
Neither a human player -our oracle for score comparison- nor
any of the algorithms managed to go through all 11 levels

Angrier Birds: Bayesian reinforcement learning — 5/6

Figure 3. Moving Average for the different feature extractors.
The dysfunctional ”position values” feature extractor has
been excluded. We display a moving average game score
over the next 10 attempts after a number of attempts has been
made (where an attempt is defined as any number of shots
until a level is failed). We successively used one attempt to
explore, and then recorded the following attempt without
exploration, in order to not distort results with exploration
behavior. The y-axis is in units of 104 points.

provided by the game engine we used in one attempt. Both
the regular Q-Learner and RLSVI however outperformed the
human player (who shall remain unnamed, given that he was
shamefully beat by crude algorithms) in terms of maximum
points achieved in a single attempt, and in terms of the high-
est level reached. Table 1 summarizes the maximum score
attained and the highest level reached for different players.

Model Maximum Performance

Algorithm Features Score Level

Human —- 210000 7
Q-Learning PP 170000 8
Q-Learning NPP 495000 9
Q-Learning NPPO 120000 3
RLSVI NPP 550000 8

Table 1. Maximum level and scores achieved. Both the
regular Q-Learner and RLSVI outperform our untrained
human player.

Comparing the number of attempts required to pass a given
level provides interesting insights: especially in later levels,
RLSVI’s exploration proves very efficient, as it passes the
levels at almost the same number of attempts as required by
the human player. With the same features, regular Q-Learning
required 3 times as many attempts, as can be seen in table 2.

Figure 4. RLSVI is faster and achieves greater rewards than
Q-Learning. We display a moving average game score over
the next 10 attempts after a number of attempts has been
made (where an attempt is defined as any number of shots
until a level is failed). We successively used one attempt to
explore, and then recorded the following attempt without
exploration, in order to not distort results with exploration
behavior. The y-axis is in units of 104 points.

Model Number of trials to finish:

Algorithm Features Level 0 Level 5 Level 7

Human —- 1 2 4
Q-Learning PP 2 5 10
Q-Learning NPP 1 4 15
Q-Learning NPPO 4 20 40
RLSVI NPP 1 2 5

Table 2. Average number of trials needed to finish a level.
RLSVI learns very quickly in later levels, and passes levels
after impressively short exploration periods.

4. Conclusions and Future Work
RLSVI’s Bayesian approach to state-action space exploration
seems like a promising and rather intuitive way of navigating
unknown systems. Previous work has shown Bayesian belief
updating and sampling for exploration to be highly efficient
[4], which our findings confirm. RLSVI beat both the baseline
Q-Learning algorithm and, somewhat embarrassingly, our
human oracle.

A main constraint on our work was simulation speed, lim-
iting the algorithm convergence we could achieve. We would
have liked to further explore possible features, especially after
more computation.

In the same vein, it would be interesting to train a deep
neural network for the Q(s,a) function, to allow learning more
complex interaction effects, in particular between targets and
obstacles. Promising results combining Bayesian exploration
with deep reinforcement learning have been shown in [5].

Finally, it may be interesting to explore different distri-

Angrier Birds: Bayesian reinforcement learning — 6/6

bution assumptions within RLSVI; assuming least-squares
noise to be normally distributed, and therefore sampling from
a normal distribution around expected optimal policies may
be particularly prone to get stuck in local minima. Using
bootstrapping methods in lieu of closed-form Bayesian up-
dates may prove to be a powerful improvement on the RLSVI
algorithm explored here.

Appendix

Our work can be found at
github.com/imanolarrieta/angrybirds. Origi-
nal codes for Angry Birds in Python can be found at https:
//github.com/estevaofon/angry-birds-python.

Acknowledgments

We would like to thank the CS221 teaching team for an inspir-
ing quarter.

References
[1] estevaofon. Angry birds in python. Github repos-

itory at https://github.com/estevaofon/
angry-birds-python, January 2015. Forked
to https://github.com/imanolarrieta/
angrybirds.

[2] Ian Osband, Benjamin Van Roy, and Zheng Wen. Gener-
alization and exploration via randomized value functions.
arXiv preprint arXiv:1402.0635, 2014.

[3] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction, volume 1. MIT press Cam-
bridge, 1998.

[4] Ian Osband, Dan Russo, and Benjamin Van Roy. (more)
efficient reinforcement learning via posterior sampling.
In Advances in Neural Information Processing Systems,
pages 3003–3011, 2013.

[5] Ian Osband and Benjamin Van Roy. Bootstrapped thomp-
son sampling and deep exploration. arXiv preprint
arXiv:1507.00300, 2015.

[6] Richard Dearden, Nir Friedman, and Stuart Russell.
Bayesian q-learning. In AAAI/IAAI, pages 761–768,
1998.

[7] Michael Kearns and Satinder Singh. Near-optimal rein-
forcement learning in polynomial time. Machine Learn-
ing, 49(2-3):209–232, 2002.

[8] Leslie Pack Kaelbling, Michael L Littman, and An-
drew W Moore. Reinforcement learning: A survey. Jour-
nal of artificial intelligence research, pages 237–285,
1996.

[9] Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 8(3-4):279–292, 1992.

[10] Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
The elements of statistical learning, volume 1. Springer
series in statistics Springer, Berlin, 2001.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

[12] Itamar Arel, Cong Liu, T Urbanik, and AG Kohls. Rein-
forcement learning-based multi-agent system for network
traffic signal control. Intelligent Transport Systems, IET,
4(2):128–135, 2010.

github.com/imanolarrieta/angrybirds
https://github.com/estevaofon/angry-birds-python
https://github.com/estevaofon/angry-birds-python
https://github.com/estevaofon/angry-birds-python
https://github.com/estevaofon/angry-birds-python
https://github.com/imanolarrieta/angrybirds
https://github.com/imanolarrieta/angrybirds

	Introduction
	1 Model
	2 Algorithms
	2.1 Q-Learning (linear function approximation)
	2.2 Randomized Least Squares Value Iteration
	2.3 Feature extractors
	2.3.1 Pig Position Values
	2.3.2 Pig Position Indicator (PP)
	2.3.3 Nested Pig Position Counter (NPP)
	2.3.4 Nested Pig Positions: Shifted Counters (NPPS)
	2.3.5 Nested Pig Positions Counters with Obstacles (NPPO)

	3 Results and Discussion
	3.1 Comparison of feature extractors
	3.2 RLSVI vs. regular Q-Learning
	3.3 Learning success

	4 Conclusions and Future Work
	References

