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Abstract

We study versions of cop and robber pursuit-evasion games on the visibility graphs
of polygons, and inside polygons with straight and curved sides. Each player has full
information about the other player’s location, players take turns, and the robber is
captured when the cop arrives at the same point as the robber. In visibility graphs
we show the cop can always win because visibility graphs are dismantlable, which is
interesting as one of the few results relating visibility graphs to other known graph
classes. We extend this to show that the cop wins games in which players move along
straight line segments inside any polygon and, more generally, inside any simply con-
nected planar region with a reasonable boundary. Essentially, our problem is a type of
pursuit-evasion using the link metric rather than the Euclidean metric, and our result
provides an interesting class of infinite cop-win graphs.

1 Introduction

Pursuit-evasion games have a rich history both for their mathematical interest and because
of applications in surveillance, search-and-rescue, and mobile robotics. In pursuit-evasion
games one player, called the “evader,” tries to avoid capture by “pursuers” as all players
move in some domain. There are many game versions, depending on whether the domain is
discrete or continuous, what information the players have, and how the players move—taking
turns, moving with bounded speed, etc.

This paper is about the “cops and robbers game,” a discrete version played on a graph,
that was first introduced in 1983 by Nowakowski and Winkler [25], and Quilliot [26]. The
cop and robber are located at vertices of a graph and take turns moving along edges of the
graph. The robber is caught when a cop moves to the vertex the robber is on. The standard
assumption is that both players have full information about the graph and the other player’s
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location. The first papers on this game [25, 26] characterized the graphs in which the cop
wins—they are the graphs with a “dismantlable” vertex ordering. (Complete definitions are
in Section 3.) Since then many extensions have been explored—see the book by Bonato and
Nowakowski [8]. (Note that the cops and robbers version that Seymour and Thomas [27]
develop to characterize treewidth is different: the robber moves only along edges but at
arbitrarily high speed, while a cop may jump to any graph vertex.)

Our Results. We consider three successively more general versions of the cops and robbers
game in planar regions. The first version is the cops and robbers game on the visibility graph
of a polygon, which is a graph with a vertex for each polygon vertex, and an edge when two
vertices “see” each other (i.e., may be joined by a line segment) in the polygon. We prove
that this game is cop-win by proving that visibility graphs are dismantlable. As explained
below, this result is implicit in [1]. We prove the stronger result that visibility graphs are
2-dismantlable. We remark that it is an open problem to characterize or efficiently recognize
visibility graphs of polygons [15, 16], so this result is significant in that it places visibility
graphs as a subset of a known and well-studied class of graphs.

Our second setting is the cops and robbers game on all points inside a polygon. The cop
chooses a point inside the polygon as its initial position, then the robber chooses its initial
position. Then the players take turns, beginning with the cop. In each turn, a player may
move to any point visible from its current location, i.e., it may move any distance along
a straight-line segment inside the polygon. The cop wins when it moves to the robber’s
position. We prove that the cop will win using the simple strategy of always taking the
first step of a shortest path to the robber. Thus the cop plays on the reflex vertices of the
polygon.

Our third setting is the cops and robbers game on all points inside a bounded simply-
connected planar region. We show that if the boundary is well-behaved (see below) then the
cop wins. We give a strategy for the cop to win, although the cop can no longer follow the
same shortest path strategy (e.g. when it lies on a reflex curve), and can no longer win by
playing on the boundary.

The cops and robbers game on all points inside a region can be viewed as a cops and
robbers game on an infinite graph—the graph has a vertex for each point inside the region,
and an edge when two points see each other. These “point visibility graphs” were introduced
by Shermer (see [28]) for the case of polygons. Our result shows that point visibility graphs
are cop-win. This provides an answer to Hahn’s question [19] of finding an interesting class
of infinite cop-win graphs.

The cops and robbers game on all points inside a region can be viewed as pursuit-evasion
under a different metric, and could appropriately be called “straight-line pursuit-evasion.”
Previous work [22, 6] considered a pursuit-evasion game in a polygon (or polygonal region)
where the players are limited to moving distance 1 in the Euclidean metric on each turn. In
our game, the players are limited to distance 1 in the link metric, where the length of a path
is number of line segments in the path. This models a situation where changing direction
is costly but straight-line motion is easy. Mechanical robots cannot make instantaneous
sharp turns so exploring a model where all turns are expensive is a good first step towards
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a more realistic analysis of pursuit-evasion games with turn constraints. We also note that
the protocol of the players taking alternate turns is more natural in the link metric than in
the Euclidean metric.

2 Related Work

Cops and Robbers. The cops and robbers game was introduced by Nowakowski and
Winkler [25], and Quilliot [26]. They characterized the finite graphs where one cop can
capture the robber (“cop-win” graphs) as “dismantlable” graphs, which can be recognized
efficiently. They also studied infinite cop-win graphs. Aigner and Fromme [2] introduced
the cop number of a graph, the minimum number of cops needed to catch a robber. The
rule with multiple cops is that they all move at once. Among other things Aigner and
Fromme proved that three cops are always sufficient and sometimes necessary for planar
graphs. Beveridge et al. [5] studied geometric graphs (where vertices are points in the plane
and an edge joins points that are within distance 1) and show that 9 cops suffice, and 3
are sometimes necessary. Meyniel conjectured that O(

√
n) cops can catch a robber in any

graph on n vertices [4]. For any fixed k there is a polynomial time algorithm to test if k cops
can catch a robber in a given graph, but the problem is NP-complete for general k [13], and
EXPTIME-complete for directed graphs [17]. The cops and robbers game on infinite graphs
was studied in the original paper [25] and others, e.g. [7].

In a cop-win graph with n vertices, the cop can win in at most n moves. This result is
implicit in the original papers, but a clear exposition can be found in the book of Bonato and
Nowakowski [8, Section 2.2]. For a fixed number of cops, the number of cop moves needed to
capture a robber in a given graph can be computed in polynomial time [20], but the problem
becomes NP-hard in general [7].
Pursuit-Evasion. In the cops and robbers game, space is discrete. For continuous spaces, a
main focus has been on polygonal regions, i.e., a region bounded by a polygon with polygonal
holes removed. The seminal 1999 paper by Guibas et al. [18] concentrated on “visibility-
based” pursuit-evasion where the evader is arbitrarily fast and the pursuers do not know
the evader’s location and must search the region until they make line-of-sight contact. This
models the scenario of agents searching the floor-plan of a building to find a smart, fast
intruder that can be zapped from a distance. Guibas et al. [18] showed that Θ(log n) pursuers
are needed in a simple polygyon, and more generally they bounded the number of pursuers
in terms of the number of holes in the region. If the pursuers have the power to make random
choices, Isler et al. [22] showed that only one guard is needed for a polygon. For a survey on
pursuit-evasion in polygonal regions, see [11].

The two games (cops and robbers/visibility-based pursuit-evasion) make opposite as-
sumptions on five criteria: space is discrete/continuous; the pursuers succeed by capture/line-
of-sight; the pursuers have full information/no information; the evader’s speed is limited/
unlimited; time is discrete/continuous (i.e., the players take turns/move continuously).

The difference between players taking turns and moving continuously can be vital, as
revealed in Rado’s Lion-and-Man problem from the 1930’s (see Littlewood [23]) where the
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two players are inside a circular arena and move with equal speed. The lion wins in the
turn-taking protocol, but—surprisingly—the man can escape capture if both players move
continuously.

Bhaduaria et al. [6] consider a pursuit-evasion game using a model very similar to ours.
Each player knows the others’ positions (perhaps from a surveillance network) and the goal
is to actually capture the evader. Players have equal speed and take turns. In a polygonal
region they show that 3 pursuers can capture an evader in O(nd2) moves where n is the
number of vertices and d is the diameter of the polygon. They also give an example where 3
pursuers are needed. In a simple polygon they show that 1 pursuer can capture an evader in
O(nd2) moves. This result, like ours, can be viewed as a result about a cop and robber game
on an infinite graph. The graph in this case has a vertex for each point in a polygon, and
an edge joining any pair of points at distance at most 1 in the polygon. To the best of our
knowledge, the connection between this result and cops and robbers on (finite) geometric
graphs [5] has not been explored.

There is also a vast literature on graph-based pursuit-evasion games, where players move
continuously and have no knowledge of other players’ positions. The terms “graph searching”
and “graph sweeping” are used, and the concept is related to tree-width. For surveys see [3,
14].
Curved Regions. Traditional algorithms in computational geometry deal with points and
piecewise linear subspaces (lines, segments, polygons, etc.). The study of algorithms for
curved inputs was initiated by Dobkin and Souvaine [12], who defined the widely-used spline-
gon model. A splinegon is a simply connected region formed by replacing each edge of a
simple polygon by a curve of constant complexity such that the area bounded by the curve
and the edge it replaces is convex. The standard assumption is that it takes constant time
to perform primitive operations such as finding the intersection of a line with a splinegon
edge or computing common tangents of two splinegon edges. This model is widely used as
the standard model for curved planar environments in different studies.

Melissaratos and Souvaine [24] gave a linear time algorithm to find a shortest path be-
tween two points in a splinegon. Their algorithm is similar to shortest path finding in a
simple polygon but uses a trapezoid decomposition in place of polygon triangulation. For
finding shortest paths among curved obstacles (the splinegon version of a polygonal do-
main) there is recent work [10], and also more efficient algorithms when the curves are more
specialized [9, 21].

3 Preliminaries

For a vertex v of a graph, we use N [v] to denote the closed neighbourhood of v, which consists
of v together with the vertices adjacent to v. Vertex v dominates vertex u if N [v] ⊇ N [u].

A graph G is dismantlable if it has a vertex ordering {v1, v2, . . . , vn} such that for each
i < n, there is a vertex vj, j > i that dominates vi in the graph Gi induced by {vi, . . . , vn}.

We regard a polygon as a closed set of points, the interior plus the boundary. Two points
in a polygon are visible or see each other if the line segment between them lies inside the
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polygon. The line segment may lie partially or totally on the boundary of the polygon. The
visibility graph of a polygon has the same vertex set as the polygon and an edge between
any pair of vertices that see each other in the polygon. For any point x in polygon P , the
visibility polygon of x, V (x), is the set of points in P visible from x. Note that V (x) may
fail to be a simple polygon—it may have 1-dimensional features on its boundary in certain
cases where x lies on a line through a pair of vertices.

For points a and b in polygon P , we say that a dominates b if V (a) ⊇ V (b). Note that
we are using “dominates” both for vertices in a graph (w.r.t. neighbourhood containment)
and for points in a polygon (w.r.t. visibility polygon containment). For vertices a and b of
a polygon, if a dominates b in the polygon then a dominates b in the visibility graph of the
polygon, but not conversely.

4 Cops and Robbers in Visibility Graphs

In this section we show that the visibility graph of any polygon is cop-win by showing that
any such graph is dismantlable.

This result is actually implicit in the work of Aichholzer et al. [1]. They defined an edge
uv of polygon P to be visibility increasing if for every two points p1 and p2 in order along
the edge uv the visibility polyons nest: V (p1) ⊆ V (p2). In particular, this implies that v
dominates every point on the edge, and that v dominates u in the visibility graph. Aichholzer
et al. showed that every polygon has a visibility-increasing edge. It is straight-forward to
show that visibility graphs are dismantlable based on this result.

Lemma 1. The visibility graph G of any polygon P is dismantlable.

Proof. By induction on the number of vertices of the polygon. Let uv be a visibility-
increasing edge, which we know exists by the result of Aichholzer et al. Then vertex v
dominates u in the visibility graph G. We will construct a dismantlable ordering starting
with vertex u.

It suffices to show that G − u is dismantlable. Let tu and uv be the two polygon edges
incident on u. We claim that the triangle tuv is contained in the polygon: u sees t on the
polygon boundary, so v must also see t. (Triangle tuv is an “ear” of the polygon.) Removing
triangle tuv yields a smaller polygon whose visibility graph is G− u. By induction, G− u is
dismantlable.

Aichholzer et al. [1] conjectured that a polygon always has at least two visibility-increasing
edges. In the remainder of this section we prove this conjecture, thus giving a simpler proof
of their result and also proving that visibility graphs of polygons are 2-dismantlable. Bonato
et al. [7] define a graph G to be 2-dismantlable if it either has fewer than 7 vertices and is
cop-win or it has at least two vertices a and b such that each one is dominated by a vertex
other than a, b, and such that G − {a, b} is 2-dismantlable. They show that if an n-vertex
graph is 2-dismantlable then the cop wins in at most n

2
moves by choosing the right starting

point.
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We need a few more definitions. Let P be a simple polygon, with an edge uv where v is
a reflex vertex. Extend the directed ray from u through v and let t be the first boundary
point of P beyond v that the ray hits. The points v and t divide the boundary of P into
two paths. Let σ be the path that does not contain u. The simple polygon formed by σ plus
the edge vt is called a pocket and denoted Pocket(u, v). The segment vt is the mouth of the
pocket. Note that u does not see any points inside Pocket(u, v) except points on the line
that contains the mouth. See Fig. 1 for examples, including some with collinear vertices,
which will arise in our proof. Pocket(u, v) is maximal if no other pocket properly contains it.
Note that a non-convex polygon has at least one pocket, and therefore at least one maximal
pocket. This will be strengthened to two maximal pockets in Lemma 3 below.

u


u


v


v


u


v


t


t


t


Figure 1: Pocket(ui, vi), i = 1, 2, 3, shaded.

To prove that the visibility graph of a polygon is 2-dismantlable we prove that a maximal
pocket in the polygon provides a visibility-increasing edge and that every nonconvex polygon
has at least two maximal pockets.

Lemma 2. If uv is an edge of a polygon and Pocket(u, v) is maximal then uv is a visibility-
increasing edge.

Aichholzer et al. [1, Lemma 2] essentially proved this although it was not expressed in
terms of maximal pockets. Also they assumed the polygon has no three collinear vertices.
We include a proof.

Proof. We prove the contrapositive. Suppose that edge uv is not visibility-increasing. If u is
a reflex vertex with next neighbour w, say, then Pocket(w, u) properly contains Pocket(u, v),
which implies that Pocket(u, v) is not maximal. Thus we may assume that u is convex. Since
uv is not visibility-increasing there are two points p1 and p2 in order along uv such that the
visibility polygon of p1 is not contained in the visibility polygon of p2. Thus there is a point
t which is visible to p1 but not visible to p2. See Fig. 2(a). By extending the segment p1t, we
may assume, without loss of generality, that t is on the polygon boundary. We claim that t
lies in the closed half-plane bounded by the line through uv and lying on the opposite side
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of Pocket(u, v). This is obvious if p1 is internal to edge uv, and if p1 = u it follows because
u is convex. Furthermore, t cannot lie on the line through u, v otherwise p2 would see t.

Now move point p from p1 to p2 stopping at the last point where p sees t. See Fig. 2(b).
There must be a reflex vertex v′ on the segment tp. The points v′ and t divide the polygon
boundary into two paths. Take the path that does not contain v, and let u′ be the first
neighbour of v′ along this path. It may happen that u′ = t. Then, as shown in Fig. 2(b),
Pocket(u′v′) properly contains Pocket(u, v), so Pocket(u, v) is not maximal.

v
u

t

pp2 p1

(a)

u′
v′

v u

t

p

(b)

Figure 2: If uv is not visibility-increasing then Pocket(u, v) is not maximal.

Lemma 3. Any polygon that is not convex has two maximal pockets Pocket(u1, v1) and
Pocket(u2, v2) where u1 does not see u2.

Proof. Let Pocket(u1, v1) be a maximal pocket. Let u be the other neighbour of v1 on
the polygon boundary. Consider Pocket(u, v1), which must be contained in some maximal
pocket, Pocket(u2, v2). Vertex u1 is inside Pocket(u, v1) and not on the line of its mouth.
Therefore u1 is inside Pocket(u2, v2) and not on the line of its mouth. Since u2 cannot see
points inside Pocket(u2, v2) except on the line of its mouth therefore u2 cannot see u1.

From the above lemmas, together with the observation that the visibility graph of a
convex polygon is a complete graph, which is 2-dismantlable, we obtain the result that
visibility graphs are 2-dismantlable.

Theorem 1. The visibility graph of a polygon is 2-dismantlable.

Consequently, the cop wins the cops and robbers game on the visibility graph of an n-
vertex polygon in at most n

2
steps. There is a lower bound of n/4 cop moves in the worst

case, as shown by the skinny zig-zag polygon illustrated in Figure 3. In Section 5.1 we will
prove an Ω(n) lower bound on the number of cop moves even when the cop can move on
points interior to the polygon, and even when the polygon has link diameter 3, i.e. any two
points in the polygon are joined by a path of at most 3 segments.
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Figure 3: An n-vertex polygon in which the robber can survive for n/4 steps.

5 Cops and Robbers Inside a Polygon

In this section we look at the cops and robbers game on all points inside a polygon. This is
a cops and robbers game on an infinite graph so induction on dismantlable orderings does
not immediately apply. Instead we give a direct geometric proof that the cop always wins.
Although the next section proves more generally that the cop always wins in any simply
connected planar region with a reasonable boundary, it is worth first seeing the simpler
proof for the polygonal case, both to gain understanding and because this case has a tight
Θ(n) bound on the maximum number of moves (discussed in Section 5.1).

Theorem 2. The cop wins the cops and robbers game on the points inside any polygon in at
most n steps using the strategy of always taking the first segment of the shortest path from
its current position to the robber.

Proof. We argue that each move of the cop restricts the robber to an ever shrinking active
region of the polygon. Suppose the cop is initially at c0 and the robber initially at r0. In the
ith move the cop moves to ci and then the robber moves to ri.

Observe that for i ≥ 1 points ci are at reflex vertices of the polygon. To define the
active region Pi containing the robber position ri, we first define its boundary, a directed
line segment, ¯̀

i. Suppose that the shortest path from ci−1 to ri−1 turns left at ci, as in
Figure 4. Define ¯̀

i to be the segment that starts at ci and goes through ci−1 and stops at
the first boundary point of the polygon where an edge of the polygon goes to the left of
the ray cici−1. (If the shortest path turns right at ci we similarly define ¯̀

i to stop where a
polygon edge goes right.) In general, the segment ¯̀

i cuts the polygon into two (or more)
pieces; let active region Pi be the piece that contains ri−1. (In the very first step, ¯̀

1 may
hug the polygon boundary, so P1 may be all of P .)

We claim by induction on the (decreasing) number of vertices of Pi that the robber can
never leave Pi, i.e., that ri, ri+1,. . . are in Pi. It suffices to show that ri is in Pi and that
Pi+1 ⊆ Pi and that Pi+1 has fewer vertices.

Suppose that the shortest path from ci−1 to ri−1 turns left at ci. (The other case is
completely symmetric.) Observe that the next robber position ri must be inside Pi, i.e., the
robber cannot move from ri−1 to cross ¯̀

i. We distinguish two cases depending whether the
shortest path from ci to ri makes a left or a right turn at ci+1.

Case 1. See Figure 5. The shortest path from ci to ri makes a left turn at ci+1. We consider
two subcases: (a) ci+1 is left of the ray ci−1ci; and (b) ci+1 is right of (or on) the ray ci−1ci.
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i
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i−1

l
i
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i

c
i−1
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i−1

r
i−1

P
i

P
i

Figure 4: The segment ¯̀
i and the active region Pi (shaded) containing robber positions rk,

for all k ≥ i− 1.

We claim that case (b) cannot happen because the robber could not have moved from ri−1
to ri—see Figure 5(b). For case (a) observe that ¯̀

i+1 extends past ci and therefore Pi+1 is a
subset of Pi and smaller by at least one vertex—see Figure 5(a).

c
i

c
i−1

l
i

r
i

P
i

c
i+1

l
i+1

c
i

c
i−1

l
i

r
i

P
i

c
i+1

P
i+1 r

i−1

r
i−1

(b)(a)

Figure 5: Case 1. (a) If ci+1 is left of the ray ci−1ci then Pi+1 (darkly shaded) is a subset of
Pi (lightly shaded). (b) It cannot happen that ci+1 is to the right of the ray ci−1ci because
the robber could not have moved from ri−1 to ri.

Case 2. See Figure 6. The shortest path from ci to ri makes a right turn at ci+1. We
consider two subcases: (a) ci+1 is left of the ray ci−1ci; and (b) ci+1 is right of (or on) the
ray ci−1ci. See Figure 6. In case (a) ¯̀

i+1 stops at ci and in case (b) it may happen that ¯̀
i+1

extends past ci, but in either case, segment ¯̀
i is outside Pi+1, and Pi+1 is a subset of Pi and

smaller by at least one vertex.

We note that Bhadauria et al. [6] use the same cop strategy of following a shortest path
to the robber for the version of the problem where each cop or robber move is at most
distance 1.

Theorem 2 can alternatively be proved by decomposing the polygon into O(n2) triangular
regions and proving that they have an ordering with properties like a dismantlable ordering,
but we do not include the proof here.
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Figure 6: Case 2. (a) ci+1 is left of the ray ci−1ci. (b) ci+1 is right of the ray ci−1ci. In either
case Pi+1 (darkly shaded) is a subset of Pi (lightly shaded).

5.1 Lower Bounds

In this subsection we discuss lower bounds on the worst case number of cop moves. The
example in Figure 3 shows that the cop may need Ω(n) moves even when it may move on
interior points of the polygon. We give an example to show that this lower bound holds even
when the polygon has small link diameter.

Theorem 3. There is an n-vertex polygon with link diameter 3 and a robber strategy that
forces the cop to use Ω(n) steps.

xi

xi-1 xi+1x1

xk

Figure 7: A polygon with constant link diameter in which the robber can survive for Ω(n)
steps.

Proof. We modify the zig-zag polygon from Figure 3 to decrease the link diameter to 3 as
shown in Figure 7. The polygon consists of k = n/3 similar sections concatenated, where
n is the number of vertices of the polygon. We will show that the robber has a strategy to
survive at least k/2 steps in such a polygon.
Robber Strategy: The robber plays on points xi, 1 ≤ i ≤ k. Initially the robber chooses
the closest point xi to xbk/2c such that xi is not visible to the cop’s initial position. Observe
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xi

xi-1
xi+1

Figure 8: We can adjust the edges and the dashed-line path such that the polygon becomes
non-degenerate.

that xi is only visible to the gray area in Figure 7 and the line segments xi−1xi and xixi+1,
so the cop can only see at most two of the xi’s from its initial position.

The robber remains stationary until it is visible to the cop, i.e., when the cop enters the
gray area or along the segments xi−1xi and xixi+1. Then, the robber moves to one of the
neighbors xi−1 or xi+1, the one that is not visible to the cop. At least one of xi−1 and xi+1

is safe for the robber to move to in the next step as we observe that there is no point visible
to all three of xi−1, xi, and xi+1. The robber can survive at least k/2 − 1 steps with this
strategy as the game may only be terminated at either x1 or xk.

Note that the polygon in Figure 7 is degenerate, with edges that lie on the same line, but
we can adjust it a little bit to resolve all degeneracies, as shown in Figure 8, at the expense of
decreasing the lower bound to n/8. We need to be careful not to increase the link diameter
of the polygon through the edge level changes. The changes in horizontal edge levels must
be small in comparison with the width of the middle corridor.

6 Cops and Robbers Inside a Splinegon

In this section we consider the cops and robbers game in a simply connected region with
curved boundary, specifically a splinegon R whose boundary consists of n smooth curve
segments that each lie on their own convex hull. Other natural assumptions (such as algebraic
curves or splines of limited degree, or other curves of constant complexity) give regions that
can be converted to splinegons with a constant factor overhead by cutting at points of
inflection and points with vertical tangents. Assume that tangents in a given direction
and common tangents between curve segments can be computed. A vertex is an endpoint
between two curve segments.

We need another assumption to avoid an infinite game where the cop gets closer and
closer to the robber but never reaches it. This occurs, for example, when two curves meet
tangentially at a vertex as in Figure 9—in fact, in this situation a robber at a vertex avoids
capture by remaining stationary. One possibility is to assume that the robber is captured
when the cop gets sufficiently close (within some ε). Instead, we will make the assumption
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that the link distance between any two points in the splinegon R is finite, and bounded by
d.

Figure 9: The number of cop moves may be infinite even when n = 2. Truncating the
vertices makes the game finite but the number of moves may depend on the link diameter.

With these assumption—a splinegon R of n curved segments with link diameter d—we
prove that the cop always wins, and does so in O(n2 + d) steps. But first, we show through
additional examples that the strategy must be a little more complex than in the polygonal
case.

6.1 The Cop Strategy

A main difference from the polygonal case is that the cop may need to move to interior
points in order to win. Figure 10, for example, shows a region in which the robber can win
if the cop always stops on the boundary.

S
1

S
2

S
3

Figure 10: If the cop plays only on the boundary then the robber can win: the robber’s
strategy is to play on the middle dashed portions of the boundary and always move to the
same curve Si that the cop is on. In our cop strategy the cop would move to the endpoint
tangents (drawn as thin lines).

Our strategy is that the cop starts off along the first straight segment of the shortest
path to the robber’s current position. However, if this segment is tangent to a concave curve
of the shortest path then the cop should move further, into the interior of the polygon. How
far should the cop go? It is tempting stop the cop when it can see the robber, but Figure 11
shows that this strategy fails—the cop should move farther. Figure 12 shows there is also a
danger of moving the cop too far.

In our strategy the cop will stop at certain lines inside the splinegon. We first state the
cop strategy in terms of these lines, and then define the lines. We use the notation ci−1 for
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r
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r
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3

Figure 11: If the cop moves only far enough to see the robber then the robber can win
because it can force the cop to take smaller and smaller steps.

c
1

c
2

r
1

r
2

Figure 12: If the cop moves too far then the robber can win: the cop moves from c1 to c2, the
robber moves from r1 to r2 (dotted line) and then this can be repeated around the polygon.
In our proposed strategy the cop would not move from c1 all the way to c2—it would stop
at a robber exit line (drawn as a thin line).

the cop’s position and ri−1 for the robber’s position at the start of round i. Their initial
positions are c0 and r0. Recall that each round begins with a cop move.

Cop Strategy for Round i. If the cop sees the robber, it moves to the robber’s position
and wins. Otherwise, define the cop’s next position, ci as follows: Compute the shortest path
from the cop’s current position, ci−1, to the robber’s current position, ri−1. Let `i be the ray
along the first straight segment of this shortest path, or, if the shortest path begins with a
curve, let `i be the tangent to this curve. Let bi be the first point where the shortest path
diverges from `i. Then bi lies on the boundary of the splinegon R. If bi is not a splinegon
vertex, let γi be the boundary curve containing bi. If bi is a splinegon vertex then there are
two boundary curves incident to bi, and we let γi be the one on the far side of bi with respect
to the direction of `i. By reflection if necessary, assume that the path starts upward and
turns left, as depicted in Figure 13.

If bi 6= ci−1 and bi is a vertex, then define ci to be bi. (This matches the polygonal case.)
Otherwise `i is tangent to γi, so define ci to be the first point on the ray `i, past bi, where
`i intersects a common tangent or a robber exit line or touches the splinegon boundary.

We now define common tangents and robber exit lines. Refer to Figure 14. A common
tangent is a line segment that is tangent to R at two points and extends in both directions
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Figure 13: The cop move, showing the shortest path from ci−1 to ri−1 (thick grey path), the
first straight segment of this path ci−1bi upward along ray `i, the new cop position ci, the
downward segment ¯̀

i (dashed) and the active region Ri (lightly shaded).

until it exits the region. At each endpoint of each curve we have an endpoint tangent—the
tangent to the curve through the endpoint. An endpoint tangent extends in both directions
until it exits the region. We count endpoint tangents as common tangents. There are O(n2)
common tangents, because a curve has at most two common tangents with any other curve
or vertex.

We define robber exit lines relative to the current robber and cop positions, using the
notation from the cop strategy above. See Figure 14. Consider segments that start at ri−1
and are tangent to R, ending at the tangent point. Among these, a robber exit line is one
that crosses ray `i such that the tangent point is on the far side of the segment with respect
to the direction of `i. If we extend a robber exit line past its tangent point to the region
boundary we obtain a bay of points not visible from the robber position. Note that every
bay contains a vertex of the region—either the tangent point itself is a vertex or the tangent
point is on a reflex curve, and we must change curves before the end of the bay.

l
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Figure 14: Lines f1, f2 and f3 are three of the many common tangents. Lines e1, e2 and e3 go
through ri−1 and are tangent to R; of those, e2 is the only exit line. Lightly shaded regions
are the bays.
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With these definitions of common tangents and robber exit lines, we have completely
specified the cop strategy. We note that the cop’s move can be computed in polynomial time
assuming we have constant time subroutines to compute common tangents and tangents at a
given point. We can preprocess to find all common tangents. For a given robber position, we
can find all robber exit lines in polynomial time. We can find shortest paths in the splinegon
R in linear time using the algorithm of [24]. With this information, we can find the next cop
position. A straightforward implementation takes O(n2) time, though this can probably be
improved.

6.2 The Cop Wins

In order to prove that the cop wins using the strategy specified in the previous section, we
first show that each cop move restricts the robber to a smaller subregion. Then we show that
the number of steps the cop needs to win is O(n2 + d) where n is the number of segments
and d is the link diameter of the region.

We begin by defining the subregion that the robber is restricted to during and after
round i. Define ¯̀

i to be the directed segment that starts at bi, goes opposite ray `i through
ci−1, and stops at the first boundary point for which every ε > 0 neighborhood contains a
boundary point on the opposite side of ¯̀

i from γi at bi (i.e., where part of the boundary is to
the left of the downward directed segment ¯̀

i in Figure 13.) The segment ¯̀
i starts and ends

on the boundary so it cuts the region into two (or more) pieces; define the active region, Ri,
to be the piece that contains ri−1. Define the exclusion region to be its complement in R.
Observe that the robber cannot exit Ri in round i, i.e., ri is inside Ri. This is because ri−1
is on the wrong side of the line through ¯̀

i.
We prove below in Lemma 6 that Ri+1 ( Ri, i.e., the active region shrinks. Following

that, we show that the cop wins in a finite number of steps. The proofs are similar to the
analogous results for polygons, and involve handling four cases for the left/right configuration
of the cop and the robber. Suppose that the shortest path from ci−1 to ri−1 makes a left
turn at bi. (The other case is completely symmetric.) We distinguish the following cases:

Case 1. The shortest path from ci to ri makes a left turn at bi+1.
(a) ci+1 is left of the ray ci−1ci—more precisely, in moving from ci−1 to ci to ci+1 the cop

turns left by an angle in the range (0, 180◦). (Turning by 0◦ will be handled in case (b).)
(b) ci+1 is right of the ray ci−1ci—more precisely, the cop turns right at ci by an angle

in [0, 180◦).
Case 2. The shortest path from ci to ri makes a right turn at bi+1.

(a) ci+1 is left of the ray ci−1ci—more precisely, the cop turns left at ci by an angle in
(0, 180◦).

(b) ci+1 is right of the ray ci−1ci—more precisely, the cop turns right at ci by an angle
in [0, 180◦).

Note that the cop never turns by an angle of 180◦ (doubling back) because then bi+1

would be on the line segment between ci and bi or further along, on the ray ¯̀
i. In the first

case, bi+1 would provide a stopping point for ci according to the rule that the cop stops on
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the boundary. The second case is impossible because the robber can never move from ri−1
to a position that would cause the cop to move onto ¯̀

i.
We begin by showing that Case 2(a) can happen only in special circumstances and that

Case 1(b) cannot happen at all.

Lemma 4. In Case 2(a) the segment cibi+1 is tangent to the boundary on its left side (as
well as tangent to the boundary on its right side at bi+1).

Proof. See Figure 15. The segment cibi+1 is tangent to the boundary curve γi+1 on its right
side at point bi+1. Suppose that segment cibi+1 is not tangent to the boundary on its left
side. We show that the cop has passed a common tangent, which is a contradiction. Move
ci back towards ci−1 while maintaining tangency with the curve γi+1. We can move some
positive amount. Either we reach the tangent at an endpoint of γi+1 or the segment cibi+1

hits a boundary point on its left side (possibly because ci reaches bi). In either case, we
have arrived at a common tangent, so ci should have been placed here rather than further
along.

R
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c
i−1

c
i

r
i

r
i−1

γ
i

b
i+1

Figure 15: In case 2(a) if the segment cibi+1 is not tangent to the boundary on its left side
then there is an earlier choice for ci (on the dashed red common tangent).

Lemma 5. Case 1(b) cannot occur, i.e., it cannot happen that the shortest path from ci to
ri makes a left turn at bi+1 and ci+1 is right of the ray ci−1ci by an angle in [0, 180◦).

Proof. Suppose the situation does occur. See Figure 16(a). We show that the cop has passed
a common tangent or a robber exit line, which gives a contradiction. Because ci+1 is to the
right of the ray ci−1ci, therefore the robber’s move ri−1ri must have crossed the line through
ci−1ci, say at point x. We claim that segments ri−1ri and ci−1ci intersect. First note that
x lies after bi along the ray ci−1ci. We must show that ci lies after x along this ray. If ci
lies before x, then there is a two-link path inside the region, ci, x, ri that turns right at x.
Shortening this to a locally shortest path, we obtain the shortest path from ci to ri that
makes a first turn to its right, contradicting our assumption.

Define σ to be the shortest path from ri−1 to ci. The segment cibi+1 is tangent to the
curve γi+1. We will now move point p from ci towards bi, maintaining a segment τ through
p tangent to the curve γi+1. In the other direction, τ extends to its intersection point with
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Figure 16: Case 1(b) cannot occur in these situations: moving p from ci towards bi while
maintaining tangency of τ (dashed red) with γi+1 we encounter: (a) a robber exit line or (b)
a common tangent.

σ. See Figures 16 and 17, where τ is drawn as a dashed red line. If τ reaches an endpoint
tangent of γi+1 then we have a common tangent and the cop should have stopped at point
p. Otherwise, the segment τ must at some point lose contact with σ and we claim that this
can happen only because of one of the following:

• The segment τ intersects σ at ri−1; this is a robber exit line. See Figure 16(a).

• The segment τ becomes tangent to σ; this is a common tangent. See Figure 16(b).

• The segment bumps into the region boundary (possibly at point bi); this is a common
tangent. See Figure 17.

In all cases, the cop should have stopped at point p because of the common tangent or robber
exit line τ .

We are now ready to show that the active region shrinks.

Lemma 6. The active regions satisfy Ri+1 ( Ri.

Proof. Assume that the shortest path from ci−1 to ri−1 makes a left turn at bi, and consider
the cases as listed above.
Case 1(a). The shortest path from ci to ri makes a left turn at bi+1 and ci+1 is left of
the ray ci−1ci. See Figure 18. The ray ¯̀

i+1 from bi+1 through ci intersects `i at ci, and is
therefore completely contained in the active region Ri. Furthermore, the open segment ci−1ci
is outside Ri+1 but inside Ri. Thus Ri+1 ( Ri.
Case 1(b). The shortest path from ci to ri makes a left turn at bi+1 and ci+1 is right of the
ray ci−1ci. This case cannot occur by Lemma 5.
Case 2(a). The shortest path from ci to ri makes a right turn at bi+1 and ci+1 is left of the
ray ci−1ci. See Figure 19(a). By Lemma 4, the segment cibi+1 is tangent to the boundary on
its left side, say at point p. The ray ¯̀

i+1 that defines the active region extends from bi+1 to
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Figure 17: Case 1(b) cannot occur in these situations: moving p from ci towards bi while
maintaining tangency of τ (dashed red) with γi+1 we encounter a common tangent by bump-
ing into the region boundary (a) before p reaches bi, or (b) at bi.
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Figure 18: Case 1(a).

p. It’s extension goes through ci, so it is contained in Ri. Furthermore, the open segment
ci−1ci is outside Ri+1 but inside Ri. Therefore Ri+1 ( Ri.
Case 2(b). The shortest path from ci to ri makes a right turn at bi+1 and ci+1 is right
of the ray ci−1ci (or on the ray). See Figure 19(b). The ray ¯̀

i+1 intersects `i at ci, and is
contained in Ri. Furthermore, the open segment ci−1ci is outside Ri+1 but inside Ri. Thus
Ri+1 ( Ri.

Finally we prove our main result.

Theorem 4. Inside a splinegon of n curve segments with link diameter d, the cop wins the
cops and robbers game in O(n2 + d) moves.

Proof. We argue that at each step between the first and the last, the active region shrinks in
some discrete way. Define the newly excluded region, Ei, to be Ri−Ri+1. In order to take care
of collinearities, we will include the boundary of Ri+1 but exclude the boundary of Ri. If the
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Figure 19: (a) Case 2(a). (b) Case 2(b).

two boundaries intersect, the intersection point is not included in Ei. In Figures 18, 19(a),
and 19(b) the region Ei is lightly shaded. By Lemma 6, the Ei’s are disjoint.

Let σ be a minimum link path from the initial to the final cop position. Then σ has at
most d bends. Note that there are at most n2 common tangents because there are at most
n2 pairs of points determining common tangents. Our bounds derive from these two facts.

Our plan is to show that at each step we make progress in one of the following ways:

1. ci is a vertex

2. ci and bi define a common tangent

3. Ei contains a vertex of the region

4. Ei contains an endpoint of a common tangent with both endpoints in Ri

5. Ei contains a bend of σ

We begin by bounding the number of events of each of the above types. After that we
will show that one of these events occurs in each step.

Because ci and bi never repeat, event (1) happens at most n times and event (2) happens
at most n2 times. Because the Ei’s are disjoint, event (3) happens at most n times, event (4)
happens at most n2 times, and event (5) happens at most d times.

It remains to prove that at each step, one of the above 5 events occurs.
Recall the conditions for defining the cop’s position ci. If ci = bi because bi is a vertex

then we have event (1). Otherwise ci stops at a common tangent or a robber exit line or on
the boundary of the region.

Suppose first that ci stops on a common tangent, and not on the boundary (we will
handle that case below). Note that the common tangent must cross `i, and therefore that
both endpoints of the common tangent lie in Ri. The boundary of Ri+1 is a line segment
that goes through ci and therefore one endpoint of the common tangent must lie in Ri+1,
possibly in the boundary. This endpoint is in Ei. Thus we have event (4).
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If ci stops on a robber exit line then we claim that Ei contains a vertex, i.e., event (3).
To justify this, first note that ri−1 must lie in Ri+1. This is because a straight segment joins
ri and ri−1 and ri lies on the far side of `i+1, so in order for a straight segment from ri to
exit Ri+1 it would have to cross `i+1 and ¯̀

i+1 which is impossible. Therefore the robber exit
line must exit Ri+1 at ci (or possibly lie in the line of `i+1), and thus the tangent point of
the robber exit line, and its bay, must lie in Ei. As noted when we defined robber exit lines,
this bay contains a vertex. Therefore Ei contains a vertex.

Finally, we must consider the possibility that ci stops on the region boundary. When
can this happen? By Lemma 4, the cop always stops at a common tangent in Case 2(a).
By Lemma 5, Case 1(b) never occurs. Thus we must be in Case 1(a) or 2(b). If ci is not
at a point where `i exits the region then ci and bi define a common tangent, i.e. event (2).
We are left with the case where ci is at a point where `i exits the region. In Case 2(b) (see
Figure 19(b)) the robber’s move ri−1ri must cross line `i beyond ci, which is impossible if
`i exits the region at ci. Thus we must be in Case 1(a). See Figure 20. The minimum link
path σ from the initial cop position (outside Ri, or possibly on the boundary of Ri) to the
final robber position (inside Ri+1) must include a bend point in Ei. This is event (5).
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Figure 20: When the cop stops on the region boundary in Case 1(a).

7 Open Problems

1. Consider the cops and robbers game on the points inside a polygonal region, i.e., a
polygon with holes. There is a lower bound of three cops—an example requiring three
cops can be constructed from a planar graph where three cops are required [2] by taking
a straight-line planar drawing of the graph and cutting out polygonal holes to leave
narrow corridors for the graph edges. It is an open question whether three cops suffice.

2. What is the complexity of finding how many moves the cop needs for a given poly-
gon/region? The graph version of this problem is solvable in polynomial time for
cop-win graphs [20]. For the cops and robbers game on the points inside a polygon we
conjecture that the problem is solvable in polynomial time if the cop is restricted to
the reflex vertices of the polygon. However, the cop may save by moving to an interior
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point—for example in a star-shaped polygon whose kernel is disjoint from the polygon
boundary—so the problem seems harder if the cop is unrestricted.

3. Is there a lower bound of Ω(n2 + d) on the worst case number of cop moves in a
splinegon of n curve segments and link diameter d? From results in Section 5.1 we
have a lower bound of Ω(n+ d).
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