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Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy
on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work
costs with the corresponding distribution for the reverse process. By an analysis that explicitly
incorporates the energy reservoir that donates the energy, and the control system that implements
the dynamic, we here obtain a quantum generalization of Crooks theorem that not only includes the
energy changes on the reservoir, but the full description of its evolution, including coherences. This
approach moreover opens up for generalizations of the concept of fluctuation relations. Here we
introduce ‘conditional’ fluctuation relations that are applicable to non-equilibrium systems, as well
as approximate fluctuation relations that allow for the analysis of autonomous evolution generated
by global time-independent Hamiltonians.

I. INTRODUCTION

Imagine a physical system with a Hamiltonian HS(x)
that depends on some external parameter x, e.g., electric
or magnetic fields that we can vary at will. By chang-
ing x we can push the system out of thermal equilibrium.
This would typically require work that may be dissipated
due to interactions with the surrounding heat bath. The
latter may also make the dissipation random, in the sense
that the work cost w is different each time we implement
the same change of the Hamiltonian [1–6]. (Think of a
spoon pushed through syrup. On microscopic scales the
friction resolves into random molecular collisions.) These
fluctuations can be described via a probability distribu-
tion P+(w). Crooks theorem [7] shows that there is a
surprisingly simple relation between P+ and the corre-
sponding distribution P− obtained for the process run in
reverse (i.e., where the time-schedule for the change of x
is mirrored) namely

Z(Hi
S)P+(w) = Z(Hf

S)eβwP−(−w), (1)

where Hi
S and Hf

S are the initial and final Hamiltonians,
respectively, and Z(H) is the partition function, which
in the quantum case takes the form Z(H) = Tre−βH .
Moreover, β = 1/(kT ), with k Boltzmann’s constant, and
where T is the absolute temperature of the heat bath. In
this investigation we only consider a single heat bath with
a fixed temperature T .

Crooks theorem was originally derived in a classical
setting [7] (for reviews on classical fluctuation theorems,
see [1–6]) but there has accumulated a considerable body
of quantum fluctuation relations (for reviews see [8–10]).
However, the latter do often include measurements, and
in particular energy measurements (see e.g. [11–25]) that
typically destroy coherences and quantum correlations.
Here we avoid such auxiliary components, and obtain
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fluctuation relations that retain all quantum aspects of
the evolution.

The key is to explicitly model all degrees of freedom
involved in the process. This includes the control mecha-
nism that implements the change of the external param-
eter, i.e. x in HS(x), as well as the ‘energy reservoir’,
e.g., a battery or an excited atom, which donates the en-
ergy for the work w. Since work corresponds to a change
of energy in this reservoir, it follows that the reservoir
itself is forced to evolve as it fuels the dynamics. The
general theme of this investigation is to formulate fluc-
tuation relations in terms of this induced evolution. To
make this more concrete, let us briefly display the first of
the fluctuation theorems that we will derive. The roles of
the probability distributions P+ and P− are here taken
over by the channels F+ and F− that are induced on the
energy reservoir by the forward and reverse processes,
respectively. As we shall see, these channels can, under
suitable conditions, be related by the following quantum
Crooks relation

Z(Hi
S)F+ = Z(Hf

S)JβHE
F	−J−1

βHE
, (2)

where HE denotes the Hamiltonian of the energy reser-
voir E. The combined application of JβHE

and J−1
βHE

,

where JβHE
(Q) = e−βHE/2Qe−βHE/2, can be viewed as

a counterpart to the term eβw in (1). The mapping from
F− to F	− (to be described in detail later) is related to
time-reversals, and can in some sense be regarded as a
generalization of the transformation of P−(w) to P−(−w)
at the right hand side of (1).

In the following section we derive (2) and moreover
show that it can be decomposed into diagonal and off-
diagonal Crooks relations, thus yielding fluctuation rela-
tions for coherences. We also derive quantum Jarzynski
equalities, as well as a bound on the average work cost.
In section II H we regain the classical Crooks relation (1)
from (2) via the additional assumption of energy trans-
lation invariance. We next turn to generalizations of (2),
where section III introduces conditional fluctuation rela-
tions, and section VI approximate versions.
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II. A QUANTUM FLUCTUATION THEOREM

A. The model

To derive the quantum Crooks relation in (2) we em-
ploy a general class of models that previously has been
used in the context of quantum thermodynamics to ana-
lyze, e.g., work extraction, information erasure, and co-
herence [26–43]. The main idea is that we include all the
relevant degrees of freedom (which in our case consist of
four subsystems, see Fig. 1) and assign a global time-
independent Hamiltonian H to account for energy. On
this joint system we are allowed to act with any unitary
operation V that conserves energy, which is formalized
by the condition that V commutes with the total Hamil-
tonian [H,V ] = 0. (See [44] for an alternative notion of
energy conservation.)

At first sight it may be difficult to see how such a
manifestly time-independent Hamiltonian can be used
to describe the evolving Hamiltonians in Crooks theo-
rem. For this purpose we introduce a control system
C such that the Hamiltonian of S′ = SB depends on
the state of C. As an illustration, suppose that we
wish to describe a transition from an initial Hamilto-
nian Hi

S′ to a final Hamiltonian Hf
S′ . One possibil-

ity would be to define a joint Hamiltonian of the form

HS′C = Hf
S′ ⊗ |cf 〉〈cf | + Hi

S′ ⊗ |ci〉〈ci|, where |cf 〉 and
|ci〉 are two normalized and orthogonal states of the con-
trol system C. If the evolution would change the con-
trol from |ci〉 to |cf 〉, then this would effectively change

the Hamiltonian of S′ from Hi
S′ to Hf

S′ . However, this
change can in general not be achieved by an energy con-
serving unitary operation on S′C alone, since the tran-

sition from Hi
S′ to Hf

S′ typically will involve a change of
energy. The role of the energy reservoir E is to make
these transitions possible by donating or absorbing the
necessary energy. With a suitable choice of Hamilto-
nian HE of the energy reservoir, the global Hamiltonian
H = HS′C⊗ 1̂E+1̂S′C⊗HE allows for non-trivial energy
conserving unitary operators V .

In this investigation the energy reservoir does not only
serve as a source or sink for energy, but also acts as a
probe of the dynamics of the system. Instead of using
auxiliary measurements, which inevitably would intro-
duce additional interactions that potentially may disturb
the dynamics, we here let the energy reservoir take over
this role. We do, so to speak, make an additional use
of a component that anyway has to be included. A fur-
ther benefit of using an explicit quantum probe is that
we not only capture the flow of energy, but also the
change in coherence and correlations. Needless to say,
standard macroscopic energy reservoirs would be of little
use for the latter purposes, due to the levels of decoher-
ence that they are exposed to. However, our notion of
energy reservoirs includes nano-systems like, e.g., single
atoms or spins.

EC BS
S´

~
S

FIG. 1: The systems. The model explicitly includes the
‘system’ S on which we operate, the heat bath B, the con-
trol C that implements the change of the Hamiltonian on SB,
and the energy reservoir E that donates or accepts the energy
required to drive the processes. Most of our fluctuation rela-
tions are expressed in terms of the dynamics induced on the
energy reservoir E.
For the main part of this investigation (Secs. II and III) we as-
sume that the total system is described by a time-independent
Hamiltonian that is non-interacting between SBC and E, i.e.,
is of the form H = HSBC ⊗ 1̂E + 1̂SBC ⊗HE . We moreover
model the evolution by energy conserving unitary operators
V , i.e., [H,V ] = 0. (We go beyond these assumptions when
we consider approximate fluctuation relations in section VI.)
For most of the derivations it is not necessary to make any
distinction between S and B, and for this reason we will often
bundle them together into an extended system S′ = SB. This
‘rationalization’ can be taken one step further to S̃ = S′C =
SBC when we turn to the conditional fluctuation theorems
in section III.

B. An intermediate version

In this section we derive a simplified version of our
fluctuation theorem. This serves as a convenient inter-
mediate step, and illustrates why time-reversal symmetry
is useful.

We wish to determine the channel induced on the en-
ergy reservoir by a non-equilibrium process a la Crooks,
where the system initially is in equilibrium, and is forced
out of it. To model this we let the control system ini-
tially be in state |ci〉, and we let the combined system
and heat bath S′ be in the Gibbs state G(Hi

S′), where
G(H) = e−βH/Z(H). Moreover, we let the reservoir E
be in an arbitrary state σ. Hence, the joint system is
initially in the state G(Hi

S′)⊗ |ci〉〈ci| ⊗σ. After a global
energy-conserving unitary operation V , the state of the
energy reservoir is consequently given by the channel

F(σ) = TrS′C(V [G(Hi
S′)⊗ |ci〉〈ci| ⊗ σ]V †). (3)

To obtain a Crooks-like relation we should somehow re-
late this forward process with a ‘reversed’ process, where
the system instead is initiated in the Gibbs state of the
final Hamiltonian, i.e., the global system should be in the

joint state G(Hf
S′) ⊗ |cf 〉〈cf | ⊗ σ. The question is how

to formalize the idea of a reversed process acting on this
initial state. A rather brutal interpretation would be to
simply invert the entire global evolution, thus substitut-
ing V with V † (see Fig. 2). The resulting channel on the
reservoir would in this case be

R(σ) = TrS′C(V †[G(Hf
S′)⊗ |cf 〉〈cf | ⊗ σ]V ). (4)

Let us now assume that we have a perfectly function-
ing control system, in the sense that the state |ci〉 is
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transformed into |cf 〉 with certainty. More precisely, we
demand that the unitary operator V should satisfy the
condition

[1̂S′ ⊗ |cf 〉〈cf | ⊗ 1̂E ]V = V [1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E ]. (5)

One can verify (see Appendix A) that this assumption
implies the following relation between the channels F
and R

Z(Hi
S)F = Z(Hf

S)JβHE
R∗J−1

βHE
. (6)

Here R∗ denotes the conjugate [45] of the channel R. If

the channel has Kraus representation R(ρ) =
∑
j VjρV

†
j ,

then the conjugate can be written R∗(ρ) =
∑
j V
†
j ρVj

[45].
As the reader may have noticed, we have written

Z(Hi
S) and Z(Hf

S) in (6) rather than the more gener-

ally valid Z(Hi
S′) and Z(Hf

S′). To obtain the former we

can assume that Hi
S′ = Hi

S ⊗ 1̂B + 1̂S ⊗HB and Hf
SB =

Hf
S ⊗ 1̂B + 1̂S ⊗HB , and thus Z(Hi

S′) = Z(Hi
S)Z(HB)

and Z(Hf
S′) = Z(Hf

S)Z(HB).
One may observe that the right hand side of (6) is sim-

ilar to Crooks’ quantum operation time reversal [46] (not
to be confused with the time reversals T or the mapping
	 discussed in the next section) and closely related to
Petz recovery channel [47–50], where a relation to work
extraction was identified recently [40]. For further com-
ments, see Appendix A 8.

The approach of this investigation can be compared
with another construction that also focuses on quantum
channels [51, 52], where the starting point is to assume
a property of a channel (unitality) and derive fluctua-
tion relations for the resulting probability distribution
for suitable classes of initial and final measurements that
sandwich the channel (see also the generalization in [53]).

Although (6) indeed can be regarded as a kind of quan-
tum Crooks relation, it does suffer from an inherent flaw.
The swap between V and V † means that we invert the en-
tire evolution of all involved systems, including the heat
bath. Apart from assuming an immense level of con-
trol, this assumption does not quite fit with the spirit of
Crooks relation. The latter only assumes a reversal of the
time-schedule of the control parameters, not a reversal of
the entire evolution. In the following we will resolve this
issue by invoking time-reversal symmetry.

C. Time-reversals and time-reversal symmetry

In standard textbooks on quantum mechanics (see
e.g. [54]) time-reversals are often introduced on the
level of Hilbert spaces via complex conjugation of wave-
functions (also applied in the context of quantum fluctua-
tion relations, see e.g. [9, 14, 22, 24, 55]). Here we instead
regard time-reversals as acting on operators (cf. [56, 57]).
Moreover, our time-reversals have the flavor of transpose

iHS´

H f
S´

ci 

cf  
F

V

R

V
E

FIG. 2: An intermediate quantum Crooks relation.
Our quantum Crooks theorem is based on the idealized idea
of a perfect control mechanism. This assumes that the en-
ergy conserving unitary evolution V on the joint system S′CE
turns the control state |ci〉 into |cf 〉 with certainty, thus imple-

menting the change of the Hamiltonian Hi
S′ to Hf

S′ perfectly.
To model the forward process of the Crooks relation we as-
sume that S′C starts in the ‘conditional’ equilibrium state
G(Hi

S′)⊗ |ci〉〈ci|. The subsequent evolution under V induces
a channel F on the energy reservoir E. As an intermediate
step towards the quantum Crooks relation (2) we assume that
the reverse process is given by the globally reversed evolution
V †. With S′C in the initial state G(Hf

S′) ⊗ |cf 〉〈cf |, this re-
sults in a channel R on E. The preliminary Crooks relation
in Eq. (6) relates the channels F and R.
This result does not rely on any additional assumptions on
how V comes about, or on the nature of the dynamics at in-
termediate times. However, if one so wishes, it is possible
to explicitly model the path H(x) in the space of Hamilto-
nians. This path can be discretized as Hl for l = 0, . . . , L
with H0 = Hi

S′ and HL = Hf
S′ . To these Hamiltonians we

associate states |cl〉 in the control C, and construct the joint

Hamiltonian HS′C =
∑L
l=0Hl ⊗ |cl〉〈cl|. Hence, if the evolu-

tion traverses the family of control states, then we progress
along the path of Hamiltonians. An alternative method to
model evolving Hamiltonians is discussed in section VI.

operations rather than complex conjugations. Since den-
sity operators and observables are Hermitian, the choice
between conjugation or transposition is largely a matter
of taste. Here we opt for the transpose, since this choice
avoids the inconvenient anti-linearity of complex conju-
gation. A couple of key properties of our time-reversals
T are T (AB) = T (B)T (A) and T (A)† = T (A†). (For
the complete characterization, see Appendix B.)

To see why it is reasonable to refer to T as a ‘time-
reversal’, let us assume that the evolution operator V
is time-reversal invariant, i.e., T (V ) = V . If an initial
state ρi is evolved into ρf = V ρiV

†, then the properties
of T mentioned above yield T (ρi) = V T (ρf )V †. In other
words, the reversed final state state T (ρf ) evolves to the
reversed initial state T (ρi). Note that this ‘backwards’
transformation is implemented by the forward evolution
V ρV †, rather than the inverted evolution V †ρV .

The 	-transformation that appears in (2) can be de-
fined via the chosen time-reversal as

F	 = T F∗T . (7)

As mentioned earlier, if F(σ) =
∑
j VjσV

†
j , then the con-
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jugate is given by F∗(σ) =
∑
j V
†
j σVj . By the proper-

ties of T mentioned above it thus follow that F	(σ) =∑
j T (Vj)σT (Vj)

†, i.e., we time-reverse the operators in
the Kraus representation.

In the finite-dimensional case each time-reversal can
be implemented by a transpose with respect to some or-
thonormal basis, followed by a special class of unitary op-
erations. (Hence, our time-reversals do strictly speaking
include a bit larger set of operations than proper trans-
poses, see Appendix B.) Since the transpose is a posi-
tive but not completely positive map (as is illustrated
by the effect of the partial transpose on entangled states
[58, 59]) we can conclude that time-reversals generally
are not physical operations. Hence, one should not be
tempted to think of time-reversals as something that we
actually apply to a system. However, given a description
of a state ρ, there is nothing that in principle prevents
us from preparing the time reversed state T (ρ), which is
sufficient for our purposes.

D. Deriving the quantum Crooks relation

Similar to our intermediate version in section II B
we here assume a non-interacting global Hamiltonian
H = HS′C⊗1̂E+1̂S′C⊗HE , and a global energy conserv-
ing unitary evolution [V,H] = 0. As a substitute for the
global inversion of the evolution we assume time-reversal
symmetry in terms of a suitably chosen time-reversal of
the the form T = TS′C ⊗ TE , i.e., the global time re-
versal is composed of local reversals on S′C and on E.
We impose the time reversal symmetry by assuming that
T (V ) = V , TS′C(HS′C) = HS′C , and TE(HE) = HE .

Another novel component compared to the intermedi-
ate version is that we associate pairs of control states to
the Hamiltonians on S′. We assign the pair |ci+〉, |ci−〉
for the initial Hamiltonian Hi

S′ , and the pair |cf+〉, |cf−〉
for the final Hamiltonian Hf

S′ . The general idea is that
the members of these pairs correspond to the forward
and reverse evolution of the control system. One way to
formalize this notion is via the following relations

TS′C(1̂S′ ⊗ |ci+〉〈ci+|) =1̂S′ ⊗ |ci−〉〈ci−|,
TS′C(1̂S′ ⊗ |cf+〉〈cf+|) =1̂S′ ⊗ |cf−〉〈cf−|.

(8)

Hence, the time-reversal swaps the two control states into
each other. Note that if V transforms |ci+〉 to |cf+〉 per-
fectly, then V also transforms |cf−〉 to |ci−〉 perfectly. In
the latter case one should keep in mind the reverse order-
ing of i and f ; the state |cf−〉 is the initial control state
of the reverse process (see Fig. 3).

Let us assume that the unitary operator V and the ini-
tial and final control states |ci+〉, |cf+〉 satisfy the condi-
tions of the intermediate fluctuation relation. The chan-
nels F+ and R+, obtained by substituting |ci〉 with |ci+〉,
and |cf 〉 with |cf+〉 in equations (3) and (4), respectively,
are according to (6) related by

Z(Hi
S′)F+ = Z(Hf

S′)JβHE
R∗+J−1

βHE
. (9)

iHS´

H f
S´

ci 

ci 

cf  

cf  

F

F

T

T

V

V

E

E

+
+

−

−

+

−

FIG. 3: A quantum Crooks relation. Derivations of fluc-
tuation relations often rely on time-reversals and time reversal
symmetry in some form [3–6, 8–10]. In our case, time-reversal
symmetry enables us to in effect let the evolution run ‘back-
wards’ by swapping the control states from a ‘forward track’
to a ‘reverse track’. By this we amend for the over-ambitious
global reversal of the evolution that we employed for the in-
termediate fluctuation relation, and obtain a quantum coun-
terpart to the reversal of the control parameter in the classical
Crooks relation.
Analogous to the setup in Fig. 2, the initial control state |ci+〉
yields an evolution where the initial Hamiltonian Hi

S′ is trans-

formed to the final Hamiltonian Hf
S′ when the control state

|cf+〉 is reached. This process induces a channel F+ on the
energy reservoir E. To each of these control states there ex-
ists a time-reversed partner starting with |cf−〉 and ending

with |ci−〉 thus bringing the Hamiltonian Hf
S′ back to Hi

S′ .
This process induces a channel F− on the reservoir. By as-
suming time-reversal symmetry, the channels F+ and F− can
be related via the quantum Crooks relation in (2).

For the reverse process we obtain the channels F− and
R−, where |ci〉 this time is substituted by |cf−〉, and
|cf 〉 with |ci−〉. By using the the properties of the time-
reversal one can show (for details, see Appendix C) that
R+TE = TEF−. By applying this equality to (9) our de-
sired quantum Crooks relation (2) follows immediately.
Note that both F+ and F− correspond to the ‘forward’
evolution, i.e. we no longer need to impose a global in-
version of the dynamics.

After having established (2) an immediate question is
how to interpret it physically. The classical Crooks re-
lation (1) can be phrased as a comparison between two
experiments, one for the forward path of control param-
eters, and one for the reversed. For each of these two
setups we repeat the experiment in order to obtain good
statistical estimates of the probability distributions P+

and P−. The claim, so to speak, of Crooks theorem is
that these two probability distributions are related as in
(1). Our quantum fluctuation relation in (2) can be in-
terpreted in a similar manner. Here the channels F+

and F− induced by the forward and reverse process can
in principle be determined by process tomography (see
e.g. [60–63] and Sec. 8.4.2 in [64] for an overview). Anal-
ogous to the classical Crooks relation, our quantum fluc-
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tuation theorem tells us that these two channels should
be related as in (2). One may note that the mapping
F− 7→ JβHE

F	−J−1
βHE

in this setup is something that we
calculate given an experimental estimate of the channel
F−, analogous to how we would calculate the function
eβwP−(−w) from the estimated distribution P−(w). In
section IV we consider a reformulation of (2) that is as-
sociated with a scenario that does not require such a
post-processing.

As the reader may have noticed, our quantum Crooks
relation (2) does, in contrast to the classical Crooks re-
lation (1), not contain any explicit reference to ‘work’.
Hence, we do in essence circumvent the issue of how to
translate the classical notion of work into the quantum
setting; a question that has been discussed rather exten-
sively in relation to fluctuation theorems [11, 12, 15, 65–
78]. We can nevertheless in some sense associate work
with the loss of energy in the reservoir, which we em-
ploy in section II H where we regain the classical Crooks
relation (1).

E. Diagonal and off-diagonal Crooks relations

Here we take a closer look at the nature of the induced
channels F± and on the structure of the quantum Crooks
relation (2).

The energy conservation and the diagonal initial state
with respect to the Hamiltonian of SBC conspire to de-
couple the dynamics on E with respect to the ‘modes
of coherence’ [34] (which in turn is a part of the wider
context of symmetry preserving operations [79]). To
make this more concrete, assume that HE has a com-
plete set of energy eigenstates |n〉 with corresponding
non-degenerate energies En. Let us also assume that
TE acts as the transposition with respect to this energy
eigenbasis. The decoupling does in this case mean that
the channels F± can map an element |n〉〈n′| to |m〉〈m′|
only if En−En′ = Em−Em′ (see Appendix D for further
details). Hence, each mode of coherence is characterized
by an ‘offset’ δ = En − En′ from the main diagonal (see
Fig. 4).

In particular, the main diagonal is given by the offset
δ = 0. The dynamics of the diagonal elements under
the forward process can be described via a conditional
probability distribution

p±(m|n) = 〈m|F±(|n〉〈n|)|m〉 = 〈n|F∗±(|m〉〈m|)|n〉.
(10)

The application of (2) yields

Z(Hi
S)p+(m|n) = eβ(En−Em)Z(Hf

S)p−(n|m), (11)

which thus can be regarded as a diagonal Crooks relation.
In section II H we shall see how this in turn can be used
to re-derive (1) via the additional assumption of energy
translation invariance.

For each permissible value of δ (which depend on the
spectrum of HE) we can characterize the dynamics of the

δ = 0

δ = s

δ = 2s

δ = 3s

δ = 4sδ = -s

δ = -4s

δ = -3s

δ = -2s

δ = 0

FIG. 4: Diagonal and off-diagonal Crooks relations.
Due to energy conservation in combination with the particular
class of initial states, it turns out that the dynamics of the
energy reservoir decouples along the modes of coherence [34].
One can think of these as as the collection of diagonals (main
and off-diagonals) of the density operator represented in an
energy eigenbasis. Due to the decoupling it follows that the
quantum fluctuation relation Eq. (2) can be separated into
individual Crooks relations for each mode of coherence. As
an example, suppose that the spectrum of the reservoir would
include the energy levels E1 = 0, E2 = s, E3 = 3s, E4 = 4s
for some s > 0. The dynamics on the main diagonal, δ = 0,
satisfies the relation in (11). Each of the diagonals with offsets
δ = ±s,±2s,±3s,±4s satisfies a Crooks relation as in (12).

corresponding off-diagonal mode by

qδ±(m|n) = 〈m|F±(|n〉〈n′|)|m′〉 = 〈n′|F∗±(|m′〉〈m|)|n〉,

where the assumption of non-degeneracy implies that n′

is uniquely determined by n, δ, and similarly m′ by m, δ.
We obtain an off-diagonal analogue of (11) in the form
of

Z(Hi
S)qδ+(m|n) = eβ(En−Em)Z(Hf

S)qδ−(n|m). (12)

In other words, the functional form of the relations for
the main diagonal and all the off-diagonals are identi-
cal. However, one should keep in mind that the numbers
qδ±(m|n) in general are complex, and thus cannot be in-
terpreted as conditional probability distributions.

The conditional distributions p±(m|n) and all qδ±(m|n)
can be regarded as representing different aspects of the
channels F±. However, one can also give more direct
physical interpretations to these quantities. To this end
one should keep in mind that the energy reservoir can
be viewed as being part of our experimental equipment,
and we thus in principle are free to prepare and measure
the reservoir it in any way that we wish. The conditional
distribution p±(m|n) can be interpreted as the probabil-
ity to measure the energy Em in the reservoir after the
the experiment has been completed, given that we pre-
pared the reservoir in energy En before we connected it
to the system. Equivalently, we could replace the initial
preparation with an energy measurement, thus approach-
ing the ‘two-time’ or ‘two-point’ measurements that play
a central role in several investigations on quantum fluc-
tuation relations (see e.g. [11–25], and for overviews see
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[8, 9]), although we here apply these measurements to the
energy reservoir, rather than on the system. An obvious
issue with sequential measurements is that the first mea-
surement typically perturbs the statistics of the second
measurement. However, in our case the decoupling comes
to our aid. If we measure the energy in the reservoir after
the process, then the statistics of this measurement is not
affected if we would insert an additional energy measure-
ment before the process, irrespective of how off-diagonal
the initial state may be. The decoupling thus justifies the
use of a two-point measurement on the energy reservoir,
if our purpose is to determine p±. However, the very
same argument also implies that if we wish to determine
qδ± we have to use non-diagonal initial states, as well as
non-diagonal measurements. For an example of such a
setup, see Appendix D 3.

F. Jarzynski equalities

From the classical Crooks relation one can directly
derive the Jarzynski equality 〈e−βW 〉 = Z(Hf )/Z(Hi)
[6, 80]. As mentioned above, it is not clear how to trans-
late the random variable W into the quantum setting,
and consequently it is also not evident how to trans-
late the expectation value 〈e−βW 〉 (which yields a va-
riety of approaches to the quantum Jarzynski equality,
see overviews in [8–10]). Like for the Crooks relation, we
do not attempt a direct translation, but rather focus on
the general dynamics in the energy reservoir.

By applying (2) to an initial state σ of the reservoir
and take the expectation value of the operator eβHE , it
follows that

Tr[eβHF+(σ)]

Tr[eβHE/2R+(1̂)eβHE/2σ]
=
Z(Hf

S)

Z(Hi
S)
. (13)

Although this equality has the flavor of a Jarzynski equal-
ity, we can bring it one step further by additionally as-
suming that R+(1̂) = 1̂, or equivalently F−(1̂) = 1̂, i.e.,
that these channels are unital. This assumption yields

Tr[eβHEF+(σ)]

Tr(eβHEσ)
=
Z(Hf

S′)

Z(Hi
S′)

. (14)

This relation has a clear physical interpretation in terms
of an experiment where we measure the expectation value
of eβHE on the input state of the reservoir (e.g, from
the statistics of energy measurements), and in a separate
experiment measure the same observable on the evolved
state F+(σ).

In a similar fashion one can derive a whole family of
Jarzynski-like equalities (with as well as without the as-

sumptionR+(1̂) = 1̂, see Appendix E) and another mem-
ber of this family is

Tr[eβHEF+(e−βHE/2σe−βHE/2)] =
Z(Hf

S)

Z(Hi
S)
. (15)

This equality does not have a quite as direct physi-
cal interpretation as (14), but one can resort two-point
energy measurements, resulting in fluctuation relations
akin to e.g. [11–13, 76, 77]. To see this, assume that
HE has a point spectrum, then equation (15) takes the

form
∑
mn e

β(Em−En)p+(m|n)〈n|σ|n〉 = Z(Hf
S)/Z(Hi

S),
where we have made use of the decoupling of the diag-
onal mode of coherence. This can alternatively be ob-
tained directly from the diagonal Crooks relation (11),
where the unitality of F− implies that p− is not only
stochastic, but doubly stochastic.

G. Bound on the work cost

As mentioned above, the classical Jarzynski equality
follows directly from Crooks relation. It is therefore per-
haps a bit surprising that the condition of unitality of the
channel R+ emerges in the derivations of our Jarzyn-
ski equalities. To explore this further, let us consider
the expected work cost of these processes. For a pro-
cess that starts in equilibrium we would expect (e.g as a
special case of more general bounds on work costs [81–
84]) that the average work cost should satisfy the bound
〈W 〉 ≥ F (Hf ) − F (Hi), i.e., the work cost is at least
equal to the difference in (equilibrium) free energy be-
tween the final and initial Hamiltonian (where equality
typically is reached in the limit of quasi-static processes).
In the classical case, this bound follows from Jarzynski’s
equality by using the convexity of the exponential func-
tion [80].

In our setting one can use the diagonal Crooks relation
(11) to show that

Tr(HEσ)− Tr
(
HEF+(σ)

)
≥F (Hf

S′)− F (Hi
S′)

− kT ln Tr
(
σR+(1̂E)

)
.

(16)

(As a technical remark, we do for this derivation ad-
ditionally assume that HE has a pure non-degenerate
point spectrum. For details see Appendix F.) If we
identify the decrease in average energy of the reservoir,
Tr(HEσ) − Tr

(
HEF+(σ)

)
with the average work cost

〈W 〉, we thus regain the standard bound if R+ is uni-
tal. Hence, the unitality of R+ appear again, this time
to guarantee the standard work bound.

The inequality (16) does not necessarily mean that the
standard bound is violated. However, one can construct
an explicit example where the work cost is smaller than
the standard bound for a process with a non-unital R+

(see Appendix F 2). At first this may seem a bit alarm-
ing since it would appear to suggest violations of basic
thermodynamics. However, one has to keep in mind that
we here include the energy reservoir as a physical system,
and that we cannot expect to regain standard bounds if
we allow ourselves to use the energy reservoir per se as
a resource (cf. discussions in [44]), and one may suspect
that the unitality of R+ is related to this issue. A further
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indication in this direction is that the energy translation
invariance, which is the topic of the next section, not
only allows us to re-derive the classical Crooks relation
(1), but also guarantees that the channel R+ is unital
(see Appendix G).

H. Energy translation invariance: A bridge to
standard fluctuation relations

Let us for a moment reconsider the classical Crooks
relation in equation (1). As formulated, it makes no ex-
plicit reference to any energy reservoir. Moreover, the
distributions P± are typically phrased as functions only
of the work w, and thus only functions of the change of
energy in the implicit reservoir (although it is difficult to
see that anything in principle would prevent P± from de-
pending on additional parameters, like the actual energy
level of the reservoir). One could even argue that for a
well designed experiment P± should not depend on how
much energy there is in the reservoir (as long as there
is enough), since this in some sense is a property of the
experimental equipment rather than a property of the
system under study. This is in contrast with our more
general formulation in terms of channels on the reservoir,
which very explicitly allows for the possibility that the
exact choice of initial state of the reservoir (and thus the
energy) can make a difference. In order to formalize the
idea that the experiment should be independent of the
amount of energy in the reservoir, we do in this section
assume energy translation invariance. This enables us to
derive the classical Crooks relation (1) from the quantum
relation (2).

The technique for implementing energy translation in-
variance has previously been used to study work extrac-
tion and coherence [31, 44]. Here we use a model where
the spectrum of HE forms an equi-spaced doubly infi-
nite energy ladder [31] (see also the continuum version in
[44]), i.e., the energy eigenstates |n〉 correspond to ener-
gies En = sn for some fixed number s > 0 and n ∈ Z.
We impose the energy translation invariance by assum-
ing that the unitary operators V should commute with
energy translations along the energy-ladder, [V,∆] = 0,
where ∆ =

∑
n |n + 1〉〈n|. (Technically, we also assume

that the eigenvalues of Hi
S′ and Hf

S′ are multiples of s.)
As a consequence, the channels F± also become energy-
translation invariant in the sense that

∆jF±(σ)∆†
k

= F±
(
∆jσ∆†

k)
, (17)

for all j, k ∈ Z (see Appendix G). A consequence is that
the diagonal transition probabilities p±, defined in (10),
inherit the translation invariance

p±(m|n) = p±(m− n|0) = p±(0|n−m). (18)

Moreover, the translation invariance (17) conspires with
the decoupling of the diagonals decribed in section II E

such that we can rewrite F± as

F±(ρ) =
∑

n,n′,k∈Z
p±(k|0)〈n|ρ|n′〉|n+ k〉〈n′ + k|. (19)

Hence, the channels F± are completely determined by the
transition probabilities p±(k|0) from |0〉〈0| to the other
energy eigenstates. Alternatively, one may say that the
dynamics is identical along all of the diagonals (which
does not imply that the collection of diagonals of the
density matrix are identical).

Our primary goal in this section is to regain (1) from
(2). However, we face an immediate obstacle in that (1)
very explicitly refers to ‘work’, while we in our construc-
tions deliberately have avoided to specify what the quan-
tum version of work exactly is supposed to be. A way to
test Crooks theorem in a macroscopic setting would be to
measure the energy content in the energy source before
and after the experiment, in order to see how much en-
ergy that has been spent. This macroscopic type of two-
point measurements makes sense since we can expect a
macroscopic source to be in states that would not be sig-
nificantly disturbed by energy measurements (e.g. in the
sense of pointer states and quantum Darwinism [85–87]).
Recalling the discussion in section II E, the decoupling
of the diagonal and off-diagonal modes of coherence can
be regarded as yielding a weaker form of stability. In
this case all coherences are blatantly annihilated, but
the evolution of the diagonal distribution is unaffected
by repeated energy measurements. Since our aim is to
regain the classical Crooks relation, this appears as an
acceptable form of stability, and it also seems reasonable
to identify work with the energy loss in the reservoir,
w = En − Em = s(n −m), for the initial measurement
outcome En and the final outcome Em. For these two-
point measurements, the probability P±(w) is obtained
by summing over all possible transitions that result in
the work w for the given initial state σ, and thus

P±(w) =
∑

m,n:En−Em=w

p±(m|n)〈n|σ|n〉. (20)

To be able to treat the energy reservoir as an implicit
object, as it is in the standard classical case, the distri-
butions P± should not be functions of the initial state
σ. Here, the energy translation invariance comes into
play. By combining (20) with (18) we find that P±(w) =
p±(−w/s|0) = p±(0|w/s), which thus removes the de-
pendence on the reservoir. In the final step we combine
the last equality with the diagonal Crooks relation (11)
and obtain the classical Crooks relation (1).

III. CONDITIONAL FLUCTUATION
THEOREMS

There are several reasons for why it is useful to gener-
alize the type of quantum fluctuation theorems that we
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have considered so far. First of all, the fluctuation re-
lation (2) and its accompanying setup is in many ways
an idealization. For example, the requirement of perfect
control together with energy conservation is a strong as-
sumption that easily leads to an energy reservoir that has
to have an energy spectrum that is unbounded from both
above and below (see Appendix C 4) and a bottomless
spectrum is certainly not very reasonable from a physi-
cal point of view. A further consequence of the idealiza-
tion, which may not be apparent unless one dives into the
technicalities in the appendices, is that (2) is based on
rather elaborate assumptions. Apart from resolving these
issues, the conditional fluctuation theorems naturally in-
corporate non-equilibrium initial states. (There exist
previous generalizations to non-canonical initial states.
See e.g. [88] for a classical case, and [18, 25, 78, 89] for
the quantum case.)

To see how the conditional fluctuation relations can
come about, let us again consider the perfect control
mechanism, i.e., that the evolution transforms the initial
control state into the final with certainty. Imagine now
that we abandon this assumption, and instead include
a measurement that checks whether the control system
succeeds to reach the final control state or not. The idea
is that we only accept the particular run of the exper-
iment if the control measurement is successful. Analo-
gous to our previous fluctuation relations, the conditional
fluctuation theorem relates the induced dynamics of the
forward and reverse processes, but which now are condi-
tioned on successful control measurements (see Fig. 5).

It is useful to keep in mind that one should be cau-
tious when interpreting post-selected dynamics, as it eas-
ily can end up in seemingly spectacular results. The
conditional dynamics can for example create states with
off-diagonal elements from globally diagonal states (see
Appendix H 7 b for an explicit example). However, this
should not viewed as a mysterious creation of coherence,
but simply as the result of a post selection with respect
to a non-diagonal measurement operator.

In the introduction it was pointed out that an advan-
tage with fluctuation theorem (2) is that it does not rely
on any auxiliary measurements. It may thus appear a bit
contradictory that we here re-introduce measurements as
a fundamental component in the formalism. However,
these only serve as control measurements upon which we
condition the quantum evolution in the energy reservoir.
This is in contrast to approaches where the purpose of
the measurements is to generate classical outcomes (as
for two-point energy measurements [8, 11–25]) and where
the quantum fluctuation relations are based on the re-
sulting probability distributions, much in the spirit of
classical fluctuation relations.

As a final general remark one should note that it turns
out to be unnecessary to restrict the control measure-
ments to the control system; we can let them act on the
joint system S̃ = S′C = SBC in any manner that we
wish, resulting in a conditional evolution on E.

T
V

E

T
V

EF
~
+

F
~
−Q

S ~
−f 

Q
S ~
+f 

Q
S ~
−i 

Q
S ~
+i 

FIG. 5: Conditional fluctuation theorems. Similar to
our previous fluctuation theorems we here relate the dynamics
induced on the energy reservoir E by the forward and reverse
process, but conditioned on successful control measurements

on S̃ = SBC. The forward process is characterized by a

pair of positive semi-definite operators Qi+
S̃
, Qf+

S̃
on S̃, such

that the initial state is given via the Gibbs map GβH
S̃

(Qi+
S̃

),

and the control measurement is represented by Qf+
S̃

. More

precisely, Qf+
S̃

corresponds to the ‘successful’ outcome in the

POVM {Qf+
S̃
, 1̂S̃ − Qf+

S̃
}, and results in the induced CPM

F̃+ on the reservoir. The reverse process, resulting in the
CPM F̃−, is correspondingly characterized by the pair Qf−

S̃
=

TS̃(Qf+
S̃

), Qi−
S̃

= TS̃(Qi+
S̃

), where GβH
S̃

(Qf−
S̃

) is the initial

state, and Qi−
S̃

gives the control measurement. The CPMs F̃±
are related via the conditional fluctuation theorem in (25).
We are free to choose the measurement operators in any way
we wish, and in the finite-dimensional case we can obtain
arbitrary initial states. Hence, we are not restricted to initial
equilibrium states. The price that we pay for this additional
freedom is that non-equilibrium initial states are translated
to non-trivial control measurements in the reverse process.

A. The Gibbs map and the partition map

Each control measurement has the two possible out-
comes ‘yes’ or ‘no’, and can be described via measure-
ment operators 0 ≤ Q ≤ 1̂, where Tr(Qρ) is the proba-
bility of a ‘yes’ when measured on a state ρ. Similarly
Tr[(1 − Q)ρ] is the probability of the outcome ‘no’. In

other words, {Q, 1̂−Q} is a binary positive operator val-
ued measure (POVM) [45, 90, 91]. These measurement
operators do in our formalism serve a dual purpose; not
only describing control measurements, but also param-
eterizing initial states. The latter is done via what we
here refer to as the ‘Gibbs map’ GβH and the ‘partition
map’ ZβH defined by

GβH(Q) =
1

ZβH(Q)
JβH(Q), ZβH(Q) = TrJβH(Q).

(21)
For finite-dimensional Hilbert spaces all density opera-
tors can be reached via GβH for suitable choices of Q.
These mappings are generalizations of the Gibbs state
and the partition function in the sense that GβH(1̂) =
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G(H) and ZβH(1̂) = Z(H).

B. A conditional fluctuation relation

As before, we assume a global non-interacting Hamil-
tonian of the form

H = HS̃ ⊗ 1̂E + 1̂S̃ ⊗HE . (22)

We furthermore assume time-reversals TS̃ and TE such
that TS̃(HS̃) = HS̃ , and TE(HE) = HE . We also assume
that the global evolution preserves energy [V,H] = 0,
and that it is time-reversal symmetric, T (V ) = V , with
respect to T = TS̃ ⊗ TE .

The forward process is characterized by a pair of mea-

surement operators on system S̃, where Qi+
S̃

defines the

initial state via the Gibbs mapping, and Qf+

S̃
the mea-

surement at the end of the process. (These measurement
operators do not have to be related to energy measure-
ments.) The global initial state GβHS̃

(Qi+
S̃

)⊗σ evolves via

an energy-preserving unitary operation V , and we condi-

tion the result on a successful measurement of Qf+

S̃
. The

resulting completely positive map (CPM) on E is given
by

F̃+(σ) = TrS̃([Qf+

S̃
⊗ 1̂E ]V [GβHS̃

(Qi+
S̃

)⊗ σ]V †). (23)

That we generically get a CPM rather than a channel cor-
responds to the fact that the control measurement may
fail. The quantity TrF̃+(σ) is the probability that the
control measurement succeeds.

To obtain the reversed process we define the operators

Qi−
S̃

= TS̃(Qi+
S̃

) and Qf−
S̃

= TS̃(Qf+

S̃
), and use Qf−

S̃
to

generate the initial state, and Qi−
S̃

to characterize the

final measurement. In other words, we not only time-
reverse the measurement operators, but also swap their
roles. The resulting CPM on E for the reversed process
thus becomes

F̃−(σ) = TrS̃([Qi−
S̃
⊗ 1̂E ]V [GβHS̃

(Qf−
S̃

)⊗ σ]V †). (24)

With the above assumptions one can show (see Ap-

pendix H) that the CPMs F̃± are related by the following
‘conditional’ fluctuation theorem

ZβHS̃
(Qi

S̃
)F̃+ = ZβHS̃

(Qf
S̃

)JβHE
F̃	−J−1

βHE
, (25)

where we use the notation ZβHS̃
(Qi

S̃
) = ZβHS̃

(Qi±
S̃

) and

ZβHS̃
(Qf

S̃
) = ZβHS̃

(Qf±
S̃

).

The conditional fluctuation relation (25) allows (up
to infinite-dimensional technicalities) for arbitrary initial

states on S̃, and thus in particular arbitrary coherences.
We only need to choose the appropriate initial measure-
ment operator Qi+

S̃
that generates the desired initial state

via the Gibbs map.

The quantum fluctuation relation in (2) can be re-
gained from (25), and as a first step we choose the mea-

surement operators to be Qi±
S̃

= 1̂S′ ⊗ |ci±〉〈ci±| and

Qf±
S̃

= 1̂S′ ⊗ |cf±〉〈cf±|. For the appropriate Hamil-

tonian HS̃ , the Gibbs map gives the conditional equi-

librium states GβHS̃
(Qi±

S̃
) = G(Hi

S′) ⊗ |ci±〉〈ci±| and

GβHS̃
(Qf±

S̃
) = G(Hf

S′) ⊗ |ci±〉〈ci±|. Due to the addi-

tional assumption of perfect control, the evolution V is
such that we can replace the final measurement operators
with identity operators, i.e., we do not have to perform
any measurements at the end of the processes.

This sketchy re-derivation indicates that we can abol-
ish the assumption of perfect control if we instead keep
the measurements at the end of the protocol. Hence,
these control measurements may fail, e.g., if the energy
reservoir does not contain sufficient energy, which thus
allows us to avoid an energy spectrum that is unbounded
from below. (For an explicit example, see Appendix
H 7 a.)

As opposed to (2) there is for (25) in general no de-
composition into different off-diagonal Crooks relations.
However, in the special case that the measurement oper-

ators Qi+
S̃

and Qf+

S̃
are diagonal with respect to an eigen-

basis of HS̃ one can obtain (see Appendix H 6) diagonal
conditional versions. In particular, one can impose the
energy translation invariance and obtain (Appendix H 6)
a conditional version of the classical Crooks relation.

IV. AN ALTERNATIVE FORMULATION

So far we have formulated our fluctuation relations
solely in terms of channels and CPMs induced on the
energy reservoir. Here we consider a reformulation that
highlights two elementary properties on which our fluc-
tuation relations in some sense are based.

Given some channel or CPM F , a pair of measurement
operators Qi and Qf , and a Hamiltonian H, we define
the ‘transition probability’ from Qi to Qf by

PFβH [Qi → Qf ] = Tr
(
QfF

(
GβH(Qi)

))
. (26)

Hence, PFβH [Qi → Qf ] is the probability that we would

detect Qi after we have evolved the initial state GβH(Qi)
under the map F . The Gibbs map thus again appears as
a method to parametrize the set of initial states.

The quantum Crooks relation (2) can be rephrased in
terms of these transition probabilities as

Z(Hi
S)ZβHE

(QiE)P
F+

βH [Qi+E → Qf+
E ]

= Z(Hf
S)ZβHE

(QfE)P
F−
βH [Qi−E → Qf−E ],

(27)

where Qi+E , Qf+
E are measurement operators on the en-

ergy reservoir (not on S̃), and where, as one may expect,

Qi−E = TE(Qi+E ) and Qf−E = TE(Qf+
E ).
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In section II D we noted the possibility to interpret the
quantum Crooks theorem (2) in terms of process tomog-
raphy of the two induced channels F±. In that interpre-
tation the mapping F− 7→ JβHE

F	−J−1
βHE

is something
that we implement ‘by hand’ on the experimentally de-
termined description of the channel F−. The reformu-
lation (27) suggests a different interpretation where the
fluctuation relation can be tested more directly via the
estimated transition probabilities. The mappings JβHE

and 	 are in some sense put in by hand also in this sce-
nario, but they enter in the parametrization of the initial
states and the measurement operators, rather than via a
post processing of the measurement data.

It is no coincidence that the measurement operators

Qi±E , Qf±E undergo the same transformations as the oper-

ators Qi±
S̃
, Qf±

S̃
that we know from the conditional fluc-

tuation relations. These similarities stem from the fact
that all of our fluctuation relations can be regarded as
special cases of a ‘global’ fluctuation relation, defined for
global measurement operators Qi+, Qf+ on the whole
of SBCE. It is straightforward to confirm (or to con-
sult Appendix I) that energy conservation [H,V ] = 0
combined with time reversal symmetry T (H) = H,
T (V ) = V , yields

ZβH(Qi)PVβH [Qi+→Qf+] = ZβH(Qf )PVβH [Qf−→Qi−],
(28)

where Qf− = T (Qf+) and Qi− = T (Qi+).

The global relation (28) can alternatively be phrased
as the invariance of the quantity Tr

(
QfV JβH(Qi)V †

)
under the transformation (Qi, Qf ) 7→ (Qi

′
, Qf

′
) =(

T (Qf ), T (Qi)
)
. All our fluctuation relations do in some

sense express this basic invariance in different guises.

One can indeed re-derive (2) and (25) from (28).
However, when doing so one quickly realizes that this
hinges on another property (that we have used repeat-
edly without comments). Namely, if the global Hamil-
tonian H is non-interacting over two subsystems, i.e.
H = H1⊗ 1̂2 +1̂1⊗H2, then the mapping J satisfies the
factorization property

JβH(Q1 ⊗Q2) = JβH1
(Q1)⊗ JβH2

(Q2). (29)

Although elementary, it is in some sense this property
(in conjunction with product time-reversals T = T1⊗T2)
that makes it possible to formulate fluctuation relations
solely in terms of the dynamics of the energy reservoir,
and also to eliminate unaccessible degrees of freedom (see
Appendix I for further details). The central role of this
property may become more apparent when we abandon
it in section VI .

As a side-remark one can note that if one attempts
to formulate quantum fluctuation relations for non-
Gibbsian generalizations of equilibrium distributions,
then the lack of a factorization property for non-
exponential functions makes the generalization problem-
atic (see Appendix I 4).

V. CORRELATED INITIAL STATES

The conditional relations extend the notion of fluctua-
tion theorems to non-equilibrium initials states on S̃. An
obvious question is if also entanglement and general pre-
correlations can be included. (One could even argue that
in order to deserve the label ‘fully quantum’ our fluctu-
ation relations must include quantum correlations.) The
global fluctuation relation (28) already provides an affir-
mative answer to this question, in the sense that we can
generate arbitrary global initial states via suitable choices
of measurement operators (including quantum correla-
tions to external reference systems). However, (28) is
not the only option for how to describe such scenarios,
and here we highlight three special cases that focus on
descriptions via channels or CPMs.

A. Correlations between E and an external
reference

Imagine that the energy reservoir not only carries en-
ergy and coherences, but also carries entanglement and
correlations with an external reference R (not included
in SBCE). One option for obtaining a fluctuation re-
lation that incorporates this scenario would be to re-
gard ER as a new extended energy reservoir, with a
Hamiltonian HER and a new time-reversal TER, with
TER(HER) = HER. Both the quantum fluctuation rela-
tion (2) and the conditional fluctuation relation (25) are
applicable to this scenario. In the latter case, the induced
CPMs F± on the new energy reservoir ER satisfies the
corresponding quantum Crooks relation ZβHS̃

(Qi
S̃

)F+ =

ZβHS̃
(Qf

S̃
)JβHER

F	−J−1
βHER

.

B. Correlations between S̃ and an external
reference

An obvious alternative to the energy reservoir car-

rying correlations with an external reference is that S̃
carries these correlations. We can analogously incor-

porate R into S̃, with the joint Hamiltonian HS̃R and
an extended time-reversal TS̃R such that TS̃R(HS̃R) =
HS̃R. The requirements for the conditional fluctua-
tion theorem (25) are satisfied for this extended sys-

tem, thus resulting in the relation ZβHS̃R
(Qi

S̃R
)F̃+ =

ZβHS̃R
(Qf

S̃R
)JβHE

F̃	−J−1
βHE

.

C. Pre-correlated S̃ and E

The two previous examples can both be regarded as
variations of the conditional fluctuation relation, and do
in this sense not add anything essentially new to the gen-
eral picture. A maybe more interesting case is if we allow
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for pre-correlations between S̃ and E. (It is not difficult
to imagine cases where the energy reservoir E interacts

repeatedly with S̃, and thus may build up correlations.)
Apart from the global fluctuation relation (28) this case
does not fit very well with our previous scenarios. How-
ever, it is straightforward to adapt our general formalism
to find a fluctuation relation for the evolution on the joint
system SE.

For the sake of illustration we consider one particular
case related to the setup in section II D, but where we
allow for initial correlations between S and E. In essence
(for details on the setup, see Appendix J) we have an

initial Hamiltonian Hi
SE and a final Hamiltonian Hf

SE
and assume perfect control that transfers one into the
other, resulting in the induced channels

F+(χ) =TrCB(V [|ci+〉〈ci+| ⊗G(HB)⊗ χ]V †),

F−(χ) =TrCB(V [|cf−〉〈cf−| ⊗G(HB)⊗ χ]V †)

on the combined system SE. For these channels one can
derive the fluctuation relation

F+ = JβHf
SE
F	−J−1

βHi
SE

. (30)

The partition maps on the left and right hand side can-
cel due to the identical initial and final Hamiltonian for
a heat bath that starts in the Gibbs state. Note also
that the two applications of the J -map may potentially
involve an initial Hamiltonian Hi

SE that is different from

the final Hamiltonian Hf
SE .

VI. APPROXIMATE FLUCTUATION
RELATIONS

The global Hamiltonian H has so far in this investiga-
tion only characterized the notion of energy conservation,
while the dynamics has been modeled by a unitary op-
erator V , with the only restriction that H and V should
commute. In view of standard textbook quantum me-
chanics it would be very reasonable to demand a much
more tight connection, where the global Hamiltonian H
induces the evolution according to Schrödinger’s equa-
tion, thus yielding V = e−itH/~. An additional bene-
fit with the latter arrangement would be that it does
not require any further interventions beyond the prepa-
ration of the initial state, the measurement of the final
state, and the time-keeping for when to do the measure-
ment (which may require non-trivial resources). In other
words, once we have started the global system it evolves
autonomously. (For discussions on autonomous and clock
controlled thermal machines in the quantum regime, see
[92, 93].) This should be compared with the models that
we have employed so far, where one in principle should
analyze the mechanism that implements the evolution V .

The problem is that if we would impose the condi-
tion V = e−itH/~ for non-interacting Hamiltonians as
in (22), the resulting dynamics on the energy reservoir
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FIG. 6: A control particle. One way to ‘quantize’ the
control parameter x of the classical Crooks relation would
be to regard it as the position of a quantum particle. The
propagation of the particle would approximately implement
the time dependent Hamiltonian for suitable wave packets. A
particularly clean example is obtained if E and S′ only in-
teract when the control particle is in an ‘interaction region’
[xi, xf ] (cf. the construction in [92]). Since the global Hamil-
tonian contains interactions between E and S′ it does not
fit with our previous classes of models, and in particular, it
does not satisfy the factorization property (29). However,

for suitable choices of measurement operators Qi+C and Qf+C
that are localized outside the interaction region, the systems
becomes approximately non-interacting, and the the factor-
ization property (29) is approximately satisfied. This makes
it possible to derive an approximate conditional fluctuation
relation on the energy reservoir.

would become trivial. If we on the other hand would
abandon the non-interacting Hamiltonians, then we also
have to abandon the factorization property (29), which,
as pointed out in section IV, plays an important role in
our derivations. The main observation in this section is
that we can obtain approximate fluctuation relations as
long as the factorization holds approximately, which also
is enough to obtain a non-trivial evolution. In the follow-
ing section we shall illustrate the general ideas with two
special cases. (For a more general version that includes
both of them, see Appendix K.)

A. Approximate conditional fluctuation relations

There is an additional reason for why it is useful to
go beyond our previous settings. Namely that there ex-
ist rather evident ways to ‘quantize’ the classical control
mechanism in Crooks relation that do not fit particularly
well within the machinery that we have employed so far.
These quantized control mechanisms moreover provide a
good starting point for introducing approximate fluctua-
tion relations.

Imagine a particle whose position x determines the pa-
rameter in the family of Hamiltonians HS′E(x). More
precisely, assume a joint Hamiltonian of the form

H =
1

2MC
P̂ 2
C ⊗ 1̂S′E +HS′E(X̂C), (31)

where MC is the mass, and X̂C , P̂C are the canonical
position and momentum operators of the control parti-
cle. If the control particle is reasonably well localized
in both space and momentum, one can imagine that its



12

propagation approximately implements the evolving con-
trol parameter x in the family of Hamiltonians HS′E(x).
For the sake of simplicity, let us assume that the control
particle only affects the other systems in an ‘interaction
region’ (see Fig. 6.) corresponding to an interval [xi, xf ],
while outside of this region it is the case that

HS′E(x) =

{
Hi
S′ ⊗ 1̂E + 1̂S′ ⊗HE , x ≤ xi,

Hf
S′ ⊗ 1̂E + 1̂S′ ⊗HE , x ≥ xf .

(32)

Although the systems thus are non-interacting outside
the interaction region [xi, xf ] one should keep in mind

that the kinetic energy term K̂ = P̂ 2
C/(2MC) in (31) does

not commute with XC , and thus prohibits a factorization
as in (29). In some sense it is thus the kinetic operator

K̂ that causes the failure of the factorization property.
On the other hand, it is also the kinetic operator that
yields a non-trivial evolution of the control mechanism.
It is this tension that we strive to handle via the ap-
proximate fluctuation relations. The basic idea is that

if the measurement operators Qi+C and Qf+
C are well lo-

calized outside the interaction region, then the systems
are approximately non-interacting, and consequently the
factorization (29) should hold approximately. It is worth
keeping in mind that even if the measurement operators
are well localized in non-interacting regions, this does
not exclude the possibility that the system evolves into
states where the interactions are strong, even at the very
moment of the control measurement. (For an explicit
example, see Fig. 10 in Appendix K 3 c.)

Although the special case of the control particle pro-
vides intuition, the more general setting of the condi-
tional fluctuation theorems yields a more concise descrip-
tion. For the chosen measurement operators Qi±

S̃
and

Qf±
S̃

, let us assume that there exist local approximate

Hamiltonians Hi
S̃

, Hf

S̃
, Hi

E , Hf
E , such that the factoriza-

tion holds approximately

JβH(Qi+
S̃
⊗Q) ≈ JβHi

S̃
(Qi+

S̃
)⊗ JβHi

E
(Q),

JβH(Qf+

S̃
⊗Q) ≈ JβHf

S̃

(Qf+

S̃
)⊗ JβHf

E
(Q).

(33)

For time-reversal symmetric systems one can show that
this leads to the approximate fluctuation relation

ZβHi
S̃
(Qi+

S̃
)F̃+JβHi

E
≈ ZβHf

S̃

(Qf−
S̃

)JβHf
E
F̃	− . (34)

This can be turned into a quantitative statement where
the size of the error in (34) is bounded by the errors in
(33), see Appendix K 2.

B. Joint control system and energy reservoir

Compared to the control particle in Fig. 6 there exists
an even simpler setup where the control particle simulta-
neously serves as the energy reservoir (see Fig. 7). This
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FIG. 7: A control particle that also serves as energy
reservoir. An alternative to the setup in Fig. 6 is a par-
ticle that simultaneously serves as both control system and
energy reservoir. Hence, it is the kinetic energy of the control
particle that drives the non-equilibrium process (if the other
systems would start in equilibrium). This is another example
of a system that would generally not satisfy the factorization
property (29), but for measurement operators Qi+CE and Qf+CE
that are localized outside the interaction region, the systems
becomes approximately non-interacting. For this setup one
can obtain an approximate fluctuation relation in terms of
the transition probabilities introduced in section IV.

corresponds to the global Hamiltonian

H =
1

2MCE
P̂ 2
CE ⊗ 1̂S′ +HS′(X̂CE), (35)

again with an interaction region

HS′(x) =

{
Hi
S′ , x ≤ xi,

Hf
S′ , x ≥ xf ,

(36)

with a non-trivial dependence on x inside [xi, xf ]. As op-
posed to the previous setting, we here perform the control
measurement on the energy reservoir itself. This situa-
tion is conveniently described in terms of the transition
probabilities discussed in section IV, resulting in the ap-
proximate fluctuation relation

ZβHi
S′

(QiS′)ZβHi
CE

(QiCE)

× PVβHi [Q
i+
S′ ⊗Q

i+
CE → Qf+

S′ ⊗Q
f+
CE ]

≈ ZβHf

S′
(QfS′)ZβHf

CE
(QfCE)

× PVβHf [Qf−S′ ⊗Q
f−
CE → Qi−S′ ⊗Q

i−
CE ].

(37)

where for the particular choice of Hamiltonian (35) we

have Hi
CE = Hf

CE = P̂ 2
CE/(2MCE). This approximate

relation can also be made quantitative, see Appendix K 3.
For a numerical evaluation of the errors in a concrete
model, see Appendix K 3 c.

VII. CONCLUSIONS AND OUTLOOK

We have generalized Crooks fluctuation theorem to a
genuine quantum regime that incorporates the full quan-
tum dynamics. This leads to a decomposition into diago-
nal and off-diagonal Crook’s relations, one for each mode
of coherence. We have also derived Jarzynski equalities,
and re-derived a standard bound on the average work
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cost under an additional assumption of unitality of a cer-
tain induced channel. We have furthermore shown that
the classical Crooks relation can be regained under the
additional assumption of energy translation invariant dy-
namics on the energy reservoir. The general approach
moreover leads to the concept of conditional fluctuation
relations, where a pair of measurement operators charac-
terizes the initial state and the final measurement, and
where the transformation from the forward to the re-
verse process corresponds to a transformation of the pair
of measurement operators. This generalization allows for
non-equilibrium initial states, and can also be extended
to include correlations. Finally we have demonstrated
that by allowing for errors in the fluctuation relation, we
can incorporate the ‘natural’ setting where the global
dynamics is determined by a single time-independent
Hamiltonian.

One can speculate if it would be possible to use the
latter global Hamiltonian as a starting point to obtain
approximate fluctuation relations for master equations
by reduction of the heat bath along the lines of standard
derivations (see e.g. [94]). This may yield models that
would be more amenable to numerical modeling. In this
context one should note previous approaches to fluctua-
tion relations for master equations [95, 96], unravellings
[97], and Brownian motion models [98].

Classical fluctuation relations have been subject to sev-
eral experimental tests [99–104]. Various setups have
been suggested for the quantum case [105–111], with re-
cent experimental implementations in NMR [112], as well
as in a trapped ion systems [113]. See also [114] for an ex-
periment on a relation for non-thermal noise. The condi-
tional fluctuation theorems, and in particular the approx-
imate version, allows for a considerable flexibility, which
suggest that experimental tests may be feasible. Since
the quantum fluctuation relation (2) and the conditional
version (25) are phrased in therms of channels and CPMs,
and one may be tempted to conclude that every test of
these relations would necessarily require a full process to-
mography, which generally is very demanding. However,
the global fluctuation relation (28) suggests ‘milder’ tests
based on small sets of suitable chosen measurement op-
erators (corresponding to a partial process tomography).

One could also consider the possibility to experimen-
tally verify cases of Jarzynski equalities with and without
the condition of unitality of the channel R+, such as in
(13) and (14). It would also be desirable to get a better
theoretical understanding of the role of the unitality of
the channel R+, which one may suspect is related to the
energy reservoir regarded as a resource. In this context
one may also ask for the general conditions for the non-
violation of standard bounds, and how this relates to the
energy translation invariance (cf. discussions in [44]).

In this investigation we have tacitly assumed that the
heat bath can be taken as initially being in the Gibbs
state. It would be desirable to let go of this assumption,
e.g. via typicality [115, 116] (see further discussions in
Appendix L).

On a more technical note one may observe that when-
ever we actively have referred to the properties of the
spectrum of the Hamiltonian of the reservoir, we have
always assumed that it is a pure point spectrum. An
analysis that explicitly investigates the effects of reser-
voir spectra that contains a continuum could potentially
be useful.

One can imagine several generalizations of the results
in this investigation. It does for example seem plausible
with a grand canonical version, thus not only including
energy flows, but also the flow of particles. (For a previ-
ous grand canonical fluctuation relation see [117].)

Another potential generalization concerns a classical
version of the conditional fluctuation relations. We have
already obtained a particular class of classical conditional
fluctuation theorems (Appendix H 6 a). However, these
are classical in the sense of being diagonal with respect
to a fixed energy eigenbasis, which should not be con-
fused with a classical phase space setting. It seems rea-
sonable that the structure of pairs of measurement op-
erators, translated to functions over phase space, with
classical counterparts for the Gibbs and partition maps,
could combine with phase space flows to yield classical
conditional fluctuation theorems. It may also be possible
to bridge such a classical phase space approach to the
quantum setting via Wigner functions and other phase
space representations of quantum states.

The intermediate fluctuation relation (6) can be
rephrased in terms of Petz recovery channel [47–50],
which reminds of the recent finding in [40] that relates
Petz recovery channel with work extraction. One may
wonder if these results hint at a deeper relation. See
further comments in Appendix A 8.

Several recent contributions to quantum thermody-
namics has focused on resource theories, single-shot sta-
tistical mechanics, and coherence [26–43, 120–132]. (For
general overviews on later developments in quantum
thermodynamics, see [137, 138].) The fluctuation rela-
tions in this investigation are at their core statements
about dynamics, rather than about resources. Neverthe-
less, one could consider to formulate quantitative char-
acterizations of the evolution of resources in the spirit of
Crooks theorem, and our fluctuation relations may serve
as a starting point for such an analysis. In this context
one should note recent efforts to link single-shot quan-
tities and fluctuation theorems [133–136]. The fact that
the present investigation is based on energy conserving
dynamics and thus brings the notion of fluctuation theo-
rems under the same umbrella as previous investigations
on quantum thermodynamics and coherence [26–43] may
further facilitate the merging of these subjects.
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Appendix A: An intermediate quantum fluctuation
theorem

1. Setting the stage

The standard classical Crooks theorem compares the
probability distributions of the random work costs of a
forward and reverse process where the system is driven
by external fields. Often this external field is taken as a
parameter x in a Hamilton function. The system is usu-
ally imagined to additionally interact with a heat bath
of a given temperature. The time-schedule of the param-
eter x is implemented as a function xt of time t, which
runs from t = 0 to t = T . At t = 0 we assume that
the initial system is in equilibrium with the heat bath.
For the reverse process, the external parameter evolves
as x′t := xT−t for t = 0 to t = T . In other words, the
time-schedule of the parameter is run in reverse. Again
we assume that the system initially is in equilibrium with
the heat bath, but now for the parameter value x′0 = xT .
It is useful to keep in mind that these initial equilibrium
distributions are conditioned on the value of the control
parameter. The aim of the following sections is to make
a quantum version of this classical setup.

The model consists of four components, the ‘system’ S,
the heat bath B, the control C, and the energy reservoir
E. Assumptions 1 below does not mention the system S
or the heath bath B. The reason for this is that the main
part of the derivations does not require any distinction
between these subsystems, so they can be regarded as
one single system S′ := SB.

For a Hamiltonian H and β = 1/(kT ), for Boltzmann’s
constant k and the absolute temperature T , we denote
the partition function by Zβ(H) = Tre−βH , and (assum-
ing that Zβ(H) is finite) we denote the Gibbs state by
Gβ(H) = e−βH/Zβ(H). Since we here only consider heat
baths with one single temperature, we will often suppress
the subscript and write G(H) and Z(H).

Assumptions 1. Let HS′ , HC , and HE be complex
Hilbert spaces. Let |ci〉, |cf 〉 ∈ HC be normalized and
orthogonal to each other, and define the projector P⊥C :=

1̂C − |ci〉〈ci| − |cf 〉〈cf |.

• Let Hi
S′ and Hf

S′ be Hermitian operators on HS′ ,
such that Zβ(Hi

S′) and Zβ(Hf
S′) are finite. (This

guarantees that Gβ(Hi
S′) and Gβ(Hf

S′) exist.) Let
HE be a Hermitian operator on HE. Let H⊥ be a
Hermitian operator on HS′ ⊗HC such that [1̂S′ ⊗
P⊥C ]H⊥[1̂S′ ⊗ P⊥C ] = H⊥, and define

HS′C := Hi
S′ ⊗ |ci〉〈ci|+Hf

S′ ⊗ |cf 〉〈cf |+H⊥

and H := HS′C ⊗ 1̂E + 1̂S′C ⊗HE.

• V is a unitary operator on HS′ ⊗ HC ⊗ HE such
that [V,H] = 0, and

V [1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E ] = [1̂S′ ⊗ |cf 〉〈cf | ⊗ 1̂E ]V. (A1)

In the following we briefly discuss the rationale behind
these assumptions.

The Hamiltonian HS′C describes how the state of the
control system C changes the Hamiltonian of S′ (see
Fig. 8). Since |ci〉 is orthogonal to |cf 〉, and these in turn
are orthogonal to the support of H⊥, it follows that if C
is in state |ci〉, then the Hamiltonian of S′ is Hi

S′ . Simi-

larly, if C is in state |cf 〉, then S′ has Hamiltonian Hf
S′ .

The Hamiltonian H⊥ allows for the possibility of having
intermediate Hamiltonians between the initial and final
one (see Fig. 8). The global Hamiltonian is the sum of
HS′C and the Hamiltonian HE of the energy reservoir,
which thus by construction are non-interacting.

The global evolution is given by unitary operations
that conserve energy, which here is modeled via unitary
operators V on S′CE such that [H,V ] = 0. (For an
alternative notion of energy conservation, see [44].) In
addition to being energy conserving, we also require V
to satisfy (A1). In other words, V should rotate the sub-
space HS′E ⊗ Sp{|ci〉} to the subspace HS′E ⊗ Sp{|cf 〉}.
This models the idealization of a perfect control mech-
anism, meaning that the evolution with certainty will
bring the initial control state |ci〉 to the final control state
|cf 〉, and thus with certainty will transform the initial

Hamiltonian Hi
S′ to the final Hamiltonian Hf

S′ . In sec-
tion G 3 a we demonstrate that there exist setups that
satisfy all conditions in Assumptions 1.

As mentioned above, we do not need to make a dis-
tinction between the system S and the heat bath B in
most of these derivations. However, to obtain fluctuation
relations where the partition functions only refer to sys-
tem S, we can additionally assume that the initial and
final Hamiltonians of the system and the heat bath are
non-interacting. More precisely, we would assume that

there exist Hermitian operators Hi
S and Hf

S on HS and
a Hermitian operator HB on HB such that

Hi
S′ =Hi

S ⊗ 1̂B + 1̂S ⊗HB ,

Hf
S′ =Hf

S ⊗ 1̂B + 1̂S ⊗HB ,
(A2)

and such that Zβ(Hi
S), Zβ(Hf

S), and Zβ(HB) are finite.

2. Global Hamiltonian H and global evolution V

In typical textbook quantum mechanics the Hamilto-
nian defines the notion of energy and energy conserva-
tion, as well as being the generator of time-evolution.
Here we do in some sense separate these two roles, since
we let the time evolution be given by V with the only
restriction that it commutes with H, without demanding
that V = e−itH/~. This separation is very convenient
since it gives tractable models (compared to introducing
an interaction term in the Hamiltonian and try to ana-
lyze the resulting evolution via Schrödinger’s equation)
and has successfully been employed in several previous
studies [26–43].
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H ci 

cf 

HS´ f 

HS´ i 

FIG. 8: Structure of the Hamiltonian. The Hamilto-
nian of the extended system S′ = SB and the control has the
form HS′C = Hi

S′ ⊗ |ci〉〈ci|+Hf
S′ ⊗ |cf 〉〈cf |+H⊥. Here Hi

S′

and Hf
S′ are the initial and final Hamiltonians, respectively,

and |ci〉, |cf 〉 the corresponding orthonormal control states.
If the control is in state |ci〉 the Hamiltonian of S′ is Hi

S′ ,

while it is Hf
S′ if the control is in state |ci〉. The Hamilto-

nian H⊥, which has orthogonal support to Hi
S′ ⊗ |ci〉〈ci| and

Hf
S′ ⊗ |cf 〉〈cf |, corresponds to possible intermediate stages.

In the proofs of our fluctuation theorems H⊥ plays no par-
ticular role. However, it can be used to simulate a path of
Hamiltonians HS′(x), e.g., via a discretization (see section
G 3 b).

It is maybe worth emphasizing that when we in
this investigation refer to two systems as being ‘non-
interacting’, this only means that the energy observable
is of the form H = H1 ⊗ 1̂2 + 1̂1 ⊗H2. It does not imply
that the evolution is of a trivial product form V1 ⊗ V2,
since (depending on the combination of the spectra of
H1 and H2) there may be non-trivial unitary operators
V that commute with H.

One way to understand the separation of roles between
H and V is to imagine that the global evolution is gen-
erated by a Hamiltonian Hevol, i.e., that V = e−itHevol/~,
where we let Hevol = H + H ′, [H,H ′] = 0. A possi-
ble justification would be if H ′ is ‘small’, thus leaving H
as the dominant contribution to the energy. It should
be emphasized that the derivations of our fluctuation re-
lations do not require us to know how V comes about,
or what happens at intermediate times when the system
evolves from the initial to the final state. We only need
to know that V commutes with H.

Although the above reasoning may serve as a possible
justification, one may nevertheless wonder how to incor-
porate more ‘standard’ assumption that V = e−itH/~.
This topic is discussed in section K.

3. The initial states

In the typical derivation of Crooks theorem one as-
sumes that the system initially is at equilibrium with
respect to the initial value of the control parameter. In
other words, for x = xi, the system should start in state

Gβ
(
HS′(xi)

)
. When one considers a more explicit model

that includes the degrees of freedom of the control system
it becomes clear that the initial state of the system and
control combined cannot be in a global equilibrium. For
example, in our case the global equilibrium state would
be

G(HS′C) =
Z(Hi

S′)

Z(HS′C)
G(Hi

S′)⊗ |ci〉〈ci|

+
Z(Hf

S′)

Z(HS′C)
G(Hf

S′)⊗ |cf 〉〈cf |

+
Z(H⊥)

Z(HS′C)
G(H⊥),

(A3)

where Z(HS′C) = Z(Hi
S′) + Z(Hf

S′) + Z(H⊥). Hence,
the global equilibrium is a weighted average over all the
control states and the corresponding conditional equilib-
rium states in S′. We rather have to think of system S′

as being in a ‘conditional’ equilibrium Gβ(Hi
S′)⊗|ci〉〈ci|.

The conditional equilibrium corresponds to a projection
(and subsequent normalization) of the global equilibrium
onto an eigenspace of HS′C .

The initial state of the forward process is the condi-
tional equilibrium state of S′C and an arbitrary state σ of
the reservoir, i.e., Gβ(Hi

S′)⊗|ci〉〈ci|⊗σ. In an analogous
fashion, the reverse process should start in a conditional
equilibrium with respect to the final Hamiltonian, thus

corresponding to the global state Gβ(Hf
S′)⊗|cf 〉〈cf |⊗σ.

The fact that we here assume that E and S′C initially
are uncorrelated makes it possible to formulate our quan-
tum fluctuation theorems in terms of quantum channels
on the energy reservoir alone.

4. Induced channels on the energy reservoir

For the standard formulations of Crooks theorem, the
change of the external control parameters would typi-
cally push the system out of equilibrium at the expense
of work. In our quantum treatment we wish to de-
scribe all aspects of how the state of the energy reser-
voir changes, which conveniently can be captured by the
channels (trace preserving completely positive maps [45])
induced on the reservoir.

More precisely, we wish to describe how the state of
the energy reservoir evolves under the action of a global
energy conserving unitary operation V that additionally
exhibits perfect control (A1). We furthermore assume
that S′ starts in the conditional equilibrium with respect
to the initial control state |ci〉 as described in the previous
section. The state of the reservoir after the evolution can
thus be written

F(σ) := TrS′C(V [Gβ(Hi
S′)⊗ |ci〉〈ci| ⊗ σ]V †). (A4)

Hence, F describes the change of state induced on the
energy reservoir E due to the global dynamics V for this
particular class of initial states.
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For this intermediate version we reverse the entire evo-
lution on the global system. More precisely, we replace
V · V † with V † · V . For a V generated by Hamiltonian
evolution V = e−itHevol/~, this corresponds to a replace-
ment of t with −t. The reverse process starts in the local

equilibrium with respect to the final Hamiltonian Hf
S′ ,

which results in the channel

R(σ) := TrS′C(V †[Gβ(Hf
S′)⊗ |cf 〉〈cf | ⊗ σ]V ). (A5)

Although this indeed guarantees that the evolution is re-
versed in a very concrete sense, one can argue that it
does not quite correspond to the spirit of Crooks rela-
tion, which only requires a reversal of the control param-
eters. In Sec. C we will remove this idealization. The
purpose of the following sections is to establish a relation
(Proposition 1) between the ‘forward’ channel F and the
‘reverse’ channel R.

5. Conjugate CPMs

The conjugate map φ∗ of a completely positive map
(CPM) φ can be defined via Tr

(
Y φ(σ)

)
= Tr

(
φ∗(Y )σ

)
,

where Y are arbitrary (bounded) Hermitian operators,
and σ arbitrary density operators. A convenient alter-
native characterization is via Kraus representations [45]

φ(σ) =
∑
k VkσV

†
k , where the conjugate map is given by

φ∗(Y ) =
∑
k V
†
k Y Vk.

For the derivations it will be convenient to keep in
mind the following observation. Suppose that a CPM φ
is defined via a unitary V : Ha ⊗H → Ha ⊗H as

φ(σ) := Tra([Qa ⊗ 1̂]V [ηa ⊗ σ]V †), (A6)

where Qa (bounded) and ηa (trace class) are positive
operators on an ancillary Hilbert space Ha. It follows
that the conjugate CPM φ∗ can be written

φ∗(Y ) = Tra([ηa ⊗ 1̂]V †[Qa ⊗ Y ]V ). (A7)

6. The mapping J

For an operator A we define the mapping

JA(Q) := e−A/2Qe−A
†/2. (A8)

The reason for why we here choose the exponent to be
−A/2, rather than say A, is only to make it more di-
rectly related to Gibbs states in the special case that
A := βH and Q := 1̂, and thus JβH(1̂) = Zβ(H)Gβ(H).
The mapping JA is a CPM, but is in general not trace
preserving.

The mapping JβH does often occur together with its

inverse J−1
βH , in such a way that JβH ◦ φ ◦ J−1

βH for some

CPM φ (see e.g. Proposition 1). This combination can
in some sense be viewed as a quantum version of the

term eβw in the classical Crooks relation in (1). To
see this, let us consider the special case that HE has
a pure point spectrum, i.e., there exists an orthonormal
basis of eigenvector |n〉 with corresponding eigenvalues
En. For mappings from diagonal elements to diagonal
elements we would get 〈m|JβH

(
φ
(
J−1
βH(|n〉〈n|)

))
|m〉 =

eβ(En−Em)〈m|φ
(
|n〉〈n|

)
|m〉. The term En − Em is

the decrease of energy in the reservoir, and by iden-
tifying this loss with the work performed, the anal-
ogy becomes evident. For the general transition
between arbitrary matrix elements, the correspond-
ing expression reads 〈m|JβH

(
φ
(
J−1
βH(|n〉〈n′|)

))
|m′〉 =

eβ(En−Em)/2eβ(En′−Em′ )/2〈m|φ
(
|n〉〈n′|

)
|m′〉. The fact

that the off-diagonal case is governed by two energy dif-
ferences, rather than one, corresponds to the evolution of
the coherences in the energy reservoir.

7. Derivation of an intermediate fluctuation
relation

Lemma 1. With Assumptions 1, denote Pi := |ci〉〈ci|
and Pf := |cf 〉〈cf |. Then it is the case that V [eαH

i
S′ ⊗

Pi ⊗ 1̂E ] = [eαH
f

S′ ⊗ Pf ⊗ eαHE ]V [1̂S′ ⊗ Pi ⊗ e−αHE ] and

[eαH
f

S′ ⊗Pf ⊗ 1̂E ]V = [1̂S′ ⊗Pf ⊗ e−αHE ]V [eαH
i
S′ ⊗Pi⊗

eαHE ], for all α ∈ C.

Proof. We only prove the first equality, since the proof of

the second is analogous. First note that eαH
i
S′ ⊗|ci〉〈ci|⊗

1̂E = eαH
i
S′⊗|ci〉〈ci|⊗1̂E [1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E ]. Next we can

use the fact that Hi
S′⊗|ci〉〈ci|⊗1̂E = H−Hf

S′⊗|cf 〉〈cf |⊗
1̂E −H⊥ ⊗ 1̂E − 1̂S′C ⊗HE . Note that these summands
commute with each other. Moreover, Hf

S′ ⊗ |cf 〉〈cf | ⊗
1̂E and H⊥ ⊗ 1̂E have orthogonal supports compared to
1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E . By these observations it follows that
we can write

V [eαH
i
S′ ⊗ |ci〉〈ci| ⊗ 1̂E ]

= V eαHe−α1̂S′C⊗HE [1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E ]

= eαHV [1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E ]e−α1̂S′C⊗HE ,

where we in the second equality have used [H,V ] = 0,

and the fact that 1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E commutes with

e−α1̂S′C⊗HE , as well as orthogonality of various terms.
Next we use the assumed property of perfect control in
Eq. (A1), i.e., V [1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E ] = [1̂S′ ⊗ |cf 〉〈cf | ⊗
1̂E ]V [1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E ]. When eαH on the left hand

side of V ‘meets’ [1̂S′ ⊗ |cf 〉〈cf | ⊗ 1̂E ], only the terms

eαH
f

S′⊗P
f
C⊗1̂Eeα1̂S′C⊗HE survive. This leads to the first

equality. The proof of the second equality is analo-
gous.

Proposition 1 (An intermediate quantum Crooks rela-
tion). With the definitions as in 1, the channels F and
R defined in (A4) and (A5) are related as

Z(Hi
S′)F = Z(Hf

S′)JβHE
R∗J−1

βHE
. (A9)
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With the separation of S′ into system S and the heat bath
B as in equation (A2) we thus get

Z(Hi
S)F = Z(Hf

S)JβHE
R∗J−1

βHE
. (A10)

Proof. By comparing the definition (A5) of channel R,
with Eqs. (A6) and (A7) in section A 5 we can conclude
that

R∗(Y ) = TrS′C
(
[G(Hf

S′)⊗ |cf 〉〈cf | ⊗ 1̂E ]

× V [1̂S′ ⊗ 1̂C ⊗ Y ]V †
)

=
1

Z(Hf
S′)

TrS′C

(
[e−βH

f

S′/2 ⊗ |cf 〉〈cf | ⊗ 1̂E ]V

× [1̂S′ ⊗ 1̂C ⊗ Y ]

× V †[e−βH
f

S′/2 ⊗ |cf 〉〈cf | ⊗ 1̂E ]
)

[By Lemma 1]

=
1

Z(Hf
S′)

eβHE/2TrS′C

(
[1̂S′ ⊗ |cf 〉〈cf | ⊗ 1̂E ]V

× [e−βH
i
S′ ⊗ |ci〉〈ci| ⊗ e−βHE/2Y e−βHE/2]

× V †
)
eβHE/2

[By perfect control, Eq. (A1)]

=
Z(Hi

S′)

Z(Hf
S′)
J−1
βHE
◦ F ◦ JβHE

(Y ).

This can be rewritten as (A9).
With the additional assumption in equation (A2)

we get Z(Hi
S′) = Z(Hi

S′)Z(HB) and Z(Hf
S′) =

Z(Hf
S′)Z(HB). From this observation we obtain (A10)

from (A9).

Equation (A10) in Proposition 1 already has the flavor
of a Crooks relation. However, as has been mentioned
already, it relies on a too ambitious notion of reversal,
where we invert the entire evolution. In the section C we
shall remove this idealization, and assume that both the
forward and reverse evolution is governed by the same
‘direction of time’, i.e., in both cases the global evolution
is given by applying the map Q 7→ V QV †.

8. Remarks concerning Crooks operation time
reversal and Petz recovery channel

The notion of ‘operation time reversals’ was introduced
in [46] as a quantum generalization of time-reversals
of classical Markov chains. Given a channel Φ with
fix-point density operator ρ, i.e., Φ(ρ) = ρ, the op-
eration time reversal of Φ is defined by the mapping
σ 7→ √ρΦ∗(

√
ρ−1σ

√
ρ−1)
√
ρ. Let us now compare this

with the right hand side of (A9). By construction R is
a channel. However, one can confirm that it is the case
that

R(e−βHE ) =
Z(Hi

S′)

Z(Hf
S′)

e−βHE . (A11)

Hence, e−βHE is not a fix point of R, and thus the con-
ditions for Crooks time reversal are not quite satisfied

(unless Z(Hi
S′) = Z(Hf

S′), which would be the case for a

cyclic process, i.e., if Hf
S′ = Hi

S′).

There exists a more general construction introduced
in information theory, namely Petz recovery channel [47–
50]. Given a channel Φ and a reference state ρ (that does
not have to be a fix point of the channel Φ) Petz recovery
channel is defined as

Φ̂(σ) =
√
ρΦ∗

(
Φ(ρ)−1/2σΦ(ρ)−1/2

)√
ρ. (A12)

Hence, Crooks time reversal emerges as a special case
when ρ is a fix point of Φ.

If we take e−βHE as the reference operator, it is
straightforward to confirm that the intermediate fluctu-

ation relation (A9) can be rephrased as F = R̂, i.e., that
the forward channel is equal to the Petz-transformation
(A12) of the reverse channel.

In [40] it was shown that the work gain in work ex-
traction can be bounded by how well the initial state
can be reconstructed via Petz recovery channel. One can
in particular note the similarity between our channel R
and the recovery channel Rρ→σ defined in [40], although
the latter is a proper thermal operation, while the defi-
nition of R in addition contains the control system that
is subject to perfect control. In view of these structural
similarities it is tempting to speculate on deeper rela-
tions between these results. Fluctuation relations can be
viewed as statistical manifestations of the second law [6];
an observation that makes the connection to work extrac-
tion more plausible. Moreover, there are investigations
that hint or elaborate on connections. One example is
the generalized Jarzynski relations for feedback control
[103, 118, 119, 139]. Moreover, in [31] a classical Crook’s
relation was used as a component in a proof about single-
shot work extraction, and recent investigations [133–136]
have focused on exploring links between single-shot con-
cepts and fluctuation theorems. On a similar note one
may wonder whether there exist a more operational char-
acterization of fluctuation relations. Although intriguing
questions, we will not consider them further in this in-
vestigation.

Appendix B: Time reversal and time reversal
symmetry

Here we introduce the notion of time-reversals that we
use to define our quantum Crooks relation. As mentioned
in the main text, our time-reversals are primarily related
to transposes rather than to complex conjugates (cf. the
discussions on time-reversals in [56, 57]). Before we pro-
ceed with the definition we do in the following subsection
compare complex conjugation and transposes regarded as
time-reversals.
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1. Complex conjugation vs transpose

In standard textbooks on quantum mechanics (see
e.g. section 4.4 in [54]) time reversal is often expressed
on the level of Hilbert spaces as complex conjugation
ψ∗(x) of wave functions ψ(x), or via an orthonormal
basis as |ψ∗〉 =

∑
n |n〉〈n|ψ〉∗. On the level of opera-

tors, this translates to Q∗ =
∫ ∫
〈x|Q|x′〉∗|x〉〈x′|dxdx′, or

Q∗ =
∑
nn′〈n|Q|n′〉∗|n〉〈n′|. In comparison, the trans-

pose acts as Q∗ =
∫ ∫
|x〉〈x′|Q|x〉〈x′|dxdx′, or Qt =∑

nn′ |n〉〈n′|Q|n〉〈n′|.
Both the complex conjugate and the transpose im-

plements time-reversals, but in a sightly different man-
ner. Suppose that a Hermitian generator for the time
evolution Hevol satisfies H∗evol = Hevol, or equivalently
Ht

evol = Hevol. (One should not confuse Hevol, discussed
in Sec. A 2, with the Hamiltonians H, HS , HE etc.) The
time-evolution operator transforms as

(e−itHevol/~)∗ =eitHevol/~,

(e−itHevol/~)t =e−itHevol/~.
(B1)

Hence, complex conjugation inverts the evolution opera-
tor, while the transpose leaves it intact. At first sight it
might thus seem a bit odd that the transpose can imple-
ment any form of time-reversal. To understand this we
should consider the manner in which these mappings act
on products of operators, namely

(AB)∗ = A∗B∗, (AB)t = (B)t(A)t. (B2)

In other words, complex conjugation leaves the opera-
tor ordering intact, while the transpose reverses the or-
dering. In some sense, (B1) and (B2) complement each
other when it comes to the reversal of the evolution. To
see this, assume that an initial state ρi is evolved into
the state ρf = e−itHevol/~ρie

itHevol/~. For the complex
conjugate we get

ρ∗f =(e−itHevol/~)∗ρ∗i (e
itHevol/~)∗

=eitHevol/~ρ∗i e
−itHevol/~,

and hence ρ∗i = e−itHevol/~ρ∗fe
itHevol/~. Similarly,

ρtf =(eitHevol/~)tρti(e
−itHevol/~)t

=eitHevol/~ρtie
−itHevol/~,

and consequently ρti = e−itHevol/~ρtfe
itHevol/~. Hence, we

do again obtain the effective reversal of the evolution.
One can see that for the complex conjugation the rever-
sal this is due to to the fact that the complex conjugation
inverts the time evolution operator, while for the trans-
pose it is due to the inversion of the operator ordering.

2. What we require from time-reversals

Instead of directly defining time-reversals in terms of
transposes we here rather define it via a ‘wish-list’ of

properties. By inspection one can see that transposes
satisfy these conditions, although the latter allow for
a slightly larger class of operations (see Proposition 2).
One can also see that this definition immediately excludes
the complex conjugation (due to the assumed linearity).
Hence, one should not take this list as the ultimate and
most general definition of what a time-reversal possibly
could be, but rather as convenient set of assumptions that
is sufficient for our purposes and makes the book-keeping
in the proofs simple. It may potentially be the case that
a more general notion of time-reversals could extend the
resulting family of quantum Crooks relations. Although
an interesting question, it will not be pursued further in
this investigation.

Definition 1. A linear map T is called a time-reversal
if

T (AB) = T (B)T (A), (B3a)

T (A†) = T (A)†, (B3b)

Tr[T (σ)] = Tr(σ), (B3c)

T 2 = I. (B3d)

As a bit of a technical remark, in the infinite-
dimensional case one may additionally require that T
maps bounded operators to bounded operators, and trace
class operators to trace class operators. If one restricts to
bounded A,B in (B3a) it follows that T (A), T (B), and
T (AB) are bounded. By demanding that A in (B3b)
is bounded we make sure that the Hilbert adjoint A† is
well defined and bounded (see Theorem 3.9-2 in [140]).
By the requirement that T maps bounded operators to
bounded operators we know that T (A) is bounded, and
thus T (A)† is also well defined. If one restricts σ to be
trace class in (B3c) it follows that Tr(σ) is well defined,
and if T maps trace class operators to trace class op-
erators, Tr[T (σ)] is also well defined. Although this is
a reasonable collection of assumptions, one should keep
in mind that we here tend to apply these maps also to
unbounded operators.

3. The 	-transformation

For a CPM φ we define φ	 as

φ	 := T φ∗T , (B4)

where T is a given time-reversal, and where φ∗ is the
conjugation, as discussed in section A 5. It is a straight-
forward application of the properties of the time-reversal
T to show the following alternative definition

φ	 = (T φT )∗. (B5)

It is also straightforward to confirm the following lemma.
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Lemma 2. If φ is a CPM with Kraus decomposition

φ(σ) =
∑
k VkσV

†
k , and T is a time-reversal, then

φ	(σ) =
∑
k

T (Vk)σT (Vk)†. (B6)

In other words, if {Vk}k is a Kraus representation of φ,
then {T (Vk)}k is a Kraus representation of φ	. Hence,
if φ is a CPM, then φ	 is a CPM. If φ is a channel (trace
preserving CPM), then φ	 is not necessarily a channel.

However, if φ is a unital channel (φ(1̂) = 1̂), then φ	 is
a channel, and moreover a unital channel.

4. Characterization of T in finite dimensions

The purpose of this section is to make more precise
what kind of mappings that the list of properties in
Definition 1 specifies, how they relate to transposes, as
well as deriving some further properties that will be
useful for the subsequent derivations. Throughout this
section we assume that the underlying Hilbert space is
finite-dimensional, although some of the results would
be straightforward to extend to the infinite-dimensional
case.

For a finite-dimensional Hilbert space H, we do in the
following let L(H) denote the set of linear operators on
H. Our first general observation is that if T1 and T2 are
time-reversals on two different finite-dimensional Hilbert
spaces, then T1 ⊗ T2 is also a time-reversal. It turns out
that each single property in Definition 1 is separately pre-
served under the tensor product. The proof can be ob-

tained via decompositions Q =
∑
mnQ

(m)
1 ⊗Q(n)

2 , where

Q
(m)
1 and Q

(n)
2 are operators on H1 and H2, respectively.

Lemma 3. If T is a linear map that satisfies conditions
(B3a) and (B3d), then T (1̂) = 1̂.

Proof. By applying T to the trivial identity T (1̂) =

T (1̂)1̂ and use property (B3d) it follows that 1̂ =

T
(
T (1̂)1̂

)
= T (1̂)T (T (1̂)) = T (1̂)1̂ = T (1̂), where the

second equality follows by (B3a).

Lemma 4. Let T be linear. If T satisfies (B3a) and
(B3b), then T is positive, i.e., Q ≥ 0 ⇒ T (Q) ≥ 0.

Proof. If Q ≥ 0 then there exists A such that Q = AA†.
Hence T (Q) = T (AA†) = T (A†)T (A) = T (A)†T (A),
where the second equality follows by (B3a), and the third
by (B3b). Hence, T (Q) ≥ 0.

Lemma 5. Let T be a linear map.

• If T satisfies (B3a) and (B3b), then T maps pro-
jectors to projectors. Furthermore, pairwise orthog-
onal projectors get mapped to pairwise orthogonal
projectors.

• If T satisfies (B3a), (B3b), and (B3c), then T pre-
serves the dimension of the projected subspaces. In
particular T preserves purity, i.e. if |ψ〉 ∈ H is nor-
malized, then there exists a normalized |χψ〉 ∈ H
such that T (|ψ〉〈ψ|) = |χψ〉〈χψ|.

• If T satisfies (B3a), (B3b), (B3c), and if the un-
derlying Hilbert space is finite-dimensional, then
T (1̂) = 1̂.

For the third item it is necessary to restrict to finite
dimensions. As an example, let {|n〉}n∈N be a complete
orthonormal basis, and let T (|n〉〈n′|) = |2n′〉〈2n|. This

satisfies (B3a), (B3b) and (B3c), but T (1̂) 6= 1̂.

Proof. A linear operator P is a projector if and only if
P 2 = P and P † = P (and P is bounded in the infinite-
dimensional case). Assuming that P is a projector it
follow by properties (B3a) and (B3b) that T (P ) is a
also a projectors. (If T preserves boundedness, then
the boundedness of T (P ) is guaranteed.) Two projectors
are orthogonal if and only if P1P2 = 0. Thus by prop-
erty (B3a) it follows that T (P2)T (P1) = T (P1P2) = 0.
The dimension of the subspace onto which a projector
P projects is given by Tr(P ). By assumption (B3c) it
follows that Tr(T (P )) = Tr(P ). Hence, the dimension
is preserved. In the case that the Hilbert space is finite-
dimensional, then TrT (1̂) = Tr1̂ is the dimension of the

Hilbert space. Hence T (1̂) is a projector with the dimen-

sion of the Hilbert space, and thus T (1̂) = 1̂.

In the following we denote the standard operator norm
by ‖Q‖ := supψ:|ψ‖=1 ‖Q|ψ〉‖, and the trace norm by

‖Q‖1 := Tr
√
QQ† = Tr

√
Q†Q (where the last equality

follows by the singular value decomposition of Q in the
finite-dimensional case).

Lemma 6. Let T be a time-reversal as in Definition 1,
then ‖T (Q)‖ = ‖Q‖, ‖T (Q)‖1 = ‖Q‖1.

Proof. First we note that ‖T (Q)|ψ〉‖2 =
Tr
(
|ψ〉〈ψ|T (QQ†)

)
= Tr

(
QQ†|χψ〉〈χψ|

)
= ‖Q†|χψ〉‖2,

where |χψ〉 is such that |χψ〉〈χψ| = T (|ψ〉〈ψ|) as
in Lemma 5. Consequently, ‖T (Q)‖ ≤ ‖Q†‖. By
‖Q†‖ = ‖Q‖ (see, e.g., Theorem 3.9-2 in [140]) it thus
follows that ‖T (Q)‖ ≤ ‖Q‖. By substituting Q with
T (Q) in the above reasoning, and use T 2 = I one
obtains ‖Q‖ ≤ ‖T (Q)‖. Hence, ‖T (Q)‖ = ‖Q‖.

Next we make the observation that ‖T (Q)‖1 =

Tr
√
T (Q)T (Q)† = Tr

√
T (Q†Q). By Lemma 4 we

know that T maps positive operators to positive oper-
ators. Hence, T (Q†Q) is a positive operator, and thus√
T (Q†Q) is well defined and positive (see e.g. section

9.4 in [140]). By Lemma 4 we know that T (
√
Q†Q) ≥ 0.

Moreover, T (
√
Q†Q)T (

√
Q†Q) = T (Q†Q). By the

reasoning above we thus know that both
√
T (Q†Q)

and T (
√
Q†Q) are positive square roots of T (Q†Q).

However, the positive square root of a positive oper-
ator is unique (Proposition 9.4-2 in [140]), and thus
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T (Q†Q) = T (

√
Q†Q). Consequently ‖T (Q)‖1 =

Tr
√
T (Q†Q) = TrT (

√
Q†Q) = ‖Q‖1.

Lemma 7. On a finite-dimensional complex Hilbert
space, let H be Hermitian with an orthogonal family
of eigenprojectors {Pm}m and corresponding eigenval-
ues hm, such that hm 6= hm′ whenever m 6= m′, and
H =

∑
m hmPm. If T is a time reversal such that

T (H) = H, then T (Pm) = Pm. Hence, T preserves
the eigenspaces.

Proof. By Lemma 5 we know that each T (Pm) is a pro-
jector, and that it projects on a subspace of the same
dimension as Pm. Next one can confirm that HT (Pm) =
T (H)T (Pm) = T (PmH) = hmT (Pm). Hence, T (Pm)
must be an eigenprojector corresponding to eigenvalue
hm. Since T (Pm) and Pm projects on spaces of the same
dimension, we must have T (Pm) = Pm.

Given an orthonormal basis {|k〉}Kk=1 of a finite-
dimensional Hilbert space H, we define the transpose
with respect to this basis as

Qt :=
∑
kk′

|k′〉〈k|Q|k′〉〈k|. (B7)

Since the transpose is dependent of the choice of basis,
an obvious question is what happens when we make a
change of basis. The following lemma, which we state
without proof (it is straightforward to verify) specifies
how one can express the new transpose in terms of the
old.

Lemma 8. On a finite-dimensional complex Hilbert
space H let the transpose told be defined with respect to
an orthonormal basis {|oldk〉}k. Let the transpose tnew be
defined with respect to the orthonormal basis {|newk〉}k,
where |newk〉 := W |oldk〉 for some unitary operator W
on H. Then W tnew = WW toldW †, and the new transpose
tnew can be expressed in terms of the old basis as

Qtnew = WW toldQtold(WW told)†. (B8)

Similarly, the old transpose told can be expressed in terms
of the new basis as

Qtold = (W tnewW )†QtnewW tnewW. (B9)

The following Lemma is a special case of Autonne-
Takagi’s decomposition, see e.g. Corollary 4.4.4 in [141].

Lemma 9 (Special case of Autonne-Takagi’s decomposi-
tion). Let H be finite-dimensional complex Hilbert space.
Let U be a unitary operator on H. Then U t = U (with
respect to a given orthonormal basis of H) if and only
if there exists a unitary operator W on H such that
U = WW t.

By combining Lemma 9 with Lemma 8 we can conclude
that transformations of transposes are characterized by
complex symmetric unitary operators.

Proposition 2. Let H be a finite-dimensional complex
Hilbert space, and let B := {|k〉}Kk=1 be an orthonormal
basis of H. Let t denote the transpose with respect to the
basis B. Let T be a linear map on L(H).

1. T satisfies (B3a), (B3b), and (B3c) if and only if
there exists a unitary operator U on H such that

T (|k〉〈k′|) = U |k′〉〈k|U†, ∀k, k′. (B10)

or equivalently

T (Q) = UQtU†, ∀Q ∈ L(H). (B11)

Moreover, U is uniquely determined by T and
{|k〉}k up to a global phase factor.

2. If T satisfies (B3a), (B3b), and (B3c), then the
following are equivalent:

• T satisfies (B3d).

• The unitary operator U in (B10) satisfies
U t = ±U , i.e., U is complex symmetric
or complex skew-symmetric. (The choice
of global phase factor in U does not af-
fect the property of being symmetric or skew-
symmetric.)

3. If T satisfies (B3a), (B3b), and (B3c), then the
following are equivalent:

• There exists an orthonormal basis {|ξk〉}k of
H such that

T (|ξk〉〈ξk′ |) = |ξk′〉〈ξk|, ∀k, k′. (B12)

• The unitary operator U in (B10) satisfies
U t = U , i.e., if U is complex symmetric.

As a further remark one may note that (B11) directly
implies that T is a positive but not completely positive
map, since it is a composition of a unitary operation and
a transpose, and the transpose is not completely positive
[58, 59].

Proof of Proposition 2. We start by proving that proper-
ties (B3a), (B3b), (B3c) implies equation (B10). From
Lemma 5 we know that {T (|k〉〈k|)}k is a set of pair-
wise orthogonal projectors onto one-dimensional sub-
spaces. This means that there exists a unitary operator
Ũ such that T (|k〉〈k|) = Ũ |k〉〈k|Ũ†. Moreover, by (B3a)
it follows that T (|k〉〈k′|) = T (|k〉〈k||k〉〈k′||k′〉〈k′|) =

zkk′Ũ |k′〉〈k|Ũ†, where zkk′ := 〈k′|Ũ†T (|k〉〈k′|)Ũ |k〉.
By (B3b) it follows that z∗kk′ = zk′k By using

T (|k〉〈k|) = Ũ |k〉〈k|Ũ† and (B3a) it follows that

zk′kzkk′′ = 〈k′′|Ũ†T (|k〉〈k′′|)T (|k〉〈k|)T (|k′〉〈k|)Ũ |k′〉 =
zk′k′′ . One can realize that these two last conditions
together imply that zk′k′′ = z1k′z

∗
1k′′ , and next that

|z1k| = 1. Hence, there exist real numbers θk such that

zk′k′′ = ei(θk′−θk′′ ). By putting U := Ũ
∑
k e
−iθk |k〉〈k|,

we find that (B10) holds. For the opposite implication,
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assume that there exists a unitary U such that (B11)
holds. It is straightforward to confirm that each of the
properties (B3a), (B3b), (B3c) are satisfied.

For uniqueness, suppose that that there exist two uni-
tary operators U1, U2 that both satisfy (B11). Conse-

quently, U1Q
tU†1 = U2Q

tU†2 for all Q ∈ L(H), from which
it follows that U1 = eiχU2 for some χ ∈ R

Next, we turn to the second item of the proposition.
Assume that (B3a), (B3b), and (B3c) are satisfied. We
know that there exists a unitary operator U such that
equation (B11) holds. If we use this observation twice
we find

T (T (Q)) =T (UQtU†) = U(UQtU†)tU†

=(U tU†)†QU tU†.
(B13)

This implies that T 2 = I if and only if U t = eiθU for
some real number θ. By the definition of the transpose
it follows that 〈k′|U |k〉 = eiθ〈k|U |k′〉 for all k, k′. If this
equality is iterated we obtain 〈k′|U |k〉 = eiθ〈k|U |k′〉 =
e2iθ〈k′|U |k〉, and thus (1− e2iθ)〈k′|U |k〉 = 0, for all k, k′.
Hence, either 1 − e2iθ = 0, or 〈k′|U |k〉 = 0 for all k, k′.
However, the latter is not possible since U is unitary. We
can conclude that e2iθ = 1, and thus eiθ = ±1. This
combined with U t = eiθU yields U t = ±U .

Finally we turn to the third item of the proposition.
Let t′ denote the transpose with respect to {|ξk〉}k. Then

(B12) is the same as saying that T (Q) = Qt
′
. By

Lemma 8 we know that we can express the transpose
t′ in terms of the transpose t (with respect to the basis

{|k〉}k) as Qt
′

= WW tQt(WW t)†, for a unitary oper-
ator W such that |ξk〉 = W |k〉. In terms of the origi-
nal basis {|k〉}k we know that T (Q) = UQtU†. Hence,
UQtU† = WW tQt(WW t)†, and thus U = WW teiχ for
some χ ∈ R. Hence, we can conclude that the unitary
operator U satisfies U t = U and thus is complex sym-
metric.

To derive the opposite implication, assume that there
exists a unitary operator U such that U t = U and (B10)
holds. By Lemma 9 we know that there exist a unitary
operator W on H such that U = WW t. Define |ξl〉 :=
W |l〉 for all l. Since W is unitary it follows that {|ξl〉}l
is an orthonormal basis of H. One can verify that (B12)
holds.

Appendix C: A quantum fluctuation theorem

1. Re-setting the stage

Here we construct a new set of assumptions that in-
cludes time reversal symmetry (see Fig. 9).

Assumptions 2. Let HS′ , HC , and HE be com-
plex Hilbert spaces. Let |ci+〉, |ci−〉, |cf+〉, |cf−〉 ∈ HC
be normalized and such that the linear span HiC :=

Sp{|ci+〉, |ci−〉} is orthogonal to HfC := Sp{|cf+〉, |cf−〉}.

Let P iC and P fC denote the projectors onto these two sub-

spaces, and define P⊥C := 1̂C − P iC − P
f
C .

• Hi
S′ and Hf

S′ are Hermitian operators on HS′ such

that Z(Hi
S′) and Z(Hf

S′) are finite. Let HE be an
Hermitian operator on HE. Let H⊥ be a Hermitian
operator on HS′⊗HC such that [1̂S′⊗P⊥C ]H⊥[1̂S′⊗
P⊥C ] = H⊥, and define

HS′C := Hi
S′ ⊗ P iC +Hf

S′ ⊗ P
f
C +H⊥.

and H := HS′C ⊗ 1̂E + 1̂S′C ⊗HE.

• TS′C and TE are time-reversals, and T := TS′C ⊗
TE. We assume

TS′C(HS′C) = HS′C , TE(HE) = HE , (C1)

and

TS′C(1̂S′ ⊗ |ci+〉〈ci+|) =1̂S′ ⊗ |ci−〉〈ci−|,
TS′C(1̂S′ ⊗ |cf+〉〈cf+|) =1̂S′ ⊗ |cf−〉〈cf−|.

(C2)

• V is unitary operator on HS′ ⊗HC ⊗HE such that
[V,H] = 0, T (V ) = V , and

V [1̂S′ ⊗ |ci+〉〈ci+| ⊗ 1̂E ]

= [1̂S′ ⊗ |cf+〉〈cf+| ⊗ 1̂E ]V.
(C3)

In sections G 3 c and G 3 d it is demonstrated that there
exist setups that satisfy all conditions in Assumptions 2.

These assumptions are constructed in such a way that
the unitary V , the initial state |ci〉 := |ci+〉, and the final
state |cf 〉 := |cf+〉 satisfy Assumptions 1. This trans-
lation only mounts to redefining the projector P⊥C and
the Hamiltonian H⊥. More precisely, starting with As-
sumptions 2 we can define the projectors Pci+ := P iC −
|ci+〉〈ci+| and Pcf+ := P fC − |cf+〉〈cf+|. With P⊥C being
the projector in Assumptions 2, we can define the new

projector in Assumptions 1 as P
⊥
C := P⊥C +Pci+ +Pcf+.

Similarly, given the Hamiltonian H⊥ in Assumptions 2

we can define the new H
⊥

:= Hi
S′ ⊗Pci+ +Hf

S′ ⊗Pcf+ +
H⊥ in Assumptions 1. All other Hamiltonians and op-
erators can be left unchanged. Hence, the restriction to
Assumptions 1 only requires us to reshuffle the Hamil-
tonians. In an analogous manner, V , |ci〉 := |cf−〉, and
|cf 〉 := |ci−〉 also form a valid triple in Assumptions 1.
Note that in this case |cf−〉 is the initial state of the
effectively reversed evolution.

One should note that one can consider several varia-
tions on Assumptions 2. One could for example imag-
ine an alternative to (C2) where we instead assume
a product time-reversal TS′C = TS′ ⊗ TC , and de-
mand TC(|ci+〉〈ci+|) = |ci−〉〈ci−|, TC(|cf+〉〈cf+|) =
|cf−〉〈cf−|. However, the assumption in (C2) is more
general, and provides a rather useful flexibility.
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cf+ 

HS´ f 
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FIG. 9: Structure of the Hamiltonian. The Hamiltonian
S′C is of the form HS′C = Hi

S′⊗P iC+Hf
S′⊗P

f
C+H⊥. Hence,

whether the state of the control is in subspace HiC onto which
P iC projects, or in HfC onto which P fC projects, determines the

Hamiltonian of S′. The Hamiltonian H⊥ corresponds to any
possible intermediate stages. The initial control space HiC is
spanned by two states |ci+〉 and |ci−〉, which are the time-
reversals of each other. Analogously, the final control space
HfC is spanned by |cf+〉 and |cf−〉. The global evolution V
is such that it brings control state |ci+〉 into |cf+〉, while it
brings |cf−〉 into |ci−〉, thus implementing both the forward
and the reverse process.

One should keep in mind that we do not assume
that |ci+〉 necessarily is orthogonal to |ci−〉. (How-
ever, we do assume that Sp{|ci+〉, |ci−〉} is orthogonal
to Sp{|cf+〉, |cf−〉}.)

Due to the time-reversal symmetry, a perfect transition
from |ci+〉 to |cf+〉 implies a perfect transition of |cf−〉
to |ci−〉. More precisely, by combining (C3) with the

properties T (AB) = T (B)T (A), TE(1̂E) = 1̂E , as well
as the assumptions T (V ) = V and (C2), one obtains

V [1̂S′ ⊗ |cf−〉〈cf−| ⊗ 1̂E ]

= [1̂S′ ⊗ |ci−〉〈ci−| ⊗ 1̂E ]V.
(C4)

As the reader may have noticed, a considerable part
of Assumptions 2 deals with the control system, which is
due to the rather strong idealization that perfect control
entails. In section H we will abandon this idealization,
and as a bonus we also obtain a more lean set of assump-
tions (cf. Assumptions 4).

Lemma 10. With Assumptions 2 it is the case that

TS′C
(
G(Hi

S′)⊗ |ci±〉〈ci±|
)

=G(Hi
S′)⊗ |ci∓〉〈ci∓|,

TS′C
(
G(Hf

S′)⊗ |cf±〉〈cf±|
)

=G(Hf
S′)⊗ |cf∓〉〈cf∓|.

(C5)

One may wonder why we do not directly assume (C5)
in Assumptions 2 rather than (C2). The reason is par-
tially that the latter choice defines the action of the time
reversal on the control states in a more clean manner,
but also because it aligns with the more general set of
assumptions that we will use in section H 3.

Proof. We first note that TS′C(HS′C) = HS′C and

TS′C(1̂S′C) = 1̂S′C implies TS′C(eαHS′C ) = eαHS′C for
all α ∈ C. Moreover, due to the orthogonal supports of

Hi
S′ ⊗ P iC , Hf

S′ ⊗ P
f
C , and H⊥ we can conclude that

e−βH
i
S′ ⊗ |ci±〉〈ci±| =e−βHS′C [1̂S′ ⊗ |ci±〉〈ci±|]

=[1̂S′ ⊗ |ci±〉〈ci±|]e−βHS′C .
(C6)

We examplify the rest of the derivation with the trans-
formation of Gβ(Hi

S′)⊗ |ci+〉〈ci+|.

TS′C
(
G(Hi

S′)⊗ |ci+〉〈ci+|
)

[By Eq. (C6)]

=
1

Z(Hi
S′)
TS′C(e−βHS′C [1̂S′ ⊗ |ci+〉〈ci+|])

[By property (B3a) and TS′C(eαHS′C ) = eαHS′C ]

=
1

Z(Hi
S′)
TS′C(1̂S′ ⊗ |ci+〉〈ci+|)e−βHS′C

=
1

Z(Hi
S′)

[1̂S′ ⊗ |ci−〉〈ci−|]e−βHS′C

[By Eq. (C6)]

=G(Hi
S′)⊗ |ci−〉〈ci−|,

The other identities can be derived in an analogous man-
ner.

2. The induced channels

Given the initial state |ci+〉 and final state |cf+〉 we
define the channels

F+(σ) := TrS′C(V [Gβ(Hi
S′)⊗ |ci+〉〈ci+| ⊗ σ]V †),

R+(σ) := TrS′C(V †[Gβ(Hf
S′)⊗ |cf+〉〈cf+| ⊗ σ]V ).

(C7)

For the initial state |cf−〉 and the final state |ci−〉 we
similarly define the channels

F−(σ) := TrS′C(V [Gβ(Hf
S′)⊗ |cf−〉〈cf−| ⊗ σ]V †),

R−(σ) := TrS′C(V †[Gβ(Hi
S′)⊗ |ci−〉〈ci−| ⊗ σ]V ).

(C8)

3. Deriving a quantum Crooks relation

Lemma 11. Given Assumptions 2, then the channels
R+, F−, as defined in Eqs. (C7) and (C8) are related as

TER+ = F−TE (C9)

and thus

R∗+ = F	− . (C10)
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Hence, under the assumption of time-reversal symme-
try we can in effect simulate the reversed time evolution
(i.e., the replacement of V with V †) via the ‘forward’
evolution V . By applying the property T 2

E = I to (C9)
one can also show R+TE = TEF− and R+ = TEF−TE .

Proof of Lemma 11. We use the definition of R+ in
Eq. (C7) and the general relation Tr2

(
[T1 ⊗ T2](ρ)

)
=

T1

(
Tr2(ρ)

)
to obtain

TE ◦ R+(σ)

=TrS′C

(
T
(
V †[G(Hf

S′)⊗ |cf+〉〈cf+| ⊗ σ]V
))

[By (B3a), (B3b), and T (V ) = V ]

=TrS′C

(
V T

(
G(Hf

S′)⊗ |cf+〉〈cf+| ⊗ σ
)
V †
)

[By Lemma 10]

=TrS′C
(
V [G(Hf

S′)⊗ |cf−〉〈cf−| ⊗ TE(σ)]V †
)

=F− ◦ TE(σ).

(C11)

By multiplying (C9) from the left with T and using the
relation T 2 = I and the the alternative definition of 	
in (B5) we obtain (C10).

Proposition 3 (Quantum Crooks relation). With As-
sumptions 2, the channels F± as defined in Eqs. (C7)
and (C8) satisfy

Z(Hi
S′)F+ = Z(Hf

S′)JβHE
F	−J−1

βHE
. (C12)

With the separation of S′ into system S and the heat bath
B as in equation (A2) we thus get

Z(Hi
S)F+ = Z(Hf

S)JβHE
F	−J−1

βHE
. (C13)

Proof. The triple V , |ci〉 := |ci+〉, |cf 〉 := |cf+〉 from
Assumptions 2 satisfies Assumptions 1. It follows that we
can apply Proposition 1 on the pair of channels F+ and

R+ and thus obtain Z(Hi
S′)F+ = Z(Hf

S′)JβHE
R∗+J−1

βHE
.

Next, we use Eq. (C10) to obtain Eq. (C12).
With the additional assumption in equation (A2)

we get Z(Hi
S′) = Z(Hi

S′)Z(HB) and Z(Hf
S′) =

Z(Hf
S′)Z(HB). From this follows that (C12) yields

(C13).

4. Unbounded HE

The requirement of perfect control, i.e., that V satis-
fies (C3) puts rather stringent conditions on the prop-
erties of HE . To see this, let us assume that HE has a
pure point spectrum corresponding to the complete or-
thonormal basis {|n〉}n with corresponding energy eigen-
values En. Let us furthermore assume that HS′ is finite-
dimensional. Here we shall see that for generic choices

of initial and final Hamiltonians Hi
S′ and Hf

S′ , the per-
fect control implies that the spectrum of HE must be
unbounded from both above and below.

Due to the assumption of energy conservation, the en-
ergy reservoir has to compensate for any change in energy
in the transition from the initial to the final state. Let
hin be the eigenvalues of Hi

S′ and similarly hfm the eigen-

values of Hf
S′ . Suppose that hfm 6= hin for all m,n. This

means that every possible transition either must cost or
yield energy, which has to be drawn from or deposited
in the reservoir E. Imagine now that S′ initially is in an
eigenstate |hin〉. Suppose that at the end of the process
there is a non-zero probability for finding S′ in the state
|hfm〉 with hfm > him. For this to happen, the reservoir
has to donate the energy q := him − hfn. Suppose that
the spectrum of HE would be bounded from below, i.e.,
Elower = infnEn > −∞. This means that there exists
some state |k〉 of the reservoir such that all transitions
downwards in energy (if any available) would be smaller
than q. In other words, if the energy reservoir would start
in state |k〉, then it cannot donate the energy q, and the
transition cannot occur. For a reservoir with a spectrum
bounded from below, the only way to avoid this would
be if all transitions in S′ always would go downwards in

energy. Generic choices of Hi
S′ to Hf

S′ would involve both
increases and decreases in energy, and thus the spectrum
of HE must be unbounded from both above and below.
The key point behind the unboundedness is the demand
that the control system always should succeed in its task
irrespective of the state of the system and the energy
reservoir. It would be reasonable with a control system
fails in some cases, e.g., if the energy in the reservoir is
too low (i.e. too close to the ground state). In section H
we introduce conditional fluctuation relations that allows
for failing control systems. (For an explicit example, see
section H 7 a.)

Appendix D: Diagonal and off-diagonal Crooks
relations

1. Decoupling of diagonals

We here demonstrate the useful fact that the dynamics
under the induced channels F± and R± decouples along
different diagonals or modes of coherence [34]. We first
show that the channels F± and R± commute with the
commutator with respect to HE .

Lemma 12. With Assumptions 2, the channels F± and
R± as defined in Eqs. (C7) and (C8), satisfy

[HE ,F±(σ)] =F±([HE , σ]),

[HE ,R±(σ)] =R±([HE , σ]).
(D1)

Proof. Here we only show the relation [HE ,F+(σ)] =
F+([HE , σ]). By the definition of the Hamiltonian H

in Assumptions 2 it follows that 1̂S′ ⊗|cf+〉〈cf+|⊗HE =

(H −Hf
S′ ⊗ |cf+〉〈cf+| ⊗ 1̂E)[1̂S′ ⊗ |cf+〉〈cf+| ⊗ 1̂E ]. By

combining this observation with the perfect control (C3)
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one can show that

[HE ,F+(σ)]

=TrS′C

([
H,V [Gβ(Hi

S′)⊗ |ci+〉〈ci+| ⊗ σ]V †
])

− TrS′C

([
Hf
S′ ⊗ |cf+〉〈cf+| ⊗ 1̂E ,

V [Gβ(Hi
S′)⊗ |ci+〉〈ci+| ⊗ σ]V †

])
,

(D2)

where the last term becomes zero due to the cyclic prop-

erty of the partial trace TrS′C with respect to Hf
S′ ⊗

|cf+〉〈cf+| ⊗ 1̂E . By the definition of the global Hamil-
tonian H in Assumptions 2

[H,Gβ(Hi
S′)⊗ |ci+〉〈ci+| ⊗ σ]

= [Hi
S′ , Gβ(Hi

S′)]⊗ |ci+〉〈ci+| ⊗ σ
+Gβ(Hi

S′)⊗ |ci+〉〈ci+| ⊗ [HE , σ]

= Gβ(Hi
S′)⊗ |ci+〉〈ci+| ⊗ [HE , σ]

By combining this with [H,V ] = 0 in (D2) the lemma
follows.

Corollary 1. Suppose that HE has a pure point spec-
trum, i.e., there exists a complete orthonormal basis
{|n〉}n of eigenvectors of HE with corresponding eigen-
values En. Then

〈m|F±(|n〉〈n′|)|m′〉 = 0

if Em − En 6= Em′ − En′ .
(D3)

The analogous statement holds for R±.

Proof. By Lemma 12

(Em − Em′)〈m|F±(|n〉〈n′|)|m′〉
= 〈m|[H,F±(|n〉〈n′|)]|m′〉
= 〈m|F±([H, |n〉〈n′|])|m′〉
= (En − En′)〈m|F±(|n〉〈n′|)|m′〉.

Thus (Em−Em′−En+En′)〈m|F±(|n〉〈n′|)|m′〉 = 0.

If HE is non-degenerate (i.e. En = En′ if and
only if n = n′) then it follows by Corollary 1 that
〈m|F±(Q)|m〉 =

∑
n〈m|F±

(
|n〉〈n|Q|n〉〈n|

)
|m〉.

Hence, F± cannot ‘create’ off-diagonal elements with
respect to the energy eigenbasis. Moreover, if we are
only interested in the diagonal elements of the output,
we only need to consider the diagonal elements of the
input. Another way to put it is that the statistics of an
energy measurement on the output is unaffected by an
additional energy measurement on the input.

2. Diagonal Crooks relations

Let us assume that HE has a pure non-degenerate
point spectrum with eigenenergies En corresponding to

the complete orthonormal eigenbasis {|n〉}n. We further-
more assume that TE(|n〉〈n|) = |n〉〈n|.

Imagine now that we represent the density operator
of the energy reservoir as a matrix with respect to the
basis {|n〉}n. Since F± are channels it follows that the
numbers

p±(m|n) := 〈m|F±(|n〉〈n|)|m〉, (D4)

can be interpreted as conditional probability distribu-
tions.

Proposition 4. With Assumptions 2, a non-degenerate
HE with pure point spectrum, and a time-reversal TE act-
ing as the transpose with respect to the eigenbasis {|n〉}n,
the conditional distributions p+(m|n) and p−(n|m) de-
fined in (D4) satisfy

Z(Hi
S)p+(m|n) = Z(Hf

S)eβ(En−Em)p−(n|m). (D5)

The existence of the diagonal Crooks relation (H12)
does strictly speaking not rely on the decoupling of the
diagonals (cf. section H 5 where we do obtain a diagonal
Crooks relation in a setting where there is no decoupling
along the diagonals).

Proof. If we apply both sides of equation (C13) on the
operator |n〉〈n|, and operate on both sides of the resulting
equality with 〈m| · |m〉 we obtain

Z(Hi
S)〈m|F+(|n〉〈n|)|m〉

= Z(Hf
S)eβ(En−Em)〈m|F	− (|n〉〈n|)|m〉.

With the invariance of |n〉〈n| under the time-reversal, we
find 〈m|F	− (|n〉〈n|)|m〉 = 〈n|F−(|m〉〈m|)|n〉. With the
identifications in (D4) the proposition follows.

In section G 1 we shall use the additional assumption
of energy translation invariance on the energy reservoir
to show how (H12) leads to the standard classical Crooks
relation.

3. Off-diagonal Crooks relations

Like in section D 2 we here assume a discrete non-
degenerate spectrum of HE , with corresponding or-
thonormal eigenbasis {|n〉}n and energy eigenvalues En.
We also assume that TE is the transpose with respect to
this basis, and thus TE(|n〉〈n′|) = |n′〉〈n|.

As discussed in section D 1, the channel F+ can only
induce transitions between |n〉〈n′| and |m〉〈m′| if En −
En′ = Em −Em′ . For each δ we can thus define a corre-
sponding set of operators {|n〉〈n′|}n,n′:En−En′=δ. (This
set would be empty for many values of δ.) For each such
δ, we will construct a Crooks relation, analogous to what
we did for the diagonal case.

As the generalization of p+(m|n) and p−(n|m) we de-
fine

qδ±(m|n) :=〈m|F±(|n〉〈n′|)|m′〉, (D6)
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where q0
± = p±. The reason for why it is enough to

write ‘qδ±(m|n)’ rather than ‘qδ±(mm′|nn′)’ is that m′ and
n′ are uniquely determined by δ, m, and n, due to the
assumption that HE is non-degenerate.

The set of numbers qδ±(m|n) represent the channels F±
in the sense that

F±(ρ) =
∑
δ

∑
m,n

∑
n′m′:En−En′=δ
Em−Em′=δ

qδ±(m|n)|m〉〈n|ρ|n′〉〈m′|.

(D7)

Proposition 5. With Assumptions 2, a non-degenerate
HE with pure point spectrum, and a time-reversal TE act-
ing as the transpose with respect to the eigenbasis {|n〉}n,
the qδ±(m|n) defined in (D6) satisfy

Z(Hi
S)qδ+(m|n) = Z(Hf

S)eβ(En−Em)qδ−(n|m). (D8)

Proof. Let n, n′ and m,m′ be such that En−En′ = Em−
Em′ = δ. If we apply both sides of equation (C13) on
the operator |n〉〈n′|, and operate on both sides of the
resulting equality with 〈m| · |m′〉 we obtain

Z(Hi
S)〈m|F+(|n〉〈n′|)|m′〉

= Z(Hf
S)eβ(En−Em)〈m|F	− (|n′〉〈n|)|m′〉,

where we have made use of En′ = En − δ and Em′ =
Em − δ. With the assumption that TE is the transpose
with respect to {|n〉}n, together with the identifications
in equation (D6), we obtain the proposition.

As mentioned in the main text we need to use off-
diagonal initial states as well as off-diagonal measure-
ment operators in order to determine the numbers
qδ±(m|n) in a ‘prepare and measure’- experiment. There
are many possible arrangements, but let us here con-
struct a setup that determines these numbers via in-
terference. Let n, n′ and m,m′ be such that δ =
En − En′ = Em − Em′ . Define the POVM element
A := (|m〉+ |m′〉)(〈m|+ 〈m′|)/2 and the family of initial

states |ψθ〉 := (|n〉 + eiθ|n′〉)/
√

2. Then the probability
of measuring A on the evolved state is

Tr
(
AF±(|ψθ〉〈ψθ|)

)
=

1

4

(
p±(m|n) + p±(m′|n) + p±(m|n′) + p±(m′|n′)

)
+ |qδ(m|n)| cos

(
arg
(
qδ±(m|n)

)
− θ
)
,

where we have made use of the decoupling. Hence, both
the magnitude and phase of qδ(m|n) can be determined
via the amplitude and phase-shift in the interference pat-
tern with respect to the phase shift θ.

Appendix E: Jarzynski equalities

Jarzynski’s equality [80] can be formulated as
〈e−βW 〉 = Z(Hf )/Z(Hi). This is often written in the

more elegant form 〈e−β(W−∆F )〉 = 1, where ∆F =
F (Hf )− F (Hi), with F (H) = −kT lnZ(H), is the free-
energy difference between the initial and final state. Here
we obtain the following family of quantum Jarzynski
equalities

Proposition 6. With Assumptions 2, the channels F+

and R+ as defined in Eq. (C7) satisfy

Tr
[
eβHEF+

(
e(−β+r+z)HE/2ρe(−β+r−z)HE/2

)]
=
Z(Hf

S′)

Z(Hi
S′)

Tr[erHE/2R+(1̂)erHE/2ρ],
(E1)

for r ∈ R and z ∈ C.
Hence, if R+(1̂E) = 1̂E, then

Tr
[
eβHEF+

(
e(−β+r+z)HE/2ρe(−β+r−z)HE/2

)]
=
Z(Hf

S′)

Z(Hi
S′)

Tr(erHEρ),
(E2)

The condition R+(1̂E) = 1̂E is equivalent to F−(1̂E) =

1̂E, with F− as defined in Eq. (C8).

The relations (14) and (15) in the main text are ob-
tained as special cases of (E2).

Strictly speaking, the traces in the above expressions
are not necessarily well defined and finite for all operators
ρ. However, we here proceed under the assumption that
ρ are chosen such that the traces are well defined.

Proof. By Assumptions 2 it follows that Proposition 3
is applicable, and thus the channels F± as defined in
Eqs. (C7) and (C8) satisfy equation (C12). By apply-
ing (C12) to the operator e(−β+r+z)HE/2ρe(−β+r−z)HE/2,
multiplying both sides of the resulting equality with
eβHE , and take the trace, and divide by Z(Hi

S′), one
obtains

Tr
[
eβHEF+

(
e(−β+r+z)HE/2ρe(−β+r−z)HE/2

)]
=
Z(Hf

S′)

Z(Hi
S′)

Tr
[
F	−
(
e(r+z)HE/2ρe(r−z)HE/2

)]
[By Eq. (C10) and the definition of ‘∗’]

=
Z(Hf

S′)

Z(Hi
S′)

Tr
[
R+(1̂)e(r+z)HE/2ρe(r−z)HE/2

]
With the definition of the commutator CHE

(σ) :=

[HE , σ], we can write e−zCHE
/2
(
R+(1̂)

)
=

e−zHE/2R+(1̂)ezHE/2. Combined with the fact from
Lemma 12, that CHE

and R+ commute, we thus get

e−zHE/2R+(1̂)ezHE/2 = R+(1̂). This proves (E1).

That F−(1̂) = 1̂ if and only in R+(1̂) = 1̂, follows

from Lemma 11 together with the properties TE(1̂) = 1̂
(Lemma 3) and T 2

E = I.
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One may get the impression that the members in the
family of equalities in Proposition 6 are independent.
However, at least in the finite-dimensional case one can
transform them into each other, and in this sense they
should maybe rather be regarded as the same equality
in different guises. To see this, start with assuming that
(E1) is true for all operators ρ on a finite-dimensional
Hilbert space. We wish to show that this implies that
(E1) is also true for r and z substituted with arbitrary
r′ and z′. Let r = r′ + ∆r and z = z′ + ∆z in (E1) and
define ρ′ := e∆rHE/2ρe∆rHE/2. This yields the equality

Tr
[
eβHEF+

(
e(−β+r′+z′+∆z)HE/2ρ′e(−β+r′−z′−∆z)HE/2

)]
=
Z(Hf

S′)

Z(Hi
S′)

Tr[er
′HE/2R+(1̂)er

′HE/2ρ′],

We can now use the fact (Lemma 12) that the commu-
tator CHE

(σ) := [HE , σ] commutes with F+, to show

that F+

(
e(−β+r′+z′+∆z)HE/2ρ′e(−β+r′−z′−∆z)HE/2

)
=

e∆zHE/2F+

(
e(−β+r′+z′)HE/2ρ′e(−β+r′−z′)HE/2

)
e−∆zHE/2.

From this is follows that (E1) remains valid with r, z, ρ
substituted by r′, z′, ρ′. In the finite-dimensional case it is
also clear that the mapping ρ 7→ ρ′ = e∆rHE/2ρe∆rHE/2

for Hermitian HE and real ∆r is a bijection on the space
of linear operators. Hence, (E1) with r′, z′ holds for all
operators ρ.

Appendix F: Bound on the work cost

For processes that start in equilibrium one would ex-
pect that the work cost should be bounded from below
by the equilibrium free energy difference of the final and
initial Hamiltonian of the system 〈W 〉 ≥ F (Hf )−F (Hi).
Here we derive a similar expression in our setting, under
the assumption R+ is unital, and that HE has a pure
non-degenerate point spectrum, i.e., that there exists a
complete orthonormal basis {|n〉}n of eigenvectors to HE

corresponding to distinct eigenvalues En. (The latter as-
sumptions may not necessarily be essential.)

1. Bound on the average energy loss in the
reservoir

Proposition 7. Let HE have a pure non-degenerate
point spectrum. Assume that the initial state is G(Hi

S′)⊗
σ, with σ a density operator on HE. Then

Tr(HEσ)− Tr
(
HEF+(σ)

)
≥ F (Hf

S′)− F (Hi
S′)−

1

β
ln Tr(σR+(1̂E)).

(F1)

Hence, if R+(1̂) = 1̂, then

Tr(HEσ)− Tr
(
HEF+(σ)

)
≥ F (Hf

S′)− F (Hi
S′). (F2)

Hence, if we identify the loss of average energy in the
energy reservoir, Tr(HEσ) − Tr

(
HEF+(σ)

)
, with 〈W 〉,

equation (F2) thus gives the standard bound.

Proof. Let En and |n〉 be eigenvalues and corresponding
orthonormal eigenvectors to HE such that {|n〉}n is a
complete orthonormal basis to HE . Define

pn,m := 〈n|σ|n〉〈m|F+(|n〉〈n|)|m〉. (F3)

By the fact that F+ is trace preserving it follows that
{pn,m}n,m is a probability distribution. Corollary 1 and
the non-degeneracy of HE yield

Tr[eβHEF+(e−βHE/2σe−βHE/2)]

=
∑
m

∑
n

〈n|σ|n〉eβ(Em−En)〈m|F+(|n〉〈n|)|m〉

≥ exp
[
β
∑
m

∑
n

(Em − En)〈n|σ|n〉〈m|F+(|n〉〈n|)|m〉
]

[By Corollary 1, and non-degenerate HE .]

= exp
[
βTr(HEF+(σ))− βTr(F+(HEσ))

]
[F+ is trace preserving]

= exp
[
βTr(HEF+(σ))− βTr(HEσ)

]
,

where the inequality follows by the convexity of the ex-
ponential function. By combining this inequality with
the quantum Jarzynski equality (E1) in Proposition 6
for r = 0 and z = 0, one obtains

Z(Hf
S)

Z(Hi
S)

Tr[σR+(1̂)] ≥ eβTr(HEF+(σ))−βTr(HEσ).

Since the logarithm is monotonically increasing, and thus
preserves the inequality, we thus obtain (F1), where we
use F (H) = −kT lnZ(H).

2. An example

One should keep in mind that the inequality (F1) does
not per se imply that the standard work bound 〈W 〉 ≥
F (Hf ) − F (Hi) necessarily is violated when R+ is not
unital; it only allows for the possibility. However, here
we construct an explicit example where one indeed gets
a violation.

With the setting as in Assumptions 2 we define the
average energy loss D(V, σ) in the energy reservoir

D(V, σ) := Tr(HEσ)

− Tr
(
[1̂S′ ⊗ 1̂C ⊗HE ]V ρiV

†),
ρi := G(Hi

S′)⊗ |ci+〉〈ci+| ⊗ σ.
(F4)

By energy conservation, the assumption of prefect con-
trol, and the general relation H = F (H) − kT lnG(H),
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one can show that

D(V, σ) = F (Hf
S′)− F (Hi

S′)−
1

β
S
(
G(Hi

S′)
)

− 1

β
Tr
(
[lnG(Hf

S′)⊗ 1̂C ⊗ 1̂E ]V ρiV
†). (F5)

The strategy will be to construct a model with a Hamil-
tonian and a particular class of energy conserving oper-
ators V that is simple enough that we can determine the
corresponding minimum of D(V, σ).

Let us now additionally assume that HE =
s
∑
j∈Z j|j〉〈j|, for an orthonormal basis {|j〉}j∈Z. (We

use the very same Hamiltonian in section G.) We more-
over assume that HS′ is finite-dimensional and that the
eigenvalues of Hi

S′ and Hf
S′ are integer multiples of s, i.e.,

they have the eigenvalues {szin}Nn=1, {szfn}Nn=1, for some
zin, z

f
n ∈ Z, with corresponding eigenvectors |χin〉, |χfn〉

(again the same as in section G). To make the deriva-
tions simpler, we also assume that these eigenvalues are
non-degenerate. We define the following class of unitary
operators on HS′CE

V :=
∑
j∈Z

N∑
n,m=1

U (j):f+,i+
m,n |f+

j,m〉〈i
+
j,n|

+
∑
j∈Z

N∑
n,m=1

U (j):i−,f−
n,m |i−j,n〉〈f

−
j,m|

+
∑
j∈Z

N∑
n,m=1

U (j):i+,f+
n,m |i+j,n〉〈f

+
j,m|

+
∑
j∈Z

N∑
n,m=1

U (j):f−,i−
m,n |f−j,m〉〈i

−
j,n|,

(F6)

where |i+j,n〉 := |χin〉|ci+〉|j − zin〉, |i−j,n〉 :=

|χin〉|ci−〉|j − zin〉, |f+
j,m〉 := |χfm〉|cf+〉|j − zfm〉,

|f−j,m〉 := |χfm〉|cf−〉|j − zfm〉, and where the matri-

ces [U
(j):f+,i+
m,n ]m,n, [U

(j):i−,f−
n,m ]n,m, [U

(j):i+,f+
n,m ]n,m,

and [U
(j):f−,i−
m,n ]m,n are unitary for each fixed j. By

construction, V is energy conserving. (The class of
energy translation invariant unitaries that we consider
in section G is obtained if we additionally assume that
these matrices are independent of j.)

Next we define time-reversals on S′C and E. First de-
fine Y := |ci+〉〈ci−|+ |ci−〉〈ci+|+ |cf+〉〈cf−|+ |cf−〉〈cf+|.
We use this in turn to define TS′C(Q) := [1̂S′⊗Y ]Qt[1̂S′⊗
Y †], where t denotes the transpose with respect to the
orthonormal basis B := {|χin〉|ci+〉}n ∪ {|χin〉|ci−〉}n ∪
{|χfn〉|cf+〉}n ∪ {|χfn〉|cf−〉}n. If this would have been
a finite-dimensional case, we could have used Proposi-
tion 2 to conclude that TS′C is a time-reversal. However,
it is straightforward to directly check the properties in
Definition 1.

Let TE be the transpose with respect to the basis
{|j〉}j∈Z of HE , and define T := TS′C ⊗ TE . With this
definition one can confirm that T (V ) = V if and only

if U
(j):i−,f−
n,m = U

(j):f+,i+
m,n and U

(j):f−,i−
m,n = U

(j):i+,f+
n,m .

Next, note that

Tr
(
[lnG(Hf

S′)⊗ 1̂C ⊗ 1̂E ]V ρiV
†)

=
∑
j∈Z

N∑
n,m=1

|U (j):f+,i+
m,n |2 lnGm(Hf

S′)

×Gn(Hi
S′)〈j − zin|σ|j − zin〉

(F7)

In order to minimize (F5) over the time-reversal sym-
metric operators V in our designated family (F6) it is
sufficient to minimize over the collection of unitary ma-

trices U (j):f+,i+ := [U
(j):f+,i+
m,n ]m,n. (Since T (V ) = V

if and only if U
(j):f+,i+
m,n = U

(j):i−,f−
n,m and U

(j):i+,f+
n,m =

U
(j):f−,i−
m,n , there are no further restrictions.) Next, in-

sert (F6) into (F5) and minimize, which yields

min
{V }j

D(V, σ) = F (Hf
S′)− F (Hi

S′)−
1

β
S
(
G(Hi

S′)
)

− 1

β

∑
j

∑
m

λ↓m

(
rj
(
G(Hi

S′)
))

lnλ↓m
(
G(Hf

S′)
)
,

(F8)

where

r(j)(ρ) :=
∑
n

〈j − zin|σ|j − zin〉|χin〉〈χin|ρ|χin〉〈χin|, (F9)

and where λ↓n(Q) denotes the n:th eigenvalue of Q,
ordered non-increasingly. The minimum in (F8) can

be obtained by noting that [|U (j):f+,i+
m,n |2]m,n is a

doubly stochastic matrix for each j. Hence, ac-
cording to Birkhoff’s theorem [142] it can be re-
garded as a convex combination of permutation ma-
trices. Since every permutation matrix results from
a unitary matrix, we know that the maximum of
(F7) is given by a permutation. (Alternatively, one

can define U (j) :=
∑
m,n U

(j):f+,i+
m,n |χfm〉〈χin| and ob-

serve that
∑N
n,m=1 |U

(j):f+,i+
m,n |2 lnGm(Hf

S′)Gn(Hi
S′)〈j −

zin|σ|j − zin〉 = Tr
[
U (j)† lnG(Hf

S′)U
(j)rj

(
G(Hi

S′)
)]

,

where U (j) :=
∑
m,n U

(j):f+,i+
m,n |χfm〉〈χin|. By the gen-

eral relation maxU Tr(U†QUR) =
∑
m λ
↓
m(Q)λ↓m(R), see

e.g. Theorem 4.3.53 in [141], it follows that (F8) holds.)
Assume that the energy reservoir starts in the specific

energy eigenstate σ := |0〉〈0|. By the definition of rj in
(F9) this assumption, together with the assumed non-
degeneracy of Hi

S′ and thus of zin, leads to∑
j

∑
m

λ↓m

(
rj
(
G(Hi

S′)
))

lnλ↓m
(
G(Hf

S′)
)

=
∑
n

∑
m

λ↓m
(
Gn(Hi

S′)|χin〉〈χin|
)

lnλ↓m
(
G(Hf

S′)
)

=
∑
n

Gn(Hi
S′) lnλ↓1

(
G(Hf

S′)
)

= lnλ↓1
(
G(Hf

S′)
)
.
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By combining this observation with (F8) we get

min
{U(j)}j

D(V, |0〉〈0|) = F (Hf
S′)− F (Hi

S′)

− 1

β
S(G(Hi

S′))−
1

β
lnλ↓1(G(Hf

S′)).
(F10)

In other words, we get a violation of the standard bound

whenever S
(
G(Hi

S′)
)

+ lnλ↓1
(
G(Hf

S′)
)
> 0. For an ex-

plicit example where this is the case, let Hi
S′ = Hf

S′ =

s
∑K
k=0 k|χk〉〈χk|. In this particular case we find

S
(
G(Hi

S′)
)

+ lnλ↓1
(
G(Hf

S′)
)

=
sβ
∑K
k=0 ke

−sβk∑K
k′=0 e

−sβk′

=
sβe−sβ

1− e−sβ
− sβ(K + 1)e−sβ(K+1)

1− e−sβ(K+1)
.

In the limit of large K this approaches sβe−sβ/(1 −
e−sβ) > 0 if sβ > 0. Thus, for sufficiently large K it

follows that D(V, σ) < F (Hf
S′) − F (Hi

S′). Hence, with
the identification between D(V, σ) and 〈W 〉 we do get a
violation of the standard bound.

Appendix G: Energy translation invariance

We have in this investigation allowed for the possibility
that the processes depends non-trivially on the amount
of energy in the energy reservoir. Here we consider a fur-
ther restriction that implements the idea that the setup
does not depend on this energy level. This model has pre-
viously been used in [31] to analyze coherence and work
extraction. Here we only describe the most essential as-
pects of this model. For a more detailed description, see
[31]. First of all, imagine the Hamiltonian HE of the en-
ergy reservoir as a doubly infinite ladder of energy levels

HE = s
∑
j∈Z

j|j〉〈j| (G1)

with energy spacing s > 0. (See also the continuum
version in [44].) As one can see, this Hamiltonian has
a bottomless spectrum (which echoes the discussions in
Sec. C 4). Although this is not the most physically sat-
isfying assumption, one can view it as an idealization
of the assumption that the energy content of the ‘bat-
tery’ is much higher than the characteristic scale of en-
ergy costs in the experiment. We furthermore assume

that the Hamiltonian HS̃ of system S̃ (which includes
all systems that are not E, i.e., in our case, system S,
the heath bath B, and the control C) is such that all
its eigenvalues (we assume a finite-dimensional Hilbert
space HS̃ with dimension N) are integer multiples of the
energy spacing s. (Due to this assumption it becomes
easy to construct non-trivial energy conserving unitary
operations.) In other words, we assume that HS̃ has an

eigenbasis {|ψn〉}Nn=1 with corresponding eigenvalues szn
where zn ∈ Z for each n. Note that we allow HS̃ to be
degenerate, in which case {|ψn〉}n is an eigenbasis of our
choice.

In this section we not only demand that the global
unitary operations are energy conserving, [H,V ] = 0,
but also that they are energy translation invariant. To
define what we mean by this, we introduce the energy
translation operator ∆ =

∑
j |j + 1〉〈j| on the energy

reservoir. We say that a unitary operator V on HS̃⊗HE
is energy translation invariant if [1̂S̃ ⊗∆a, V ] = 0 for all
a ∈ Z. It turns out [31] that that all energy conserving
and energy translation invariant unitary operators in this
model can be written in the following way

V (U) =

N∑
n,n′=1

|ψn〉〈ψn|U |ψn′〉〈ψn′ | ⊗∆zn′−zn , (G2)

where U is an arbitrary unitary operator on HS̃ . If there
are degeneracies in the Hamiltonian HS̃ then V (U) is
independent of the choice of energy eigenbasis {|ψn〉}n.
In particular, if {Pm}m is a collection of eigenprojectors
of HS̃ , then one can alternatively write

V (U) =
∑
m,m′

PmUPm′ ⊗∆zm′−zm . (G3)

A useful property of V (U) is that it preserves prod-
ucts V (U2U1) = V (U2)V (U1). (In contrast to the time-
reversals T , there is no swap of the ordering.)

We also need to incorporate time-reversals (an aspect
not included in [31]).

Lemma 13. Let TE be defined as the transpose with re-
spect to the orthonormal basis {|j〉}j∈Z. Let HS̃ be finite-
dimensional and let TS̃ be such that TS̃(HS̃) = HS̃. Then
T := TS̃ ⊗ TE satisfies

T
(
V (U)

)
= V

(
TS̃(U)

)
, (G4)

for all operators U on HS̃.

The proof is a direct application of the properties of
time-reversals combined with Lemma 7 and (G3).

The following lemma shows that all actions on the en-
ergy reservoir in this model automatically satisfy the con-
dition for unitality of the induced channels R± and F±
that emerged in the considerations on Jarzynski relations
and work bounds in sections E and F, respectively. (The
unitality of this type of induced channels was previously
observed in section II.C in the Supplementary Material
of [31].)

Lemma 14. For the channels F± and R± defined in
equations (C7) and (C8), with V := V (U) as in (G2), it

is the case that F±(1̂E) = 1̂E and R±(1̂E) = 1̂E.

The proof is obtained by inserting the definition (G2)
of V (U) into the definitions of F± and R± in equations
(C7) and (C8), and apply these to the identity operator.
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Lemma 15. With F± and R± as defined in equations
(C7) and (C8), with V := V (U) as in (G2), it is the case
that

∆jF±(σ)∆†
k

= F±
(
∆jσ∆†

k)
,

∆jR±(σ)∆†
k

= R±
(
∆jσ∆†

k)
.

(G5)

Proof. Here we only show the equality for F+. The others
are obtained analogously. The proof is based on the fact
that V (U) commutes with 1̂S̃ ⊗ ∆j . With the notation

ηS′C := G(Hi
S′)⊗ |ci+〉〈ci+| we can write

∆jF+(σ)∆†
k

= TrS′C

(
[1̂S̃ ⊗∆j ]V (U)

× [ηS′C ⊗ σ]V †(U)[1̂S̃ ⊗∆†
k
]
)

= TrS′C
(
V (U)[ηS′C ⊗∆jσ∆†

k
]V †(U)

)
= F+(∆jσ∆†

k
).

We can regard 〈m|F±(|n〉〈n′|)|m′〉 as the matrix ele-
ments in a matrix representation of the linear maps F±.
It turns out that the translation invariance in Lemma 15
in conjunction with the decoupling between the coher-
ence modes described in section D 1 reduces the number
of independent parameters in this representation. More
precisely,

〈m|F±(|n〉〈n′|)|m′〉 =

{
p±(m− n|0), n−m = n′ −m′

0, n−m 6= n′ −m′
(G6)

where p±(m|n) = 〈m|F±(|n〉〈n|)|m〉 is the diagonal tran-
sition probabilities as defined in (D4). The mapping F±
is thus determined by the probabilities by which |0〉〈0|
is mapped to the other eigenstates of HE . Equivalently,
this can be expressed as

F±(ρ) =
∑

n,n′,k∈Z
p±(k|0)〈n|ρ|n′〉|n+ k〉〈n′ + k|. (G7)

The expression in (G7) can be compared with the more
general case in (D7). In section D 3 it was demonstrated
that the off-diagonal modes of coherence satisfy Crooks
relations that are structurally identical to the one along
the diagonal. Equations (G6) and (G7) implies a stronger
statement for the special case of the energy translation
invariant model. Namely, that the dynamical map along
each the off-diagonal modes is identical to the one along
the main diagonal. (This does not imply that the ele-
ments of the density matrix along the different diagonals
are the same.)

1. Regaining the standard Crooks and Jarzynski
relations

The standard Crooks relation can be written

Z(Hi
S)P+(w) = eβwZ(Hf

S)P−(−w), (G8)

where P±(w) := P (W± = w), W+ and W− being the
work costs the the forward and reverse processes regarded
as random variables. In the following we shall see how
one can regain (G8) from the diagonal Crooks relation
(H12) in section D 2 by additionally assuming energy
translation invariance in the energy ladder model.

If we identify the loss of energy in the reservoir with the
work done, then a change from energy Ej to Ej′ in the
reservoir corresponds to the work w = En−Em (cf. [9]).
The probability P±(w) is obtained by summing up the
probabilities of all the transitions that have the work cost
w. More precisely,

P±(w) :=
∑

n,m:En−Em=w

p±(m|n)〈n|σ|n〉, (G9)

where p±(m|n) are the conditional probability distri-
butions, defined in (D4), that describe the transitions
among the diagonal elements.

The energy-ladder model yields En = sn. Hence, n −
m = w/s. By (G6) it follows that

p±(m|n) = p±(m− n|0) = p±(0|n−m). (G10)

A direct consequence is that the probability distribution
P±(w), defined in (G9), becomes independent of the ini-
tial σ,

P±(w) = p±(−w/s|0) = p±(0|w/s). (G11)

These observations can be used to regain the classical
Crooks relation (G8).

Z(Hi
S)P+(w) =Z(Hi

S)p+(0|w/s)

=Z(Hf
S)eβwp−(w/s|0)

=Z(Hf
S)eβwP−(−w).

(G12)

where the second inequality is due to the diagonal Crooks
relation in (H12). Here

∑
w means that we sum over the

set of possible energy changes, which for this particular
model is sZ.

Since we have re-derived the classical Crooks rela-
tion we more or less automatically also obtain the
classical Jarzynski equality 〈e−βW 〉 = Z(Hf )/Z(Hi)
[80]. This can be obtained via the ‘standard’ derivation∑
w e
−βwZ(Hi)P+(w) =

∑
w Z(Hf )P−(−w) = Z(Hf ),

where the second equality is due to the Crooks rela-
tion (G12). One can alternatively use the fact that

R+(1̂E) = 1̂E (from Lemma 14) and use the quantum
Jarzynski equality (E2) to derive the classical Jarzynski
relation, by again making use of the energy translation
invariance.

2. F− 7→ F	− as a generalization of P−(w) 7→ P−(−w)

In the main text it is claimed that the mapping
F− 7→ F	− can be regarded as a generalization of the map
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P−(w) 7→ P−(−w). This generalization becomes evident
for the the energy translation invariant model. Let TE be
the transpose with respect to {|n〉}n. By the translation
invariance in Lemma G5 it follows that

〈m|F	± (|n〉〈n′|)|m′〉 = 〈−m|F±(| − n〉〈−n′|)| −m′〉.
(G13)

Let us now identify the work loss w = s(n − m) and
the offset δ = s(n − n′). By Lemma 1 it follows that
the non-zero elements 〈m|F	± (|n〉〈n′|)|m′〉 can be written
〈0|F±(|w/s〉〈w/s + δ/s|)|δ/s〉. By (G13) it follows that
the non-zero coefficients satisfy

〈0|F	± (|w/s〉〈w/s+ δ/s|)|δ/s〉
= 〈0|F±(| − w/s〉〈−w/s− δ/s|)| − δ/s〉.

Hence, both the work parameter w and the offset δ
get reflected by the 	 operation. For the diagonal,
δ = 0, we can thus conclude that P±[F	± ](w) =

〈0|F	± (|w/s〉〈w/s|)|0〉 = 〈0|F±(| − w/s〉〈−w/s|)|0〉 =
P±[F±](−w). Hence for the diagonal elements, the
mapping 	 implements the transformation P−(w) 7→
P−(−w).

3. Examples

The main purpose of these examples is to show that
there exist setups of Hamiltonians, states, and unitary
operations that satisfy Assumptions 1 and Assumptions
2. We also take the opportunity to construct discretiza-
tions of paths of Hamiltonian within these models. The
reason for why these demonstrations have been post-
poned until this section is that the energy-translation
invariant systems have properties that make them conve-
nient for constructing explicit examples. These examples
are only sketched, and the details of the straightforward
but sometimes rather long-winding confirmations are left
to the reader.

a. A minimal example without time-reversal

Here we demonstrate a ‘minimal’ setup that satisfies

the conditions in Assumptions 1. Let Hi
S′ and Hf

S′ be
Hamiltonians on HS′ for which the eigenvalues are mul-
tiples of s, i.e., szin and szfn for zin, z

f
n ∈ Z, and let HE :=

s
∑
j j|j〉〈j| be the energy ladder. Let |ci〉, |cf 〉 ∈ HC be

two orthonormal states, and let

HS′C :=Hi
S′ ⊗ |ci〉〈ci|+Hf

S′ ⊗ |cf 〉〈cf |,
H :=HS′C ⊗ 1̂E + 1̂SC ⊗HE ,

and H⊥ = 0. Let US′ be an arbitrary unitary operator
on HS′ and define U := US′ ⊗ |cf 〉〈ci| + US′ ⊗ |ci〉〈cf |.
(The unitary operator US′ plays no direct role in the pro-
tocol, but is there to make U unitary.) As one can see,

U [1̂S′ ⊗|ci〉〈ci|] = US′ ⊗|cf 〉〈ci| = [1̂S′ ⊗|cf 〉〈cf |]U . This

U would in general not be energy conserving. However,
the unitary operator V (U) is by construction energy con-
serving on S′CE, i.e., [H,V (U)] = 0.

The operators 1̂S′⊗|ci〉〈ci| and 1̂S′⊗|cf 〉〈cf | are block-
diagonal with respect to the energy eigenspaces of HS′C .
Due to this one can confirm that

V (1̂S′ ⊗ |ci〉〈ci|) =1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E ,

V (1̂S′ ⊗ |cf 〉〈cf |) =1̂S′ ⊗ |cf 〉〈cf | ⊗ 1̂E .

By combining this observation with the general property
V (A)V (B) = V (AB) and the perfect control of U , it

follows that V (U)[1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E ] = [1̂S′ ⊗ |ci〉〈ci| ⊗
1̂E ]V (U). Hence, the fact that U satisfies perfect con-
trol implies that V := V (U) also satisfies the condition
for perfect control, and we can conclude that this setup
satisfies all conditions of Assumptions 1.

b. Discretized paths of Hamiltonians without time-reversal

The intermediate Crooks relation only require us to
consider the end-points of the dynamics. It may nev-
ertheless be useful to see how one can construct a dis-
cretized model of a parametric family of Hamiltonians
that satisfies Assumptions 1.

Given a family of Hamiltonians H(x) for x ∈ [0, 1] with

H(0) = Hi
S′ and H(1) = Hf

S′ we discretize the path into
L+ 1 steps, such that we get a sequence of Hamiltonians
Hl := H(l/L) for l = 0, . . . , L. Given the energy spacing
s in the energy ladder, we find approximate Hamiltoni-

ans H̃l that have the eigenvalues sz
(l)
n for z

(l)
n ∈ Z with

corresponding orthonormal eigenvectors {|χ(l)
n 〉}n. (For

more details on the transition from Hl to H̃l, see Section
VIII.C.1 in the Supplementary Material of [31].) We let
{|cl〉}Ll=0 be a set of orthonormal elements spanning the
Hilbert space HC of the control system C, and define

HS′C :=

L∑
l=0

H̃l ⊗ |cl〉〈cl|,

H :=HS′C ⊗ 1̂E + 1̂SC ⊗HE ,

(G14)

for the energy ladder HE . To compare with Assumptions
1 we have

|ci〉 := |c0〉, |cf 〉 := |cL〉,

Hi
S′ := H̃0, Hf

S′ := H̃L,

H⊥ :=

L−1∑
l=1

H̃l ⊗ |cl〉〈cl|.
(G15)

In the following we shall define a unitary operator U on
S′C that generates one single step along the discretiza-
tion. The propagation along the path is obtained by
iterating U such that the entire evolution along the L-
step discretization is generated by UL. Let U1, . . . , UL
be arbitrary unitary operators on HS′ and define U :=
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l=0 Ul ⊗ |cl+1〉〈cl| + UL ⊗ |c0〉〈cL|. One can confirm

that U is unitary. The unitary operator V (U) is energy
conserving, and analogous to section G 3 a one can con-
firm that V (1̂S′ ⊗ |cl〉〈cl|) = 1̂S′ ⊗ |cl〉〈cl| ⊗ 1̂E , as well as

V (U)L[1̂S′ ⊗ |ci〉〈ci| ⊗ 1̂E ] = [1̂S′ ⊗ |cf 〉〈cf | ⊗ 1̂E ]V (U)L.
Hence, V := V (U)L satisfies the conditions in Assump-
tions 1.

c. A minimal example with time-reversal

Here we consider a setup that satisfies the conditions

in Assumptions 2. With Hi
S , H

f
S′ as in section G 3 a, and

HE the energy-ladder, let {|ci+〉, |ci−〉, |cf+〉, |cf−〉} be
orthonormal elements spanning the Hilbert space HC of
the control system C. Let

HS′C :=Hi
S′ ⊗ P iC +Hf

S′ ⊗ P
f
C ,

P iC :=|ci+〉〈ci+|+ |ci−〉〈ci−|,

P fC :=|cf+〉〈cf+|+ |cf−〉〈cf−|,
H :=HS′C ⊗ 1̂E + 1̂SC ⊗HE .

(G16)

We next turn to the time-reversals. On HC we define

Y :=|ci+〉〈ci−|+ |ci−〉〈ci+|
+ |cf+〉〈cf−|+ |cf−〉〈cf+|.

(G17)

As one can see, Y is a unitary operator on HC . Define
the basis

B :={|χin〉|ci+〉}n ∪ {|χin〉|ci−〉}n
∪ {|χfn〉|cf+〉}n ∪ {|χfn〉|cf−〉}n,

(G18)

where {|χin〉}n is an orthonormal eigenbasis of Hi
S′ and

{|χfn〉}n is an orthonormal eigenbasis of Hf
S′ . Define

TS′C(Q) := [1̂S′ ⊗ Y ]Qt[1̂S′ ⊗ Y †], where t denotes the

transpose with respect to the basis B. Note that 1̂S′⊗Y is
complex symmetric with respect to the basis B (and the
space HS′C on which it operates is finite-dimensional).
Hence, according to Proposition 2 it follows that TS′C is a
time-reversal (and is moreover the transpose with respect
to some basis). One can verify that TS′C(HS′C) = HS′C ,
and furthermore

TS′C(1̂S′ ⊗ |ci+〉〈ci+|) =1̂S′ ⊗ |ci−〉〈ci−|,
TS′C(1̂S′ ⊗ |cf+〉〈cf+|) =1̂S′ ⊗ |cf−〉〈cf−|.

(G19)

We moreover define the time-reversal TE on the en-
ergy reservoir as the transpose with respect to the basis
{|j〉}j∈Z, and thus it is the case that TE(HE) = HE . We
define the global time-reversal as T := TS′C ⊗ TE . Let

U+ and U
+

be arbitrary unitary operators on HS′ , and
define

U :=U+ ⊗ |cf+〉〈ci+|+ U
+ ⊗ |ci+〉〈cf+|

+ U− ⊗ |ci−〉〈cf−|+ U
− ⊗ |cf−〉〈ci−|

(G20)

where U− :=
∑
nn′ |χin〉〈χ

f
n′ |U+|χin〉〈χ

f
n′ | and U

−
:=∑

nn′ |χfn〉〈χin′ |U
+|χfn〉〈χin′ |. One can confirm that U−,

U
−

, and U are unitary, and thus V (U) is an energy
conserving unitary operator. One can moreover confirm
that TS′C(U) = U . Since TS′C(HS′C) = HS′C (and
since HS′C is finite-dimensional) we know by Lemma
13 that T (V (U)) = V (TS′C(U)) = V (U). Hence, the
dynamics is time-reversal symmetric. With a reason-
ing analogous to section G 3 a, one can also show that
V (U)[1̂S′⊗|ci+〉〈ci+|⊗1̂E ] = [1̂S′⊗|cf+〉〈cf+|⊗1̂E ]V (U).
Hence, all the conditions of Assumptions 2 are satisfied.

d. Discretized paths of Hamiltonians with time-reversal

Here we modify the setup of section G 3 b such that it
incorporates time-reversal, and satisfies the conditions in
Assumptions 2.

We let {|c±l 〉}Ll=0 be a set of orthonormal elements
spanning the Hilbert space HC of the control system C.

For the family of Hermitian operators (H̃l)
L
l=0, let

HS′C :=
L∑
l=0

H̃l ⊗ P lC ,

P lC :=|c+l 〉〈c
+
l |+ |c

−
l 〉〈c

−
l |,

H :=HS′C ⊗ 1̂E + 1̂SC ⊗HE .

(G21)

To compare with Assumptions 2 we have

|ci±〉 = |c±0 〉, |cf±〉 = |c±L 〉,

Hi
S′ = H̃0, Hf

S′ = H̃L,

P iC = P 0
C , P fC = PLC ,

H⊥ =

L−1∑
l=1

H̃l ⊗ P lC .

We next turn to the time-reversals. On HC we define
Y :=

∑L
l=0(|c+l 〉〈c

−
l | + |c

−
l 〉〈c

+
l |). One can confirm that

Y is a unitary operator. Note that B := {|χ(l)
n 〉|c+l 〉}l,n ∪

{|χ(l)
n 〉|c−l 〉}l,n is an orthonormal basis ofHS′C . We define

the time-reversal TS′C(Q) := [1̂S′⊗Y ]Qt[1̂S′⊗Y †], where
t denotes the transpose with respect to the basis B. One
can show that TS′C(HS′C) = HS′C and

TS′C(1̂S′ ⊗ |ci+〉〈ci+|) =1̂S′ ⊗ |ci−〉〈ci−|,
TS′C(1̂S′ ⊗ |cf+〉〈cf+|) =1̂S′ ⊗ |cf−〉〈cf−|.

The time-reversal TE is defined as the transpose with
respect to the basis {|j〉}j∈Z of the energy-ladder. Let
U+

0 , . . . , U
+
L be arbitrary unitary operators on HS′ , and

define

U−L :=
∑
nn′

|χ(L)
n′ 〉〈χ

(0)
n |U+

L |χ
(L)
n′ 〉〈χ

(0)
n |,

U−s :=
∑
nn′

|χ(s)
n′ 〉〈χ

(s+1)
n |U+

s |χ
(s)
n′ 〉〈χ

(s+1)
n |, s = 0, . . . , L− 1,
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as well as the unitary operator

U :=U+
L ⊗ |c

+
0 〉〈c

+
L |+

L−1∑
s=0

U+
s ⊗ |c+s+1〉〈c+s |

+ U−L ⊗ |c
−
L 〉〈c

−
0 |+

L−1∑
s=0

U−s ⊗ |c−s 〉〈c−s+1|.

One can confirm that U is invariant with respect to
TS′C . By an analogous reasoning as in section G 3 c one
can show that the energy conserving unitary operator
V (U) satisfies T (V (U)) = V (U). By the general prop-
erties of time-reversals it thus follows that the opera-
tor V := V (U)L is an energy conserving, time-reversal
symmetric, and unitary operator. The proof that V
also satisfies perfect control V [1̂S′ ⊗ |ci+〉〈ci+| ⊗ 1̂E ] =

[1̂S′ ⊗ |ci+〉〈ci+| ⊗ 1̂E ]V can be done analogously as to
section G 3 b, and thus we can conclude that V := V (U)L

satisfies all the conditions of Assumptions 2.

Appendix H: Conditional fluctuation relations

Here we consider a generalized type of fluctuation re-
lations that naturally includes non-equilibrium states.
This extension may at first sight seem rather radical.
However, our quantum fluctuation relation in Propo-
sition 3 strictly speaking already requires initial non-
equilibrium states, due to the control system, as dis-
cussed in section A 3.

As we have seen in section C 4, the assumption of per-
fect control is a rather strong condition, and typically
requires an energy reservoir spectrum that is unbounded
from below (as well as above). The conditional fluctua-
tion relations allow us to abolish the perfect control (see
section H 7 a). Not only can we avoid unbounded spectra,
but we can also base the conditional fluctuation relations
on finite-dimensional Hilbert spaces (see section H 7 b for
an explicit example).

1. The Gibbs map and the partition map

For a given operator A we define the Gibbs map GA
and the partition map ZA by

GA(Q) :=
1

ZA(Q)
JA(Q), ZA(Q) := TrJA(Q).

By construction, GA(Q) is a density operator whenever Q
is a positive operator (modulo the existence of ZA(Q)).
In the special case that A = βH for β ≥ 0, then
ZβH(1̂) = Zβ(H) and GβH(1̂) = Gβ(H).

An immediate question is what class of density op-
erators that can be reached by the Gibbs map. If H
is a bounded Hermitian operator, then e±βH is a also
bounded, and thus ‖J−βH(ρ)‖ < +∞, where ‖Q‖ :=
sup‖ψ‖ ‖Q|ψ〉‖ denotes the standard operator norm. For

an arbitrary density operator ρ (which by virtue of be-
ing trace class also is bounded, see e.g. [90]) let Q :=
J−βH(ρ)/‖J−βH(ρ)‖. By construction 0 ≤ Q ≤ 1, and
one can confirm that that GβH(Q) = ρ. Hence, for
bounded Hermitian operators H, one can reach all den-
sity operators via the Gibbs map (and thus in particular
if the Hilbert space is finite-dimensional). The issue be-
comes more complicated ifH is unbounded, since we have
to take into account the domain of definition of H and of
e±H . More generally it may be the case that the Gibbs
map does not generate the entire set of density opera-
tors. Although we do use the Gibbs map for unbounded
H, we will nevertheless not consider this question further
in this investigation.

One can further note that GβH is a many-to-one map
from the set of POVM elements, although in a relatively
mild sense. If Q is a POVM element, then rQ for 0 <
r < 1 is also a valid POVM element. The Gibbs map
GβH maps both Q and rQ to the same density operator.

2. Without time-reversal

As mentioned above, the fact that we drop the assump-
tion of perfect control implies a simpler structure. The
first simplification is that we here only need to consider

two subsystems: the energy reservoir E and the rest S̃.
For the general theory there is no need for any further
partitioning into subsystems, but to relate to the results

in previous sections we would let S̃ = S′C = SBC.

Assumptions 3. Let HS̃ and HE be complex Hilbert
spaces

• Let HS̃ and HE be Hermitian operators on HS̃ and
HE, respectively, and let

H := HS̃ ⊗ 1̂E + 1̂S̃ ⊗HE .

• Let V be a unitary operator on HS̃ ⊗HE such that
[H,V ] = 0.

• Let Qi
S̃

and Qf
S̃

be operators on HS̃ such that 0 ≤
Qi
S̃
≤ 1̂S̃ and 0 ≤ Qf

S̃
≤ 1̂S̃.

The operators Qi
S̃

and Qf
S̃

play dual roles in this analy-

sis. First, they correspond to control measurements. For
example, we can form the two POVMs {Qi

S̃
, 1̂S̃ − Q

i
S̃
}

and {Qf
S̃
, 1̂S̃−Q

f

S̃
}. In these POVMs Qi

S̃
and Qf

S̃
are the

‘successful’ outcomes, and the CPMs F̃ and R̃, defined in
(H1) below, maps to the corresponding (non-normalized)
post-measurement states of the reservoir conditioned on
these successful outcomes. (Nothing in this formalism
forces us to use binary POVMs. See the discussion at
the end of section H 3.)

The second role of Qi
S̃

and Qf
S̃

is that the they

parametrize initial states via the Gibbs map GβHS̃
. These



33

roles are switched within the pair, such that for the for-

ward process Qi
S̃

gives the initial state, and Qf
S̃

defines

the control measurement. For the reverse process, Qf
S̃

gives the initial state, and Qi
S̃

the measurement.

We define the completely positive maps

F̃(σ) =TrS̃([Qf
S̃
⊗ 1̂E ]V [GβHS̃

(Qi
S̃

)⊗ σ]V †),

R̃(σ) =TrS̃([Qi
S̃
⊗ 1̂E ]V †[GβHS̃

(Qf
S̃

)⊗ σ]V ).
(H1)

The following is the counterpart of Lemma 1, and is left
without proof.

Lemma 16. With V , HS̃, and HE as in Assumptions
3, it is the case that for every α ∈ C

V [eαHS̃ ⊗ 1̂E ] = [eαHS̃ ⊗ eαHE ]V [1̂S̃ ⊗ e
−αHE ],

[eαHS̃ ⊗ 1̂E ]V = [1̂S̃ ⊗ e
−αHE ]V [eαHS̃ ⊗ eαHE ].

(H2)

Proposition 8. With Assumptions 3, the CPMs F̃ and
R̃ as defined in (H1) satisfy

ZβHS̃
(Qi

S̃
)F̃ = ZβHS̃

(Qf
S̃

)JβHE
R̃∗J−1

βHE
. (H3)

Proof. By comparing the definition of the CPM R̃ with
Eqs. (A6) and (A7) in section A 5, we can conclude that

R̃∗(Y )

= TrS̃([GβHS̃
(Qf

S̃
)⊗ 1̂E ]V [Qi

S̃
⊗ Y ]V †)

=
1

ZβHS̃
(Qf

S̃
)
TrS̃

(
[Qf

S̃
⊗ 1̂E ]

[e−βHS̃/2 ⊗ 1̂E ]V [Qi
S̃
⊗ Y ]V †[e−βHS̃/2 ⊗ 1̂E ]

)
[Lemma 16]

=
1

ZβHS̃
(Qf

S̃
)
eβHE/2TrS̃

(
[Qf

S̃
⊗ 1̂E ]V

[e−βHS̃/2Qi
S̃
e−βHS̃/2 ⊗ JβHE

(Y )]V †
)
eβHE/2

=
ZβHS̃

(Qi
S̃

)

ZβHS̃
(Qf

S̃
)
J−1
βHE
◦ F̃+ ◦ JβHE

(Y ).

(H4)

Hence ZβHS̃
(Qf

S̃
)R̃∗ = ZβHS̃

(Qi
S̃

)J−1
βHE
◦ F̃+ ◦JβHE

. By

multiplying from the left with JβHE
and from the right

with J−1
βHE

we obtain Eq. (H3).

3. With time-reversal

Assumptions 4. Let HS̃ and HE be complex Hilbert

spaces. Let TS̃ and TE be time-reversals on S̃ and E,
respectively, and let T := TS̃ ⊗ TE.

• Let HS̃ and HE be Hermitian operators on HS̃ and
HE, respectively, and let

H := HS̃ ⊗ 1̂E + 1̂S̃ ⊗HE . (H5)

• Let V be a unitary operator on HS̃ ⊗HE such that
[H,V ] = 0.

• Let Qi+
S̃

and Qf+

S̃
be an operator on HS̃ such that

0 ≤ Qi+
S̃
≤ 1̂S̃ and 0 ≤ Qf+

S̃
≤ 1̂S̃.

• Let TE(HE) = HE, TS̃(HS̃) = HS̃, and T (V ) = V .

Define Qi−
S̃

:= TS̃(Qi+
S̃

) and Qf−
S̃

:= TS̃(Qf+

S̃
).

These assumptions are constructed such that the triple

V,Qi
S̃

:= Qi+
S̃
, Qf

S̃
:= Qf+

S̃
satisfies Assumptions 3. Si-

multaneously, the triple V,Qi
S̃

:= Qf−
S̃
, Qf

S̃
:= Qi−

S̃
also

satisfies Assumptions 3.
By Lemma 3 and Lemma 4 it follows that 0 ≤ Qi+

S̃
≤

1̂S̃ implies 0 ≤ Qi−
S̃
≤ 1̂S̃ and analogous for Qf−

S̃
.

Lemma 17. Let T be a time-reversal and A an operator
such that T (A) = A. Then

JAT = T JA,
ZA
(
T (Q)

)
= ZA(Q),

GA
(
T (Q)

)
= T

(
GA(Q)

)
,

Tr
(
QJA(R)

)
= Tr

(
JA†(Q)R

)
.

(H6)

Hence if A† = A, then Tr
(
QJA(R)

)
= Tr

(
JA(Q)R

)
.

Define the CPMs

F̃+(σ) =TrS̃([Qf+

S̃
⊗ 1̂E ]V [GβHS̃

(Qi+
S̃

)⊗ σ]V †),

R̃+(σ) =TrS̃([Qi+
S̃
⊗ 1̂E ]V †[GβHS̃

(Qf+

S̃
)⊗ σ]V ),

F̃−(σ) =TrS̃([Qi−
S̃
⊗ 1̂E ]V [GβHS̃

(Qf−
S̃

)⊗ σ]V †),

R̃−(σ) =TrS̃([Qf−
S̃
⊗ 1̂E ]V †[GβHS̃

(Qi−
S̃

)⊗ σ]V ).

(H7)

The CPMs F̃± and R̃± describe the unnormalized map-
ping from the input to the output conditioned on the
successful control measurement. The corresponding suc-
cess probabilities are given by the traces. (In section
H 6 b we shall consider these success probabilities in the
special case of energy translation invariance.) Analogous
to Lemma 11 one can prove the following.

Lemma 18. With Assumptions 4, the CPMs R̃+ and

F̃− as defined in Eq. (H7) are related as

TER̃+ = F̃−TE (H8)

and thus

R̃∗+ = F̃	− . (H9)

The proof is obtained by combining the definition of
R̃+ in Eq. (H7) with the general fact that T1

(
Tr2(ρ)

)
=

Tr2

(
[T1 ⊗ T2](ρ)

)
, and the time-reversal symmetry.
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Proposition 9 (Conditional quantum fluctuation rela-

tion). With Assumptions 4, the CPMs F̃+ and F̃− as
defined in Eq. (H7), are related as

ZβHS̃
(Qi

S̃
)F̃+ = ZβHS̃

(Qf
S̃

)JβHE
F̃	−J−1

βHE
. (H10)

Here we use the notation ZβHS̃
(Qi

S̃
) := ZβHS̃

(Qi+
S̃

) =

ZβHS̃
(Qi−

S̃
) and ZβHS̃

(Qf
S̃

) := ZβHS̃
(Qf+

S̃
) =

ZβHS̃
(Qf−

S̃
).

Proof. The triple V , Qi+
S̃

, and Qf+

S̃
from Assumptions

4 satisfies Assumptions 3 with Qi
S̃

:= Qi+
S̃

, Qf
S̃

:=

Qf+

S̃
. Hence, Proposition 8 is applicable and yields

ZβHS̃
(Qi

S̃
)F̃+ = ZβHS̃

(Qf
S̃

)JβHE
R̃∗+J−1

βHE
. The applica-

tion of Lemma 18 to the above equation results in equa-
tion (H10).

Note that Proposition 9 only makes a statement con-
cerning pairs of measurement operators. It does not
make any assumptions on to POVMs that these mea-
surement operators may be members of. For example,
instead of basing the induced CPMs in (H7) on the pair

(Qi+
S̃
, Qf+

S̃
) we could equally well obtain fluctuation rela-

tions for each of the pairs (Qi+
S̃
, 1̂−Qf+

S̃
), (1̂−Qi+

S̃
, Qf+

S̃
),

and (1̂−Qi+
S̃
, 1̂−Qf+

S̃
). There is also no need to assume

that the POVMs are binary. For two POVMs {Qi+
S̃,k
}k

and {Qf+

S̃,l
}l one can, for each possible combination of

POVM elements (Qi+
S̃,k
, Qf+

S̃,l
), construct the correspond-

ing CPMs F̃ (k,l)
± as in (H7), where each of these pairs

satisfies the conditional fluctuation relation (H10).

4. Generally no decoupling of diagonals

In section D 1 we showed that the channels F± induced
on the reservoir are such that the dynamics of the modes
of coherence decouples, thus yielding a separation into
several off-diagonal Crooks relations. The reader may
wonder whether something similar is true for the con-
ditional CPMs F̃±. In section D 1 the starting point
was Lemma 12, which shows that F± and R± commute
with the commutator with respect to HE . The following
Lemma shows that this is generally not true for the con-
ditional CPMs F̃± and R̃±, and thus we cannot expect to
have a separation in to diagonal and off-diagonal fluctu-
ation relations in this more general case. (For an explicit
example of such ‘mixing’ of diagonal and off-diagonal el-
ements, see section H 7 b.)

Lemma 19. With Assumptions 4, the CPM F̃+ defined

in Eq. (H7) satisfies the following relation

[HE , F̃+(σ)] = F̃+([HE , σ])

+ TrS̃

(
(Qf+

S̃
⊗ 1̂E)V

(
GβHS̃

([HS̃ , Q
i+

S̃
])⊗ σ

)
V †
)

+ TrS̃

((
[HS̃ , Q

f+

S̃
]⊗ 1̂E

)
V
(
GβHS̃

(Qi+
S̃

)⊗ σ
)
V †
)
.

(H11)

Analogous statements hold for F̃− and R̃±.

The proof is a straightforward verification, much anal-
ogous to the reasoning in the proof of Lemma 12.

5. Nevertheless a diagonal conditional fluctuation
relation

Since there is generally no decoupling between the
modes of coherence, it may at first sight seem like there is
no separation into diagonal and off-diagonal Crooks rela-
tions. However, it turns out that the diagonal fluctuation
relation exists generally.

In section D 2 we described the evolution of the diago-
nal elements with respect to the basis {|n〉}n in terms of
the conditional probabilities p±(m|n). We here define the

analogous objects p̃±(m|n) := 〈m|F̃±(|n〉〈n|)|m〉. One
can interpret p̃±(m|n) as the probability that we would
measure the energy reservoir in state m in addition to ob-
taining a successful outcome of the control measurement,
given that the reservoir initially is in state n.

With Assumptions 4 and otherwise the setup of Propo-
sition 4 we get

ZβHS̃
(Qi

S̃
) p̃+(m|n) = ZβHS̃

(Qf
S̃

)eβ(En−Em)p̃−(n|m).

(H12)
The proof is more or less identical to the proof of Propo-
sition 4, but with Proposition 9 as the starting point.

One should note that although (H12) is very similar to
Proposition 4, the relation (H12) should be interpreted
with care since there is no decoupling between the differ-
ent diagonal modes of coherence. Hence, the probability
〈m|F̃±(σ)|m〉 to detect a specific final energy eigenstate
m not only depends on the diagonal elements 〈n|σ|n〉 of
the input state, but also on the off-diagonal elements.
We can thus no longer claim that an initial energy mea-
surement would not perturb a final energy measurement.

6. The special case [HS̃ , Q
i±
S̃

] = 0 and [HS̃ , Q
f±
S̃

] = 0

In the case that the measurement operators Qi±
S̃

and

Qf±
S̃

commute with HS̃ we can regain several of the prop-

erties of the unconditional fluctuation relations. By a
direct application of Lemma 19 we get [HE , F̃±(σ)] =

F̃±([HE , σ]). Analogously to how we obtained Corollary
1 from Lemma 12, and with analogous assumptions, we
also regain the decoupling of the different off-diagonal



35

modes of coherence, i.e., 〈m′|F̃±(|n′〉〈n|)|m〉 = 0, if
Em′ − En′ 6= Em − En. It follows that much of the
arguments in section G can be reiterated. Due to the de-
coupling it is again meaningful to define the transitions
among the elements of a diagonal with a specified offset
δ, q̃δ±(m|n) := 〈m|F̃±(|n〉〈n′|)|m′〉. As the counterpart
of Proposition 5 we obtain a Crooks relation for each δ,

ZβHS̃
(Qi

S̃
)q̃δ+(m|n) = eβ(En−Em)ZβHS̃

(Qf
S̃

)q̃δ−(n|m).

a. A classical conditional Crooks relation

By additionally assuming the energy translation invari-
ant model as in section G one regains the energy trans-

lation invariance of the induced CPMs ∆jF̃±(σ)∆†
k

=

F̃±
(
∆jσ∆†

k)
. Analogous to section G 1 we can also de-

fine

P̃±(w) :=
∑

j,j′:j−j′=w/s

p̃±(j′|j)〈j|σ|j〉, (H13)

P̃±(w) can be interpreted as the probability that the en-
ergy reservoir looses the energy w and that the control
measurement is successful. The decoupling again guar-
antees the stability of the transition probabilities under
repeated energy measurements. We obtain the classical
conditional Crooks relation

ZβHS̃
(Qi

S̃
)P̃+(w) = eβwZβHS̃

(Qf
S̃

)P̃−(−w) (H14)

in a manner very similar to what we did in section G 1.

b. A classical conditional Jarzynski relation

The control measurements do not succeed with unit
probability. However, for the energy translation sym-
metric case, with diagonal measurement operators, the
success probabilities TrF±(σ) and TrR±(σ) become in-
dependent of the state σ of the energy reservoir. To see
this, we first define the following transition probabilities
that do not involve the energy reservoir.

f+ :=Tr
(
Qf+

S̃
UGβHS̃

(Qi+
S̃

)U†
)
,

r+ :=Tr
(
Qi+
S̃
U†GβHS̃

(Qf+

S̃
)U
)
,

f− :=Tr
(
Qi−
S̃
UGβHS̃

(Qf−
S̃

)U†
)
,

r− :=Tr
(
Qf−
S̃
U†GβHS̃

(Qi−
S̃

)U
)
.

(H15)

In words f+ is the probability that we would obtain
the ‘successful’ outcome when we measure the POVM
{Qf+

S̃
, 1̂S̃−Q

f+

S̃
} if the initial state GβHS̃

(Qi+
S̃

) is evolved

under U .
One should keep in mind that since Qf±

S̃
and

Qi±
S̃

commute with HS̃ , it follows that the above

expressions do not involve coherences with respect

to the energy egienbases. For example, if HS̃
is non-degenerate with eigenstates |ψn〉 then f+ =∑
nn′〈ψn|Q

f+

S̃
|ψn〉|〈ψn|U |ψn′〉|2〈ψn′ |GβHS̃

(Qi+
S̃

)|ψn′〉.
One can confirm that the CPMs F̃± and R̃± in (H7)

with V := V (U) as in (G2), and [Qi±
S̃
, HS̃ ] = 0,

[Qf±
S̃
, HS̃ ] = 0, satisfy the following relations

TrF±(σ) = f±Tr(σ), TrR±(σ) = r±Tr(σ), (H16)

F̃±(1̂E) = f±1̂E , R̃±(1̂E) = r±1̂E . (H17)

Hence, the success probabilities of the control measure-
ments are independent of the state of the energy reser-
voir. It is instructive to write the expression for F+ in
(H16) in full

Tr
(
[Qf+

S̃
⊗ 1̂E ]V (U)[GβHS̃

(Qi+
S̃

)⊗ σ]V †(U)
)

= Tr
(
Qf+

S̃
UGβHS̃

(Qi+
S̃

)U†
)
.

Hence, in terms of the success probability, the experi-
ment involving the energy reservoir behaves as if it was
a simpler experiment not including the reservoir, where
the unitary V (U) is replaced by U (but one should keep

in mind that this relies on the assumptions that Qf+

S̃

and Qi+
S̃

that Qi±
S̃

and Qf±
S̃

commutes with HS̃ , and thus

block-diagonalizes with respect to the energy eigenspaces
of HS̃).

By the classical conditional Crooks relation
(H14) it follows that ZβHS̃

(Qi
S̃

)
∑
w e
−βwP̃+(w) =

ZβHS̃
(Qf

S̃
)
∑
w P̃ (−w). As opposed to the unconditional

case,
∑
w P̃ (−w) is generally not equal to 1, but equates

to the success probability of the reverse process, i.e.,∑
w P̃ (−w) =

∑
w p̃−(w/s|0) = TrF̃−(|0〉〈0|) = f−.

Thus

∑
w

e−βwP̃+(w) = f−
ZβHS̃

(Qf
S̃

)

ZβHS̃
(Qi

S̃
)
. (H18)

Given that the control measurement succeeds, we can
define the conditional probability for the work cost w

as P+(w|Qf+

S̃
) := P̃+(w)/

∑
w′ P̃+(w′) = P̃+(w)/f+. By

using this we can rewrite (H18) into the more symmetric
form

〈
e−βW

∣∣Qf+

S̃

〉
=
f−
f+

ZβHS̃
(Qf

S̃
)

ZβHS̃
(Qi

S̃
)
, (H19)

where we use the notation 〈e−βW |Qf+

S̃
〉 :=∑

w e
−βwP+(w|Qf+

S̃
).

The conditional Jarzynski relation in (H19) does re-
mind of the Jarzynski equality under feedback control
[103, 118, 119], and it may be worthwhile to investigate
this potential link further. However, we will not do so in
this investigation.
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7. Examples

a. Abolishing perfect control

As discussed in section (C 4) the perfect control (see
equations (A1) or (C3) and (C4)) can lead to an energy
reservoir that has an unbounded spectrum from both
above and below. From a physical point of view a spec-
trum that is unbounded from below is a somewhat un-
comfortable. With the conditional fluctuation relations
we no longer need to assume perfectly functioning control
systems. We could for example let the transition from ini-
tial to final control state fail if the energy reservoir runs
out of energy, so to speak. Here we demonstrate this in
the case of a harmonic oscillator as the energy reservoir.

We make use of a model that was introduced in quite
a detail in section IV in the Supplemental Material of
[31]. Due to this we will here only give the most brief
description. The main point is that one can construct a
family of unitary operators V+(U) that act identically to
V (U) as long as the energy in the energy reservoir is high
enough. (We do not employ of the ‘injection’ of energy
that was used in [31], but instead allow the procedure to
fail.)

Apart from the Hamiltonian for the energy reservoir,
H+
E := s

∑+∞
j=0 j|j〉〈j| and the class of unitary operators

V+(U), the rest of the model is as in section G 3 c. We

let HS′C := Hi
S′ ⊗ P iC + Hf

S′ ⊗ P
f
C , and let szin, |χin〉 be

the eigenvalues and eigenvectors of Hi
S′ , and szfn, |χfn〉

be the eigenvalues and eigenvectors of Hf
S′ . To simplify

the notation we let {|ψn〉}4Nn=1 denote the orthonormal
set {|χin〉|ci+〉, |χin〉|ci−〉, |χfn〉|cf+〉, |χfn〉|cf−〉}Nn=1. Sim-
ilarly, let zn denote the combined set of numbers
{zin, zfn}n. Furthermore define zmax = maxn zn and

zmin = minn zn. The projectors {P (l)
+ }l≥zmin

onto the

eigenspaces of HS′C ⊗ 1̂E + 1̂S′C ⊗HE are

P
(l)
+ =

∑
n:l≥zn

|ψn〉〈ψn| ⊗ |l − zn〉〈l − zn|, ∀l ≥ zmin.

For all l ≥ zmax this simplifies as P
(l)
+ =∑

n=1...N |ψn〉〈ψn| ⊗ |l − zn〉〈l − zn|. Let us define the
following map

V+(U) :=
∑

l≥zmax

Vl(U) +

zmax−1∑
l=zmin

P
(l)
+ ,

Vl(U) :=
∑
n,n′

|ψn〉〈ψn|U |ψn′〉〈ψn′ | ⊗ |l−zn〉〈l−zn′ |.

For each unitary operator U on HS′C it follows that
V+(U) is unitary on HS′CE . We let TE be the trans-
pose with respect to {|j〉}j≥0, and let TS̃ be such that
TS′C(HS′C) = HS′C . (Note Lemma 7.) From this it
follows that T := TS′C ⊗ TE is such that T

(
V+(U)

)
=

V+

(
TS′C(U)

)
.

One can also confirm that V+(U)|ψ〉|j〉 = V (U)|ψ〉|j〉
for all |ψ〉 ∈ HS′C and all j ≥ zmax − zmin, where V (U)
is defined in G2.

More generally, in terms of the eigenprojectors P
(l)
+ of

the total Hamiltonian H, it is the case that V+(U)P
(l)
+ =

V (U)P
(l)
+ for l ≥ zmax, while V+(U)P

(l)
+ = P

(l)
+ for zmax−

1 ≥ l ≥ zmin. One can say that V+ ‘censors’ our choice
of U in the sense that if U entails an energy change that
we cannot afford, then V+(U) avoids to perform the too
expensive parts of the operation.

Define the projector P≥zmax−zmin :=∑
j≥zmax−zmin

|j〉〈j|. The condition

P≥zmax−zminσP≥zmax−zmin = σ guarantees that the
action of V+(U) and V (U) are identical.

As an example, let us modify the setup in section
G 3 c such that we replace V (U) with V+(U). For the
sake of illustration we consider an extreme case where
Hi
S′ := s|χi1〉〈χi1| + 2s|χi2〉〈χi2| and Hf

S′ := 3s|χf1 〉〈χ
f
1 | +

4s|χf2 〉〈χ
f
2 |. For these choices, all transitions from the ini-

tial to the final Hamiltonian requires energy. Moreover,
zmax = 4 and zmin = 1. One furthermore finds that

P
(1)
+ =|χi1〉〈χi1| ⊗ P iC ⊗ |0〉〈0|,

P
(2)
+ =|χi1〉〈χi1| ⊗ P iC ⊗ |1〉〈1|+ |χi2〉〈χi2| ⊗ P iC ⊗ |0〉〈0|,

P
(3)
+ =|χi1〉〈χi1| ⊗ P iC ⊗ |2〉〈2|+ |χi2〉〈χi2| ⊗ P iC ⊗ |1〉〈1|

+ |χf1 〉〈χ
f
1 | ⊗ P

f
C ⊗ |0〉〈0|,

P
(l)
+ =|χi1〉〈χi1| ⊗ P iC ⊗ |l − 1〉〈l − 1|

+ |χi2〉〈χi2| ⊗ P iC ⊗ |l − 2〉〈l − 2|

+ |χf1 〉〈χ
f
1 | ⊗ P

f
C ⊗ |l − 3〉〈l − 3|

+ |χf2 〉〈χ
f
2 | ⊗ P

f
C ⊗ |l − 4〉〈l − 4|,

for l ≥ 4. Hence, assuming the control in state |ci+〉
and the reservoir in the vacuum state |0〉, we find that
V+(U)[ρ ⊗ |ci+〉〈ci+| ⊗ |0〉〈0|]V+(U)† = ρ ⊗ |ci+〉〈ci+| ⊗
|0〉〈0| no matter what U we feed into it, and thus the con-
trol measurement will always signal ‘fail’. On the other
hand, if there are four or more quanta of energy in the
energy reservoir, then V+(U)[ρ⊗|ci+〉〈ci+|⊗σ]V+(U)† =
V (U)[ρ⊗|ci+〉〈ci+|⊗σ]V (U)†. In particular, if we would
could choose U as in (G20), then the control measure-
ment would aways succeed.

b. S̃ and E as single qubits

The conditional fluctuation relations allow us to treat
energy reservoirs with finite-dimensional Hilbert spaces.

Here we consider the extreme case where both S̃ and the
energy reservoir E are single spin-half particles.

We assume that the spins are associated with mag-
netic moments, and that they are affected by a constant
external magnetic field, such that they are in resonance,
i.e., the splitting of the eigenenergies are identical. More



37

precisely,

HS̃ = HE = −1

2
s|0〉〈0|+ 1

2
s|1〉〈1|,

for some s > 0. The identical energy gap implies that
there exist non-trivial energy conserving unitary opera-
tions with respect to H := HS̃ ⊗ 1̂E + 1̂S̃ ⊗ HE . More
specifically, H has the eigenenergies −s, 0, s and corre-
sponding energy eigenspaces Sp{|0, 0〉}, Sp{|0, 1〉, |1, 0〉},
and Sp{|1, 1〉}. An energy conserving unitary operator
thus has to be block diagonal with respect to these en-
ergy eigenspaces,

V =eiχ− |0〉〈0| ⊗ |0〉〈0|+ eiχ+ |1〉〈1| ⊗ |1〉〈1|
+ U1,1|0〉〈0| ⊗ |1〉〈1|+ U1,2|0〉〈1| ⊗ |1〉〈0|
+ U2,1|1〉〈0| ⊗ |0〉〈1|+ U2,2|1〉〈1| ⊗ |0〉〈0|,

where χ+, χ− ∈ R, and where U = [Uj,k]j,k=1,2 is a uni-
tary 2× 2 matrix.

Let us choose TS̃ and TE as the transposes with respect
to the eigenbasis {|0〉, |1〉} on the two spaces, respectively.
Thus TS̃(HS̃) = HS̃ and TE(HE) = HE . Let T := TS̃ ⊗
TE . One can confirm that T (V ) = V if and only if

U = eiχ
[
−e−iδ cos θ sin θ

sin θ eiδ cos θ

]
,

where χ, δ, θ ∈ R. (There are no restrictions on χ+, χ−.)

The expansion of the CPMs F̃± for arbitrary Qi±
S̃

and

Qf±
S̃

in terms of the {|0〉, |1〉} basis results in remark-

ably bulky and unilluminating expressions. Therefore we
shall here only consider the simpler special case where

Qi+
S̃

:= 1̂S̃ , Qf+

S̃
:= |ψ〉〈ψ|, |ψ〉 := 1√

2
|0〉 + i 1√

2
|1〉. Con-

sequently Qi−
S̃

= TS̃(Qi+
S̃

) = 1̂S̃ , Qf−
S̃

= TS̃(Qf+

S̃
) =

|ψ∗〉〈ψ∗|, |ψ∗〉 = 1√
2
|0〉−i 1√

2
|1〉. The partition maps take

the values ZβHS̃
(Qi

S̃
) = eβs/2 + e−βs/2 and ZβHS̃

(Qf
S̃

) =

(eβs/2 + e−βs/2)/2.

The Gibbs map applied to Qi+
S̃

= 1̂S̃ gives the the

initial state of the forward process

GβHS̃
(Qi+

S̃
) =

eβs/2|0〉〈0|+ e−βs/2|1〉〈1|
eβs/2 + e−βs/2

,

which is the Gibbs state of HS̃ . The initial state of the
reversed process is

GβHS̃
(Qf−

S̃
) =

1

eβs/2 + e−βs/2

(
eβs/2|0〉〈0|

+ e−βs/2|1〉〈1|+ i|0〉〈1| − i|1〉〈0|
)
.

For the unitary operator V we assume that χ = χ± =
0, δ = 0 (while we let θ be arbitrary). This results in

F̃+(σ) =
1

eβs/2 + e−βs/2
(V0+σV

†
0+ + V1+σV

†
1+),

V0+ :=
eβs/4√

2
(|0〉〈0| − cos θ|1〉〈1| − i sin θ|0〉〈1|),

V1+ :=
e−βs/4√

2
(|1〉〈1|+ cos θ|0〉〈0|+ i sin θ|1〉〈0|),

and

F̃−(σ) =
1

eβs/2 + e−βs/2
(V0−σV

†
0− + V1−σV

†
1−),

V0− :=eβs/4(|0〉〈0| − cos θ|1〉〈1|)
− i sin θe−βs/4|1〉〈0|,

V1− :=e−βs/4(|1〉〈1|+ cos θ|0〉〈0|)
+ i sin θeβs/4|0〉〈1|.

By a slightly tedious but straightforward calculation one
can confirm that F̃± satisfy the conditional fluctuation
relation (H10), as we already know that they should, due
to Proposition 9.

One can also confirm that F̃± provide examples for the
fact that the conditional maps in general do not decouple
the evolution of diagonal and off-diagonal elements. For
example

F̃+(|0〉〈0|) =
1

2

1

eβs/2 + e−βs/2

[
sin2 θe−βs/2|1〉〈1|

+ (cos2 θe−βs/2 + eβs/2)|0〉〈0|

+ i sin θ cos θe−βs/2(|1〉〈0| − |0〉〈1|)
]
,

F̃−(|0〉〈1|) =
cos θ

eβs/2 + e−βs/2

[
(e−βs/2 − eβs/2)|0〉〈1|

+ i sin θ(|1〉〈1| − |0〉〈0|)
]
.

Hence, diagonal and off-diagonal elements get mixed. In
particular, a diagonal state such as |0〉〈0| can be turned
into a state with off-diagonal elements, which is a conse-
quence of the non-diagonal measurement operator.

Appendix I: Alternative formulation

Up to now we have focused on the dynamics of the
energy reservoir, and formulated all our results in terms
of channels or CPMs induced on this system. Here we
shall take a step back and briefly re-examine the structure
of these fluctuation theorems from a global point of view.

1. Global invariance

Let us for a moment forget the division into systems,
heat baths, and energy reservoirs, and consider one sin-
gle system with a global Hamiltonian H, and a unitary
evolution V that is energy conserving [H,V ] = 0, and
where this system satisfies a a time-reversal symmetry
T (H) = H, T (V ) = V . For any pair of global measure-
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ment operators Qi+ and Qf+, it is the case that

Tr
(
Qf+V JβH(Qi+)V †

)
=Tr

[
T
(
Qf+V e−βH/2Qi+e−βH/2V †

)]
=Tr

[
Qi−e−βH/2V Qf−V †e−βH/2

]
=Tr

(
Qi−V JβH(Qf−)V †

)
,

(I1)

where as usual Qi− := T (Qi+) and Qf− := T (Qf+). In
other words, (I1) expresses an invariance of the quantity
Tr
(
QfV JβH(Qi)V †

)
with respect to the transformation

(Qi, Qf ) 7→ (Qi
′
, Qf

′
) :=

(
T (Qf ), T (Qi)

)
. All our fluc-

tuation relations can in some sense be regarded as special
cases of this global invariance, which here emerges from
the combination of time-reversal symmetry and energy
conservation.

Time-reversal symmetry alone is not enough to derive
this invariance; energy conservation also is needed. How-
ever, if it would be the case that V = e−itH/~, then it
follows that [H,V ] = 0, and the assumption T (H) = H
would automatically yield T (V ) = V . Hence, in this case
time-reversal symmetry would be enough.

The relation (I1) can be rewritten as the global fluctu-
ation relation (28) in the main text.

2. Factorization of non-interacting degrees of
freedom

The global symmetry in (I1) does not explain how
we can express fluctuation theorems in terms of chan-
nels or CPMs on the relevant and accessible systems.
Throughout this investigation we have repeatedly used
the fact that the exponential function factorizes over non-
interacting degrees of freedom. To be more precise, sup-
pose that the global system be decomposed into two sub-
systems 1 and 2 (i.e., H = H1 ⊗H2) and assume a non-

interacting Hamiltonian H = H1 ⊗ 1̂2 + 1̂1 ⊗ H2, with
the consequence that JβH = JβH1 ⊗ JβH2 . For prod-
uct measurement operators Q = Q1 ⊗Q2 this results in
the factorization of the partition map ZβH(Q1 ⊗ Q2) =
ZβH1(Q1)ZβH2(Q2), and thus also for the Gibbs map
GβH(Q1 ⊗Q2) = GβH1(Q1)⊗ GβH2(Q2). In other words,
the two states GβH1

(Q1) and GβH2
(Q2) can be prepared

separately on respective system.
One way in which the factorization could fail would

be if the global Hamiltonian is interacting, and this is
the topic of section K. In section I 4 we briefly discuss
another more exotic possibility, namely if the thermal
states would not be characterized by the Gibbs states.

3. Inaccessible degrees of freedom

In the context of statistical mechanics we would typi-
cally deal with large numbers of degrees of freedom that
we have no access to, e.g., the heat bath. This means
that we neither have direct access to prepare arbitrary

states on these degrees of freedom, nor to make arbi-
trary measurements on them. (One can of course imag-
ine some form of partial accessibility, but to keep things
simple we here assume ‘all or nothing’.) Thus imagine
that the total system is divided into two subsystem 1
and 2, where 2 is inaccessible to us, and 1 is completely
accessible. We also assume that the global Hamiltonian
is non-interacting H = H1 ⊗ 1̂2 + 1̂1 ⊗H2.

Since system 2 is inaccessible to us, all available mea-
surement operators are of the form Q = Q1 ⊗ 1̂2, i.e., we
can only perform the trivial measurement on system 2.
Correspondingly, a trivial preparation would be an equi-
librium state Gβ(H2) on the unaccessible degrees of free-
dom, with the philosophy is that nature provides equi-
librium states ‘for free’. Hence, all possible initial states
that we would be able to prepare would be of the form
ρ = ρ1 ⊗ Gβ(H2). Note that this presupposes the non-
interacting global Hamiltonian; without a well defined
local Hamiltonian H2 it would generally not be meaning-
ful to speak of Gβ(H2) as being the equilibrium state of
2.

To further highlight how the factorization property
enters in the treatment of the unaccessible degrees of
freedom, let us take a closer look at the global fluctu-
ation relation in (28). Suppose that the forward process
would be characterize by a measurement operator of the

allowed form Qf+ = Qf+
1 ⊗ 1̂2. Then we know that

the initial state of the reverse process would be given by

GβH(Qf−1 ⊗1̂2), where we have assumed T = T1⊗T2. Due

to the factorization property we know that GβH(Qf−1 ⊗
1̂2) = GβH1

(Qf−1 ) ⊗ GβH2
(1̂2) = GβH1

(Qf−1 ) ⊗ Gβ(H2).
In other words, trivial measurements on the unaccessible
degrees of freedom gets mapped to trivial preparations on
these systems, and vice versa. However, if GβH(Q1 ⊗ 1̂2)
would not factorize, this would no longer be true.

This line of reasoning may also fail if GβH2(1̂2) would
not correspond to the equilibrium state on system 2. This
would be the case if we would choose β in our fluctuation
relations to be different from the actual β′ of the heat
bath. From a purely mathematical point of view, the
fluctuation relations are of course valid for all values of
β irrespective of whether they correspond to the actual
temperature or not. However, in this case Gβ′(H2) rather
than Gβ(H2) would be the true equilibrium state. Hence,
it would require an active intervention on system 2 to

prepare the state GβH1
(Qf−1 )⊗Gβ(H2).

4. The issue with generalized Gibbs maps

As an illustration of the particular role of the expo-
nential function and the Gibbs distribution, let us imag-
ine that we attempt to use some other form of function,
e.g., in the context of generalized notions of equilibrium
states. More precisely, let g be any reasonable (possi-
bly complex valued) function, and define the generalized
map J gβH(Q) := g(βH)Qg(βH)†, as well as the general-
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ized Gibbs and partition maps

GgβH(Q) :=
J gβH(Q)

ZgβH(Q)
, ZgβH(Q) := TrJ gβH(Q).

Here Gg(1̂) = g(βH)g(βH)†/Tr
(
g(βH)g(βH)†

)
would

presumably take the role of a generalized form of equi-
librium state.

One could imagine to construct fluctuation relations
for this generalized setup, and it is indeed straightforward
to repeat the derivation of (I1) to obtain

Tr
(
Qf+V J gβH(Qi+)V †

)
= Tr

(
Qi−V J gβH(Qf−)V †

)
,

At first sight this may seem like an endless source of
non-standard fluctuation theorems for hypothetical non-
Gibbsian distributions. However, since the factorization
property fails in the general case, we can for example not
reproduce the reasoning in section I 3.

Appendix J: Pre-correlations

Here we provide some further details on the example of
section V C in the main text, where we describe a setup
similar to the one for the quantum Crooks relation (2),
but where we wish to allow for the possibility that S and
E are pre-correlated. The quantum Crooks relation (2)
is formulated in terms of channels on the energy reservoir
E. However, this implicitly assumes that E initially is
uncorrelated with the degrees of freedom it is about to
interact with. Hence, in the present case we cannot ex-
press fluctuation relations in terms of channels or CPMs
on E alone, but an alternative is to formulate a fluctu-
ation relation in terms of channels on the joint system
SE.

We let the global Hamiltonian be

H :=Hi
SE ⊗ 1̂B ⊗ P iC +Hf

SE ⊗ 1̂B ⊗ P fC
+ 1̂SE ⊗HB ⊗ 1̂C

where Hi
SE and Hf

SE are the initial and final Hamiltoni-
ans of the combined system and energy reservoir (where
we can let these be non-interacting if we so wish). More-

over, like in Assumptions 2, P iC and P fC are the projectors
onto Sp{|ci+〉, |ci−〉} and Sp{|cf+〉, |cf−〉}, respectively.

The total time-reversal is of the form T := TSE⊗TB⊗
TC . (This is different from the decomposition TSBC⊗TE
that we use in Section C.) We assume

TB(HB) = HB , TSE(Hi
SE) = Hi

SE , TSE(Hf
SE) = Hf

SE .

The two latter conditions can for example be achieved
if TSE is the transpose with respect to an orthonormal

basis where both Hi
SE and Hf

SE are represented as real
matrices. We furthermore let TC be such that

TC(|ci+〉〈ci+|) =|ci−〉〈ci−|,
TC(|cf+〉〈cf+|) =|cf−〉〈cf−|.

We assume a global unitary evolution operator V that
is energy conserving [V,H] = 0, time-reversal symmetric
T (V ) = V , and satisfies perfect control

V [1̂SBE ⊗ |ci+〉〈ci+|] = [1̂SBE ⊗ |cf+〉〈cf+|]V.

Under these conditions one can show, much along the
same lines as our previous derivations, that the channels

F+(χ) :=TrCB(V [|ci+〉〈ci+| ⊗G(HB)⊗ χ]V †),

F−(χ) :=TrCB(V [|cf−〉〈cf−| ⊗G(HB)⊗ χ]V †),

satisfy the relation F+ = JβHf
SE
F	−J−1

βHi
SE

.

Appendix K: Approximate fluctuation relations

As discussed in section A 2 we have up to now sep-
arated the role of the global Hamiltonian H as charac-
terizing energy, from its role as generator of the time
evolution. The latter role we have so far assigned to the
unitary operator V , with the restriction that it should be
energy conserving [H,V ] = 0. Here we consider the mod-
ifications needed to re-join these two roles in the sense
that we let V = e−itH/~ (which automatically satisfies
the condition for energy conservation [H,V ] = 0).

Some issues appear when we try to fit V = e−itH/~

with our previous assumptions on the structure of H.
For example, in Assumptions 2 we explicitly assumed
that the global Hamiltonian is of the form H = HS′C ⊗
1̂E + 1̂S′C ⊗HE , where HS′C = Hi

S′ ⊗ P iC +Hf
S′ ⊗ P

f
C +

H⊥. We furthermore assumed that the initial state of
the control system in the forward process has support
in the subspace onto which P iC projects. If the global

evolution is given by V = e−itH/~, this implies that the
the control system will never leave the initial subspace,
and thus fail to satisfy the assumption of perfect control.
In other words, we cannot obtain the relevant dynamics
with these combinations of assumptions.

This particular issue does not apply to the setting of
the conditional fluctuation relations in Assumptions 4,
since we there neither assume a special structure of HS′C ,
nor of the initial state. However, in the conditional setup
we still assume that the global Hamiltonian is to the form
H = HS̃ ⊗ 1̂E + 1̂S̃ ⊗ HE . In other words, we assume

that there is no interaction between S̃ = S′C and the
energy reservoir E. Needless to say, if the global evolu-
tion would be given by V = e−itH/~, then the state of
the energy reservoir would be left unaffected by what-
ever happens in S′C, and the whole notion of the energy
reservoir thus becomes meaningless. Hence, we again find
that an evolution of the form V = e−itH/~ clashes with
our general assumptions in the sense that it generates a
trivial dynamics.
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1. A general notion of approximate fluctuation
relations

To highlight the general structure we consider a sep-
aration into two anonymous subsystems 1 and 2. The
reason for this is that we will consider different ways to
partition the subsystems S, B, C, and E.

a. The approximation

In section I 2 we pointed out that for non-interacting
Hamiltonians H = H1 ⊗ 1̂2 + 1̂1 ⊗ H2, the function
JβH satisfies the factorization property JβH(Q1⊗Q2) =
JβH1

(Q1)⊗JβH2
(Q2). Since we in this section abandon

these convenient non-interacting Hamiltonians, the ques-
tion is what is supposed to replace them. Intuitively, the
idea is that for positive operators with suitable support,
the action of the global Hamiltonian H can be approxi-
mated by Hi

1 ⊗ 1̂2 + 1̂1 ⊗Hi
2, for some local Hamiltoni-

ans Hi
1 and Hi

2. Similarly, for another suitable class of
operators, the action of the global Hamiltonian can be

approximated by Hf
1 ⊗ 1̂2 + 1̂1 ⊗ Hf

2 , for Hamiltonians

Hf
1 and Hf

2 . (For the sake of generality and flexibility
we here allow different initial and final Hamiltonians on
both subsystems.)

The more exact formulation is based on the JβH map.
We assume a product time reversal T = T1⊗T2 and local

approximate Hamiltonians Hi
1, Hf

1 , Hi
2, Hf

2 such that

T (H) = H,

T1(Hi
1) = Hi

1, T1(Hf
1 ) = Hf

1 ,

T2(Hi
2) = Hi

2, T2(Hf
2 ) = Hf

2 ,

(K1)

Suppose that for the measurement operators

Qi+1 , Qi+2 , Qf+
1 , Qf+

2 the approximate factorization
holds

JβH(Qi+1 ⊗Q
i+
2 ) ≈JβHi

1
(Qi+1 )⊗ JβHi

2
(Qi+2 ),

JβH(Qf+
1 ⊗Qf+

2 ) ≈JβHf
1
(Qf+

1 )⊗ JβHf
2
(Qf+

2 ).
(K2)

The idea is that under these conditions we should obtain
the following approximate fluctuation relation

ZβHi
1
(Qi1)ZβHi

2
(Qi2)PVβHi [Q

i+
1 ⊗Q

i+
2 → Qf+

1 ⊗Qf+
2 ]

≈ZβHi
1
(Qf1 )ZβHi

2
(Qf2 )PVβHf [Qf−1 ⊗Qf−2 → Qi−1 ⊗Q

i−
2 ],

(K3)

where Hi := Hi
1⊗ 1̂2 +1̂1⊗Hi

2, Hf := Hf
1 ⊗ 1̂2 +1̂1⊗Hf

2 ,

and where V = e−itH/~ for some t ∈ R, and Qi−1 :=

T1(Qi+1 ), Qi−2 := T2(Qi+2 ), Qf−1 := T1(Qf+
1 ), Qf−2 :=

T2(Qf+
2 ).

It is straightforward to make an informal ‘derivation’
of (K3), which combines the approximations in (K2) with
the assumed properties (K1) of the time reversal together

with [V,H] = 0 and T (V ) = V

Tr
(
[Qf+

1 ⊗Qf+
2 ]V [JβHi

1
(Qi+1 )⊗ JβHi

2
(Qi+2 )]V †

)
≈Tr

(
[Qf+

1 ⊗Qf+
2 ]V JβH(Qi+1 ⊗Q

i+
2 )V †

)
=Tr

(
[Qi−1 ⊗Q

i−
2 ]JβH(V [Qf−1 ⊗Qf−2 ]V †)

)
=Tr

(
[Qi−1 ⊗Q

i−
2 ]V JβH(Qf−1 ⊗Qf−2 )V †

)
≈Tr([Qi−1 ⊗Q

i−
2 ]V [JβHf

1
(Qf−1 )⊗ JβHf

2
(Qf−2 )]V †).

b. Quantitative formulation of the approximation

Here we consider one way to make the approxima-
tion as expressed by (K2) and (K3) quantitative. We
here assume that the underlying Hilbert spaces are finite-
dimensional. Define

dHH1,H2
(Q1, Q2)

:=
∥∥JβH1(Q1)⊗ JβH2(Q2)− JβH(Q1 ⊗Q2)

∥∥
1
,

(K4)

where we use the standard operator norm ‖Q‖ :=

sup‖ψ‖=1 ‖Q|ψ〉‖ and the trace norm ‖Q‖1 := Tr
√
Q†Q.

By Lemma 6, we can conclude that ‖Qi−1 ‖ = ‖Qi+1 ‖
and analogous for Qi±2 , Qf±1 , Qf±2 . Moreover, one can

confirm that dH
Hi

1,H
i
2
(Qi−1 , Qi−2 ) = dH

Hi
1,H

i
2
(Qi+1 , Qi+2 ) and

dH
Hf

1 ,H
f
2

(Qf−1 , Qf−2 ) = dH
Hf

1 ,H
f
2

(Qf+
1 , Qf+

2 ).

As a bit of a technical side-remark one may note that
none of the proofs explicitly use the assumption that V =
e−itH/~. We do still only rely on [V,H] = 0 and T (V ) =
V . However, due to the more forgiving structure we can
now assume that V = e−itH/~, and yet have a non-trivial
evolution on the energy reservoir.

Proposition 10. Let H, Hi
1, Hi

2, Hf
1 , Hf

2 be Hermi-
tian operators, let T , T1, T2 be time reversals that satisfy
the conditions in (K1), and let V be a unitary operator
such that [H,V ] = 0 and T (V ) = V (which in particular
allows us to choose V = e−itH/~ for some t ∈ R). Then∣∣∣∣ZβHi

1
(Qi1)ZβHi

2
(Qi2)PVβHi [Q

i+
1 ⊗Q

i+
2 → Qf+

1 ⊗Qf+
2 ]

−ZβHi
1
(Qf1 )ZβHi

2
(Qf2 )PVβHf [Qf−1 ⊗Qf−2 → Qi−1 ⊗Q

i−
2 ]

∣∣∣∣
≤ ‖Qf+

1 ‖‖Q
f+
2 ‖dHHi

1,H
i
2
(Qi+1 , Qi+2 )

+ ‖Qi+1 ‖‖Q
i+
2 ‖dHHf

1 ,H
f
2

(Qf+
1 , Qf+

2 ),

where Hi := Hi
1⊗ 1̂2 +1̂1⊗Hi

2, Hf := Hf
1 ⊗ 1̂2 +1̂1⊗Hf

2 ,

and where Qi−1 := T1(Qi+1 ), Qi−2 := T2(Qi+2 ), Qf−1 :=

T1(Qf+
1 ), Qf−2 := T2(Qf+

2 ).

Proof. As the first step one can confirm the identity

Tr
(
[Qf+

1 ⊗Qf+
2 ]V JβH(Qi+1 ⊗Q

i+
2 )V †

)
=Tr

(
[Qi−1 ⊗Q

i−
2 ]V JβH(Qf−1 ⊗Qf−2 )V †

)
.

(K5)
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For a more compact notation let σi := JβHi
1
(Qi+1 ) ⊗

JβHi
2
(Qi+2 ) and σf := JβHf

1
(Qf−1 )⊗ JβHf

2
(Qf−2 ). Then∣∣Tr([Qf+

1 ⊗Q
f+
2 ]V σiV

†)− Tr([Qi−1 ⊗Q
i−
2 ]V σfV

†)
∣∣

[By (K5) and the triangle inequality]

≤
∣∣∣Tr
(
V †[Qf+

1 ⊗Qf+
2 ]V

(
σi − JβH(Qi+1 ⊗Q

i+
2 )
))∣∣∣

+
∣∣∣Tr
(
V †[Qi−1 ⊗Q

i−
2 ]V

(
JβH(Qf−1 ⊗Qf−2 )− σf

))∣∣∣
[By the general relation |Tr(AQ)| ≤ ‖A‖‖Q‖1]

≤ ‖Qf+
1 ‖‖Q

f+
2 ‖dHHi

1,H
i
2
(Qi+1 , Qi+2 )

+ ‖Qi+1 ‖‖Q
i+
2 ‖dHHf

1 ,H
f
2

(Qf+
1 , Qf+

2 ).

2. Approximate conditional fluctuation relations

Here we consider an approximate versions of the condi-
tional fluctuation relations in section H. The general case
is treated in the following subsection, and in the next we
consider a more concrete special case of a particle as a
control system.

a. The general case

Here we identify system 1 of the previous section with

S̃, and system 2 with E. We assume

T (H) = H,

TS̃(Hi
S̃

) = Hi
S̃
, TS̃(Hf

S̃
) = Hf

S̃
,

TE(Hi
E) = Hi

E , TE(Hf
E) = Hf

E .

(K6)

Similar to the conditional fluctuation relations in section
H we define CPMs on the energy reservoir conditioned
on the successful control measurements

F̃+(σ) :=TrS̃([Qf+

S̃
⊗ 1̂E ]V [GβHi

S̃
(Qi+

S̃
)⊗ σ]V †),

F̃−(σ) :=TrS̃([Qi−
S̃
⊗ 1̂E ]V [GβHf

S̃

(Qf−
S̃

)⊗ σ]V †),
(K7)

One can verify that

P
F̃+

βHi
E

[Qi+E → Qf+
E ] = PVβHi [Q

i+

S̃
⊗Qi+E → Qf+

S̃
⊗Qf+

E ],

P
F̃−
βHf

E

[Qf−E → Qi−E ] = PVβHf [Qf−
S̃
⊗Qf−E → Qi−

S̃
⊗Qi−E ],

which together with Proposition 10 yield∣∣∣∣ZβHi
S̃
(Qi

S̃
)ZβHi

E
(QiE)P

F̃+

βHi
E

[Qi+E → Qf+
E ]

−ZβHf

S̃

(Qf
S̃

)ZβHi
E

(QfE)P
F̃−
βHf

E

[Qf−E → Qi−E ]

∣∣∣∣
≤ ‖Qf+

S̃
‖‖Qf+

E ‖d
H
Hi

S̃
,Hi

E
(Qi+

S̃
, Qi+E )

+ ‖Qi+
S̃
‖‖Qi+E ‖d

H
Hf

S̃
,Hf

E

(Qf+

S̃
, Qf+

E ).

(K8)

With (K8) as starting point one can also obtain an ap-
proximate fluctuation relation in terms of channels, i.e.,
more in the spirit of (25). Let us define the following
measure of difference between maps

Diff(φ1, φ2) := sup
Qi≥0,Qf≥0

∣∣Tr
(
Qfφ2(Qi)

)
− Tr

(
Qfφ1(Qi)

)∣∣
‖Qi‖‖Qf‖

.

(K9)
This particular choice of measure has no deeper reason
than that it makes the derivation simple.

Di(Q
i+

S̃
) := sup

Q≥0

1

‖Q‖
dHHi

S̃
,Hi

E
(Qi+

S̃
, Q),

Df (Qf+

S̃
) := sup

Q≥0

1

‖Q‖
dH
Hf

S̃
,Hf

E

(Qf+

S̃
, Q).

(K10)

By the approximate conditional fluctuation relation (K8)
it follows that

Diff
(
ZβHi

S̃
(Qi

S̃
)F̃+ ◦ JβHi

E
, ZβHf

S̃

(Qf
S̃

)JβHf
E
◦ F̃	−

)
≤ ‖Qf+

S̃
‖Di(Q

i+

S̃
) + ‖Qi+

S̃
‖Df (Qf+

S̃
).

(K11)

Hence, this is a quantitative version of the approximate
conditional relation (34) in the main text.

In (K8) we only consider the error for a specific pair

Qi+E , Qf+
E , while in (K11) we ask for the worst case error

over the entire set of positive semi definite operators. It
may very well be the case that pointwise error can be
small for some specific choice of operators, while uniform
error would be large. Hence, the formulation via the
transition probabilities can be more ‘forgiving’ than the
formulation via channels. This should be compared with
the non-approximate case, where the choice largely is a
matter of convenience.

b. The special case of a control-particle

Imagine a joint Hamiltonian of the form

H =
1

2MC
P̂ 2
C ⊗ 1̂S′E +HS′E(X̂C). (K12)

Here MC is the mass and X̂C , P̂C are the canonical po-
sition and momentum operators of the control particle.
Assume furthermore that HS′E(x) is of the form

HS′E(x) =

{
Hi
S′ ⊗ 1̂E + 1̂S′ ⊗Hi

E , x ≤ xi,
Hf
S′ ⊗ 1̂E + 1̂S′ ⊗Hf

E , x ≥ xf ,
(K13)

while in the interval [xi, xf ] there is some non-trivial de-
pendence on x (where we assume xi < xf ). The Hamil-

tonians Hi
S̃

and Hf

S̃
would in this case be

Hi
S̃

:=
1

2MC
P̂ 2
C ⊗ 1̂S′ + 1̂C ⊗Hi

S′ ,

Hf

S̃
:=

1

2MC
P̂ 2
C ⊗ 1̂S′ + 1̂C ⊗Hf

S′ .

(K14)
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Hence, outside the ‘interaction region’ [xi, xf ] all the
three systems systems S′, E, and C are non-interacting.

For the sake of illustration we consider the special case
of measurement operators of the form

Qi±
S̃

:= Qi±C ⊗Q
i±
S′ , Qf±

S̃
:= Qf±C ⊗Q

f±
S′ , (K15)

where Qi±S′ , Q
f±
S′ are measurement operators on S′, and

where Qi±C , Qf±C are measurement operators on C which
are ‘concentrated’ in the regions (−∞, xi] and [xf ,+∞),
respectively. It seems intuitively reasonable that the fur-
ther down from xi that Qi+C is supported, the better is
the approximation

JβH(Qi+
S̃
⊗Q)

≈ JβHi
S̃
(Qi+

S̃
)⊗ JβHi

E
(Q)

= JβK̂(Qi+C )⊗ JβHi
S′

(Qi+S′ )⊗ JβHi
E

(Q),

(K16)

where we have introduced the notation K̂ := P̂ 2
C/(2MC),

and used the fact that (K14) defines non-interacting
Hamiltonians between S′ and C.

The approximate fluctuation relation (K11) takes the
form

Diff
(
ZβK̂(Qi+C )ZHi

S′
(Qi+S′ )F̃+ ◦ JβHi

E
,

ZβK̂(Qf+
C )ZHf

S′
(Qf+

S′ )JβHf
E
◦ F̃	−

)
≤ ‖Qf+

C ‖‖Q
f+
S′ ‖Di(Q

i+
C ⊗Q

i+
S′ )

+ ‖Qi+C ‖‖Q
i+
S′ ‖Df (Qf+

C ⊗Q
f+
S′ ).

Note that if Qf+
C is a spatial translation of Qi+C , i.e.,

such that Qf+
C = eirP̂CQi+C e−irP̂C for some r ∈ R, then

ZβK̂(Qi+C ) = ZβK̂(Qf+
C ).

One may wonder how to choose the time-reversals TS̃
and TE . The simplest case is if there exist orthonormal
complete bases of HS′ and HE , such that the family of

Hamiltonians HS′E(x), Hi
S′ , H

f
S′ , H

i
E , and Hf

E are real
valued matrices in these bases. In this case we can choose
TE and TS′ as transpositions with respect to these bases,
and TC as the transposition with respect to the position
representation, and let TS̃ = TC ⊗ TS′ . This guarantees
that (K6) holds.

As a further comment one may observe that what we
assign as being the energy reservoir is largely a matter
of choice. In this particular example it is clear that also
the control particle can donate energy.

3. Joint control and energy reservoir

Here we turn to a setting where the control and the
energy reservoir are one and the same system. Hence,
instead of dividing the global system between E and S′C,
we here divide it into CE and S′.

a. The general case

Here we let system 1 (in section K 1 a) be S′ and system
2 be CE. We assume

T (H) = H,

TS′(Hi
S′) = Hi

S′ , TS′(Hf
S′) = Hf

S′ ,

TCE(Hi
CE) = Hi

CE , TCE(Hf
CE) = Hf

CE ,

(K17)

as well as [V,H] = 0 and T (V ) = V . By Proposition 10∣∣∣∣ZβHi
S′

(QiS′)ZβHi
CE

(QiCE)P+

−ZβHf

S′
(QfS′)ZβHf

CE
(QfCE)P−

∣∣∣∣
≤ ‖Qf+

S′ ‖‖Q
f+
CE‖d

H
Hi

S′ ,H
i
CE

(Qi+S′ , Q
i+
CE)

+ ‖Qi+S′ ‖‖Q
i+
CE‖d

H
Hf

S′ ,H
f
CE

(Qf+
S′ , Q

f+
CE),

(K18)

where we introduce the following short hand notation for
the transition probabilities

P+ :=PVβHi [Q
i+
S′ ⊗Q

i+
CE → Qf+

S′ ⊗Q
f+
CE ],

P− :=PVβHf [Qf−S′ ⊗Q
f−
CE → Qi−S′ ⊗Q

i−
CE ].

(K19)

Hence, (K18) is the quantitative version of (37) in the
main text.

b. A single particle as both control and energy reservoir

In section K 2 b we considered the case of a particle
whose motion implements the time-dependent Hamilto-
nian in Crooks relation. There we regarded the degrees
of freedom of the particle as separate from the desig-
nated energy reservoir. This made it possible to express
CPMs on the energy reservoir conditioned on the con-
trol measurements on the control particle. An intuitively
reasonable alternative would be that the motion of the
control particle also fuels the process, i.e., it is the initial
kinetic energy of the particle that that drives the whole
non-equilibrium process. The global Hamiltonian is

H =
1

2MCE
P̂ 2
CE ⊗ 1̂S′ +HS′(X̂CE), (K20)

where MCE is the mass, and X̂CE , P̂CE are the canonical
position and momentum operators of the particle.

We assume

HS′(x) =

{
Hi
S′ , x ≤ xi,

Hf
S′ , x ≥ xf ,

(K21)

i.e., the Hamiltonian for S′ is constant outside the
interaction region. Since the particle moreover is
free outside the interaction region, we can take the
initial and final approximate Hamiltonians for CE
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FIG. 10: Approximate factorization. To assess
the quality of the approximate factorization we evaluate
dH
K̂,E0σz/2

(1̂S′ ⊗ |α〉〈α|) (red curve), dH
K̂,E0σx/4

(1̂S′ ⊗ |α〉〈α|)
(green curve), dH

K̂,E0n(ry0)·σ/2
(1̂S′ ⊗ |α〉〈α|) (blue curve) for

α := r + 2i with r ∈ [−10, 10]. The dotted black lines cor-
respond to the borders of the interaction region. The red
circles are the positions of the coherent states that gives
the measurement operators Qi+CE = | − 4 + 2i〉〈−4 + 2i|,
Qf+CE = |4 + 2i〉〈4 + 2i|.

to be Hi
CE = Hf

CE = 1
2MCE

P̂ 2
CE =: K̂. For

operators Qi+CE and Qf+
CE that are well localized

outside the interaction region it seems reasonable
that JβH(Qi+S′ ⊗ Qi+CE) ≈ JβHi

S′
(Qi+S′ ) ⊗ JβK̂(Qi+CE)

and JβH(Qf+
S′ ⊗ Qf+

CE) ≈ JβHf

S′
(Qf+

S′ ) ⊗ JβK̂(Qf+
CE).

Under these conditions we thus get the approxi-
mate fluctuation relation ZβHi

S′
(Qi+S′ )ZβK̂(Qi+CE)P+ ≈

ZβHf

S′
(Qf−S′ )ZβK̂(Qf−CE)P−, with the quantitative version

in (K18).

c. Numerical evaluation

To make the approximate fluctuation relations a bit
more concrete we here make a numerical evaluation of
a special case of the combined control energy reservoir
particle in the previous section. We consider a single
particle of mass M that is restricted to move along the
y-axis, and this spatial degree of freedom is taken as the
combined control-energy reservoir CE. The particle also
carries a magnetic moment corresponding to a spin-half
degree of freedom, which we interpret as system S′. (A
single spin is of course somewhat ridiculous regarded as
a combined system and heat bath, but this example only
serves to illustrate the formalism, for which the sizes of
the participating systems do not matter.) We assume
that the spin interacts with an external magnetic field
that is time-independent, but is a function of y. The total

Hamiltonian can be expressed in terms of the differential
operator

H = − ~2

2M

d2

dy2
+

1

2
E0σS′ · n(y), (K22)

where n(y) determines the strength and direction of the
external magnetic field as a function of y, and where

σS′ = (σ
(x)
S′ , σ

(y)
S′ , σ

(z)
S′ ) are the Pauli spin operators, with

σ(x) = |0〉〈1| + |1〉〈0|, σ(y) = i|0〉〈1| − i|1〉〈0|, σ(z) =
|1〉〈1|− |0〉〈0|, with {|0〉, |1〉} being the eigenbasis of σ(z).
For ‖n‖ = 1 it follows that E0 is the excitation energy of
the spin.

To get a particularly simple model we here assume
that n(y) = (0, 0, 1) for y < −y0, n(y) = [3/4 −
y/(4y0)]

(
sin(π(y+y0)

4y0
), 0, cos(π(y+y0)

4y0
)
)

for −y0 ≤ y ≤ y0,

and n(y) = (1/2, 0, 0) for y0 < y. Hence, for all positions
below −y0 the magnetic field is directed along the z-axis.
Within the interaction region [−y0, y0] the field rotates
in the xz-plane until it aligns with the x-axis at y0, si-
multaneously as it decreases in strength to the half. We

choose Hi
CE = Hf

CE = P̂ 2/(2M) =: K̂, Hi
S′ := E0σz/2,

and Hf
S′ := E0σx/4.

Define TCE to be the transpose with respect to the co-
ordinate representation, and thus TCE(K̂) = K̂. For the
chosen n(y), the Hamiltonian n(y) · σ is represented as a
real valued matrix in the eigenbasis of σz. Hence, TS′ can
be chosen as the transpose with respect to the eigenbasis
of σz, and thus TS′

(
n(y) · σ

)
= n(y) · σ, TS′(Hi

S′) = Hi
S′ ,

and TS′(Hf
S′) = Hf

S′ . We also get T (H) = H.
As measurement operators on CE we choose projectors

onto coherent states Qi+CE := |αi〉〈αi|, Qf+
CE := |αf 〉〈αf |,

where the corresponding wave-functions are

ψα(y) =
1

(2π)1/4

1√
σ
e−Im(α)2 exp[−1

4
(
y

σ
− 2α)2].

Here, σ is the standard deviation, and 2σRe(α) the ex-
pectation value, of the corresponding Gaussian distribu-
tion |ψα(y)|2. (With the coherent state defined as the dis-
placed ground state of a harmonic oscillator, σ is deter-
mined by the parameters of the chosen oscillator.) Sim-
ilarly, ~Im(α)/σ is the average momentum of the coher-
ent state. One can confirm that TCE(|α〉〈α|) = |α∗〉〈α∗|,
and thus the time-reversal changes the sign of the mo-
mentum, but leaves the position intact. For the spin
degree of freedom we let the measurement operators be

Qi+S′ = Qf+
S′ = 1̂S′ . We choose (somewhat arbitrarily)

the parameters such that ~2/(ME0y
2
0) = 0.1, βE0 = 1

and σ = y0/2. This means that the typical thermal en-
ergy kT is equal to the excitation energy of the spin (for
y ≤ −y0), and the width of the wave-packet is of the same
order as the size of the interaction region. Figure 10 dis-
plays the numerical evaluation of the factorization error
dHH1,H2

(1̂S′ , |α〉〈α|) as defined in (K4). Here we choose

H1 := K̂, and as H2 we choose E0σz/2 (red curve), and
E0σx/4 (green curve), for α := r+ 2i with r ∈ [−10, 10].
Since σ = y0/2 it follows that the spatial wave-packet ψα
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is centered at ry0. For the sake of comparison we also
include the ‘local’ approximation H2 := E0n(ry0) · σ/2
(blue curve), where for a state centered at the location
ry0 we approximate the total Hamiltonian H with the
non-interacting Hamiltonian K̂ + E0n(ry0) · σ/2. By
construction, the blue curve coincides with the green for
r ≤ −1, and with the red for 1 ≤ r. Maybe unsurpris-
ingly, the local approximation is better than the others
inside the interaction region.

We now turn to the test of the approximate fluctu-
ation relation, and for this purpose we choose an evo-
lution time t such that tE0/~ = 21.5. (This particu-
lar choice happens to make the transition probability for
the forward process fairly large.) In figure 11 the final
states of the particle in the forward and reverse processes
are depicted, where we use the measurement operators

Qi+CE := | − 4 + 2i〉〈−4 + 2i|, Qf+
CE := |4 + 2i〉〈4 + 2i|,

and Qi+S′ = Qf+
S′ := 1̂S′ . The transition probabilities [in

equation (K19)] of the forward and reverse processes are
P+ ≈ 0.36 and P− ≈ 0.39, respectively. The error in the
approximate fluctuation relation, as defined by the left
hand side of equation (K18) becomes |ZiP+ − ZfP−| ≈
1.6∗10−8 where Zi := Zβ(E0σz/2)ZβK̂(Qi+CE) and Zf :=

Zβ(E0σx/4)ZβK̂(Qf−CE). An estimate of the relative error

is |ZiP+ −ZfP−|/(|ZiP+|+ |ZfP−|) ≈ 2.2 ∗ 10−8. One
can also calculate the upper bound in the right hand
side of (K18), which becomes dH

Hi
S′ ,H

i
CE

(Qi+S′ , Q
i+
CE) +

dH
Hf

S′ ,H
f
CE

(Qf+
S′ , Q

f+
CE) ≈ 1.2∗10−5 (where we use the fact

that ‖Qi+S′ ‖ = 1, ‖Qf+
S′ ‖ = 1, ‖Qi+CE‖ = 1, ‖Qf+

CE‖ = 1).

Appendix L: Some additional remarks

1. Detailed balance

One way of obtaining fluctuation relations in the clas-
sical case is via stochastic dynamics that satisfies detailed
balance [3, 7, 143]. The reader may have noted that we
in our derivations never refer to detailed balance. The
reason is that energy conservation and time reversal sym-
metry in some sense supersedes it, which we give a brief
demonstration of here.

Let H1 and H2 be non-degenerate Hermitian opera-
tors on a finite-dimensional Hilbert space. We let the
global Hamiltonian be non-interacting H = H1 ⊗ 1̂2 +
1̂1⊗H2, and assume an energy conserving unitary evolu-
tion [H,V ] = 0, and a product time-reversal T = T1⊗T2

with T1(H1) = H1 and T2(H2) = H2. Assuming system 2
is in equilibrium we can define the transition probability
of changing the state of system 1 from eigenstate n to n′

as

p(n′|n) := Tr([|n′〉〈n′| ⊗ 1̂2]V [|n〉〈n| ⊗G(H2)]V †). (L1)

By using the energy conservation (and the observation

G(H)[|n〉〈n| ⊗ 1̂2] = Gn(H1)|n〉〈n| ⊗ G(H2)) it follows
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FIG. 11: The forward and reverse process. The den-
sity operators of the combined control and energy reservoir
particle in the position representation (the absolute values
of the matrix elements) at the end of the forward (left) and
reverse (right) process. The pairs of horizontal and vertical
lines shows the borders of the interaction region. The red
circles indicate the positions of the initial states GβK̂(Qi+CE)

and GβK̂(Qf+CE) for the initial and final measurement opera-

tors Qi+CE = | − 4 + 2i〉〈−4 + 2i|, Qf+CE = |4 + 2i〉〈4 + 2i|.
The error in the approximate fluctuation relation is small (ap-
proximately 1.6 ∗ 10−8), which corresponds to the fact that
the measurement operators that are well separated from the
interaction region. One should compare this with the final
wave packets, where one clearly can see that these have sig-
nificant weights within the interaction region. This illustrates
the fact that it is the properties of the measurement opera-
tors, rather than the final states, that matter for the quality
of the approximation.
One can also note that the final states are not mirror im-
ages of each other. Hence, the symmetry discussed in section
I 1 does not imply that the wave packets of the forward and
reverse process have to be symmetric images of each other.

that

p(n′|n)Gn(H1) =Gn′(H1)Tr([|n〉〈n| ⊗ 1̂2]

V †[|n′〉〈n′| ⊗G(H2)]V ).

This is almost what we want, apart from the fact that
the evolution is reversed. This is the point where we can
make use of the time reversal symmetry (and Lemma
7) to obtain p(n′|n)Gn(H1) = p(n|n′)Gn′(H1), i.e., the
transition probability p(n′|n) satisfies detailed balance.

2. Heat baths in the Gibbs state

We do in this investigation often assume that the heat
bath initially is in the Gibbs state corresponding to a
given temperature. Although not unusual assumption,
e.g., in derivations of master equations [144] and [94] (in
particular sections 3.6.2.1 and 4.2.2), it is nevertheless
worth considering the justification, especially since one
may argue that it is not the heat bath per se that is
Gibbs distributed, but rather systems that are weakly
coupled to it. One possible argument would be that the
environment can be separated into a ‘near environment’
that is relevant on the time scale of the experiment, and
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a ‘far environment’ (or ‘super bath’) that puts the near
environment in the Gibbs state (see e.g. the discussions
in [10]). Another approach would be to assume that an
ideal heat bath in some sense behaves as if it is Gibbs
distributed. These issues approach the question of ther-

malization in closed systems, and along these lines one
may speculate that typicality [115, 116] could be em-
ployed to obtain a more refined analysis of fluctuation
relations.
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