
STABLE SHOCK FORMATION FOR NEARLY PLANE SYMMETRIC
WAVES

JARED SPECK∗†, GUSTAV HOLZEGEL∗∗††, JONATHAN LUK∗∗∗†††, WILLIE WONG∗∗∗∗

Abstract. In an influential 1964 article, P. Lax studied genuinely nonlinear 2×2 hyperbolic
PDE systems (in one space dimension). He showed that a large set of smooth initial data lead
to bounded solutions whose first spatial derivatives blow up in finite time, a phenomenon
known as wave breaking. In the present article, we study the Cauchy problem for two
classes of quasilinear wave equations in two space dimensions that are closely related to the
systems studied by Lax. When the data have one-dimensional symmetry, Lax’s methods
can be applied to the wave equations to show that a large set of smooth initial data lead to
wave breaking. Our main result is that the Lax-type wave breaking is stable under small
Sobolev-class perturbations of the data that break the symmetry. Moreover, we give a
detailed, constructive description of the asymptotic behavior of the solution all the way up
to the first singularity, which is a shock driven by the intersection of true null (characteristic)
hyperplanes. We also outline how to extend our results to the compressible irrotational Euler
equations. To derive our results, we develop an extension of Christodoulou’s framework for
studying shock formation that applies to a new solution regime in which wave dispersion is
not present.

Keywords: characteristics; eikonal equation; eikonal function; genuinely nonlinear hyper-
bolic systems; null hypersurface; singularity formation; vectorfield method; wave breaking

Mathematics Subject Classification (2010) Primary: 35L67; Secondary: 35L05, 35L10,
35L72, 35Q05,76N10

January 7, 2016

Contents

1. Introduction 4
1.1. Summary of the main results 8
1.2. Overview of the analysis 10
1.3. Overview of the main steps in the proof 15

†JS gratefully acknowledges support from NSF grant # DMS-1162211, from NSF CAREER grant #
DMS-1454419, from a Sloan Research Fellowship provided by the Alfred P. Sloan foundation, and from a
Solomon Buchsbaum grant administered by the Massachusetts Institute of Technology.
††GH gratefully acknowledges support from a grant from the European Research Council.
†††JL gratefully acknowledges support from NSF postdoctoral fellowship # DMS-1204493.
∗Massachusetts Institute of Technology, Cambridge, MA, USA. jspeck@math.mit.edu.
∗∗Imperial College, London, UK. g.holzegel@imperial.ac.uk.
∗∗∗Cambridge University, Cambridge, UK jluk@dpmms.cam.ac.uk.
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1. Introduction

In his influential article [42], Lax showed that genuinely nonlinear 2× 2 hyperbolic PDE
systems1 exhibit finite-time blow-up for a large set of smooth initial data. The blow-up is
of wave breaking type, that is, the solution remains bounded but its first derivatives blow
up. Lax’s results are by now considered classic and have been extended in many directions
(see the references in Sect. 1.4). Moreover, his robust approach can easily be extended to
treat many related systems in one space dimension that, strictly speaking, have not been
addressed in the literature. In particular, his approach could be used to prove finite-time
blow-up for solutions to various quasilinear wave equations in one space dimension; under
suitable assumptions on the nonlinearities, one could prove blow-up by first writing the wave
equation as a first-order system in the two characteristic derivatives of the solution and then
applying Lax’s methods. In the present article, we study the Cauchy problem for two classes
of such wave equations in two space dimensions, specifically equations (1.0.1a) and (1.0.3a)
below. Lax’s methods yield a proof of blow-up for solutions to these wave equations arising
from data with one-dimensional symmetry, that is, data that depend only on a single real
variable x1 ∈ R. Our main result is that the Lax-type wave breaking is stable under small
perturbations of the data that break the symmetry. To close our proof, we must derive a sharp
description of the blow-up that, even for data with one-dimensional symmetry, provides more
information than does Lax’s approach. In Sect. 1.2, we explain the set of data covered by our
main results in more detail. See Subsect. 1.1 for a summary of the results and Theorem 15.1
for the full statement.

For some evolution equations in more than one space dimension that enjoy special alge-
braic structure, short proofs of blow-up by contradiction are known; see Sect. 1.4 for some
examples. In contrast, the typical wave equation that we study does not have any obvious

1Such systems involve two unknowns in one time and one space dimension.
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features which suggest a short path to proving blow-up. In particular, the equations do not
generally derive from a Lagrangian, admit conserved quantities, or have signed nonlineari-
ties. They do, however, enjoy a key property: they have special null structures (which are
distinct from the well-known null condition of S. Klainerman). These null structures mani-
fest in several ways, including the absence of certain terms in the equations (as we explain
in more detail in the discussion surrounding equation (1.2.7)) as well as the preservation
of certain good product structures under suitable commutations and differentiations of the
equations (as we explain in Sect. 1.4.4). The null structures are not visible relative to the
standard coordinates. Thus, to expose them, we construct a dynamic “geometric coordinate
system” and a corresponding vectorfield frame2 that are adapted to the true characteristics
corresponding to the nonlinear flow; see Sect. 1.2 for an overview. We are then able to exploit
the null structures to give a detailed, constructive description of the singularity, which is a
shock in the regime under study. A key feature of the proof is that the solution remains
regular relative to the geometric coordinates at the low derivative levels. The blow-up occurs
in the partial derivatives of the solution relative to the standard rectangular coordinates and
is tied to the degeneration of the change of variables map between geometric and rectangular
coordinates; see Sect. 1.2 for an extended overview of these issues.

Our approach to proving shock formation is based on an extension of the remarkable
framework of Christodoulou, who proved [11] detailed shock-formation results for solutions to
the relativistic Euler equations in irrotational regions of R1+3 (that is, regions with vanishing
vorticity) in a very different solution regime: the small-data dispersive regime. In that
regime, relative to a geometric coordinate system analogous to the one mentioned in the
previous paragraph, the solution enjoys time decay3 at the low derivative levels corresponding
to the dispersive nature of waves (see Sect. 1.4.4 for more details). The decay plays an
important role in controlling various error terms and showing that they do not interfere
with the shock-formation mechanisms. In contrast, in the regime under study here, the
solutions do not decay. This basic feature is tied to the fact that in one space dimension,
wave equations (and more generally the equations studied by Lax) are essentially transport
equations. For this reason, we must develop a new approach to controlling error terms and
to showing that the solution exists long enough for the shock to form; see Sect. 1.4.4 for an
overview of some of the new ideas. As we explain below in more detail, a key ingredient in
our analysis is the propagation of a two-size-parameter ε̊− δ̊ hierarchy all the way up to the
shock. Here and throughout, δ̊ > 0 is a not necessarily small parameter that corresponds to
the size of derivatives in a direction that is transversal to the true characteristics and ε̊ ≥ 0
is a small parameter that corresponds to the size of derivatives in directions tangent to the
true characteristics. The fact that we are able to propagate the hierarchy is deeply tied to
the special null structures mentioned in the previous paragraph.

We can alternatively describe the solutions that we study as “nearly plane symmetric.”
By a “plane symmetric solution,” we mean one that depends only on a time coordinate

2Our frame (1.2.4) is closely related to a null frame, which is the reason that we use the phrase “special

null structures.” To obtain what is usually called a null frame, we could replace the vectorfield X̆ in (1.2.4)

with the null vectorfield µL + 2X̆. All of our results could be derived by using the null frame in place of
(1.2.4).

3As in our work here, the blow-up in the small-data dispersive regime occurs in the rectangular coordinate
partial derivatives of the solution.
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t ∈ R and a single rectangular spatial coordinate x1 ∈ R. To study nearly plane symmetric
solutions, we consider wave equations on spacetimes with topology R × Σ, where t ∈ R
corresponds to time, (x1, x2) ∈ Σ := R × T corresponds to space, and the torus T := [0, 1)
(with the endpoints identified and equipped with the usual smooth orientation and with a
corresponding local rectangular coordinate function x2) corresponds to the direction that
is suppressed in plane symmetry. We have made the assumption Σ = R × T mainly for
technical convenience; we expect that suitable wave equations on other manifolds could be
treated using techniques similar to the ones we use in the present article. The first class of
problems that we study is the Cauchy problem for geometric wave equations:4

�g(Ψ)Ψ = 0, (1.0.1a)

(Ψ|Σ0 , ∂tΨ|Σ0) = (Ψ̊, Ψ̊0), (1.0.1b)

where �g(Ψ) denotes the covariant wave operator of the Lorentzian metric g(Ψ) and (Ψ̊, Ψ̊0) ∈
H19
e (Σ0)×H18

e (Σ0) (see Remarks 1.1 and 1.2 just below) are data with support contained in
the compact subset [0, 1]×T of the initial Cauchy hypersurface Σ0 := {t = 0} ' R×T. Here
and throughout,5 �g(Ψ)Ψ = (g−1)αβ(Ψ)DαDβΨ, where6 D is the Levi-Civita connection of
g(Ψ). We assume that relative to the rectangular coordinates {xα}α=0,1,2 (which we explain
in more detail in Sect. 2.2), we have gαβ(Ψ) = mαβ + O(Ψ), where mαβ = diag(−1, 1, 1)
is the standard Minkowski metric and O(Ψ) is an error term, smooth in Ψ and . |Ψ| in
magnitude when |Ψ| is small. Above and throughout, ∂0, ∂1, and ∂2 denote the corresponding
rectangular coordinate partial derivatives, x0 is alternate notation for the time coordinate t,
and similarly7 ∂t := ∂0. We make further mild assumptions on the nonlinearities ensuring
that relative to rectangular coordinates, the nonlinear terms are effectively quadratic and
fail to satisfy Klainerman’s null condition [34]; see Sect. 2.2 for the details.

Remark 1.1 (Our analysis refers to more than one kind of Sobolev space). Above
and throughout, HN

e (Σ0) denotes the standard N th order Sobolev space with the correspond-

ing norm ‖f‖HN
e (Σ0) :=

{∑
|~I|≤N

∫
Σ0

(∂~If)2 d2x
}1/2

, where ∂~I is a multi-indexed differential

operator representing repeated differentiation with respect to the spatial coordinate partial
derivatives and d2x is the area form of the standard Euclidean metric e on Σ0, which has the
form e := diag(1, 1) relative to the rectangular coordinates. It is important to distinguish
these L2−type norms from the more geometric ones that we introduce in Sect 7.1; the two
kinds of norms drastically differ near the shock.

Remark 1.2 (On the number of derivatives). Although our analysis is not optimal
regarding the number of derivatives, we believe that any implementation of our approach
requires significantly more derivatives than does a typical proof of existence of solutions
to a quasilinear wave equation based on energy methods. It is not clear to us whether
this is a limitation of our approach or rather a more fundamental aspect of shock-forming

4Relative to arbitrary coordinates, (1.0.1a) is equivalent to ∂α
(√

detg(g−1)αβ∂βΨ
)

= 0
5See Sect. 2.1 regarding our conventions for indices, and in particular for the different roles played by

Greek and Latin indices.
6Throughout we use Einstein’s summation convention.
7Note that ∂t is not the same as the geometric coordinate partial derivative ∂

∂t appearing in equation

(2.4.7) and elsewhere throughout the article.
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solutions. Our derivative count is driven by our energy estimate hierarchy, which is based on
a descent scheme in which the high-order energy estimates are very degenerate, with slight
improvements in the degeneracy at each level in the descent. For our proof to work, we
must obtain at least several orders of non-degenerate energy estimates, which requires many
derivatives. See Sect. 1.3.2 for more details.

For convenience, instead of studying the solution in the entire spacetime R×Σ, we study
only the non-trivial future portion of the solution that is completely determined by the
portion of the data lying to the right of the straight line {x1 = 1− U0} ∩ Σ0, where

0 < U0 ≤ 1 (1.0.2)

is a parameter, fixed until Theorem 15.1 (our main theorem), and the data are non-trivial in
the region {1− U0 ≤ x1 ≤ 1} ∩ Σ0 := ΣU0

0 of thickness U0. See Figure 1 for a picture of the
setup, where the curved null hyperplane portion P tU0

and the flat null hyperplane portion P t0
in the picture are described in detail in Sect. 1.2.

P tU0
P t0

Ψ ≡ 0

non-trivial data trivial data

ΣU0
0

U0

x2 ∈ T

x1 ∈ R
Figure 1. The spacetime region under study.

The second class of problems that we study is the Cauchy problem for non-geometric wave
equations:

(g−1)αβ(∂Φ)∂α∂βΦ = 0, (1.0.3a)

(Φ|Σ0 , ∂tΦ|Σ0) = (Φ̊, Φ̊0), (1.0.3b)

where g(∂Φ) is a Lorentzian metric with gαβ(∂Φ) = mαβ + O(∂Φ). We assume that the
data (1.0.3b) are compactly supported as before, but we also assume one extra degree of

differentiability: (Φ̊, Φ̊0) ∈ H20
e (Σ0) × H19

e (Σ0). As we outline in Appendix A, the second
class can essentially be treated in the same way as the first class and thus for the remainder
of the article, we analyze only the first class in detail.
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1.1. Summary of the main results. We now summarize our results. See Theorem 15.1 for
the precise statement. We also provide some extended remarks and preliminary comparisons
to previous work; see Subsect. 1.4 for a more detailed discussion of some related work.

Rough statement of the main results. Under mild assumptions on the nonlinear-
ities described in Sect. 2.2, there exists an open set8 (without symmetry assumptions)

of compactly supported data (Ψ̊, Ψ̊0) ∈ H19
e (Σ0)×H18

e (Σ0) for equation (1.0.1a) whose
corresponding solutions blow up in finite time due to the formation of a shock. The
set contains both large and small data, but each pair (Ψ̊, Ψ̊0) belonging to the set is
close to a plane symmetric9 element of the set; see Subsects. 7.3 and 7.7 for a precise
description of our size assumptions on the data. Finally, we provide a sharp descrip-
tion of the singularity and the blow-up mechanism. Similar results hold for equation
(1.0.3a) for an open set of data contained in H20

e (Σ0)×H19
e (Σ0).

Remark 1.3 (Extending the results to higher spatial dimensions). Our results can
be generalized to higher spatial dimensions (specifically, to the case of Σ := R × Tn for
n ≥ 1) by making mostly straightforward modifications. The only notable difference in higher
dimensions is that one must complement the energy estimates with elliptic estimates in order
to control some terms that completely vanish in two space dimensions; see Remark 1.10.

Remark 1.4 (Maximal development). We follow the solution only to the constant-time
hypersurface of first blow-up. However, with modest additional effort, our results could
be extended to give a detailed description of a portion of the maximal development10 of
the data corresponding to times up to approximately twice the time of first blow-up (see
the discussion below (1.2.6)), including the shape of the boundary and the behavior of the
solution along it. More precisely, the estimates that we prove are sufficient for invoking
arguments along the lines of those given in [11, Ch. 15], in which Christodoulou provided a
description of the maximal development (without any restriction on time) in the context of
small-data solutions to the equations of irrotational relativistic fluid mechanics in Minkowski
spacetime.

Remark 1.5 (The role of U0). We have introduced the parameter U0 because one would
need to vary it in order to extract the information concerning the maximal development
mentioned in Remark 1.4.

Remark 1.6 (Extending the results to the irrotational Euler equations). Our work
can easily be extended to yield stable nearly plane symmetric shock formation for solutions
to the irrotational Euler equations (special relativistic or non-relativistic) under almost any11

physical equation of state. The possibility of Euler blow-up in regions with non-zero vorticity

8See Remark 7.5 on pg. 73 for a proof sketch of the existence of data to which our results apply.
9The plane symmetric elements depend only on the single real variable x1.
10Roughly, the maximal development is the largest possible solution that is uniquely determined by the

data; see, for example, [55, 63] for further discussion.
11There is precisely one exceptional equation of state for the irrotational relativistic Euler equations to

which our results do not apply. The exceptional equation of state corresponds to the Lagrangian L =
1 −

√
1 + (m−1)αβ∂αΦ∂βΦ), where m is the Minkowski metric. It is exceptional because it is the only

Lagrangian for relativistic fluid mechanics such that Klainerman’s null condition is satisfied for perturbations
near the static states with non-zero density. A similar statement holds for the non-relativistic Euler equations;
see [15][Sect. 2.2] for more information. We note that in [45], Lindblad showed that in one or more space
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remains an outstanding open problem. The irrotational Euler equations essentially fall under
the scope of equation (1.0.3a), but a few minor changes are needed; we outline them in
Appendix B. The main difference is that for the wave equations of fluid mechanics, we do
not attempt to treat data that have a fluid-vacuum boundary, along which the hyperbolicity
of the equations degenerates. Instead, we prove shock formation for perturbations (verifying
certain size assumptions) of the static states with non-zero density. In terms of a fluid
potential Φ, the static solutions correspond to global solutions of the form Φ = kt with k a
non-zero constant.

Remark 1.7 (Additional nonlinearities that we could allow). With modest additional
effort, our results could also be extended to allow for g = g(Φ, ∂Φ) in equation (1.0.3a)
where g is at least linear in Φ. That is, we could allow for quasilinear terms such as Φ · ∂2Φ.
Moreover, we could also allow for the presence of semilinear terms verifying the strong null
condition (see [59] for the definition) on RHS (1.0.1a) or (1.0.3a). In the nearly plane
symmetric regime, these terms would make only a negligible contribution to the dynamics
and in particular, they would not interfere with the shock formation processes. In contrast,
we cannot allow for arbitrary quadratic, cubic, or even higher-order semilinear terms, which
might highly distort the dynamics in regions where the solution’s derivatives becomes large.

Remark 1.8 (Allowing Ψ itself to be large). For convenience, we assume in our proof
that Ψ (undifferentiated) is initially small (see Subsects. 7.3 and 7.7), and we show that the
smallness is propagated all the way up to the shock. However, with modest additional effort,
we could relax this assumption,12 though we would still need the other size assumptions on
the data that we make in Subsects. 7.3 and 7.7. In relaxing the assumption, we would have
to carefully track the size of Ψ throughout the evolution and the influence of its large size
on the evolution of other quantities. This would introduce new technical complications into
the proof, which we prefer to avoid.

Previous work [1, 2, 11, 59] in more than one space dimension, which is summarized in
the survey article [23], has shown shock formation in solutions to various quasilinear wave
equations in a different regime: that of solutions generated by small data supported in a
compact subset of R2 or R3. Recently, Miao and Yu proved a related large-data shock-
formation result [52] for a wave equation with cubic nonlinearities in three space dimensions.
In Sect. 1.4, we describe these results and others in more detail and compare/contrast them
to our work here. We first provide an overview of our analysis; we provide detailed proofs
starting in Sect. 2.

At the close of this section, we would like to highlight some philosophical parallels between
our work here on stable singularity formation and certain global existence results for the
Navier-Stokes equations [6–9] and the Einstein-Vlasov system with a positive cosmological

dimensions, the wave equation corresponding to the Lagrangian L = 1 −
√

1 + (m−1)αβ∂αΦ∂βΦ) admits
global solutions whenever the data are small, smooth, and compactly supported. In particular, our approach
to proving shock formation certainly does not apply to this equation.

12We would, of course, still have to assume that the metric g(Ψ) is initially Lorentzian. In order to ensure
that a shock forms, we would also need to assume that the nonlinearities are such that the factor GLL(Ψ)
on RHS (2.11.1) is non-vanishing.
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constant [4]. In those works, the authors showed that a class13 of global smooth solutions
with symmetry can be perturbed in the class of non-symmetric solutions to produce global14

solutions that are approximately symmetric.15 The interesting feature of these results is that
the symmetric “background” solutions are allowed to be large. Similarly, our results provide
a large class of plane symmetric shock-forming solutions that are orbitally stable in the class
of non-symmetric solutions.

1.2. Overview of the analysis. We prove finite-time shock formation for solutions to
(1.0.1a) for data such that initially, ∂1Ψ is allowed to be of any non-zero size while16, roughly
speaking, L(Flat)Ψ and ∂2Ψ are relatively small. Here and throughout, L(Flat) := ∂t + ∂1 is

a vectorfield that is null as measured by the Minkowski metric: mαβL
α
(Flat)L

β
(Flat) = 0. We

make similar size assumptions on the higher derivatives at time 0; see Sects. 7.3 and 7.7 for
the details.

Our assumptions on the nonlinearities lead to Riccati-type terms ∼ (∂1Ψ)2 in the wave
equation (1.0.1a), which seem to want to drive ∂1Ψ to blow-up along the integral curves
of L(Flat). A caricature of this structure is: L(Flat)∂1Ψ = (∂1Ψ)2 + Error. However, our
proof does not directly rely on writing the wave equation in this form or by proving blow-
up via a Riccati-type argument; in order to make that kind argument rigorous, one would
have to propagate the smallness of the other directional derivatives of Ψ (found in the term
“Error”) all the way up to the singularity. However, the rectangular coordinate partial
derivatives are inadequate for propagating the smallness near the singularity in more than
one space dimension. In fact, in the regime that we treat here, our arguments will suggest
that generally, ∂tΨ, ∂1Ψ, and ∂2Ψ, all blow-up simultaneously since the rectangular partial
derivatives are generally transversal to the true characteristic surfaces, whose intersection is
tied to the blow-up. These difficulties are not present in simple model problems in one space
dimension such as Burgers’ equation ∂tΨ + Ψ∂xΨ = 0; for Burgers’ equation, the blow-up of
∂xΨ is easy to derive by commuting the equation with the coordinate derivative ∂x to obtain
a Riccati ODE in ∂xΨ along characteristics.

The above discussion has alluded to a defining feature of our proof: we avoid working with
rectangular derivatives and instead propagate the smallness of dynamic directional deriva-
tives of the solution, tangent to the true characteristics, all the way up to the singularity.
This allows us to show that the solution’s tangential derivatives do not significantly affect
the shock-formation mechanisms, which are driven by a derivative transversal to the true
characteristics. Consequently, in the solution regime under study, the shock-formation mech-
anisms are essentially the same as in the case of exact plane symmetry. In particular, there

13 In [6–9], the symmetric solutions are precisely the solutions to the 2D Navier-Stokes equations, which
were shown by Leray [44] to be globally regular for data belonging to L2. In [4], the symmetric solutions
included all T3−Gowdy and solutions and a subset of the T2− symmetric solutions (all of which are known
to be future-global by [58]).

14More precisely, the solutions in [4] are only shown to be future-global.
15In [7], the perturbed are allowed to be far-from-2D in a certain sense, though the proof relies on an

analyticity assumption on the data.
16 Throughout, if V is a vectorfield and f is a scalar function, then V f := V α∂αf denotes the derivative of

f in the direction V . If W is another vectorfield, then VWf := V α∂α(W β∂βf), and similarly for higher-order
differentiations.
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is partial decoupling between the derivatives of the solution that are tangent to the char-
acteristics and its transversal derivative. We stress that this effect is not easy to see. To
uncover it, we develop an extension of Christodoulou’s aforementioned framework [11] for
proving shock formation; see Sect. 1.4.4 for a discussion of some of the new ideas that are
needed. The key ingredient in the framework is an eikonal function u, which is a solution
to the true eikonal equation. The eikonal equation is a hyperbolic PDE that depends on
the spacetime metric g = g(Ψ) and thus on the wave variable. Specifically, in our study of
equation (1.0.1a), u solves the eikonal equation initial value problem

(g−1)αβ(Ψ)∂αu∂βu = 0, ∂tu > 0, (1.2.1)

u|Σ0 = 1− x1, (1.2.2)

where (x1, x2) are the rectangular coordinates17 on Σ0 ' R× T. The level sets of u are true
null (characteristic) hyperplanes for g(Ψ), denoted by Pu or by P tu when they are truncated
at time t. We refer to the open-at-the-top region trapped in between Σ0, Σt, P t0, and P tu
as Mt,u, where Σt denotes the standard flat hypersurface of constant Minkowski time. We
refer to the portion of Σt trapped in between P t0 and P tu as Σu

t . The condition (1.2.2) implies
that the trace of the level sets of u along Σ0 are straight lines, which we denote by `0,u. For
t > 0, the trace of the level sets of u along Σt are (typically) curves `t,u. See Figure 2 for a
picture illustrating these sets and Def. 2.1 for rigorous definitions.

Mt,u
P tu P t0

Ψ ≡ 0

Σu
0

`0,0`0,u

Σu
t
`t,0`t,u

x2 ∈ T

x1 ∈ R
Figure 2. The spacetime region and various subsets.

Eikonal functions u can be viewed as a sharp coordinate, dynamically adapted to the
solution via a nonlinear flow. Their use in the context of proving global results for nonlinear

17x2 is only locally defined, but this is a minor detail that we typically downplay. We note, however,
the following fact that we use throughout our analysis: the corresponding rectangular partial derivative
vectorfield ∂2 can be globally defined so as to be non-vanishing and smooth relative to the rectangular
coordinates.
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hyperbolic equations in more than one space dimension was pioneered by Christodoulou and
Klainerman in their celebrated work [13] on the stability of Minkowski spacetime. Eikonal
functions have also been used as central ingredients in proofs of low-regularity well-posedness
for quasilinear wave equations; see, for example, [38, 41,57,62].

From u, we are able to construct an assortment of geometric quantities that can be used
to derive sharp information about the solution. The most important of these in the context
of shock formation is the inverse foliation density

µ :=
−1

(g−1)αβ(Ψ)∂αt∂βu
> 0, (1.2.3)

where t is the rectangular time coordinate. The quantity 1/µ measures the density of the
level sets of u relative to the constant-time hypersurfaces Σt. In our work here, µ is initially
close to 1 and when it vanishes, the density becomes infinite and the level sets of u (the
characteristics) intersect; see Figure 3 below, in which we illustrate a scenario where µ has
become small and a shock is about to form. In the solution regime under study, we prove
that the rectangular components gαβ remain near those of the Minkowski metric mαβ =
diag(−1, 1, 1) all the way up to the shock. Thus, from (1.2.3), we infer that the vanishing
of µ implies that some rectangular derivative of u blows up. From experience with model
equations in one space dimension such as Burgers’ equation, one might expect that the
intersection of the characteristics is tied to the formation of a singularity in Ψ. Though it
is not obvious, our proof in fact reveals that in the regime under study, µ = 0 corresponds
to blow-up of the first18 rectangular derivatives of Ψ. In particular, on sufficiently large
time intervals, our work affords a sharp description of singularity formation characterized
precisely by the vanishing of µ.

Our analysis relies on the geometric coordinates (t, u, ϑ), where t = x0 and u are as above
and ϑ solves the evolution equation −(g−1)αβ(Ψ)∂αu∂βϑ = 0 with ϑ|Σ0 = x2, where x2 is the
local rectangular coordinate on T. The most important feature of the geometric coordinates
is that relative to them, the shock singularity is renormalizable, with the possible exception
of the high derivatives.19 More precisely, we show that the solution and its up-to-mid-
order geometric derivatives (that is, the geometric partial derivatives ∂

∂t
, ∂
∂u

, and ∂
∂ϑ

) remain
bounded in L∞ all the way up to the shock. In particular, the solution’s first derivatives
relative to the geometric coordinates do not blow up! The blow-up of the solution’s first
rectangular partial derivatives is a “low-level” effect that could be obtained20 by transforming
back to the rectangular coordinates and showing that µ = 0 causes a degeneracy in the change
of variables (see Lemma 2.7).

As we alluded to in Remark 1.2, the new feature that makes the proof of shock formation
more difficult than typical global results for wave equations is: at the very high orders, our
energy estimates are allowed to blow-up like (minΣut

µ)−p as µ → 0, where p is a constant
depending on the order of the energy; see Sect. 1.3.2 for an overview. An important aspect
of our proof is that the blow-up exponents p are controlled by certain universal21 structural

18For equation (1.0.3a), the blow-up occurs in the second rectangular derivatives of Φ.
19The possibility that the high derivatives might behave worse is a fundamental difficulty that permeates

our analysis.
20We use a slightly different, more direct argument to prove the blow-up; see Sect. 1.3.1 for an overview.
21These constants are the same for all of the wave equations that we study in this article.
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constants appearing in the equations. The main contribution of Christodoulou in [11] was
showing how to derive the degenerate high-order energy estimates and, crucially, proving
that the degeneracy does not propagate down to the low orders. These steps consume the
majority of our effort here.

To derive estimates, rather than working with the geometric coordinate partial derivative
frame, we instead replace ∂

∂u
with a similar vectorfield X̆ that has slightly better geometric

properties, which we describe below; see Def. 2.6 for the details of the construction. That is,
we rely on the following dynamic vectorfield frame, which is depicted at two distinct points
along a fixed null hyperplane portion P tu in Figure 3:{

L, X̆,Θ
}
. (1.2.4)

The vectorfield L = ∂
∂t

is a null (that is, g(L,L) = 0) generator of Pu (in particular, L is

Pu−tangent) and Θ := ∂
∂ϑ

is `t,u−tangent with g(L,Θ) = g(X̆,Θ) = 0. Relative to the
rectangular coordinates, we have

Lα = −µ(g−1)αβ∂βu. (1.2.5)

Our proof shows that all the way up to the shock, L and Θ remain close to their flat analogs,
which are respectively L(Flat) := ∂t + ∂1 and ∂2. The vectorfield X̆ is transversal to Pu,
Σt−tangent, g−orthogonal to `t,u, and, most importantly, normalized by g(X̆, X̆) = µ2. In

particular, the rectangular components X̆α vanish precisely at the points where µ vanishes
(that is, at the shock points). Our proof shows that X̆ remains near −µ∂1 all the way up to

the shock. This is depicted in Figure 3, in which the vectorfield X̆ is small in the region up
top where µ is small.

L

X̆

Θ

L

X̆

Θ

P t0P tuP t1
µ ≈ 1

µ small

Ψ ≡ 0

Figure 3. The dynamic vectorfield frame at two distinct points in P tu, where
0 < u < 1.
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Throughout the paper, we often depict Pu−tangent derivative operators such as L and
Θ with the symbol P . The main idea of our paper is to treat a regime in which the initial
data have pure transversal derivatives such as X̆X̆Ψ and X̆Ψ that are of size ≈ δ̊ > 0, while
all other derivatives such as PX̆Ψ, PΨ, and Ψ itself are of small size ε̊. The quantity δ̊
can be either small or large, but our required smallness of ε̊ depends on δ̊; see Sects. 7.3
and 7.7 for the precise assumptions. Similar remarks apply to µ and to the rectangular
component functions Lα at time 0. To avoid lengthening the paper, we generally do not
closely track the dependence of our estimates on δ̊. In particular, as we explain in Sect. 2.1,
we allow the “constants” C appearing in the estimates to depend on δ̊. There is one crucially
important exception: we carefully track the dependence of a handful of important estimates
on a quantity δ̊∗ that is related to δ̊ and that controls the blow-up time:

δ̊∗ :=
1

2
sup
Σ1

0

[
GLLX̆Ψ

]
−
> 0 (1.2.6)

(see Def. 7.4), where GLL := d
dΨ
gαβ(Ψ)LαLβ and f− = |min{f, 0}|. We explain the con-

nection between δ̊∗ and the blow-up time in Sect. 1.3.1. In our proof, we show that we can
propagate the ε̊ − δ̊ hierarchy (in various norms) all the way up to the time of first shock

formation, which we show is {1 +O(̊ε)} δ̊−1
∗ . We give an example of this kind of propaga-

tion in Sect. 1.4.4. In practice, when proving estimates via a bootstrap argument, we give
ourselves a margin of error by showing that we could propagate the hierarchy for classical
solutions existing up to time 2̊δ−1

∗ , which is plenty of time for the shock to form. Actually,
our results show something stronger: no other singularities besides shocks can form for times
≤ 2̊δ−1

∗ . The factor of 2 in the previous inequality is not important and could be replaced
with any positive constant larger than 1, but we would have to further shrink the allowable
size of ε̊ as the size of the constant increases.

One important reason why we are able to propagate the hierarchy for times up to 2̊δ−1
∗ is:

relative to the frame (1.2.4), the wave equation �g(Ψ)Ψ = 0 has a miraculous structure.
Specifically, µ�g(Ψ)Ψ = 0 is equivalent to (see Prop. 2.16)

−L(µLΨ + 2X̆Ψ) + µ∆/Ψ = N , (1.2.7)

where ∆/ denotes the covariant Laplacian induced by g along the curves `t,u and N denotes
quadratic terms depending on ≤ 1 derivatives of Ψ and ≤ 2 derivatives of u with the following
critically important null structure: each product in N contains at least one good Pu−tangent
differentiation and thus inherits a smallness factor of ε̊. In particular, products containing
quadratic or higher powers of pure transversal derivatives (such as (X̆Ψ)2, (X̆Ψ)3, etc.) are
completely absent. This good structure is related to Klainerman’s null condition, but unlike
in his condition, the structure of the cubic and higher-order terms matters. Another way to
think about (1.2.7) is: by bringing µ under the outer L differentiation, we have generated
a product term of the form −(Lµ) · · · . This leads to the cancellation of the worst term on

the RHS, which was proportional to µ−1(X̆Ψ)2. Put differently, the term 1
2
GLLX̆Ψ from

the RHS of equation (1.3.1) below helps generate complete, nonlinear cancellation of a term

proportional to µ−1(X̆Ψ)2. This null structure survives under commutations of the wave
equation with vectorfields adapted to the eikonal function and allows us to propagate the
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smallness of the size ε̊ quantities even though the size δ̊ quantities are allowed to be much
larger.

Our strategy of propagating the smallness of some quantities while simultaneously allow-
ing derivatives transversal to the characteristics to be large has roots in the similar approach
taken by Christodoulou [12] in his celebrated proof of the formation of trapped surfaces in
solutions to the Einstein-vacuum equations and in the related works [3, 36, 39, 40, 47–49].
Similar strategies have been used [51, 60, 61, 64] to prove global existence results for semi-
linear wave equations verifying the null condition in regimes that allow for large transversal
derivatives.

1.3. Overview of the main steps in the proof. We now outline the main steps in our
proof.

(1) We formulate the shock-formation problem so that the fundamental dynamic quan-
tities to be solved for are Ψ, µ, and the rectangular spatial components22 L1, L2. We
refer to the latter three quantities as “eikonal function quantities” since they depend
on the first rectangular derivatives of u. We then derive evolution equations for µ,
L1, and L2 along the integral curves of the vectorfield L. These evolution equations
are essentially equivalent to the eikonal equation (1.2.1).

(2) We construct a good set of vectorfields Z := {L, X̆, Y } that we use to commute the
wave equation and also the evolution equations for the eikonal function quantities.
From the point of view of regularity considerations, it is important to appreciate that
the rectangular components of Z ∈ Z depend on the first rectangular derivatives
of u. We will explain the importance of this fact in Sect. 1.3.2 (see especially the
discussion below equation (1.3.8)). Like Θ, the vectorfield Y (constructed in Sect. 2.8)
is tangent to the `t,u, but it has better regularity properties than Θ. We use the full
commutator set Z when deriving L∞ estimates for the derivatives of the solution.
When deriving energy estimates, we use only the Pu−tangent subset P := {L, Y }.

(3) To derive estimates, we make bootstrap assumptions on an open-at-the-top bootstrap

region MT(Boot),U0 := ∪s∈[0,T(Boot))Σ
U0
s , where 0 ≤ T(Boot) ≤ 2̊δ−1

∗ (see (1.2.6)) and
MT(Boot),U0 is a spacetime subset trapped in between left-most and right-most null
hyperplanes and the flat bottom and top hypersurfaces Σ0 and ΣT(Boot) ; see Figure 2
on pg. 11. We assume that µ > 0 on MT(Boot),U0 , that is, that no shocks are present.
We then make “fundamental” bootstrap assumptions about the L∞ norms of various
low-level derivatives of Ψ with respect to vectorfields in P. These assumptions
are non-degenerate in the sense that they do not lead to infinite expressions even
when µ = 0. Using them, we derive non-degenerate L∞ estimates for the low-level
Z derivatives of the eikonal function quantities and other low-level derivatives of Ψ.
Moreover, in Sect. 10, we derive related but much sharper estimates for µ and some of
its low-level derivatives. In particular, using a posteriori estimates, we give a precise
description showing that minΣut

µ vanishes linearly in t and moreover, we connect

the vanishing rate to the initial data quantity δ̊∗ defined in (1.2.6).23 In addition, we

22 Note that (1.2.3) and (1.2.5) imply that L0 ≡ 1.
23 Specifically, we show that there exists a (t, u)−dependent constant κ such that for 0 ≤ s ≤ t, we have

minΣu
s
µ ≈ 1− κs; see (10.2.5a).
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derive related sharp estimates for certain time-integrals involving degenerate factors
of 1/µ. The time integrals appear in the Gronwall estimates we use to derive a-priori
energy estimates, as we describe in Step (4). The estimates of Sect. 10 therefore play
a critical role in closing our proof.

(4) We use the L∞ estimates to derive up-to-top order L2-type (energy) estimates for
Ψ and the eikonal function quantities on MT(Boot),U0 . This step is difficult, in part
because we must overcome the potential loss of a derivative tied to the dependence
of our commutator vectorfields on the rectangular derivatives of u. To derive the L2

estimates, we commute the evolution equations with only the Pu−tangent commu-
tators P ∈ P. Because of the good null structure of the wave equation highlighted
in (1.2.7) and the good properties of the vectorfields in P, we do not need to com-

mute with the transversal derivative X̆ when deriving the L2 estimates. As we have
mentioned, at the higher derivative levels, the energy estimates are allowed to blow
up in a controlled fashion near the shock, while at the lower derivative levels, the
energies remain small all the way up to the shock. The degeneracy of the high-order
estimates is tied to our approach in avoiding the derivative loss: we work with modi-
fied quantities that have unexpectedly good regularity properties but that introduce
a difficult factor of 1/µ into the top-order energy identities. This 1/µ factor is the
reason that we need the sharp time integral estimates described Step (3); these sharp
estimates affect the blow-up rates of our top-order energy estimates, which are cen-
tral to the entire proof. We remark that the degeneracy of our high-order energy
estimates reflects the “worst-case” behavior of µ along Σt. That is, regions where µ
is small drive the degeneracy of our high-order energy estimates along all of Σt. An
added layer of complexity is that near the time of first shock formation, µ can be
large at some points while being near 0 at others and thus our energy estimates along
Σt have to simultaneously account for both of these extremes. We also highlight again
the following crucially important feature of our proof: we must derive non-degenerate
energy estimates at the low-derivative levels. From such estimates, we can recover our
fundamental L∞ bootstrap assumptions via a geometric Sobolev embedding result
(see Lemma 13.4).

(5) The proof that µ → 0 and causes blow-up (i.e., that the shock forms) before the

maximum allowed bootstrap time 2̊δ−1
∗ is easy given the non-degenerate low-level

L∞ estimates; see Sect. 1.3.1 for an outline of the proof.

Remark 1.9 (Simple bootstrap structure). The bootstrap structure of our proof is very
simple. Given the simple bootstrap assumptions from Step (3), the logic of our proof is
essentially linear: the proofs of our estimates depend only on previously proved estimates.
We recover the bootstrap assumptions near the end of the proof of the main theorem.

Steps (1)−(3) involve many geometric decompositions and computations but are relatively
standard. In the remainder of Sect. 1, we describe Steps (4) and (5) in more detail, which
have some important features that are specific to the problem of shock formation. We start
with the easy Step (5).

1.3.1. Outline of the proof that the shock happens. The proofs that µ goes to 0 and that
some first rectangular derivative of Ψ blows up are easy given the non-degenerate low-level
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estimates. Both of these facts are based on the following evolution equation (derived in
Lemma 2.12 as a consequence of the eikonal equation):

Lµ =
1

2
GLLX̆Ψ +O(µLΨ). (1.3.1)

In (1.3.1), GLL := d
dΨ
gαβ(Ψ)LαLβ and the term O(µLΨ) is depicted schematically. Our

assumptions on the nonlinearities ensure that in the regime under study, we have GLL ≈ 1.
Using the ε̊−δ̊ hierarchy, we have L(GLLX̆Ψ) = O(̊ε). Since L = ∂

∂t
relative to the geometric

coordinates, we can integrate this estimate to obtain [GLLX̆Ψ](t, u, ϑ) = [GLLX̆Ψ](0, u, ϑ) +

O(̊ε), where the implicit constant in O is allowed to depend on the expected shock time δ̊−1
∗

(see (1.2.6)). Inserting into (1.3.1), we obtain

Lµ(t, u, ϑ) =
1

2
[GLLX̆Ψ](0, u, ϑ) +O(̊ε). (1.3.2)

Integrating (1.3.2) and using µ(0, u, ϑ) = 1 +O(̊ε), we find that

µ(t, u, ϑ) = 1 +
1

2
[GLLX̆Ψ](0, u, ϑ)t+O(̊ε). (1.3.3)

From (1.2.6) and (1.3.3), we see that for 0 ≤ t ≤ 2̊δ−1
∗ , we have

min
Σt
µ = 1− δ̊∗t+O(̊ε). (1.3.4)

From (1.3.4), we see that µ vanishes for the first time at TLifespan = {1 +O(̊ε)} δ̊−1
∗ . More-

over, the above argument can easily be extended to show that at the points (TLifespan, u, ϑ)

where µ vanishes, the quantity |X̆Ψ|(TLifespan, u, ϑ) is uniformly bounded from below, strictly

away from 0; see (15.2.5) and its proof. Since |X̆| = µ, we conclude that the derivative of

Ψ with respect to the g−unit-length vectorfield X := µ−1X̆Ψ ∼ −∂1Ψ must blow-up at the
points (TLifespan, u, ϑ) where µ vanishes.

1.3.2. Energy estimates at the highest order. By far, the most difficult part of the analysis
is obtaining the high-order L2 estimates of Step (4). To derive them, we use the well-
known multiplier method. Specifically, we derive energy identities by applying the divergence
theorem to the vectorfield Jα := Qα

βT
β on the region Mt,u, where T := (1 + 2µ)L + 2X̆

is a timelike vectorfield24 verifying g(T, T ) = −4µ(1 + µ) < 0; see Prop. 3.5 for the precise
statement and Figure 2 for a picture illustrating the region of integration. As we have
mentioned, we are able to close our energy estimates by commuting the wave equation with
only Pu−tangent commutators P ∈P (we commute with the Pu−transversal vectorfield X̆
only when deriving low-level L∞ estimates). Moreover, we do not rely on the lowest level
energy identity corresponding to the non-commuted equation. That is, we derive energy
estimates for PΨ, PPΨ, etc. Consequently, for our data, the energies are of small size ε̊
at time 0. At the first commuted level, the energies E[PΨ](t, u) and null fluxes F[PΨ](t, u)

24In many other works, the symbol T denotes the future-directed unit normal to Σt. In contrast, in the
present article, the vectorfield T is not the future-directed unit normal to Σt.
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have the strength (note which terms contain explicit µ weights!)

E[PΨ](t, u) ∼
∫

Σut

µ(LPΨ)2 + (X̆PΨ)2 + µ|d/PΨ|2 d$, (1.3.5a)

F[PΨ](t, u) ∼
∫
Ptu

(LPΨ)2 + µ|d/PΨ|2 d$. (1.3.5b)

In (1.3.5a)-(1.3.5b), d/PΨ denotes the `t,u−gradient of PΨ (that is, the gradient of PΨ
viewed as a function of the geometric torus coordinate ϑ) and the volume forms d$ and d$
are constructed25 so that they remain non-degenerate all the way up to and including the
shock. We stress that the terms with µ weights in (1.3.5a)-(1.3.5b) become very weak near
the shock, and they are not useful for controlling error terms that lack µ weights. Since both
appearances of |d/PΨ|2 in (1.3.5a) involve µ weights, we must find a different way to control
error terms proportional to |d/PΨ|2 that does not rely on E or F. To this end, we exploit
a subtle spacetime integral K(t, u) with special properties first identified by Christodoulou
[11]; we explain this in Sect. 1.3.4 in more detail.

With EM denoting the energy corresponding to commuting the wave equation M times
with elements P ∈P, ε̊ denoting the small size of the L2 quantities at time 0, and µ?(t, u) :=
min{1,minΣut

µ}, we derive the following energy estimate hierarchy (see Prop. 14.1), valid

for classical solutions when (t, u) ∈ [0, 2̊δ−1
∗ ]× [0, U0]:

E18(t, u) ≤ Cε̊2µ−11.8
? (t, u), (1.3.6a)

E17(t, u) ≤ Cε̊2µ−9.8
? (t, u), (1.3.6b)

· · ·
E13(t, u) ≤ Cε̊2µ−1.8

? (t, u), (1.3.6c)

E12(t, u) ≤ Cε̊2, (1.3.6d)

· · ·
E1(t, u) ≤ Cε̊2. (1.3.6e)

A similar hierarchy holds for the null fluxes F and the spacetime integrals K.
We now explain how to derive the top-order energy estimate (1.3.6a) and the origin of its

degeneracy with respect to µ. The main difficulty that one confronts in deriving (1.3.6a) is
that naive estimates do not work at the top order because they lead to the loss of a derivative.
The following mantra summarizes our approach to overcoming this difficulty.

One can gain back the derivative, but only at the expense of incurring a factor of µ−1

in the energy identities.

We now flesh out these issues. The hardest step in deriving (1.3.6a) is using the L∞ bootstrap
assumptions and estimates to obtain the following top-order energy inequality:

E18(t, u) ≤ Cε̊2 + 4

∫ t

t′=0

{
sup
Σu
t′

∣∣∣∣Lµµ
∣∣∣∣
}
E18(t′, u) dt′ + · · · . (1.3.7)

25d$ is a rescaled version of the canonical volume form induced by g on Σt.
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The aforementioned factor of µ−1 is the one indicated on RHS (1.3.7). The second hardest

step is estimating the singular ratio sup
Σu
t′

∣∣∣∣Lµµ
∣∣∣∣ in a way that allows us to derive a Gronwall

estimate from (1.3.7). To estimate the ratio, we need sharp information describing how
minΣu

t′
µ goes to 0. This analysis is very technical and is based on a posteriori estimates

involving possible late-time behaviors of µ; see Sect. 10. A key ingredient is that by virtue of
the wave equation (1.2.7) and equation (1.3.1), one can show that LLµ = O(̊ε), which implies
that Lµ is approximately constant along the integral curves of L on the time scale of interest.
To explain the basic idea behind the Gronwall estimates, let us pretend that µ is a function
of t alone and that µ is near 0. Then recalling that L = ∂

∂t
, we use Gronwall’s inequality

and (1.3.7) to derive E18(t, u) ≤ Cε̊2µ−4(t) × · · · . Note that the blow-up rate µ−4(t) is
determined by the numerical constant 4 on RHS (1.3.7). In particular, it is important that
the coefficient 4 of the dangerous integral is a structural constant that does not depend on
the number of times that the equations are differentiated. We remark that the exponent on
RHS (1.3.6a) is 11.8 rather than 4 because there are other difficult error integrals on RHS
(1.3.7) (which we ignore in this introduction) that contribute to the top-order degeneracy.

We now sketch how we derive inequality (1.3.7) and explain the appearance of the singular

factor supΣu
t′

∣∣∣Lµµ ∣∣∣. To illustrate the main ideas, we commute the wave equation one time with

a Pu−tangent commutator vectorfield P constructed in Step (2) and pretend that the wave
equation in PΨ represents the top-order equation. An important fact is that the rectangular
components of the vectorfields P ∈ P depend on Ψ and µ∂u (see (1.2.5)). Hence, upon
commuting the wave equation with P , we obtain the following schematic wave equation:

µ�g(Ψ)PΨ = µ∂2(µ∂u) · ∂Ψ + µ∂(µ∂u) · ∂2Ψ + · · · (1.3.8)

In (1.3.8), the schematic symbol · denotes tensorial contractions that produce products with
a special structure. Specifically, the P are designed so that the worst imaginable error
terms are completely absent on RHS (1.3.8), which is possible only because we allow P
to depend on ∂u. In particular, a careful decomposition of RHS (1.3.8) relative to the

frame (1.2.4) reveals that the factor X̆X̆Ψ is absent. This is important because by signature

considerations, X̆X̆Ψ would have come with the singular factor 1/µ, which would prevent us
from deriving non-degenerate estimates at the low orders. Because of this structure, all terms
µ∂(µ∂u) · ∂2Ψ are relatively easy to control all the way up to the shock. The main difficulty
is that the factor µ∂2(µ∂u) on RHS (1.3.8) seems to have insufficient regularity to close
the estimates: commuting the eikonal equation (1.2.1), one obtains the evolution equation
L∂3u ∼ ∂3Ψ + · · · , which is inconsistent with the available regularity (two derivatives of Ψ)
for solutions to (1.3.8). Clearly this difficulty propagates upon further commuting the wave
equation. In the energy estimates, this difficulty leads to error integrals that are hard to
control near the shock. As we will explain, the most difficult (in the sense of degeneracy
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created by a factor of 1/µ) error integral26 has the following schematic form:

2

∫ t

t′=0

∫
Σu
t′

X̆Ψ · ∂2(µ∂u) · X̆PΨ d$ dt′, (1.3.9)

where the factor ∂2(µ∂u) in (1.3.9) has a special structure that we explain just below. It
remains for us to outline why (1.3.9) can be expressed as the integral on RHS (1.3.7) plus
other error integrals that are similar or easier to treat. The key fact, explained in the next
paragraph, is that ∂2(µ∂u) = µ−1Modified + µ−1GLLX̆PΨ, where GLL is as in (1.3.2) and
Modified solves a good evolution equation with source terms that have an allowable level of
regularity. Then observing that X̆Ψ ·∂2(µ∂u) contains the special product GLLX̆Ψ, we may
use (1.3.1) to substitute, which allows us to rewrite (1.3.9) in the form

4

∫ t

t′=0

∫
Σu
t′

Lµ

µ
(X̆PΨ)2 d$ dt′ + 2

∫ t

t′=0

∫
Σu
t′

(X̆Ψ)
Modified

µ
(X̆PΨ) d$ dt′ + · · · . (1.3.10)

From (1.3.5a) and the first integral on RHS (1.3.10), we obtain the difficult integral on
RHS (1.3.7). The integral involving Modified on RHS (1.3.10) is difficult to treat,27 but the
resulting estimates are similar to the ones that we have sketched for the first integral.

We now elaborate on the special structure of the factor ∂2(µ∂u) appearing in (1.3.9).
Some rather involved computations (see Lemmas 2.18 and 4.2 and Prop. 4.4) yield that the
factor ∂2(µ∂u) appearing in (1.3.9) is equal to the geometric quantity µP trg/χ, where χ is the

symmetric type
(

0
2

)
`t,u−tangent28 tensorfield defined by χΘΘ := g(DΘL,Θ), and trg/ denotes

the trace with respect to the Riemannian metric g/ induced on the `t,u by g. To estimate trg/χ,
we rely on the well-known Raychaudhuri equation from geometry, which yields the evolution
equation Ltrg/χ = −RicLL+· · · , where RicLL := RicαβL

αLβ is a component of the Ricci curva-
ture tensor of g(Ψ) and the terms · · · involve fewer derivatives. The key point is that a careful
decomposition (see Lemma 6.1) shows that for solutions to (1.0.1a), all top-order terms con-

tain a perfect L derivative: µRicLL = L(−GLLX̆Ψ+µPΨ)+· · · , where the factor−GLLX̆Ψ is
precisely depicted. This remarkable structure was first29 observed30 by Klainerman and Rod-
nianski in their proof of low regularity well-posedness for quasilinear wave equations [38] and

was also used in [11, 52, 59]. Combining, we find that L
{
µtrg/χ−GLLX̆Ψ + µPΨ

}
= · · · .

Taking one P derivative and setting Modified := µP trg/χ−GLLX̆PΨ + µPPΨ, we find that
LModified = l.o.t. as desired.

26More precisely, this error integral is difficult only when the vectorfield P in (1.3.9) is equal to the
`t,u−tangent vectorfield Y . The case P = L is much easier to treat because in this case, one can show
that the term ∂2(µ∂u) involves at least one L differentiation. Consequently, we can use the Raychaudhuri
equation described below to algebraically replace ∂2(µ∂u) with terms involving ≤ 2 derivatives of Ψ.

27We ignore it here; see the proofs of Prop. 11.10 and 14.2 and Lemma 14.8 for the details.
28Note that the `t,u are one-dimensional curves and hence for any m and n, the space of all type

(
m
n

)
`t,u−tangent tensors is one-dimensional. Hence, the study of `t,u−tangent tensorfields could be completely
reduced to the study of scalar functions. However, we do not carry out such a reduction in this article;
we prefer to retain the tensorial character of `t,u−tangent tensorfields because that structure allows us to
directly apply standard formulas and techniques from differential geometry.

29A related but simpler observation was made in [13].
30Although the authors needed to exploit this structure to avoid losing a derivative in their work [38],

they did not need to address the difficulty of obtaining estimates in regions where µ is near 0.
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Remark 1.10 (The need for elliptic estimates in three or more space dimensions).
In n spatial dimensions with n ≥ 3, it is no longer possible to obtain an equation of the
form LModified = l.o.t. The difficulty is that some third derivatives of u still remain on the
RHS: LModified = ∂2(µ∂u) + l.o.t. However a careful decomposition of the remaining term
∂2(µ∂u) on the RHS shows that ∂2(µ∂u) ∼ χ̂ · LP χ̂, where L denotes Lie differentiation and
χ̂ is the trace-free part of χ, which vanishes when n = 2. To bound the top-order factor LP χ̂
in L2, one can derive elliptic estimates on the n − 2 dimensional surfaces analogous to the
`t,u in the present article; see, for example, [11,13,38,52,59] for more details.

1.3.3. Less degenerate energy estimates at the lower orders. We now explain why the energy
estimates (1.3.6b)-(1.3.6d) become two powers less degenerate relative to µ−1

? at each level
in the descent, which eventually brings us to the non-degenerate levels (1.3.6d)-(1.3.6e). To
illustrate the method, we now pretend that equation (1.3.8) represents one level below top
order (equivalently, that three derivatives of Ψ in the norm ‖ · ‖L2(Σut ) represents top order).
The main idea is to allow the loss of one derivative in the factor ∂2(µ∂u) ∼ P trg/χ in (1.3.9);
a loss of one derivative is permissible below top order.

We refer to the just-below-top-order energy that we are trying to estimate by EOne−Below−Top.
In this case, we can use the non-degenerate low-level estimate ‖X̆Ψ‖L∞(Σut ) . 1 and Cauchy-
Schwarz to bound the error integral on RHS (1.3.9) by

.
∫ t

t′=0

∥∥P trg/χ
∥∥
L2(Σu

t′ )
E1/2
One−Below−Top(t

′, u) dt′. (1.3.11)

The expression (1.3.11) leads to a gain in powers of µ? because of the following critically
important estimate (see (10.3.3)), which shows that integrating in time produces the gain:
for constants B > 1, we have ∫ t

t′=0

1

µB? (t′, u)
dt′ . µ1−B

? (t, u). (1.3.12)

The point is that there are two time integrations in (1.3.11), the obvious one, and the
one that comes from the schematic relation

∥∥LP trg/χ
∥∥
L2(Σu

t′ )
∼ ‖PRicLL‖L2(Σu

t′ )
+ · · · ∼

‖PPPΨ‖L2(Σu
t′ )

+ · · · ∼ µ−1/2
? (t′, u)E1/2

Top(t
′, u) + · · · , where we have incurred the factor µ

−1/2
?

in the last step due to the fact that the energies control “geometric torus derivatives” P = d/

with a µ1/2 weight (see (1.3.5a)). By the already proven31 bound E1/2
Top(t

′, u) . ε̊µ−5.9
? (see

(1.3.6a)) we can integrate the previous estimate in time (see Lemma 14.3) to yield via (1.3.12)

the estimate
∥∥P trg/χ

∥∥
L2(Σu

t′ )
∼
∫ t
s=0

∥∥LP trg/χ
∥∥
L2(Σus )

ds + · · · ∼ ε̊
∫ t′
s=0
µ−6.4
? (s, u) ds + · · · .

ε̊µ−5.4
? (t, u) + · · · . The outer time integration in (1.3.11), leads to the gain of another power

of µ?, which in total yields the a priori estimate32 E1/2
One−Below−Top(t, u) . ε̊µ−4.4

? (t, u)+· · · , an
improvement over the top-order degeneracy. We can continue the descent in this fashion, and
when we reach the level (1.3.6e), the following analog of (1.3.12) (proved below as (10.3.6))

31In practice, we have to simultaneously Gronwall the top and just-below-top energy, rather than treating
the top energy completely separately.

32We have ignored some other error integrals which are slightly more degenerate and only allow us to

prove the slightly weaker estimate E1/2
One−Below−Top(t, u) . ε̊2µ−4.9

? (t, u).
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allows us to completely break the µ−1
? degeneracy :∫ t

t′=0

1

µ
9/10
? (t′, u)

dt′ . 1. (1.3.13)

We conclude by remarking that the proofs of (1.3.12) and (1.3.13) are based on knowing
exactly how µ? goes to 0, that is, based on a sharp version of the caricature estimate µ?(t, u) ∼
1− t̊δ∗; see (10.2.5a). In particular, it is very important that µ? goes to 0 linearly in time.

1.3.4. The coercive spacetime integral. As we highlighted in Sect. 1.3.2, the energies (1.3.5a)
and null fluxes (1.3.5b) control geometric torus derivatives with µ weights, which makes them
too weak to control certain error integrals involving torus derivatives that lack µ weights,
at least in regions where µ is small. The saving grace is that as in [11, 52, 59], our energy
estimates generate a spacetime integral with a good sign. The integral becomes activated
precisely when µ is small and controls geometric torus derivatives without µ weights. For
the P -commuted wave equation, this integral takes the form

K[PΨ](t, u) :=
1

2

∫
Mt,u

[Lµ]−|d/PΨ|2 d$, (1.3.14)

where [Lµ]− = max{−Lµ, 0}. The key estimate that makes (1.3.14) useful in regions of

small µ is: µ(t, u, ϑ) ≤ 1
4

=⇒ Lµ(t, u, ϑ) ≤ −1
4
δ̊∗ (see (10.2.2)). Here δ̊∗ > 0 is the

data-dependent parameter (1.2.6) that controls the blow-up time. δ̊∗ is large enough to be
useful because of our assumption that ε̊ is sufficiently small. Note that the key estimate has
a “point of no return character” in that once µ becomes sufficiently small, it must continue
to shrink along the integral curves of L to form a shock. The proof of the key estimate is
non-trivial and is part of the detailed analysis of µ located in Sect. 10.

1.4. Comparison with previous work.

1.4.1. Blow-up results in one space dimension. Under the assumption of plane symmetry,
the finite-time breakdown of solutions to (1.0.1a) or (1.0.3a) (for nonlinearities verifying the
conditions described in Sect. 2.2) is well known and can be proved through the method of
characteristics. Readers may consult [23, 59] for detailed examples derived with the help
of sharp techniques paralleling the ones employed in the present article. There is a vast
literature on the use of the method of characteristics to prove blow-up for various nonlinear
hyperbolic systems. A far-from-exhaustive list of examples is: Lax’s seminal finite-time
breakdown results [43] for scalar conservation laws and his aforementioned work on 2 × 2
strictly hyperbolic genuinely nonlinear systems [42], Jeffrey’s work [24] on magnetoacoustics,
Jeffrey-Korobeinikov’s work [25] on nonlinear electromagnetism, Jeffrey-Teymur’s work [26]
on hyperelastic solids, John’s extension [27] of Lax’s work to a larger class of systems and
Liu’s further refinement [46] of it, John’s work [29] on spherically symmetric solutions to the
equations of elasticity, Klainerman-Majda’s work [37] on nonlinear vibrating string equations,
Bloom’s work [5] on nonlinear electrodynamics, and Cheng-Young-Zhang’s work [10] on
magnetohydrodynamics and related systems. Roughly, the blow-up in all of these works is
proved by finding a quantity y(t) that verifies a Riccati-type equation ẏ(t) = a(t)y2(t)+Error,
where a(t) is non-integrable in time near ∞ and Error is a small error term that does not
interfere with the blow-up. Recently, Christodoulou and Raoul Perez gave a new sharp proof
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[16] of John’s blow-up results [27] for genuinely nonlinear strictly hyperbolic quasilinear first-
order systems in one space dimension. They showed that these systems can be treated with
extensions of Christodoulou’s framework [11], which yields a sharp description of the blow-up
with upper and lower bounds on the lifespan. Moreover, they applied their results to prove
shock formation in electromagnetic plane waves in a crystal.

1.4.2. Proofs of breakdown by a contradiction argument in more than one space dimension.
For nonlinear hyperbolic equations in more than one space dimension, many blow-up results
have been proved by a contradiction argument that bypasses the need to obtain a detailed
description of the singularity. For example, John gave a non-constructive proof [28] showing
that many wave equations in three space dimensions with quadratic nonlinearities exhibit
finite-time blow-up for a large set33 of smooth data. He did not need to impose any size
restriction on the data for his proof to work, but his proof did not provide any information
about the blow-up time. As a second example, we mention Sideris’ well-known proof [56] of
blow-up for the compressible Euler equations in three space dimensions under a convexity
assumption on the equation of state and under signed integral conditions on the data. His
proof was based on virial identity arguments that yielded a manifestly non-negative weighted
space-integrated quantity with a sufficiently negative time derivative, which eventually leads
to a contradiction even if one assumes that the solution is otherwise smooth. In particular, his
proof gave an explicit upper bound on the solution’s lifespan. There are many similar results
available which prove blow-up for various evolution equations via a virial identity argument.
We do not aim to survey the extensive literature here, but we do highlight the following
examples: semilinear Schrödinger equations [20], the relativistic Vlasov-Poisson equation
[21], and various semilinear wave and heat equations [32]. We note that for semilinear
Schrödinger, wave, and related equations, the state of the art knowledge of the blow-up has
advanced far beyond proof of blow-up by contradiction; see [50,53] for surveys.

Though appealing in its shortness, a serious limitation of the virial identity approach is that
it relies specific algebraic structures of the equations that are unstable under perturbations
of the equations. Another limitation is that it provides a lifespan upper bound that can
be inaccurate; without additional information, one must concede that the solution could in
principle blow-up much sooner by a different mechanism. In contrast, our proof has many
robust elements (see, however, Remark 1.7), and our work yields a sharp description of the
solution’s lifespan and identifies the quantities that blow-up as well as the ones that remain
regular.

1.4.3. Detailed blow-up results in more than one space dimension. Alinhac was the first
[1, 2] to give a sharp description of singularity formation in solutions to quasilinear wave
equations in more than one space dimension without symmetry assumptions. He addressed
a compactly supported small-data regime in which dispersive effects are eventually overcome
by sufficiently strong quadratic nonlinearities. For convenience, even though these kinds of
solutions eventually blow-up, we say that they belong to the “small-data dispersive regime.”
Alinhac’s results have been generalized to various equations by several authors; see, for
example, [17–19]. In the case of three space dimensions (more precisely, the data are given

33For some nonlinearities, John’s proof yields blow-up for all non-trivial, smooth, compactly supported
data.
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on R3), Alinhac proved that whenever the nonlinearities in equation (1.0.3a) fail to satisfy
Klainerman’s null condition [34], there exists a set of data of small size ε̊ (in a Sobolev norm)
such that the solution decays for a long time at the linear rate t−1 before finally blowing
up at the “almost global existence” time ∼ exp(c̊ε−1). More precisely, the singularity-

forming quantities34 behave like
ε̊

(1 + t) [1 +O(̊ε) ln(1 + t)]
, where the O(̊ε) term in the

denominator depends on the nonlinearities as well as the profile of the data and the blow-
up (for some t > 0) occurs in regions where O(̊ε) < 0. Alinhac’s data were posed in an
annular region of R3, and he assumed that they verified a non-degeneracy condition. His
results showed that the almost global existence lifespan lower bounds, obtained by John
and Klainerman [31,33,35] with the help of dispersive estimates that delay35 the singularity
formation, are in fact saturated. Moreover, his results confirmed John’s conjecture [30]
regarding the asymptotically correct description of the blow-up time in the limit ε̊ ↓ 0 for
data verifying the non-degeneracy condition.

Christodoulou’s remarkable work [11] yielded a sharp improvement (described below) of
Alinhac’s results for a similar class of small compactly supported data given on R3, and he did
not make any non-degeneracy assumption. His main results applied to irrotational regions
of solutions to the special relativistic Euler equations in the small-data dispersive regime.
In such regions, the fluid equations reduce36 to a special case of the wave equation (1.0.3a)
in which additional structure is present. The non-relativistic Euler equations were treated
through the same approach in [15] and feature the same additional structure, including that
the irrotational fluid equations derive from a Lagrangian (and thus can be written in Euler-
Lagrange form) and that solutions possess several conserved quantities associated to various
symmetries of the Lagrangian. These assumptions were used in the proofs, in particular in
exhibiting the good null structure37 enjoyed by the equations. The equations also had some
additional structure due to the assumption that they model a physical fluid. In addition to
assuming that the data are of a small size ε̊ in a high Sobolev norm, Christodoulou also made
additional assumptions on the data to ensure that a shock forms. His sufficient conditions
were phrased in terms of certain integrals of the data: shocks form in the solution whenever
the data integrals have the appropriate sign (determined by the nonlinearities) and are not
too small in magnitude relative to ε̊.

Christodoulou’s results were extended [59] to a larger class of equations and data by
Speck (see also the survey article [23], joint with Holzegel, Klainerman, and Wong). In
particular, for data given on R3, he proved a sharp small-data shock-formation result for
equations (1.0.1a) or (1.0.3a) whenever the null condition fails. That is, he showed that
Christodoulou’s sharp shock-formation results are not tied to the specific structure of the
fluid equations and that the additional structure present in those equations is not needed to
close the proof. Speck also showed that given any sufficiently regular non-trivial compactly

34In Alinhac’s equations of type (1.0.3a), the second rectangular derivatives of the solution blow-up. In
our work on equations of type (1.0.1a), the first rectangular derivatives blow up.

35By “delay,” we mean relative to the case of one space dimension, where the lack of dispersion leads to
blow-up at time O(̊ε−1).

36Up to simple renormalizations outlined in Appendix B.
37In particular, in Christodoulou’s version of equation (A.1.4), the RHS completely vanishes. The van-

ishing occurs because he studies equations of the form (1.0.3a) that derive from a Lagrangian.
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supported initial data, if they are rescaled by a small positive factor, then the solution forms
a shock in finite time. That is, all sufficiently regular data profiles lead to shock formation if
they are suitably rescaled.

Alinhac’s and Christodoulou’s approaches to proving shock formation share many com-
mon features. For example, the main idea of Alinhac’s proof was to resolve the singularity
by constructing an eikonal function u, as in Sect. 1.2. Moreover, near the singularity, he
changed variables to a new “geometric” coordinate system in which u is one of the new
coordinates. Relative to the geometric coordinates, he proved that the solution to (1.0.3a)
remains regular all the way up to the point where the characteristics first intersect but that
the change of variables map between the rectangular and geometric coordinates breaks down
there. Changing variables back to rectangular coordinates, he showed that the degeneracy
implies that |∂2Φ| blows up in finite time precisely at the point where the characteristics
intersect. Alinhac also had to overcome the potential loss of derivatives that we described
in Sect. 1.3.2 with the help of “modified” quantities. However, the methods he used did
not immediately eliminate all of the derivative loss and thus differed in a fundamental way
from Christodoulou’s approach. Specifically, to close his energy estimates, Alinhac employed
a Nash-Moser iteration scheme. His scheme featured a free boundary due to the fact that
the blow-up time for each iterate can be slightly different. Although Alinhac gave a sharp
description of the asymptotic behavior of the solution near the singularity, his proof was
not able to reveal information beyond the first blow-up point. Moreover, in order for his
proof to close, the constant-time hypersurface of first blow-up was allowed to contain only one
blow-up point. These fundamental technical limitations were tied to the presence of the free
boundary in his Nash-Moser iteration scheme and they are the reason that he had to make
the non-degeneracy assumption on the data; see [59] for additional discussion regarding his
approach.

We now describe the most important difference between the approaches of Alinhac and
Christodoulou. The main advantage afforded by Christodoulou’s framework, as shown in
[11,15,59], is that in the small-data dispersive regime, there is a sharp criterion for blow-up.
Specifically, the solution blows up at a given point ⇐⇒ µ vanishes there. In particular,
in the small-data dispersive regime, shocks are the only kinds of singularities that can form.
Since the behavior of µ is local in time and space, the vanishing of µ at one point does not
preclude one from continuing the solution to a neighborhood of other nearby points where
µ > 0. Moreover, {µ = 0} precisely characterizes the singular portion of the boundary of the
maximal development of the data, that is, the portion of the boundary on which the solution
blows up. Thus, Christodoulou’s framework is able to reveal detailed information about the
structure of the maximal development of the data, the shape of the various components of its
boundary, and the behavior of the solution along it. The same information can be extracted
for the solutions that we study here; see Remark 1.4. The sharp description is an essential
ingredient in setting up the problem of extending the Euler solution weakly beyond the
first singularity. We note that an essential component of solving this problem is obtaining
information about the shock hypersurface across which discontinuities occur. The problem
was recently solved in spherical symmetry [14], while the non-symmetric problem remains
open and is expected to be of immense difficulty.



26
Stable Shock Formation

1.4.4. Differences between the proof of shock formation in the small-data dispersive regime
and in the nearly plane symmetric regime. As we mentioned near the beginning of Sect. 1,
the most important new feature of the analysis in the nearly plane symmetric regime is that
we rely on a different mechanism to control the nonlinear error terms. More precisely, since
solutions do not decay in the nearly plane symmetric regime, our approach is based on the
propagation of the ε̊ − δ̊ hierarchy described in Sect. 1.3.1, rather than the smallness and
dispersive decay estimates38 used in the small-data dispersive regime [11,15,59]. We remark
that there is a technical simplification in the nearly plane symmetric regime that allows for
a shorter proof compared to the small-data dispersive regime: our propagation of the ε̊− δ̊
hierarchy does not involve weights in t or the Euclidean radial coordinate r.

To propagate the ε̊ − δ̊ hierarchy, we must make some observations about various prod-
uct/null structures in the equations that are not needed for treating the small-data dispersive
regime. Such structures are relevant both for obtaining suitable energy estimates up to top
order and for deriving non-degenerate L∞ estimates at the lower derivative levels. We now
give one example of such a structure:

Repeatedly commuting the wave equation µ�g(Ψ)Ψ = 0 up to top order with Pu−tangent
vectorfields P ∈P = {L, Y } produces commutator error term products that are qua-
dratic and higher order in the derivatives of Ψ, µ, and Li with each product involving
no more than one X̆ derivative.

The above structure is a consequence of the schematic structures [P1, P2] ∼ P3 and [X̆, P1] ∼
P2, where P1, P2, and P3 are arbitrary Pu−tangent vectorfields. These schematic commutator
relations are easy to see relative to the geometric coordinates (t, u, ϑ). To further explain

these issues, we first note that X̆ = ∂
∂u
− ξ ∂

∂ϑ
, where Θ = ∂

∂ϑ
and ξ is a scalar function

(see (2.4.8)). From these expressions, it easily follows that for Z1, Z2 ∈ {X̆, P1, P2}, the
commutator [Z1, Z2] belongs to span{ ∂

∂t
, ∂
∂ϑ
} and is therefore P tu−tangent (note that the

coefficient of ∂
∂u

in the above expression for X̆ is a constant!). That is, we have shown

that [P1, P2] ∼ P3 and [X̆, P1] ∼ P2. Recalling the wave equation decomposition (1.2.7),
we easily obtain the structure for the commutators [µ�g(Ψ), P ] highlighted in the above
indented sentence in the special case P ∈ {L, Y } relevant for our energy estimates.39 The
structure is a manifestation of the miraculous null structure mentioned in the discussion
surrounding equation (1.2.7), and it allows us to derive energy estimates for the L and Y
derivatives of the solution up to top order without having to derive energy estimates for
its high X̆ derivatives. That is, there is a kind of decoupling between energy estimates for
the Pu−tangential derivatives and the Pu−transversal derivatives. Moreover, the structure
has the following important consequence: all energy estimate error integrands generated
by commuting the wave equation with L and Y contain at most one δ̊−sized factor and
thus are at least quadratically small in the quantities that are expected to be of size ε̊. This

38We recall that in both regimes, the solution remains regular at the low derivative levels with respect to
the geometric coordinates and the blow-up occurs in the partial derivatives of the solution with respect to
the rectangular coordinates.

39 The detailed proof of the structure of the commutators [µ�g(Ψ), P ] for P ∈ {L, Y }, in the precise form
that we need for our proof, is based on straightforward but lengthy geometric computations carried out in
Lemma 4.2, Prop. 4.4 with Z ∈ {L, Y }, and Lemma 2.18.
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suggests that a Gronwall estimate will lead to the Cε̊2 smallness of the energies for40 the
relevant time scale t < 2̊δ−1

∗ , as described in Sect. 1.2. Indeed, modulo the many difficulties
with high-order energy degeneracy with respect to µ−1

? that we previously explained, this
is exactly what our energy estimate hierarchy (1.3.6a)-(1.3.6e) reveals. This allows us to
propagate the O(̊ε2) smallness of the energies of the Pu−tangent derivatives of Ψ without

having to bound the energies41 of the pure transversal derivatives such as X̆Ψ, X̆X̆Ψ, etc.,
which can be of large size O(̊δ2).

For illustration, we now give one example of how the O(̊ε2) smallness of the energies is
used in our proof. We recall that our bootstrap argument heavily relies on the expectation
(described just below equation (1.3.4)) that the first vanishing time of µ (that is, the blow-up

time of the first rectangular derivatives of Ψ) is (1+O(̊ε))̊δ−1
∗ . To realize this expectation, we

must show that the LΨ−involving products on RHS (1.3.1) are of small size O(̊ε) all the way
up to the shock. The desired smallness estimate ‖LΨ‖L∞(Σut ) . ε̊ is a simple consequence
of the O(̊ε2) smallness of the low-order energies, a data smallness assumption, and Sobolev
embedding; see Cor. 13.5 for a proof.

We now further explain how the analysis of the small-data dispersive regime [11, 15, 59]
is different than our analysis here. In that regime, there is only one smallness parameter
capturing the size of a full spanning set of directional derivatives of the solution at time
0, and the ε̊2 smallness of all energies from level 0 up to top order can be propagated all
the way up to the shock (modulo possible energy degeneracy relative to powers of µ−1

? at
the high orders). Because all directional derivatives are controlled, there is no need to rely
on the structure emphasized two paragraphs above, namely that the energy estimates for
the pure tangential derivatives (up to top order) effectively decouple from energy estimates
for transversal derivatives. The good null structure mentioned above does, however, play
an important role in allowing one to control error terms and prove shock formation. The
structure is used in a different way: in place of the two-parameter ε̊− δ̊ hierarchy exploited in
the present article, the error terms are controlled all the way up to the shock via a hierarchy
of dispersive estimates. More precisely, one relies on the fact that the transversal derivative
of the solution decays in time at a non-integrable rate tied to the formation of a shock, while
the tangential derivatives decay at an integrable rate and generate only small error terms;
see the next paragraph for more details. The availability of this decay hierarchy is intimately
connected to the good null structure, and we explain it more detail two paragraphs below.

For the sake of comparison, we first provide some additional background on the behavior of
solutions in the small-data dispersive regime [11,15,59]. The data are compactly supported
functions on R3 of small Sobolev42 size ε̊, and the true characteristics are outgoing null cones
Cu. The Cu, which are level sets of a true eikonal function u, are distorted versions of the
Minkowskian cones {t− r = const}, where r is the standard radial coordinate on Minkowski

40As we explain in Sect. 2.1, we use the convention that constants C are allowed to depend on δ̊ and δ̊−1
∗ .

41We note, however, the following non-obvious feature of our proof, described at the start of Sect. 9: to
close our energy estimates at any order, we rely on the bound ‖X̆≤3Ψ‖L∞(Σu

t ) . δ̊ . 1, which we obtain

by commuting the wave equation up to two times with X̆ and treating the wave equation as a transport
equation up to derivative-losing terms.

42The work [59] showed that for equations of type (1.0.1a), the proof closes for small data verifying

(Ψ̊, Ψ̊0) ∈ H25
e (Σ0)×H24

e (Σ0).
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spacetime. The dispersive estimates take the following form: relative to a suitable rescaled
vectorfield frame analogous to 1.2.4, Ψ and its Cu−transversal derivative decay like ε̊(1+t)−1

while its Cu−tangential derivatives decay at the faster rate ε̊(1 + t)−2. Moreover, relative to
the geometric coordinates, related estimates hold for Ψ at slightly higher derivative levels
and for the low-order derivatives of µ and the rectangular components Li. We now describe
the mechanism for the vanishing of µ (that is, for the formation of a shock) in the small-
data dispersive regime. The most relevant estimate takes the form Lµ = O(̊ε)(1 + t)−1 +
O(̊ε)(1 + t)−2 and is analogous to the estimate (1.3.2) that we use in the nearly plane
symmetric regime. The term O(̊ε)(1 + t)−1 corresponds to the size of the Cu−transversal
derivative of the solution, while the term O(̊ε)(1 + t)−2 is an error term that bounds the

Cu−tangential derivatives. In view of the fact that L =
∂

∂t
, the small-data estimate µ|t=0 ∼ 1,

and the observation that (1 + t)−1 is not integrable in t while (1 + t)−2 is, we see that
µ ∼ 1 + O(̊ε) ln(1 + t). Hence, µ will vanish at a time exp

(
|O(̊ε)|−1

)
for data such that

the factor O(̊ε) from the term O(̊ε)(1 + t)−1 term is negative and sufficiently bounded from
below in magnitude.43

The derivation of the above mentioned directionally dependent decay rates in the small-
data dispersive regime is based on a modified version Klainerman’s commuting vectorfield
method [35], the modification being that the vectorfields are dynamically adapted to the
true characteristics through an eikonal function, much like the vectorfields Z that we use
in the present article (as described at the start of Sect. 1.3). As we mentioned previously,
the use of a true eikonal function in the context of deriving global estimates for quasilinear
hyperbolic equations originated in [13]. In the small-data dispersive regime, one can exploit
the decay properties mentioned above, the good null structure mentioned in the discussion
surrounding equation (1.2.7), and various structures present in the evolution equations for µ
and Li to show that the solution behaves, relative to the rescaled frame, much like a solution
to a wave equation that verifies Klainerman’s classic null condition. In particular, upon
commuting the wave equation µ�g(Ψ)Ψ = 0 with an appropriate spanning commutation set,
one can show that the commutator error terms are quadratic and higher-order products such
that each product contains no more than one slowly decaying factor corresponding to pure
Cu−transversal differentiations. This is an analog, for a full spanning set of commutation
vectorfields, of the structure described in the second paragraph of this subsubsection for
the L and Y commutation vectorfields in the nearly plane symmetric regime. Moreover, in
the small-data dispersive regime, relative to the rescaled frame, one can propagate the ε̊
smallness of the solution in various Sobolev norms and prove conditional global existence
and decay-type estimates. In particular, without any a priori restriction on t (such as the

restriction t < 2̊δ−1
∗ made in our work here), one can prove that the solution remains regular

relative to both the geometric and rectangular coordinates as long as µ remains strictly
positive. We mention again that in contrast, in the nearly plane symmetric regime, there is
no obvious structure in the equations hinting at the validity of a conditional global existence-
type result in which the solution persists for all times as long as µ remains strictly positive.

43 The precise behavior of the O(̊ε)(1 + t)−1 term depends on the nonlinearities as well as the profile of
the data and is connected to Friedlander’s radiation field; see [23,59] for more details.
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Rather, as we explained in Sect. 1.2, we propagate the ε̊− δ̊ hierarchy only for times up to
2̊δ−1
∗ , which is long enough for the shock to form.

1.4.5. Blow-up in a large-data regime featuring a one-parameter scaling of the data. Recently,
Miao and Yu proved [52] a related shock-formation result for the wave equation −∂2

t φ+ [1 +
(∂tφ)2]∆φ = 0 in three space dimensions with data that are compactly supported in an
annular region of radius ≈ 1 and thin width δ, where δ is a small positive parameter. The
data’s amplitude and their functional dependence on a radial coordinate are rescaled by
powers of δ. Consequently, the data and their derivatives verify a hierarchy of estimates
featuring various powers of δ. For example, φ itself has small L∞ size δ3/2, its rectangular
derivatives ∂αφ have L∞ size δ1/2, and a certain derivative of ∂αφ that is transversal to the
true characteristics has large L∞ size δ−1/2. Due to the largeness, the blow-up of the second
rectangular derivatives of φ happens within one unit of time. The scaling of the data is closely
related to the short-pulse ansatz pioneered by Christodoulou in his aforementioned proof of
the formation of trapped surfaces in solutions to the Einstein-vacuum equations [12]. The
main contribution of [52] was showing how to propagate the δ hierarchy estimates until the
time of first shock formation. In the proof, dispersive effects are not relevant. Instead, the
authors control nonlinear error terms by tracking the powers of δ associated to each factor
in the product. Roughly, the error terms have a product structure, typically of the form
small · large (relative to powers of δ), where the small factor often more than compensates
for the large one. That is, the authors show that the overall powers of δ associated to
the error term products are favorable in the sense that the smallness of δ is sufficient for
controlling them. In this way, a class of large data solutions can be treated using techniques
borrowed from the usual small-data framework.

Our results are related to those of [52] but are distinguished by our use of two size pa-

rameters (the parameters ε̊ and δ̊ from Sects. 1.2 and 1.3.1), which allows us to treat a set
of initial conditions containing large data and, unlike [52], small data too. As we described
above, a key aspect of our proof is that we can propagate the small size ε̊ of the Pu−tangent
derivatives long enough for the shock to form, even though the transversal derivatives can
be of a relatively large size δ̊. To this end, we must exploit the good product/null structure
in the equations, as described in Sect. 1.4.4, in ways that go beyond the δ scaling structures
exploited in [52].

2. Geometric Setup

In this section, we set up the geometric framework that we use for analyzing solutions.
For pedagogical reasons, there is some redundancy with Sect. 1.

2.1. Notational conventions and shorthand notation. We start by summarizing some
of our notational conventions; the precise definitions of some of the concepts referred to here
are provided later in the article.

• Lowercase Greek spacetime indices α, β, etc. correspond to the rectangular spacetime
coordinates defined in Sect. 2.2 and vary over 0, 1, 2. Lowercase Latin spatial indices
a,b, etc. correspond to the rectangular spatial coordinates and vary over 1, 2.
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• We sometimes use · to denote the natural contraction between two tensors (and
thus raising or lowering indices with a metric is not needed). For example, if ξ is a
spacetime one-form and V is a spacetime vectorfield, then ξ · V := ξαV

α.
• If ξ is a one-form and V is a vectorfield, then ξV := ξαV

α. Similarly, if W is a
vectorfield, then WV := WαV

α = g(W,V ). We use similar notation when contracting
higher-order tensorfields against vectorfields. Similarly, if Γακβ are the rectangular
Christoffel symbols (2.10.1), then ΓUVW := UαV κW βΓακβ.
• If ξ is an `t,u−tangent one-form (as defined in Sect. 2.5), then ξ# denotes its g/−dual

vectorfield, where g/ is the Riemannian metric induced on `t,u by g. Similarly, if ξ is
a symmetric type

(
0
2

)
`t,u−tangent tensor, then ξ# denotes the type

(
1
1

)
`t,u−tangent

tensor formed by raising one index with g/−1 and ξ## denotes the type
(

2
0

)
`t,u−tangent

tensor formed by raising both indices with g/−1.
• Unless otherwise indicated, all quantities in our estimates that are not explicitly

under an integral are viewed as functions of the geometric coordinates (t, u, ϑ) of
Def. 2.5. Unless otherwise indicated, quantities under integrals have the functional
dependence established below in Def. 3.2.
• If Q1 and Q2 are two operators, then [Q1, Q2] = Q1Q2−Q2Q1 denotes their commu-

tator.
• A . B means that there exists C > 0 such that A ≤ CB.
• A = O(B) means that |A| . |B|.
• Constants such as C and c are free to vary from line to line. Explicit and implicit

constants are allowed to depend in an increasing, continuous fashion on
the data-size parameters δ̊ and δ̊−1

∗ from Sect. 7.3. However, the constants
can be chosen to be independent of the parameters ε̊ and ε whenever ε̊
and ε are sufficiently small relative to δ̊ and δ̊−1

∗ .
• b·c and d·e respectively denote the floor and ceiling functions.

2.2. The structure of the equation in rectangular components. In this section, we
formulate equation (1.0.1a) in rectangular coordinates and state our assumptions on the
nonlinear terms. We use t = x0 ∈ R to denote the time coordinate and (x1, x2) ∈ R× T to
denote standard coordinates on Σ, where x2 is locally defined. The vectorfields ∂t, ∂1, ∂2 are
globally defined. We call {xα}α=0,1,2 the rectangular coordinates because relative to them,
the standard Minkowski metric on R× Σ takes the form mµν = diag(−1, 1, 1).

We assume that relative to the rectangular coordinates,

gµν = gµν(Ψ) := mµν + g(Small)
µν (Ψ), (µ, ν = 0, 1, 2), (2.2.1)

where g
(Small)
µν (Ψ) is a given smooth function of Ψ with

g(Small)
µν (0) = 0. (2.2.2)

Relative to the rectangular coordinates, (1.0.1a) takes the form

(g−1)αβ∂α∂βΨ− (g−1)αβ(g−1)κλΓακβ∂λΨ = 0. (2.2.3)
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The Γακβ are the lowered Christoffel symbols44 of g relative to rectangular coordinates and
can be expressed as

Γακβ = Γακβ(Ψ, ∂Ψ) :=
1

2
{∂αgκβ + ∂βgακ − ∂κgαβ} (2.2.4)

=
1

2
{Gκβ∂αΨ +Gακ∂βΨ−Gαβ∂κΨ} ,

where

Gαβ = Gαβ(Ψ) :=
d

dΨ
gαβ(Ψ). (2.2.5)

For later use, we also define

G′αβ = G′αβ(Ψ) :=
d2

dΨ2
gαβ(Ψ). (2.2.6)

We now describe our assumptions on the tensorfield Gαβ(Ψ = 0), which can be viewed
as a 3× 3 matrix with constant entries relative to rectangular coordinates. We could prove
the existence45 of stable shock-forming solutions whenever there exists a Minkowski-null
vectorfield L(Flat) (that is, mαβL

α
(Flat)L

β
(Flat) = 0) such that

Gαβ(Ψ = 0)Lα(Flat)L
β
(Flat) 6= 0. (2.2.7)

The assumption (2.2.7) holds for most nonlinearities and is equivalent to the failure of
Klainerman’s classic null condition [34]. We recall that the main results that we present
in this article rely on the existence of a family of plane symmetric shock-forming solutions.
The existence of the family is based on the following assumption: there exists a vectorfield
L(Flat) ∈ span{∂t, ∂1} such that (2.2.7) holds. We may then perform a Lorentz transformation
on the t, x1 coordinates if necessary in order put L(Flat) into the following form, which we
assume throughout the remainder of the article:

L(Flat) = ∂t + ∂1. (2.2.8)

Note that under the above assumptions, LHS (2.2.7) is equal to the non-zero constant
G00(Ψ = 0) + 2G01(Ψ = 0) +G11(Ψ = 0).

Remark 2.1 (Genuinely nonlinear systems). Our assumption that the vectorfield (2.2.8)
verifies (2.2.7) is reminiscent of the well-known genuine nonlinearity condition for first-order
strictly hyperbolic systems. In particular, for plane symmetric solutions with Ψ sufficiently
small, the assumption ensures that there are quadratic Riccati-type terms46 in the wave
equation, which is the main mechanism driving the singularity formation in the 2×2 strictly
hyperbolic genuinely nonlinear systems studied by Lax [42].

44Our Christoffel symbol index conventions are such that for vectorfields V , we have DαV
β = ∂αV

β +

Γ β
α λV

λ, where Γ β
α λ := (g−1)βκΓακλ.

45The condition (2.2.7) would be sufficient for allowing us to prove the existence of stable large-data
shock-forming solutions. However, in order to handle the set of data (which includes some small data) stated
in Theorem 15.1, we need the additional assumption (2.2.8).

46The vectorfield frame that we construct in fact leads to the cancellation of the Riccati-type terms; see
the discussion just below (1.2.7).
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By rescaling the metric by the scalar function 1/(g−1)00(Ψ), we may assume without loss
of generality47 that

(g−1)00(Ψ) ≡ −1. (2.2.9)

The assumption (2.2.9) simplifies many of our formulas.

Remark 2.2. In total, our assumptions on the nonlinearities imply the term 1
2
GLLX̆Ψ on

RHS (2.11.1), which lies at the heart of our analysis, is sufficiently strong to drive µ to 0 in
the regime under study.

2.3. Basic constructions involving the eikonal function. As we described in Sect. 1.2,
our entire work is based on an eikonal function, specifically, the solution to the hyperbolic
initial value problem (1.2.1)-(1.2.2). We associate the following subsets of spacetime to u.
They were depicted in Figure 2 on pg. 11.

Definition 2.1 (Subsets of spacetime). We define the following spacetime subsets:

Σt′ := {(t, x1, x2) ∈ R× R× T | t = t′}, (2.3.1a)

Σu′

t′ := {(t, x1, x2) ∈ R× R× T | t = t′, 0 ≤ u(t, x1, x2) ≤ u′}, (2.3.1b)

P t′u′ := {(t, x1, x2) ∈ R× R× T | 0 ≤ t ≤ t′, u(t, x1, x2) = u′}, (2.3.1c)

`t′,u′ := P t′u′ ∩ Σu′

t′ = {(t, x1, x2) ∈ R× R× T | t = t′, u(t, x1, x2) = u′}, (2.3.1d)

Mt′,u′ := ∪u∈[0,u′]P t
′

u ∩ {(t, x1, x2) ∈ R× R× T | 0 ≤ t < t′}. (2.3.1e)

We refer to the Σt and Σu
t as “constant time slices,” the P tu as “null hyperplanes,” and the

`t,u as “curves.” We sometimes use the notation Pu in place of P tu when we are not concerned
with the truncation time t. We restrict our attention to spacetime regions with 0 ≤ u ≤ U0,
where we recall (see (1.0.2)) that 0 < U0 ≤ 1 is a parameter, fixed until Theorem 15.1.

Remark 2.3. The constants in all of our estimates can be chosen to be independent of
U0 ∈ (0, 1].

We associate the following gradient vectorfield to the eikonal function solution to (1.2.1):

Lν(Geo) := −(g−1)να∂αu. (2.3.2)

It is easy to see that L(Geo) is future-directed48 with g(L(Geo), L(Geo)) := gαβL
α
(Geo)L

β
(Geo) =

0, that is, L(Geo) is g−null. Moreover, we can differentiate the eikonal equation with
Dν := (g−1)ναDα and use the torsion-free property of the connection D to deduce that
0 = (g−1)αβDαuDβDνu = −DαuDαL

ν
(Geo) = Lα(Geo)DαL

ν
(Geo). That is, L(Geo) is geodesic:

DL(Geo)
L(Geo) = 0. (2.3.3)

47Technically, rescaling the metric introduces a semilinear term proportional to (g−1)αβ(Ψ)∂αΨ∂βΨ in
the covariant wave equation corresponding to the rescaled metric. However, our proof will show that for the
solutions under study, this term makes a negligible contribution to the dynamics because it has a special
null structure (it verifies the strong null condition mentioned in Remark 1.7) that is visible relative to the
frame (2.4.4a). Hence, we ignore it for simplicity.

48Here and throughout, a vectorfield V is “future-directed” if its rectangular component V 0 is positive.
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Our analysis will show that the rectangular components of L(Geo) blow-up when the shock
forms. In particular, as we described in Sect. 1.2, the formation of a shock is equivalent to
the vanishing of the following quantity µ.

Definition 2.2 (Inverse foliation density). Let L0
(Geo) be the 0 rectangular component of

the vectorfield L(Geo) defined in (2.3.2). We define the inverse foliation density µ as follows:

µ :=
−1

(g−1)αβ∂αt∂βu
=

−1

(g−1)0α∂αu
=

1

L0
(Geo)

. (2.3.4)

The quantity 1/µ measures the density of the level sets of u relative to the constant-time
hypersurfaces Σt. When µ becomes 0, the density becomes infinite and the level sets of u
intersect. We also note that the vanishing of µ is equivalent to the blow up of DV u, where
V := −(g−1)0α∂α is approximately equal to ∂t in the regime under study.

In our analysis, we work with a rescaled version of L(Geo) that we refer to as L. Our proof
reveals that the rectangular components of L remain near those of L(Flat) (which is defined
in (2.2.8)) all the way up to the shock.

Definition 2.3 (Rescaled null vectorfield). We define the rescaled null vectorfield L as
follows:

L := µL(Geo). (2.3.5)

Definition 2.4 (Geometric torus coordinate ϑ and the corresponding vectorfield
Θ). Along Σ1

0, we define ϑ(t = 0, x1, x2) = x2. We extend ϑ to regions of the form Mt,u by
solving the transport equation Lϑ = 0 with ϑ subject to the above initial conditions along
Σ1

0.
We define Θ = ∂

∂ϑ
:= ∂

∂ϑ
|t,u to be the vectorfield corresponding to partial differentiation

with respect to ϑ at fixed t and u.

Definition 2.5 (Geometric coordinates). We refer to (t, u, ϑ) as the geometric coordi-
nates.

Remark 2.4 (C1−equivalent differential structures until shock formation). We
often identify spacetime regions of the form Mt,U0 (see (2.3.1e)) with the region [0, t) ×
[0, U0]×T corresponding to the geometric coordinates. This identification is justified by the
fact that during the classical lifespan of the solutions under consideration, the differential
structure on Mt,U0 corresponding to the geometric coordinates is C1−equivalent to the
differential structure onMt,U0 corresponding to the rectangular coordinates. The equivalence
is captured by the fact that the change of variables map Υ (see Def. 2.20) from geometric
to rectangular coordinates is differentiable with a differentiable inverse, until a shock forms;
see Lemma 15.1 and Theorem 15.1. However, at points where µ vanishes, the rectangular
derivatives of Ψ blow-up (see equation (15.2.5) and the discussion below it), the inverse map
Υ−1 becomes singular, and the equivalence of the differential structures breaks down as well.

2.4. Important vectorfields, the rescaled frame, and the unit frame. In this section,
we define some additional vectorfields that we use in our analysis and exhibit their basic
properties.
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Definition 2.6 (X, X̆, andN ). We defineX to be the unique vectorfield that is Σt−tangent,
g−orthogonal to the `t,u, and normalized by

g(L,X) = −1. (2.4.1)

We define

X̆ := µX. (2.4.2)

We define

N := L+X. (2.4.3)

Definition 2.7 (Two frames). We define, respectively, the rescaled frame and the non-
rescaled frame as follows:

{L, X̆,Θ}, Rescaled frame, (2.4.4a)

{L,X,Θ}, Non-rescaled frame. (2.4.4b)

Lemma 2.1 (Basic properties of X, X̆, L, and N). The following identities hold:

Lu = 0, Lt = L0 = 1, (2.4.5a)

X̆u = 1, X̆t = X̆0 = 0, (2.4.5b)

g(X,X) = 1, g(X̆, X̆) = µ2, (2.4.6a)

g(L,X) = −1, g(L, X̆) = −µ. (2.4.6b)

Moreover, relative to the geometric coordinates, we have

L =
∂

∂t
. (2.4.7)

In addition, there exists an `t,u−tangent vectorfield Ξ = ξΘ (where ξ is a scalar function)
such that

X̆ =
∂

∂u
− Ξ =

∂

∂u
− ξΘ. (2.4.8)

The vectorfield N defined in (2.4.3) is future-directed, g−orthogonal to Σt and is normal-
ized by

g(N,N) = −1. (2.4.9)

Moreover, relative to rectangular coordinates, we have (for ν = 0, 1, 2):

Nν = −(g−1)0ν . (2.4.10)

Finally, the following identities hold relative to the rectangular coordinates (for ν = 0, 1, 2):

Xν = −Lν − δ0
ν , Xν = −Lν − (g−1)0ν , (2.4.11)

where δ0
ν is the standard Kronecker delta.
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Proof. We first prove (2.4.5a). We begin by using (1.2.1), (2.3.2), and (2.3.5) to deduce
that Lu = Lα∂αu = −µ(g−1)αβ∂αu∂βu = 0 as desired. The fact that Lt = 1 is a simple
consequence of (2.3.2), (2.3.4), and (2.3.5).

We now prove (2.4.5b). We begin by using (2.3.2), (2.3.5), and (2.4.1) to deduce that

X̆u = µXα∂αu = −XαLα = −g(X,L) = 1. The fact that X̆t = 0 is an immediate

consequence of the fact that by construction, X̆ is Σt−tangent.
(2.4.8) then follows easily from (2.4.5b) and the fact that ∂

∂u
and Θ span the tangent space

of Σt at each point.
(2.4.6b) is an easy consequence of (2.4.1) and (2.4.2).
To derive the properties of N , we consider the vectorfield V ν := −(g−1)0ν , which is g−dual

to the one-form with rectangular components −δ0
ν and therefore g−orthogonal to Σt. By

(2.2.9), g(V, V ) = (g−1)αβδ0
αδ

0
β = −1, so V is future-directed, timelike, and unit-length.

In particular, V belongs to the g−orthogonal of `t,u, a space spanned by {L,X}. Thus,
there exist scalars a, b such that V = aL + bX. Since V t = V 0 = 1 = Lt = L0 and since
Xt = X0 = 0, we find that a = 1, that is, that V = L+bX. Taking the inner product of this
expression with X and using (2.4.6b) together with the fact that X is Σt−tangent (and hence
g−orthogonal to V ), we find that 0 = −1 + bg(X,X). Similarly, using (2.4.6b) the fact that
L is null, and the previous identity, we compute that −1 = g(V, V ) = −2b + b2g(X,X) =
−2b+ b = −b. It follows that V = L+X := N and g(X,X) = 1. We have thus obtained the
properties of N and obtained (2.4.9), (2.4.10), and the first identity in (2.4.6a). The second
identity in (2.4.6a) follows easily from the first one and definition (2.4.2). (2.4.11) follows
from the definition (2.4.3) of N and from lowering the indices in (2.4.10) with g.

To obtain (2.4.7), we simply use (2.4.5a) and the fact that by construction, we have Lϑ = 0
(see Def. 2.4).

�

2.5. Projection tensorfields, G(Frame), and projected Lie derivatives. Many of our
constructions involve projections onto Σt and `t,u.

Definition 2.8 (Projection tensorfields). We define the Σt projection tensorfield Π and
the `t,u projection tensorfield Π/ relative to rectangular coordinates as follows:

Π µ
ν := δ µ

ν −NνN
µ = δ µ

ν + δ 0
ν L

µ + δ 0
ν X

µ, (2.5.1a)

Π/ µ
ν := δ µ

ν +XνL
µ + Lν(L

µ +Xµ) = δ µ
ν − δ 0

ν L
µ + LνX

µ. (2.5.1b)

Definition 2.9 (Projections of tensorfields). Given any spacetime tensorfield ξ, we define
its Σt projection Πξ and its `t,u projection Π/ ξ as follows:

(Πξ)µ1···µmν1···νn := Π ν̃1
ν1
· · ·Π ν̃n

νn Π µ1
µ̃1
· · ·Π µm

µ̃m
ξµ̃1···µ̃mν̃1···ν̃n , (2.5.2a)

(Π/ ξ)µ1···µmν1···νn := Π/ ν̃1
ν1
· · ·Π/ ν̃n

νn Π/ µ1
µ̃1
· · ·Π/ µm

µ̃m
ξµ̃1···µ̃mν̃1···ν̃n . (2.5.2b)

We say that a spacetime tensorfield ξ is Σt−tangent (respectively `t,u−tangent) if Πξ = ξ
(respectively if Π/ ξ = ξ).

Definition 2.10 (`t,u projection notation). If ξ is a spacetime tensor, then we define

ξ/ := Π/ ξ. (2.5.3)
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If ξ is a symmetric type
(

0
2

)
spacetime tensor and V is a spacetime vectorfield, then we

define

ξ/V := Π/ (ξV ), (2.5.4)

where ξV is the spacetime one-form with rectangular components ξανV
α, (ν = 0, 1, 2).

We often refer to the following arrays of `t,u−tangent tensorfields in our analysis.

Definition 2.11 (Components of G and G′ relative to the non-rescaled frame). We
define

G(Frame) := {GLL, GLX , G/L , G/X , G/ }
to be the array of components of the tensorfield (2.2.5) relative the non-rescaled frame
(2.4.4b). Similarly, we define G′(Frame) to be the analogous array for the tensorfield (2.2.6).

Definition 2.12 (Lie derivatives). If V µ is a spacetime vectorfield and ξµ1···µmν1···νn is a type(
m
n

)
spacetime tensorfield, then relative to the arbitrary coordinates,49 the Lie derivative of ξ

with respect to V is the type
(
m
n

)
spacetime tensorfield LV ξ with the following components:

LV ξµ1···µmν1···νn := V α∂αξ
µ1···µm
ν1···νn −

m∑
a=1

ξµ1···µa−1αµa+1···µm
ν1···νn ∂αV

µa +
n∑
b=1

ξµ1···µmν1···νb−1ανb+1···νn∂νbV
α.

(2.5.5)

In addition, when V and W are both vectorfields, we often use the standard Lie bracket
notation [V,W ] := LVW .

It is a standard fact that Lie differentiation obeys the Leibniz rule as well as the Jacobi-
type identity

LVLW ξ − LWLV ξ = L[V,W ]ξ = LLVW ξ. (2.5.6)

Moreover, it is a standard fact based on the torsion-free property of D that RHS (2.5.5) is
invariant upon replacing all coordinate partial derivatives ∂ with covariant derivatives D .

In our analysis, we will apply the Leibniz rule for Lie derivatives to contractions of tensor
products of `t,u−tensorfields. Due in part to the special properties (such as (2.9.4)) of the
vectorfields that we use to differentiate, the non-`t,u components of the differentiated factor
in the products typically cancel. This motivates the following definition.

Definition 2.13 (`t,u and Σt−projected Lie derivatives). Given a tensorfield ξ and a
vectorfield V , we define the Σt−projected Lie derivative LV ξ of ξ and the `t,u−projected Lie
derivative L/V ξ of ξ as follows:

LV ξ := ΠLV ξ, L/V ξ := Π/LV ξ. (2.5.7)

Definition 2.14 (Geometric torus differential). If f is a scalar function on `t,u, then
d/f := ∇/ f = Π/Df , where Df is the gradient one-form associated to f .

The above definition avoids potentially confusing notation such as ∇/Li by replacing it with
d/Li; the latter notation clarifies that Li is to be viewed as a scalar rectangular component
function.

49It is well-known that RHS (2.5.5) is coordinate invariant.
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Lemma 2.2 (Sometimes `t,u projection is redundant). Let ξ be a type
(

0
n

)
spacetime

tensorfield. Then LNξ = LN(Πξ) and L/Lξ = L/Lξ/ .

Proof. To prove LNξ = LN(Πξ), we will show that Π α
µ LNΠ ν

α = 0. Once we have shown this,
we combine this identity with the Leibniz rule to deduce the following identity, where the
first term on the RHS is exact and the second one schematic: LN(Πξ) = LNξ + Π · LNΠ · ξ.
A careful analysis of the schematic term shows that it always contains a factor of the form
Π α
µ LNΠ ν

α , which vanishes. We have proved the desired result.
We now show that Π α

µ LNΠ ν
α = 0. Actually, we prove a stronger result: LNΠ µ

ν = 0.
Since LNδ µ

ν = 0 and since LNNµ = 0, we see from (2.5.1a) that it suffices to prove that
LNNν = 0. The LHS of the previous identity is equal to the one-form (LNgνα)Nα. To show
that it vanishes, we separately show that its N and Σt−tangent components vanish. For the
former, we use the identity g(N,N) = −1 and the Leibniz rule for Lie derivatives to deduce
the desired result (LNgνα)NαN ν = 0. It remains only for us to show that (LNg)(V,N) = 0 for
Σt−tangent vectorfields V . Using that V t = 0, we compute that (LNV )t = N(V t)−V (Nt) =
−V (1) = 0. It follows that LNV is also Σt−tangent and hence g(LNV,N) = 0. By the
Leibniz rule for Lie derivatives, we conclude that 0 = N(g(V,N)) = (LNg)(V,N) as desired.

The proof that L/Lξ = L/Lξ/ is similar and reduces to showing that Π/ α
ν LLΠ/ µ

α = 0. From
(2.5.1b), we see that it further reduces to showing that Π/ α

ν LL {XαL
µ + Lα(Lµ +Xµ)} = 0.

Since Π/ annihilates L and X, we need only to confirm that Π/ α
ν LL(Xα + Lα) = 0, which is

equivalent to Π/ α
ν LLNα = 0. Since Θ spans the tangent space of `t,u, it suffices to show that

Θα ·LLNα = 0. This latter identity follows easily from differentiating the identity ΘαNα = 0
with LL and using the identity LLΘ = 0 (since L = ∂

∂t
and Θ = ∂

∂ϑ
). �

2.6. First and second fundamental forms and covariant differential operators.

Definition 2.15 (First fundamental forms). We define the first fundamental form g of
Σt and the first fundamental form g/ of `t,u as follows:

g := Πg, g/ := Π/ g. (2.6.1)

We define the corresponding inverse first fundamental forms by raising the indices with
g−1:

(g−1)µν := (g−1)µα(g−1)νβg
αβ
, (g/−1)µν := (g−1)µα(g−1)νβg/αβ. (2.6.2)

Note that g is the Riemannian metric on Σt induced by g and that g/ is the Riemannian

metric on `t,u induced by g. Moreover, a straightforward calculation shows that (g−1)µαg
αν

=

Π µ
ν and (g/−1)µαg/αν = Π/ µ

ν .

Remark 2.5. Because the `t,u are one-dimensional manifolds, it follows that symmetric type(
0
2

)
`t,u−tangent tensorfields ξ satisfy ξ = (trg/ξ)g/, where trg/ξ := g/−1 · ξ. This simple fact

simplifies some of our formulas compared to the case of higher space dimensions. In the
remainder of the article, we often use this fact without explicitly mentioning it. Moreover,
as we described in Remark 1.10, this fact is the reason that we do not need to derive elliptic
estimates in two space dimensions.

Definition 2.16 (Differential operators associated to the metrics). We use the fol-
lowing notation for various differential operators associated to the spacetime metric g, the
Minkowski metric m, and the Riemannian metric g/ induced on the `t,u.
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• D denotes the Levi-Civita connection of the spacetime metric g.
• ∇/ denotes the Levi-Civita connection of g/.
• If ξ is an `t,u−tangent one-form, then div/ ξ is the scalar-valued function div/ ξ :=
g/−1 · ∇/ ξ.
• Similarly, if V is an `t,u−tangent vectorfield, then div/ V := g/−1 · ∇/ V[, where V[ is the

one-form g/−dual to V .
• If ξ is a symmetric type

(
0
2

)
`t,u−tangent tensorfield, then div/ ξ is the `t,u−tangent

one-form div/ ξ := g/−1 ·∇/ ξ, where the two contraction indices in ∇/ ξ correspond to the
operator ∇/ and the first index of ξ.

Definition 2.17 (Covariant wave operators and Laplacians). We use the following
standard notation.

• �g := (g−1)αβD2
αβ denotes the covariant wave operator corresponding to the space-

time metric g.
• ∆/ := g/−1 · ∇/ 2 denotes the covariant Laplacian corresponding to g/.

Definition 2.18 (Second fundamental forms). We define the second fundamental form
k of Σt, which is a symmetric type

(
0
2

)
Σt−tangent tensorfield, by

k :=
1

2
LNg. (2.6.3)

We define the null second fundamental form χ of `t,u, which is a symmetric type
(

0
2

)
`t,u−tangent tensorfield, by

χ :=
1

2
L/Lg/. (2.6.4)

From Lemma 2.2, we see that the following alternate expressions hold:

k =
1

2
LNg, χ =

1

2
L/Lg. (2.6.5)

We now provide some identities that we use later.

Lemma 2.3 (Alternate expressions for the second fundamental forms). We have
the following identities:

χΘΘ = g(DΘL,Θ), (2.6.6a)

k/XΘ = g(DΘL,X). (2.6.6b)

Proof. We prove only (2.6.6b) since the proof of (2.6.6a) is similar. Using (2.6.5), we compute
that 2k/XΘ = (LNg)XΘ = (LNg)XΘ = g(DXN,Θ) + g(DΘN,X). Since g(X,X) = 1 and
N = L + X, we see that g(DΘN,X) = g(DΘL,X). Thus, to complete the proof, we need
only to show that g(DXN,Θ) = g(DΘL,X). To proceed, we note that since g(N,X) = 0 and
g(X,X) = 1, we have g(DΘN,X) = −g(DΘX,N) = −g(DΘX,L). Then since g(X,L) = −1,
we conclude that −g(DΘX,L) = g(DΘL,X) as desired. �

2.7. Expressions for the metrics. In this section, we decompose g relative to the non-
rescaled frame and relative to the geometric coordinates. We then provide expressions for
various volume forms relative to the geometric coordinates and for the change of variables
map from geometric to rectangular coordinates.
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Lemma 2.4 (Expressions for g and g−1 in terms of the non-rescaled frame). We
have the following identities:

gµν = −LµLν − (LµXν +XµLν) + g/µν , (2.7.1a)

(g−1)µν = −LµLν − (LµXν +XµLν) + (g/−1)µν . (2.7.1b)

Proof. It suffices to prove (2.7.1a) since (2.7.1b) then follows from raising the indices of
(2.7.1b) with g−1.

To verify the formula (2.7.1a), we contract each side against the rectangular coordinates
of pairs of elements of the frame {L,X,Θ} and check that both sides agree. This of course
requires that we know the inner products of all pairs of elements of the frame, some of
which follow from the basic properties of the frame vectorfields, and some of which were
established in Lemma 2.1. As an example, we note that contracting the LHS against LµΘν

yields g(L,Θ) = 0, while contracting the RHS yields −g(L,L)g(L,Θ) − g(L,L)g(X,Θ) −
g(X,L)g(L,Θ) + g/(L,Θ) = 0 + 0 + 0 + 0 = 0 as desired. As a second example, we note
that contracting the LHS against LµXν yields g(L,X) = −1, while contracting the RHS
yields −g(L,L)g(L,X)− g(L,L)g(X,X)− g(X,L)g(L,X) + g/(L,X) = 0 + 0− 1 + 0 = −1
as desired. �

The following scalar function captures the `t,u part of g.

Definition 2.19 (The metric component υ). We define the scalar function υ > 0 by

υ2 := g(Θ,Θ) = g/(Θ,Θ). (2.7.2)

It follows that relative to the geometric coordinates, we have

g/−1 = υ−2Θ⊗Θ. (2.7.3)

We now express g relative to the geometric coordinates.

Lemma 2.5 (Expressions for g and g−1 in terms of the geometric coordinate
frame). Relative to the geometric coordinate (t, u, ϑ), we have

g = −2µdt⊗ du+ µ2du⊗ du+ υ2(dϑ+ ξdu)⊗ (dϑ+ ξdu), (2.7.4)

g−1 = − ∂

∂t
⊗ ∂

∂t
− µ−1 ∂

∂t
⊗ ∂

∂u
− µ−1 ∂

∂u
⊗ ∂

∂t
− µ−1ξ

∂

∂t
⊗Θ− µ−1ξΘ⊗ ∂

∂t
+ υ−2Θ⊗Θ.

(2.7.5)

The scalar functions ξ and υ from above are defined respectively in (2.4.8) and (2.7.2).

Proof. We recall that by Lemma 2.1 and (2.7.3), we have L = ∂
∂t

, and µX = X̆ = ∂
∂u
− ξΘ,

and g/−1 = υ−2 ∂
∂ϑ
⊗ ∂

∂ϑ
. Moreover, by (2.7.1b), we have g−1 = −L⊗L−L⊗X−X⊗L+g/−1.

Combining these identities, we easily conclude (2.7.5). (2.7.4) then follows from (2.7.5) as a
simple linear algebra exercise (just compute the inverse of the 3 × 3 matrix corresponding
to (2.7.5)). �

We now provide expressions for the geometric volume form factors of g and g.

Corollary 2.6 (The geometric volume form factors of g and g). The following identity
is verified by the spacetime metric g:

|detg| = µ2υ2, (2.7.6)
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where the determinant on the LHS is taken relative to the geometric coordinates (t, u, ϑ).
Furthermore, the following identity is verified by the first fundamental form g of ΣU0

t :

detg|
Σ
U0
t

= µ2υ2, (2.7.7)

where the determinant on the LHS is taken relative to the geometric coordinates (u, ϑ) induced
on ΣU0

t .

Proof. Equation (2.7.6) follows easily from computing the determinant of (2.7.4).
Next, we note that (2.7.4) implies that g = µ2du2 + υ2(dϑ + ξdu)(dϑ + ξdu). A simple

calculation then yields (2.7.7). �

Definition 2.20. We define Υ : [0, T )× [0, U0]×T→Mt,u, Υ(t, u, ϑ) = (t, x1, x2) to be the
change of variables map from geometric to rectangular coordinates.

Lemma 2.7 (Basic properties of the change of variables map). We have the following
expression for the Jacobian of Υ:

∂Υ

∂(t, u, ϑ)
:=

∂(x0, x1, x2)

∂(t, u, ϑ)
=

 1 0 0

L1 X̆1 + Ξ1 Θ1

L2 X̆2 + Ξ2 Θ2

 . (2.7.8)

Moreover, the Jacobian determinant of Υ can be expressed as

det
∂(x0, x1, x2)

∂(t, u, ϑ)
= µ(detg

ij
)−1/2υ, (2.7.9)

where υ is the metric component from Def. 2.19 and (detg
ij

)−1/2 is a smooth function of Ψ in

a neighborhood of 0 with (detg
ij

)−1/2(Ψ = 0) = 1. In (2.7.9), g is viewed as the Riemannian

metric on ΣU0
t defined by (2.6.1) and detg

ij
is the determinant of the corresponding 2 × 2

matrix of components of g relative to the rectangular spatial coordinates.

Proof. Since ∂
∂t

= L, first column of the matrix on RHS (2.7.8) is by definition (Lx0, Lx1, Lx2)> =

(1, L1, L2)>, where > denotes the transpose operator and we have used (2.4.5a). The second
column is ( ∂

∂u
x0, ∂

∂u
x1, ∂

∂u
x2)>, and to obtain the form stated on RHS (2.7.8), we use (2.4.8).

The third column is (Θx0,Θx1,Θx2)>, and to obtain the stated form, we use the fact that
Θx0 = Θt = 0 (since Θ is Σt−tangent).

To obtain (2.7.9), we first observe that the determinant of the RHS is equal to the
determinant of the 2 × 2 lower right block. Moreover, since Ξ and Θ are parallel, we
can assume that Ξ ≡ 0. Also recalling that X̆ = µX, we see that the determinant

of interest is equal to µdetN , where N :=

(
X1 Θ1

X2 Θ2.

)
. Next we consider the 2 × 2

matrix M :=

(
g(X,X) g(X,Θ)
g(Θ, X) g(Θ,Θ)

)
=

(
1 0
0 υ2

)
. On the one hand, we clearly have

detM = υ2. On the other hand, we have the matrix identity M = N · g · N> (where g is
viewed as a 2 × 2 matrix expressed relative to the spatial rectangular coordinates), which
implies that detM = detg(detN)2. Combining these identities, we conclude (2.7.9). Fi-
nally, we note that since g

ij
= δij + f(Ψ)Ψ with f a tensor depending smoothly on Ψ, we
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easily conclude that (detg
ij

)−1/2 is a smooth function of Ψ in a neighborhood of 0 with

(detg
ij

)−1/2(Ψ = 0) = 1. �

2.8. Commutation vectorfields. To obtain higher-order estimates for Ψ and the eikonal
function quantities along `t,u, we commute various evolution equations with an `t,u−tangent
vectorfield. A natural candidate commutator is the geometric coordinate partial derivative
vectorfield Θ, which solves the transport equation L/LΘ = 0. In rectangular components, the
transport equation reads LΘi = Θ · d/Li and thus Θi is one degree less differentiable than Li

in directions transversal to L. It turns out that this loss introduces technical complications
into the analysis. Though it may be possible to overcome the complications, we choose to
instead commute with a more convenient `t,u−tangent vectorfield Y , which we obtain by
projecting a rectangular coordinate vectorfield Y(Flat) onto the `t,u. Lemma 2.8 below shows
that the rectangular components Y i have the same degree of differentiability as Ψ and Li.
Another advantage of using the commutator Y is that its deformation tensor structure allows
us to derive our high-order energy estimates without commuting the wave equation with the
transversal vectorfield X̆ at high orders (see Def. 12.1 and Prop. 14.1). We note here that
at first glance, the top-order derivatives of the deformation tensor of Y that appear in the
top-order wave equation energy estimates seem to lose derivatives relative to Ψ. However, we
are able to overcome this difficulty by working with modified quantities, which we construct
in Sect. 6.

Definition 2.21 (The vectorfields Y(Flat) and Y ). We define the rectangular components
of Σt−tangent vectorfields Y(Flat) and Y as follows (i = 1, 2):

Y i
(Flat) := δi2, (2.8.1)

Y i := Π/ i
a Y

a
(Flat) = Π/ i

2 , (2.8.2)

where Π/ is the `t,u projection tensorfield defined in (2.5.1b).

To prove our main theorem, we commute the equations with the elements of the following
set of vectorfields.

Definition 2.22 (Commutation vectorfields). We define the commutation set Z as
follows:

Z := {L, X̆, Y }, (2.8.3)

where L, X̆, and Y are respectively defined by (2.3.5), (2.4.2), and (2.8.2).
We define the Pu−tangent commutation set P as follows:

P := {L, Y }. (2.8.4)

The rectangular spatial components of L, X, and Y deviate from their flat values by a
small amount captured in the following definition.

Definition 2.23 (Perturbed part of the various vectorfields). For i = 1, 2, we define
the following scalar functions:

Li(Small) := Li − δi1, X i
(Small) := X i + δi1, Y i

(Small) := Y i − δi2. (2.8.5)

The vectorfields L, X, and Y in (2.8.5) are defined in Defs. 2.3, 2.6, and 2.21.
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Remark 2.6. From (2.2.1), (2.2.2), (2.4.11), and (2.8.5), we have that X i
(Small) = −Li(Small)−

(g−1)0i, where (g−1)0i(Ψ = 0) = 0. We will use this simple fact later on.

In the next lemma, we characterize the discrepancy between Y(Flat) and Y .

Lemma 2.8 (Decomposition of Y(Flat)). We can decompose Y(Flat) into an `t,u−tangent
vectorfield and a vectorfield parallel to X as follows: since Y is `t,u−tangent, there exists a
scalar function ρ such that

Y i
(Flat) = Y i + ρX i, (2.8.6a)

Y i
(Small) = −ρX i. (2.8.6b)

Moreover, we have

ρ = g(Y(Flat), X) = gabY
a

(Flat)X
b = g2aX

a = g
(Small)
21 X1 − g22X

2
(Small). (2.8.7)

Proof. The existence of the decomposition (2.8.6a) follows from the fact that by construction,
Y(Flat) and Y differ only by a vectorfield that is parallel to X (because the `t,u projection ten-
sorfield Π/ annihilates the X component of the Σt−tangent vectorfield Y(Flat) while preserving
its `t,u−tangent component).

The expression (2.8.6b) then follows from definition (2.8.5) and (2.8.6a).
To obtain (2.8.7), we contract (2.8.6a) against Xi and use (2.2.1)-(2.2.2), the identities

Y aXa = 0 and XaXa = 1, and definition (2.8.5) �

2.9. Deformation tensors and basic vectorfield commutator properties. In this sec-
tion, we start by recalling the standard definition of the deformation tensor of a vectorfield.
We then exhibit some basic properties enjoyed by the Lie derivatives of various vectorfields.

Definition 2.24 (Deformation tensor of a vectorfield V ). If V is a spacetime vectorfield,
then its deformation tensor (V )π (relative to the spacetime metric g) is the symmetric type(

0
2

)
tensor

(V )παβ := LV gαβ = DαVβ + DβVα, (2.9.1)

where the last equality in (2.9.1) is a well-known consequence of (2.5.5) and the torsion-free
property of the connection D .

Lemma 2.9 (Basic vectorfield commutator properties). The vectorfields [L, X̆], [L, Y ],

and [X̆, Y ] are `t,u− tangent, and the following identities hold:

[L, X̆] = (X̆)π/#
L , [L, Y ] = (Y )π/#

L , [X̆, Y ] = (Y )π/#

X̆
. (2.9.2)

Furthermore, if Z ∈ Z , then

L/Zg/ = (Z)π/, L/Zg/
−1 = −(Z)π/

##
. (2.9.3)

Finally, if V is an `t,u−tangent vectorfield, then

[L, V ] and [X̆, V ] are `t,u − tangent. (2.9.4)
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Proof. We first prove (2.9.4). We use the identities Lu = 0 and Lt = 1 to compute that
[L, V ]t = LV t − V Lt = L0 − V 1 = 0 and [L, V ]u = LV u − V Lu = L0 − V 0 = 0. Since
[L, V ] annihilates t and u, it must be `t,u−tangent as desired. A similar argument based on

the identities X̆u = 1 and X̆t = 0 yields that [X̆, V ] is `t,u−tangent.
We now prove (2.9.2). Using the arguments from the previous paragraph, we easily deduce

that the left-hand and right-hand sides of the identities are vectorfields that annihilate the
function t and are therefore Σt−tangent. Hence, it suffices to show that the inner products
of the two sides of (2.9.2) with X̆ are equal and that the same holds for inner products

with Y . We give the details only in the case of the last identity [X̆, Y ] = (Y )π/#

X̆
since the

other two can be proved similarly. First, we note that the inner product of X̆ and (Y )π/#

X̆
is

trivially 0. Moreover, since we showed in the first paragraph that [X̆, Y ] is `t,u−tangent, we

conclude that g([X̆, Y ], X̆) = 0 as desired. We now show that the inner products of Y and
the two sides of the last identity in (2.9.2) are equal. Using again the torsion-free property

and the fact that g(X̆, Y ) = 0, we compute that g([X̆, Y ], Y ) = g(DX̆Y, Y )− g(DY X̆, Y ) =

g(DX̆Y, Y ) + g(DY Y, X̆). The RHS of this identity is equal to the inner product of the RHS
of the last identity in (2.9.2) with Y as desired.

To prove (2.9.3) for L/Zg/, we apply to L/Zg/ to the identity (2.7.1a). The LHS of the resulting
identity is (Z)π/, while only the last term L/Zg/ survives on the RHS since the `t,u−projection Π/
annihilates the non-differentiated factors arising from the first three tensor products on RHS
(2.7.1a). We have thus proved (2.9.3) for L/Zg/. The identity (2.9.3) for L/Zg/−1 is a simple
consequence of the identity for L/Zg/, the identity (g/−1)ακg/κβ = Π/ α

β , the Leibniz rule, and

the identity (g/−1)ακL/ZΠ/ β
κ = 0, which we now prove. Since (g/−1)αβ = υ−2ΘαΘβ, the proof

reduces to showing that (LZΠ/ a
i )Θi = 0. To this end, we differentiate the identity Θ = Π/ ·Θ

and use the Leibniz rule to deduce that LZΘ = (LZΠ/ ) ·Θ + Π/ · LZΘ. Using (2.9.4), we see
that LZΘ = Π/ · LZΘ, which finishes the proof.

�

Lemma 2.10 (L, X̆, Y commute with d/). For scalar functions f and V ∈ {L, X̆, Y }, we
have

L/V d/f = d/V f. (2.9.5)

Proof. We prove the identity only when V = X̆ since the remaining identities can be proved
similarly. To proceed, we contract (2.9.5) against Y and use the Leibniz rule on the LHS to

find that the identity is equivalent to X̆Y f − (LX̆Y ) · d/f = Y X̆f . The previous identity is

equivalent to [X̆, Y ] = L/X̆Y , which follows from (2.9.2). �

2.10. The rectangular Christoffel symbols. In many of our subsequent calculations, we
start by expressing quantities in rectangular coordinates. The most important of these are
the Christoffel symbols.

Lemma 2.11 (Christoffel symbols of g in rectangular coordinates). Let

Γακβ :=
1

2
{∂αgκβ + ∂βgακ − ∂κgαβ}
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denote the lowered Christoffel symbols of g relative to rectangular coordinates and recall that
Gαβ(Ψ) = d

dΨ
gαβ(Ψ). Then we have

Γακβ =
1

2
{Gκβ∂αΨ +Gακ∂βΨ−Gαβ∂κΨ} . (2.10.1)

Proof. (2.10.1) is a simple consequence of the chain rule. �

2.11. Transport equations for the eikonal function quantities. We now use Lemma 2.11
to derive evolution equations for µ and the rectangular components Li(Small), (i = 1, 2).

Lemma 2.12 (The transport equations verified by µ and Li). The inverse foliation
density µ defined in (2.3.4) verifies the following transport equation:

Lµ = ω :=
1

2
GLLX̆Ψ− 1

2
µGLLLΨ− µGLXLΨ. (2.11.1)

The scalar-valued rectangular component functions Li(Small), (i = 1, 2), defined in (2.8.5),
verify the following transport equation:

LLi(Small) = −1

2
GLL(LΨ)Li − 1

2
GLL(LΨ)(g−1)0i −G/ #

L · (d/xi)(LΨ) +
1

2
GLL(d/#Ψ) · d/xi.

(2.11.2)

Proof. We first prove (2.11.1). We start by writing the 0 component of the geodesic equation
DL(Geo)

L(Geo) = 0 relative to rectangular coordinates with the help of (2.10.1): L(Geo)L
0
(Geo) =

(g−1)0κ
{

(1/2)GL(Geo)L(Geo)
∂κΨ−GκL(Geo)

L(Geo)Ψ
}

. Using this equation, the identity (g−1)0κ =

−Lκ −Xκ ( see (2.7.1b) and recall that L0 = 1 and X0 = 0 ), the definition µ = 1/L0
(Geo),

and the definition L = µL(Geo), we conclude (2.11.1) from straightforward computations.
To prove (2.11.2), we use the definition L = µL(Geo) and (2.8.5) to write the spatial

components of the geodesic equation DL(Geo)
L(Geo) = 0 relative to rectangular components

as LLi(Small) = LLi = −(g−1)iκΓLκL + µ−1(Lµ)Li. Using (2.7.1b) and (2.10.1), we compute

that −(g−1)iκΓLκL = (Li+X i)ΓLLL+LiΓLXL− (g/−1)iκΓLκL. Using (2.4.11) and (2.10.1), we
express the RHS of the previous identity as −(g−1)0iGLLLΨ+Li {GLXLΨ− (1/2)GLLXΨ}−
G/ i
L LΨ + (1/2)GLL(d/iΨ). We then add this expression to the second product µ−1(Lµ)Li in

the formula for LLi(Small) from above and use (2.11.1) to substitute for Lµ. We note in

particular that the terms proportional to LiGLLXΨ and LiGLXLΨ completely cancel. Also
using the simple identities G/ i

L = G/ #
L · (d/xi) and d/iΨ = (d/#Ψ) · d/xi, we conclude (2.11.2).

�

2.12. Connection coefficients of the rescaled frame. We now derive expressions for the
connection coefficients of the frame {L, X̆,Θ} in terms of Ψ,µ, L1, L2. We also decompose
some of the connection coefficients into “regular” pieces and pieces that have a “singular”
µ−1 factor.

Lemma 2.13 (Connection coefficients of the rescaled frame {L, X̆,Θ} and their
decomposition into µ−1−singular and µ−1−regular pieces). Let ζ be the `t,u−tangent
one-form defined by (see the identity (2.6.6b))

ζΘ := k/XΘ = g(DΘL,X) = µ−1g(DΘL, X̆). (2.12.1)
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Then the covariant derivatives of the rescaled frame vectorfields can be expressed as follows,
where the tensorfields χ, k, and ω are defined in (2.6.4), (2.6.3), and (2.11.1):

DLL = µ−1ωL, (2.12.2a)

DX̆L = −ωL+ µζ# + d/#
µ, (2.12.2b)

DΘL = −ζΘL+ trg/χΘ, (2.12.2c)

DLX̆ = −ωL− µζ#, (2.12.2d)

DX̆X̆ = µωL+
{
µ−1X̆µ+ω

}
X̆ − µd/#

µ, (2.12.2e)

DΘX̆ = µζΘL+ ζΘX̆ + µ−1(d/Θµ)X̆ + µtrg/k/Θ− µtrg/χΘ, (2.12.2f)

DLΘ = DΘL, (2.12.2g)

DΘΘ = ∇/ΘΘ + k/ΘΘ L+ µ−1χΘΘX̆. (2.12.2h)

Furthermore, we can decompose the frame components of the `t,u−tangent tensorfields k/
and ζ into µ−1−singular and µ−1−regular pieces as follows:

ζ = µ−1ζ(Trans−Ψ) + ζ(Tan−Ψ), (2.12.3a)

k/ = µ−1k/ (Trans−Ψ) + k/ (Tan−Ψ), (2.12.3b)

where

ζ(Trans−Ψ) := −1

2
G/L X̆Ψ, (2.12.4a)

k/ (Trans−Ψ) :=
1

2
G/ X̆Ψ, (2.12.4b)

and

ζ(Tan−Ψ) :=
1

2
G/X LΨ− 1

2
GLXd/Ψ−

1

2
GXXd/Ψ, (2.12.5a)

k/ (Tan−Ψ) :=
1

2
G/LΨ− 1

2
G/L ⊗ d/Ψ−

1

2
d/Ψ⊗G/L −

1

2
G/X ⊗ d/Ψ−

1

2
d/Ψ⊗G/X . (2.12.5b)

Proof. The identity (2.12.2a) follows easily from the geodesic equation DL(Geo)
L(Geo) = 0 and

the definition L = µL(Geo).

To derive (2.12.2d), we expand DLX̆ = aLL+aX̆X̆+aΘΘ, where the a· are scalar functions..

Taking the inner product of each side with L and using g(L, X̆) = −µ, g(L,Θ) = 0, and

(2.12.2a), we find that −aX̆µ = g(DLX̆, L) = −Lµ− g(X̆,DLL) = 0 as desired. Taking the

inner product of each side with X̆ and using in addition that g(X̆, X̆) = µ2 and g(X̆,Θ) = 0,

we find that −µaL = g(DLX̆, X̆) = µLµ as desired. Finally, taking the inner product
of each side with Θ and using in addition that 0 = [L,Θ] = DLΘ − DΘL (where the
second equality follows from the torsion-free property of D), we find that aΘg(Θ,Θ) =

g(DLX̆,Θ) = −g(X̆,DLΘ) = −g(X̆,DΘL) = −µζΘ as desired. A similar argument yields
(2.12.2b); we omit the full details and instead only note that argument relies in part on

the identity g(DX̆L,Θ) = −g(DX̆Θ, L) = −g(DΘX̆, L) − g([X̆,Θ], L) = −g(DΘX̆, L). The
second equality follows from the torsion-free property of D , while the last one follows from
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the fact that [X̆,Θ] is `t,u−tangent, which is a simple consequence of (2.4.8). A similar
argument also yields (2.12.2e); we omit the details.

To derive (2.12.2c), we expand DΘL = aLL + aX̆X̆ + aΘΘ. Taking the inner product
of each side with L and using the identities noted above as well as g(L,L) = 0, we find

that aX̆ = 0 as desired. Similarly, taking the inner product of each side with X̆, we find

that −µaL = g(DΘL, X̆) = µζΘ as desired. Similarly, taking the inner product of each side
with Θ, we find that aΘg(Θ,Θ) = g(DΘL,Θ) = χΘΘ, from which we easily conclude that
aΘ = trg/χ as desired.

(2.12.2g) is a simple consequence of the identity [L,Θ] = 0 and the torsion-free property
of D .

To prove (2.12.2h), we expand DΘΘ = aLL + aX̆X̆ + aΘΘ. Taking the inner product of
each side with L and using the identities noted above, we find that −aX̆µ = g(DΘΘ, L) =
−g(DΘL,Θ) = −trg/χg(Θ,Θ) = −χΘΘ as desired. Taking the inner product of each side

with X̆, and using (2.4.2), (2.4.3), and (2.12.2c), we find that −µaL = g(DΘΘ, X̆)−µχΘΘ =

−g(DΘX̆,Θ) − µtrg/χg(Θ,Θ) = −µg(DΘX,Θ) − µtrg/χg(Θ,Θ) = −µg(DΘN,Θ) = −µk/ΘΘ

as desired. Taking the inner product of each side with Θ and using that ∇/ ξ = Π/Dξ for
`t,u−tangent tensorfields ξ, we find that aΘg(Θ,Θ) = g(DΘΘ,Θ) = g(∇/ ΘΘ,Θ) as desired.

To prove (2.12.2f), we expand DΘX̆ = aLL + aX̆X̆ + aΘΘ. Taking the inner product of
each side with L and using and using the identities noted above as well as (2.12.2c), we find

that −aX̆µ = g(DΘX̆, L) = −Θµ − g(DΘL, X̆) = −Θµ − µζΘ as desired. Taking the inner

product of each side with X̆, we find that −µaL = g(DΘX̆, X̆)− µ2aX̆ = −µ2ζΘ as desired.
Finally, taking the inner product of each side with Θ and using (2.12.2h), we find that

aΘg(Θ,Θ) = g(DΘX̆,Θ) = −g(X̆,DΘΘ) = µk/ΘΘ − µχΘΘ = µtrg/k/ g(Θ,Θ)− µtrg/χg(Θ,Θ) as
desired.

We now prove (2.12.3a), (2.12.4a), and (2.12.5a). Our proof relies on the identity

(LNg)XΘ = GXΘLΨ−GLΘXΨ−GLXΘΨ−GXXΘΨ. (2.12.6)

To prove (2.12.6), we use (2.4.3), (2.4.10), (2.7.1a), (2.7.1b), the chain rule identity Ngαβ =
GαβNΨ, and the inverse matrix differentiation identity −V (g−1)0α = (g−1)0κ(g−1)αλGκλVΨ
(valid for any vectorfield V ) to deduce that

(LNg)XΘ = GXΘNΨ + gXαΘNα + gαΘXN
α (2.12.7)

= GXΘLΨ +GXΘXΨ + gXα(g−1)0κ(g−1)αλGκλΘΨ + gαΘ(g−1)0κ(g−1)αλGκλXΨ

= GXΘLΨ +GXΘXΨ−GLXΘΨ−GXXΘΨ−GLΘXΨ−GXΘXΨ.

We have thus proved (2.12.6). We now use (2.6.5), (2.6.6b), (2.12.1), and (2.12.6) to compute
that ζΘ = (1/2)RHS (2.12.6), which easily yields (2.12.3a), (2.12.4a), and (2.12.5a).

The identities (2.12.3b), (2.12.4b), and (2.12.5b) can be proved by employing a similar
argument; we omit the details. �

We will use the next lemma when deriving L∞ estimates for the transversal derivatives of
the rectangular component functions Li(Small).
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Lemma 2.14 (Formula for X̆Li). We have the following identity for the scalar-valued
functions Li(Small), (i = 1, 2):

X̆Li(Small) =

{
−1

2
GLLX̆Ψ +

1

2
µGLLLΨ + µGLXLΨ +

1

2
µGXXLΨ

}
Li (2.12.8)

+

{
−1

2
GLLX̆Ψ +

1

2
µGLLLΨ + µGLXLΨ +

1

2
µGXXLΨ

}
(g−1)0i

−
{
G/ #
L X̆Ψ +

1

2
µGXXd/

#Ψ

}
· d/xi + (d/#

µ) · d/xi.

Proof. Throughout this proof, ∇ denotes the Levi-Civita connection of the background
Minkowski metric mαβ = diag(−1, 1, 1). Since L0 = 1, we can view ∇X̆L as a Σt−tangent

vectorfield with rectangular spatial components X̆Li. Since X and Θ span the tangent space
of Σt at each point, we can expand∇X̆L = aXX+aΘΘ, where aX and aΘ are scalar functions.
Taking the inner product of each side with X, we find that aX = g(∇X̆L,X) = g(DX̆L,X)−
ΓX̆XL, where ΓX̆XL := X̆αXκLβΓακβ and Γακβ is given by (2.10.1). Using (2.10.1), (2.11.1),

and (2.12.2b), we compute that g(DX̆L,X) = ω = 1
2
GLLX̆Ψ − 1

2
µGLLLΨ − µGLXLΨ and

ΓX̆XL = 1
2
µGXXLΨ. Hence, aX = 1

2
GLLX̆Ψ− 1

2
µGLLLΨ−µGLXLΨ− 1

2
µGXXLΨ. Similarly,

we find that aΘ = g(DX̆L,Θ)−ΓX̆ΘL. Using (2.12.2b), we compute that g(DX̆L,Θ) = µζΘ +

d/Θµ and ΓX̆ΘL = 1
2

{
µGXΘLΨ +GLΘX̆Ψ− µGLXd/ΘΨ

}
. Hence, using (2.12.3a), (2.12.4a),

and (2.12.5a) to substitute for µζ, we deduce that aΘ = −GLΘX̆Ψ − 1
2
µGXXd/ΘΨ + d/Θµ.

Combining these identities, using the identity Θi = d/Θx
i, and using (2.4.11) to replace X i

with −Li − (g−1)0i, we conclude (2.12.8).
�

2.13. Useful expressions for the null second fundamental form.

Lemma 2.15 (Expressions for χ). We have the following identities:

χ = gab(d/L
a)⊗ d/xb +

1

2
G/LΨ, (2.13.1a)

trg/χ = gabg/
−1 ·

{
(d/La)⊗ d/xb

}
+

1

2
g/−1 ·G/LΨ, (2.13.1b)

L ln υ = trg/χ, (2.13.1c)

where χ is the `t,u−tangent tensorfield defined by (2.6.4) υ is the metric component from
Def. 2.19.

Proof. To prove (2.13.1a), we use (2.6.6a) and (2.10.1) to compute, relative to rectangular
coordinates, that χΘΘ = gab(ΘL

a)Θb + ΓΘΘL = gab(ΘL
a
(Small))Θ

b + 1
2
GΘΘLΨ. Noting that

Θxb = Θ · d/xb, we easily conclude (2.13.1a). To deduce (2.13.1b), we simply take the
g/−trace of (2.13.1a). To prove (2.13.1c), we use the Leibniz rule, the fact that [L,Θ] = 0,
and the torsion-free property of D to compute that L(υ2) = L[g(Θ,Θ)] = 2g(DLΘ,Θ) =
2g(DΘL,Θ) = 2χΘΘ = 2trg/χg(Θ,Θ) = 2trg/χυ

2, from which the desired identity easily follows.
�
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2.14. Frame decomposition of the wave operator. In this section, we decompose µ�g(Ψ)

relative to the rescaled frame. The factor of µ is important for our decompositions.

Proposition 2.16 (Frame decomposition of µ�g(Ψ)f). Let f be a scalar function. Then

relative to the rescaled frame {L, X̆,Θ}, µ�g(Ψ)f can be expressed in either of the following
two forms:

µ�g(Ψ)f = −L(µLf + 2X̆f) + µ∆/ f − trg/χX̆f − µtrg/k/Lf − 2µζ# · d/f, (2.14.1a)

= −(µL+ 2X̆)(Lf) + µ∆/ f − trg/χX̆f −ωLf + 2µζ# · d/f + 2(d/#
µ) · d/f,

(2.14.1b)

where the `t,u−tangent tensorfields χ, ζ, and k/ can be expressed via (2.13.1a), (2.12.3a), and
(2.12.3b).

Proof. To derive (2.14.1a), we first use (2.7.1b) to decompose

µ�g(Ψ)f = −µLαLβD2
αβf − 2LαX̆βD2

αβf + (g/−1) ·D2f (2.14.2)

= −L(µLf + 2X̆f) + (g/−1) ·D2f

+ µ(DLL
α)Dαf + 2(DLX̆

α)Dαf + (Lµ)Lf.

Next, we note that Θ(Θf) = ΘαDα(ΘβDβf) = D2
ΘΘf + (DΘΘ)αDαf = ∇/ 2

ΘΘf + (∇/ ΘΘ) ·
d/f . Hence, by (2.12.2h), we have D2

ΘΘf = ∇/ 2
ΘΘf − k/ΘΘ Lf − µ−1χΘΘX̆f . Consequently,

µ(g/−1) · D2f = (1/g(Θ,Θ))
{
µ∇/ 2

ΘΘf − µk/ΘΘ Lf − χΘΘX̆f
}

= µ∆/ f − µtrg/k/Lf − trg/χX̆f .

We now substitute this identity into RHS (2.14.2). We also use Lemma 2.13 to substitute

for the terms µ(DLL
α)Dαf and 2(DLX̆

α)Dαf . The identity (2.14.1a) then follows from
straightforward calculations.

The proof of (2.14.1b) is similar and we omit the details.
�

2.15. Frame components of the deformation tensors of the commutation vector-
fields. In this section, we decompose the deformation tensors (see Def. 2.24) of the com-
mutation vectorfields (2.8.3) relative to the rescaled frame. The exact structure of a few of
the terms, including the precise numerical constants, affects the degree of degeneracy of our
top-order energy estimates.

The main result of this section is Lemma 2.18. We first provide a preliminary lemma in
which we calculate certain covariant derivatives of the `t,u projection tensorfield Π/ .
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Lemma 2.17 (Frame covariant derivatives of Π/ ). Let Π/ be the type
(

1
1

)
`t,u projection

tensorfield defined in (2.5.1b). Then the following identities hold:

(DLΠ/ ) ·X = µ−1ζ(Trans−Ψ)# + ζ(Tan−Ψ)#, (2.15.1a)

(DLΠ/ ) ·Θ = −µ−1ζ
(Trans−Ψ)
Θ L− ζ(Tan−Ψ)

Θ L, (2.15.1b)

(DX̆Π/ ) ·X = d/#
µ, (2.15.1c)

(DX̆Π/ ) ·Θ = ζ
(Trans−Ψ)
Θ L+ µζ

(Tan−Ψ)
Θ L+ ζ

(Trans−Ψ)
Θ X + µζ

(Tan−Ψ)
Θ X + (d/Θµ)X, (2.15.1d)

(DΘΠ/ ) ·X = χ #
Θ − µ

−1k/
(Trans−Ψ)#

Θ − k/ (Tan−Ψ)#
Θ , (2.15.1e)

(DΘΠ/ ) ·Θ = µ−1k/
(Trans−Ψ)
ΘΘ L+ k/

(Tan−Ψ)
ΘΘ L+ χΘΘX. (2.15.1f)

In the above expressions, the `t,u−tangent tensorfields χ, ζ(Trans−Ψ), k/(Trans−Ψ) , ζ(Tan−Ψ),

and k/(Tan−Ψ) are defined by (2.6.4), (2.12.4a), (2.12.4b), (2.12.5a), and (2.12.5b).

Proof. The main idea of the proof is to use the decompositions provided by Lemma 2.13.
As examples, we prove (2.15.1a) and (2.15.1d). The remaining identities in the Lemma
can be proved using similar arguments and we omit those details. To prove (2.15.1a), we

differentiate the identity Π/ ·X̆ = 0 and use the identity X̆ = µX to deduce that (DLΠ/ ) ·X =

µ−1(DLΠ/ ) · X̆ = −µ−1Π/ · DLX̆. The desired identity (2.15.1a) now follows easily from the
previous identity, (2.12.2d), and (2.12.3a).

To prove (2.15.1d), we differentiate the identity Π/ · Θ = Θ to deduce (DX̆Π/ ) · Θ =

DX̆Θ − Π/ · DX̆Θ. Since DX̆Θ − DΘX̆ = [X̆,Θ] is `t,u−tangent (see Lemma 2.9), it follows

that (DX̆Π/ ) · Θ = DΘX̆ − Π/ · DΘX̆. The desired identity (2.15.1d) now follows easily from
the previous identity, (2.12.2f), and (2.12.3a).

�

We now provide the main lemma of Sect. 2.15.

Lemma 2.18 (The frame components of (Z)π). The following identities are verified by
the deformation tensors (see Def. 2.24) of the elements Z of the commutation set Z defined
in (2.8.3):

(X̆)πLL = 0, (X̆)πX̆X = 2X̆µ, (X̆)πLX̆ = −X̆µ, (2.15.2a)

(X̆)π/L = −d/µ− 2ζ(Trans−Ψ) − 2µζ(Tan−Ψ), (X̆)π/X̆ = 0, (2.15.2b)

(X̆)π/ = −2µχ+ 2k/ (Trans−Ψ) + 2µk/ (Tan−Ψ), (2.15.2c)

(L)πLL = 0, (L)πX̆X = 2Lµ, (L)πLX̆ = −Lµ, (2.15.3a)

(L)π/L = 0, (L)π/X̆ = d/µ+ 2ζ(Trans−Ψ) + 2µζ(Tan−Ψ), (2.15.3b)

(L)π/ = 2χ, (2.15.3c)
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(Y )πLL = 0, (Y )πX̆X = 2Y µ, (Y )πLX̆ = −Y µ, (2.15.4a)

(Y )π/L = −χ · Y +
1

2
(G/ · Y )LΨ + ρG/X LΨ +

1

2
(G/L · Y )d/Ψ− ρGLXd/Ψ−

1

2
ρGXXd/Ψ,

(2.15.4b)

(Y )π/X̆ = µχ · Y + ρd/µ+ ρG/X X̆Ψ− 1

2
µρGXXd/Ψ (2.15.4c)

− 1

2
µ(G/ · Y )LΨ + µ(G/L · Y )d/Ψ + µ(G/X · Y )d/Ψ,

(Y )π/ = 2ρχ+
1

2
(G/ · Y )⊗ d/Ψ +

1

2
d/Ψ⊗ (G/ · Y )− ρG/LΨ (2.15.4d)

+ ρG/L ⊗ d/Ψ + ρd/Ψ⊗G/L + ρG/X ⊗ d/Ψ + ρd/Ψ⊗G/X .

The scalar function ρ from above is as in Lemma 2.8, while the `t,u−tangent tensorfields

χ, ζ(Trans−Ψ), k/ (Trans−Ψ), ζ(Tan−Ψ), and k/ (Tan−Ψ) from above are as in (2.6.4), (2.12.4a),
(2.12.4b), (2.12.5a), and (2.12.5a).

Proof. We give a detailed proof of the identities (2.15.4a)-(2.15.4d), some of which involve
the observation of important cancellations. The proofs of the remaining identities do not
involve such cancellations. Hence, they are easier to prove and we omit those details.

First, we deduce (Y )πLL = 2g(DLY, L) = −2g(DLL, Y ), where to obtain the second
equality, we differentiated the identity g(L, Y ) = 0. Using (2.12.2a), we conclude that
g(DLL, Y ) = 0 as desired.

Next, we use similar reasoning to obtain (Y )πX̆X = 2µ−1g(DX̆Y, X̆) = −2µ−1g(DX̆X̆, Y )

Using (2.12.2e), we conclude that the previous expression is equal to 2g(d/#
µ, Y ) = 2Y µ as

desired.
Next, we use similar reasoning to obtain (Y )πLX̆ = g(DLY, X̆)+g(DX̆Y, L) = −g(DLX̆, Y )−

g(DX̆L, Y ). Using (2.12.2b) and (2.12.2d), we conclude that the previous expression is equal

to −g(d/#
µ, Y ) = −Y µ as desired.

Next, we use similar reasoning to obtain g((Y )π/#
L ,Θ) = g(DLY,Θ)+g(DΘY, L) = g(DLY,Θ)−

g(DΘL, Y ). By (2.12.2c), we have −g(DΘL, Y ) = −χYΘ. From definition (2.8.2), we derive

g(DLY,Θ) = g((DLΠ/ ) · Y(Flat),Θ) + g(DLY(Flat),Θ). (2.15.5)

Using (2.8.6a), (2.15.1a), and (2.15.1b), we compute that

g((DLΠ/ ) · Y(Flat),Θ) = µ−1ρζ
(Trans−Ψ)
Θ + ρζ

(Tan−Ψ)
Θ . (2.15.6)

Next, using that LY i
(Flat) = 0 and (2.10.1), we compute that

g(DLY(Flat),Θ) = ΓLΘY(Flat) = ΓLΘY + ρΓLΘX (2.15.7)

=
1

2
G/LΘ YΨ +

1

2
G/ΘY LΨ− 1

2
GLXΘΨ

+
1

2
µ−1ρG/LΘ X̆Ψ +

1

2
ρG/XΘ LΨ− 1

2
ρGLXΘΨ.
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Combining the above calculations, noting that the term µ−1ρζ
(Trans−Ψ)
Θ exactly cancels the

dangerous term 1
2
µ−1ρG/LΘ X̆Ψ on RHS (2.15.7) (see (2.12.4a)), using (2.12.5a), and noting

that G/LΘ YΨ = (G/L · Y )ΘΨ, we conclude (2.15.4b).

Next, we use similar reasoning to obtain g((Y )π/#

X̆
,Θ) = g(DX̆Y,Θ)+g(DΘY, X̆) = g(DX̆Y,Θ)−

g(DΘX̆, Y ). By (2.12.2f), we have −g(DΘX̆, Y ) = −µk/YΘ + µχΘY . From definition (2.8.2),
we derive

g(DX̆Y,Θ) = g((DX̆Π/ ) · Y(Flat),Θ) + g(DX̆Y(Flat),Θ). (2.15.8)

Using (2.8.6a), (2.15.1c), and (2.15.1d), we compute that

g((DX̆Π/ ) · Y(Flat),Θ) = ρΘµ. (2.15.9)

Next, using that X̆Y i
(Flat) = 0 and (2.10.1), we compute that

g(DX̆Y(Flat),Θ) = ΓX̆ΘY(Flat)
= ΓX̆ΘY + ρΓX̆ΘX (2.15.10)

=
1

2
µG/XΘ YΨ +

1

2
G/YΘ X̆Ψ− 1

2
µ(G/X · Y )ΘΨ

+ ρG/XΘ X̆Ψ− 1

2
µρGXXΘΨ.

Combining the above calculations, using (2.12.3b), (2.12.4b), and (2.12.5b) to substitute for
−µk/YΘ , and noting that G/XΘ YΨ = (G/X · Y )ΘΨ, we conclude (2.15.4c).

Next, we note that (Y )π/ΘΘ = 2g(DΘY,Θ). From definition (2.8.2), we derive

g(DΘY,Θ) = g((DΘΠ/ ) · Y(Flat),Θ) + g(DΘY(Flat),Θ). (2.15.11)

Using (2.8.6a), (2.15.1e), and (2.15.1f), we compute that

g((DΘΠ/ ) · Y(Flat),Θ) = ρχΘΘ − µ−1ρk/ΘΘ
(Trans−Ψ) − ρk/ΘΘ

(Tan−Ψ)#. (2.15.12)

Next, using that ΘY i
(Flat) = 0 and (2.10.1), we compute that

g(DΘY(Flat),Θ) = ΓΘΘY(Flat) = ΓΘΘY + ρΓΘΘX (2.15.13)

=
1

2
G/ΘY ΘΨ +

1

2
µ−1ρG/ΘΘ X̆Ψ.

Combining the above calculations, noting that the term−µ−1ρk/ΘΘ
(Trans−Ψ) on RHS (2.15.12)

exactly cancels the dangerous term 1
2
µ−1ρG/ΘΘ X̆Ψ on RHS (2.15.13) (see (2.12.4b)), and us-

ing (2.12.5b), we conclude (2.15.4d).
�

2.16. Arrays of fundamental unknowns. Our goal in this section is to show that many
scalar functions and tensorfields that we have introduced depend on just a handful of more
fundamental functions and tensorfields. This reduction highlights the structures that are
relevant for deriving estimates, with the exception of the delicate top-order estimates that
are based on modified quantities (which we define in Sect. 6). The main result is Lemma 2.19.
We start by introducing some convenient shorthand notation that we use throughout the
rest of the article.
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Definition 2.25 (Shorthand notation for the unknowns). We define the following
arrays γ and γ of scalar functions:

γ :=
(
Ψ, L1

(Small), L
2
(Small)

)
, (2.16.1a)

γ :=
(
Ψ,µ− 1, L1

(Small), L
2
(Small)

)
. (2.16.1b)

Remark 2.7 (Schematic functional dependence). In the remainder of the article, we
use the notation f(ξ(1), ξ(2), · · · , ξ(m)) to schematically depict an expression (often tenso-
rial and involving contractions) that depends smoothly on the `t,u−tangent tensorfields
ξ(1), ξ(2), · · · , ξ(m). Note that in general, f(0) 6= 0.

Lemma 2.19 (Schematic structure of various tensorfields). We have the following
schematic relations for scalar functions:

gαβ, (g
−1)αβ, (g−1)ab, g/αβ, (g/

−1)αβ, Gαβ, G
′
αβ,Π/

α
β , L

α, Xα, Y α = f(γ), (2.16.2a)

GLL, GLX , GXX , G
′
LL, G

′
LX , G

′
XX = f(γ), (2.16.2b)

g
(Small)
αβ , Y α

(Small), X
α
(Small), ρ = f(γ)γ, (2.16.2c)

X̆α = f(γ). (2.16.2d)

Moreover, we have the following schematic relations for `t,u−tangent tensorfields:

g/,G/L , G/X , G/ ,G
′/L , G

′/X , G
′/ = f(γ, d/x1, d/x2), (2.16.3a)

Y = f(γ, g/−1, d/x1, d/x2), (2.16.3b)

ζ(Tan−Ψ), k/ (Tan−Ψ) = f(γ, d/x1, d/x2)PΨ, (2.16.3c)

ζ(Trans−Ψ), k/ (Trans−Ψ) = f(γ, d/x1, d/x2)X̆Ψ, (2.16.3d)

χ = f(γ, d/x1, d/x2)Pγ, (2.16.3e)

trg/χ = f(γ, g/−1, d/x1, d/x2)Pγ. (2.16.3f)

Remark 2.8 (Clarification regarding the dependence of f on g/−1). On the RHS of
(2.16.3b) and (2.16.3f), we view g/−1 as a type

(
2
0

)
`t,u−tangent tensorfield. In contrast, on

LHS (2.16.2a), we are viewing the rectangular components (g/−1)αβ to be scalar functions.
Therefore, it is not redundant to include the dependence of f on g/−1 in the relations (2.16.3b)
and (2.16.3f).

Proof. The relations in (2.16.2a)-(2.16.2d) all follow easily from the definitions of the quan-
tities involved, so we prove only one representative relation. Specifically, to obtain the
schematic form of Y α

(Small) in (2.16.2c), we use (2.8.5), (2.8.6b), (2.8.7), Remark 2.6, and the

fact that Y 0
(Small) = 0.

The relations in (2.16.3a)-(2.16.3f) are also easy to derive from the definitions of the
quantities involved and some simple observations. We give proofs of a few representative
examples. To obtain (2.16.3b), we let Y[ be the g/ dual of Y so that Y = g/−1 · Y[. It is
easy to see that we have the following identity for `t,u−tangent one-forms: Y[ = Yad/x

a; it
can be checked by contracting both sides against elements of {L,X,Θ}. We now note that
Ya = gabY

b. Thus, by (2.16.2a), we have Ya = f(γ). Combining the above observations,
we find that Y[ = f(γ, d/x1, d/x2), from which the desired relation (2.16.3b) easily follows.
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To obtain (2.16.3e)-(2.16.3f), we apply similar reasoning based on the identities (2.13.1a)-
(2.13.1b). �

3. Energy Identities and Basic Ingredients in the L2 Analysis

In this section, we establish the integral identities that we use in our L2 analysis.

3.1. Fundamental Energy Identity. To derive energy estimates, we rely on the energy-
momentum tensor Q, which is the symmetric type

(
0
2

)
tensor

Qµν = Qµν [Ψ] := DµΨDνΨ−
1

2
gµν(g

−1)αβDαΨDβΨ. (3.1.1)

In the next lemma, we exhibit the basic divergence property of Q; we omit the proof,
which is a simple calculation.

Lemma 3.1 (Basic divergence property of Q). For solutions to µ�gΨ = F, we have

µDαQ
αν = FDνΨ. (3.1.2)

�
In the next lemma, we provide the components of Q relative to the rescaled frame.

Lemma 3.2 (The frame components of Q). The components of the energy-momentum
tensor Q relative to the rescaled frame can be expressed as follows:

QLL[Ψ] = (LΨ)2, QLX̆ [Ψ] = −1

2
µ(LΨ)2 +

1

2
µ|d/Ψ|2, (3.1.3a)

QX̆X̆ [Ψ] =
1

2
µ2(LΨ)2 + (X̆Ψ)2 + µ(LΨ)X̆Ψ− 1

2
µ2|d/Ψ|2, (3.1.3b)

Q/L [Ψ] = (LΨ)d/Ψ, Q/X̆ [Ψ] = (X̆Ψ)d/Ψ, (3.1.3c)

Q/ [Ψ] =
1

2
(LΨ)2g/+ µ−1(LΨ)(X̆Ψ)g/+

1

2
|d/Ψ|2g/. (3.1.3d)

Proof. The lemma is a simple consequence of the formula (3.1.1) and the frame decomposi-
tions of g and g−1 provided by (2.7.1a) and (2.7.1b). �

We derive our energy estimates with the help of the following multiplier vectorfield.

Definition 3.1 (The timelike multiplier vectorfield T ). We define (see Footnote 24 on
pg. 17 regarding the notation)

T := (1 + 2µ)L+ 2X̆. (3.1.4)

A simple calculation yields that g(T, T ) = −4µ(1 + µ). Thus, T is g−timelike whenever
µ > 0. This property is important because it leads to coercive energy identities.

In the next lemma, we provide the frame components of (T )π. These are important for our
energy estimates because (T )π appears in our fundamental energy-flux identity (see Prop. 3.5).
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Lemma 3.3 (The frame components of (T )π). The components of the deformation tensor
(T )π (see Def. 2.24) of the multiplier vectorfield (3.1.4) can be expressed as follows relative
to the rescaled frame:

(T )πLL = 0, (3.1.5a)

(T )πLX̆ = −
{
Lµ+ 4µLµ+ 2X̆µ

}
, (3.1.5b)

(T )πX̆X = 2(1 + 2µ)Lµ, (3.1.5c)

(T )π/L = −2d/µ− 4
{
ζ(Trans−Ψ) + µζ(Tan−Ψ)

}
, (3.1.5d)

(T )π/X̆ = d/µ+ 2(1 + 2µ)
{
ζ(Trans−Ψ) + µζ(Tan−Ψ)

}
, (3.1.5e)

(T )π/ = 2χ+ 4
{
k/ (Trans−Ψ) + µk/ (Tan−Ψ)

}
. (3.1.5f)

The `t,u tensorfields χ, ζ(Trans−Ψ), k/ (Trans−Ψ), ζ(Tan−Ψ), and k/ (Tan−Ψ) from above are as in
(2.6.4), (2.12.4a), (2.12.4b), (2.12.5a), and (2.12.5a).

Proof. The proof is similar to that of Lemma 2.18 but is much simpler because cancellations
do not play a role; we therefore omit the details. �

We define our geometric integrals in terms of length, area, and volume forms that remain
non-degenerate throughout the evolution, all the way up to the shock.

Definition 3.2 (Non-degenerate forms and related integrals). We define the length
form dλg/ on `t,u, the area form d$ on Σu

t , the area form d$ on P tu, and the volume form d$
on Mt,u as follows (relative to the geometric coordinates):

dλg/ := υ(t, u, ϑ) dϑ, d$ := dλg/(t, u
′, ϑ)du′, (3.1.6)

d$ := dλg/(t
′, u′, ϑ′)dt′, d$ := dλg/(t

′, u′, ϑ′)du′dt′,

where υ is the scalar function from Def. 2.19.
If f is a scalar function, then we define∫

`t,u

f dλg/ :=

∫
ϑ∈T

f(t, u, ϑ) υ(t, u, ϑ)dϑ, (3.1.7a)∫
Σut

f d$ :=

∫ u

u′=0

∫
ϑ∈T

f(t, u′, ϑ) υ(t, u′, ϑ)dϑdu′, (3.1.7b)∫
Ptu
f d$ :=

∫ t

t′=0

∫
ϑ∈T

f(t′, u, ϑ) υ(t′, u, ϑ)dϑdt′, (3.1.7c)∫
Mt,u

f d$ :=

∫ t

t′=0

∫ u

u′=0

∫
ϑ∈T

f(t′, u′, ϑ) υ(t′, u′, ϑ)dϑdu′dt′. (3.1.7d)

Remark 3.1. The canonical forms associated to g and g are respectively µd$ and µd$.

We now define energies and null fluxes, which serve as building blocks for the quantities
that we use in our L2 analysis of solutions.



J. Speck, G. Holzegel, J. Luk, and W. Wong 55

Definition 3.3 (Energy and null flux). In terms of the non-degenerate forms of Def. 3.1.6,
we define the energy functional E[·] and null flux functional F[·] as follows:

E[Ψ](t, u) :=

∫
Σut

µQNT [Ψ] d$, F[Ψ](t, u) =

∫
Ptu
QLT [Ψ] d$, (3.1.8)

where N and T are the vectorfields defined in (2.4.3) and (3.1.4).

In the next lemma, we reveal the coercive nature of E[Ψ] and F[Ψ].

Lemma 3.4 (Coercivity of the energy and null flux). The energy and null flux from
Def. 3.3 enjoy the following coerciveness properties:

E[Ψ](t, u) =

∫
Σut

1

2
(1 + 2µ)µ(LΨ)2 + 2µ(LΨ)X̆Ψ + 2(X̆Ψ)2 +

1

2
(1 + 2µ)µ|d/Ψ|2 d$,

(3.1.9a)

F[Ψ](t, u) :=

∫
Ptu

(1 + µ)(LΨ)2 + µ|d/Ψ|2 d$. (3.1.9b)

Proof. The lemma follows from the identities

µQNT =
1

2
(1 + µ)µ(LΨ)2 +

1

2
(µLΨ + 2X̆Ψ)2 +

1

2
(1 + 2µ)µ|d/Ψ|2, (3.1.10)

QLT = (1 + µ)(LΨ)2 + µ|d/Ψ|2, (3.1.11)

which are a simple consequence of Lemma 3.2 and the identities (2.4.3) and (3.1.4). �

In the next proposition, we provide the fundamental energy-flux identities that hold for
solutions to the inhomogeneous wave equation µ�g(Ψ)Ψ = F. The term F represents the
error terms that arise upon commuting the homogeneous equation (1.0.1a) after it has been
multiplied by the factor µ (see Remark 4.1 below for an explanation of why we include the
factor µ). See Figure 2 on pg. 11 for a picture of the spacetime region Mt,u on which we
apply the divergence theorem and the relevant boundary surfaces Σu

0 , Σu
t , P t0, and P tu.

Remark 3.2. In Figure 2, the (unlabeled) front and back boundaries should be identified;
they represent the same “periodic timelike surface” {ϑ = const} and thus they do not make
a contribution to the energy identity of Prop. 3.5.

Proposition 3.5 (Fundamental energy-flux identity). For solutions Ψ to

µ�g(Ψ)Ψ = F

that vanish along the outer null hyperplane P0, we have the following identity involving the
energy and flux from Def. 3.3:

E[Ψ](t, u) + F[Ψ](t, u) (3.1.12)

= E[Ψ](0, u)−
∫
Mt,u

{
(1 + 2µ)(LΨ) + 2X̆Ψ

}
F d$ − 1

2

∫
Mt,u

µQαβ[Ψ](T )παβ d$.

Furthermore, with f+ := max{f, 0} and f− := max{−f, 0}, we have

(T )P[Ψ] := −1

2
µQαβ[Ψ](T )παβ = −1

2
µ|d/Ψ|2 [Lµ]−

µ
+

5∑
i=1

(T )P(i)[Ψ], (3.1.13)



56
Stable Shock Formation

where

(T )P(1)[Ψ] := (LΨ)2

{
−1

2
Lµ+ X̆µ− 1

2
µtrg/χ− trg/k/

(Trans−Ψ) − µtrg/k/
(Tan−Ψ)

}
, (3.1.14a)

(T )P(2)[Ψ] := −(LΨ)(X̆Ψ)
{

trg/χ+ 2trg/k/
(Trans−Ψ) + 2µtrg/k/

(Tan−Ψ)
}
, (3.1.14b)

(T )P(3)[Ψ] := µ|d/Ψ|2
{

1

2

[Lµ]+
µ

+
X̆µ

µ
+ 2Lµ− 1

2
trg/χ− trg/k/

(Trans−Ψ) − µtrg/k/
(Tan−Ψ)

}
,

(3.1.14c)

(T )P(4)[Ψ] := (LΨ)(d/#Ψ) ·
{

(1− 2µ)d/µ+ 2ζ(Trans−Ψ) + 2µζ(Tan−Ψ)
}
, (3.1.14d)

(T )P(5)[Ψ] := −2(X̆Ψ)(d/#Ψ) ·
{
d/µ+ 2ζ(Trans−Ψ) + 2µζ(Tan−Ψ)

}
. (3.1.14e)

The tensorfields χ, ζ(Trans−Ψ), k/ (Trans−Ψ), ζ(Tan−Ψ), and k/ (Tan−Ψ) from above are as in
(2.6.4), (2.12.4a), (2.12.4b), (2.12.5a), and (2.12.5a).

Proof. We define the vectorfield Jα := Qαβ[Ψ]Tβ, where T is defined in (3.1.4). We decom-
pose J = J t ∂

∂t
+ Ju ∂

∂u
+ JΘΘ, where J t, Ju, JΘ are scalar functions and we recall that

Θ = ∂
∂ϑ

. We claim that

Ju = −µ−1QLT [Ψ], (3.1.15)

J t = µJu − JX = −QLT [Ψ]−QLX [Ψ] = −QNT [Ψ], (3.1.16)

where N is the vectorfield defined in (2.4.3). To derive (3.1.15), we take the inner product
of the decomposition equation with L and use (2.4.8) to find that g(J, L) = Jug(L, ∂

∂u
) =

Jug(L, ∂
∂u
− ξΘ) = Jug(L, X̆) = −µJu. Since g(J, L) = QLT [Ψ], we have obtained the

desired identity (3.1.15). The proof of (3.1.16) is similar and we omit it. Next, we note the
identity∫

Mt,u

µDαJ
α d$ =

∫ t

t′=0

∫ u

u′=0

∫
ϑ∈T

∂

∂t

(
µυJ t

)
+

∂

∂u
(µυJu) +

∂

∂ϑ

(
µυJΘ

)
dt′ du′ dϑ.

(3.1.17)

(3.1.17) follows from the standard identity for the divergence of a vectorfield expressed
relative to a coordinate frame (in this case the geometric coordinates) and the formula
(2.7.6), which implies that |detg|1/2 = µυ (where the determinant is taken relative to the
geometric coordinates). Using Fubini’s theorem, carrying out some integrations in (3.1.17),
and noting that the integral of ∂

∂ϑ

(
µυJΘ

)
over T vanishes, we deduce

RHS (3.1.17) =

∫ u

u′=0

∫
ϑ∈T

(
µυJ t

)
(t, u′, ϑ) du′ dϑ−

∫ u

u′=0

∫
ϑ∈T

(
µυJ t

)
(0, u′, ϑ) du′ dϑ

(3.1.18)

+

∫ t

t′=0

∫
ϑ∈T

(µυJu) (t′, u, ϑ) dt′ dϑ−
∫ t

t′=0

∫
ϑ∈T

(µυJu) (t′, 0, ϑ) dt′ dϑ.

Inserting (3.1.15) and (3.1.16) into (3.1.18), we obtain all terms in (3.1.12) except for the
twoMt,u integrals on the RHS. The proof of (3.1.12) will be complete once we show that the
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integrands under the Mt,u integrals sum to µDα(Qαβ[Ψ]Tβ). This fact follows from (3.1.2)
and the symmetry of Q, which imply that µDα(Qαβ[Ψ]Tβ) = 1

2
µQαβ(T )παβ + µ(TΨ)F.

It remains for us to derive (3.1.13). We first writeQαβ[Ψ](T )παβ = (g−1)αβ(g−1)κλQακ[Ψ](T )πβλ.
We then decompose the two g−1 factors relative to the frame {L,X,Θ} with the formula
(2.7.1b). Also using Lemmas 3.2 and 3.3, we conclude (3.1.13) from straightforward calcu-
lations.

�

To close our top-order energy estimates, we must perform some additional integrations
by parts, going beyond those of Prop. 3.5. We provide the required identities in the next
lemma.

Lemma 3.6 (Identities connected to integration by parts). The following identities
hold for scalar functions f :

∂

∂t

∫
`t,u

f dλg/ =

∫
`t,u

Lf + trg/χf dλg/, (3.1.19a)

∂

∂u

∫
`t,u

f dλg/ =

∫
`t,u

X̆f +
1

2
trg/

(X̆)π/f dλg/, (3.1.19b)

∂

∂t

∫
Σut

f d$ =

∫
Σut

Lf + trg/χf d$. (3.1.19c)

Moreover, we have the following integration by parts identities:

∫
`t,u

(Y f1)f2 dλg/ = −
∫
`t,u

f1(Y f2) dλg/ −
∫
`t,u

trg/(Y )π/︷ ︸︸ ︷
div/ Y f1f2 dλg/, (3.1.20)

∫
Mt,u

(Lf1)f2 d$ = −
∫
Mt,u

f1(Lf2) d$ −
∫
Mt,u

trg/χf1f2 d$ (3.1.21)

+

∫
Σut

f1f2 d$ −
∫

Σu0

f1f2 d$.

Finally, the following integration by parts identity holds for scalar functions η:∫
Mt,u

(1 + 2µ)(X̆Ψ)(LPNΨ)Y η d$ (3.1.22)

=

∫
Mt,u

(1 + 2µ)(X̆Ψ)(YPNΨ)Lη d$

−
∫

Σut

(1 + 2µ)(X̆Ψ)(YPNΨ)η d$ +

∫
Σu0

(1 + 2µ)(X̆Ψ)(YPNΨ)η d$

+

∫
Mt,u

Error1[PNΨ;η] d$ +

∫
Σut

Error2[PNΨ;η] d$ −
∫

Σu0

Error2[PNΨ;η] d$,
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where

Error1[PNΨ;η] = 2(Lµ)(X̆Ψ)(YPNΨ)η+ (1 + 2µ)(LX̆Ψ)(YPNΨ)η (3.1.23a)

+ (1 + 2µ)(X̆Ψ)((Y )π/#
L · d/P

NΨ)η+ (1 + 2µ)(X̆Ψ)trg/χ(YPNΨ)η

+ 2(Y µ)(X̆Ψ)(PNΨ)Lη+ (1 + 2µ)(Y X̆Ψ)(PNΨ)Lη

+ (1 + 2µ)(X̆Ψ)trg/
(Y )π/(PNΨ)Lη

+ 2(LY µ)(X̆Ψ)(PNΨ)η+ (1 + 2µ)(LY X̆Ψ)(PNΨ)η

+ (1 + 2µ)(X̆Ψ)(Y trg/χ)(PNΨ)η+ 2(Y µ)(X̆Ψ)trg/χ(PNΨ)η

+ (1 + 2µ)(Y X̆Ψ)trg/χ(PNΨ)η+ (1 + 2µ)(X̆Ψ)(div/ (Y )π/#
L )(PNΨ)η

+ 2(Lµ)(X̆Ψ)trg/
(Y )π/(PNΨ)η+ (1 + 2µ)(LX̆Ψ)trg/

(Y )π/(PNΨ)η

+ (1 + 2µ)(LX̆Ψ)trg/
(Y )π/(PNΨ)η+ (1 + 2µ)(X̆Ψ)trg/χtrg/

(Y )π/(PNΨ)η,

Error2[PNΨ;η] := −2(Y µ)(X̆Ψ)(PNΨ)η− (1 + 2µ)(X̆Ψ)trg/
(Y )π/(PNΨ)η. (3.1.23b)

Proof. To prove (3.1.19b), we first fix t and construct a local coordinate ϑ̃ on ΣU0
t =

∪u∈[0,U0]`t,u by setting ϑ̃ = ϑ on `t,0 and then propagating ϑ̃ by solving the transport equation

X̆ϑ̃ = 0. Since X̆u = 1, it follows that relative to the coordinates (u, ϑ̃) on ΣU0
t , we have

[X̆, ∂

∂ϑ̃
] = 0 and X̆ = ∂

∂u
. Relative to (u, ϑ̃) coordinates on ΣU0

t , we have g/−1 = υ̃−2 ∂

∂ϑ̃
⊗ ∂

∂ϑ̃

and dλg/ = υ̃d ϑ̃, where υ̃2 = g( ∂

∂ϑ̃
, ∂

∂ϑ̃
) (see (2.7.2), (2.7.3), and (3.1.6)). Differentiating with

L/X̆ and using (2.9.3), we find that −(X̆)π/
##

= L/X̆g/−1 = −2υ̃−3X̆υ̃ ∂

∂ϑ̃
⊗ ∂

∂ϑ̃
. Contracting

against g/, we obtain the identity X̆ ln υ̃ = (1/2)trg/
(X̆)π/. We now express the integrand on

LHS (3.1.19b) in (u, ϑ̃) coordinates, differentiate under the integral, and use that X̆ = ∂
∂u

in

these coordinates to obtain ∂
∂u

∫
`t,u

f dλg/ =
∫
`t,u

{
X̆f + (X̆ ln υ̃)f

}
υ̃dϑ̃. Using this identity

and the previous expression for X̆ ln υ̃, we conclude (3.1.19b).
The proof of (3.1.19a) is similar and relies on the identity L ln υ = trg/χ (see (2.13.1c)); we

omit the details.
(3.1.19c) follows from (3.1.19a) and the fact that

∫
Σut
· · · d$ =

∫ u
u′=0

∫
`t,u′
· · · dλg/du′.

(3.1.20) follows easily from integrating the identity (Y f1)f2 + (Y f2)f1 = Y (f1f2) =
div/ (f1f2Y )− f1f2div/ Y over `t,u.

(3.1.21) follows from integrating the identity (3.1.19c) with f = f1f2 with respect to time
from time 0 to time t.

The identity (3.1.22) follows from a series of tedious but straightforward integrations by
parts that we now describe. We first integrate by parts using (3.1.21) in order to move the
L operator off of LPNΨ. This procedure results in the presence of the integral −

∫
Mt,u

(1 +

2µ)(X̆Ψ)(PNΨ)LY η d$ (among others). We then commute L and Y to obtain the identity

LY η = Y Lη + (Y )π/#
L · d/η (see (2.9.2)), which we substitute into the previous integral. We

then use (3.1.20) to move all Y derivatives off of all factors η in all of the error integrals.
Finally, we integrate by parts on the `t,u to move all d/ derivatives off of all factors η in all of
the error integrals. �
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4. The Structure of the Terms in the Commuted Wave Equation

To derive energy estimates for the higher derivatives of Ψ, we commute the wave equation
µ�g(Ψ)Ψ = 0 with vectorfields Z ∈ Z . In this section, we reveal the precise structure of the
commutator error terms [Z,µ�g(Ψ)]Ψ. By precise structure, we mean that we decompose

all terms relative to the rescaled frame {L, X̆,Θ} and keep track of the exact expressions
including the constant coefficients; some of these constants affect the number of derivatives
we need to close our estimates.

Remark 4.1. We have included the factor of µ in front of the operator �g(Ψ) in the wave
equation because it leads to important cancellations in the commutation identities.

We start with the following standard commutation identity.

Lemma 4.1 ([13, Lemma 7.1.3]). If ξα1···αn is any type
(

0
n

)
spacetime tensorfield, V is any

spacetime vectorfield, and (V )π is its deformation tensor (see Def. 2.24), then

DβLV ξα1···αn − LV Dβξα1···αn =
1

2

n∑
i=1

{
Dαi

(V )π κ
β + Dβ

(V )π κ
αi
−Dκ(V )παiβ

}
ξα1···αi−1καi+1···αn .

(4.0.1)

We now use Lemma 4.1 to derive an identity for [µ�g, Z].

Lemma 4.2 (Basic commutation lemma). For the vectorfields Z ∈ Z (see Def. 2.8.3),
which by Lemma 2.18 satisfy (Z)πLL = 0 and (Z)πLX̆ = −Zµ, we have the following commu-
tation identity:

µ�g(Ψ)(ZΨ) = µDα

{
(Z)παβDβΨ− 1

2
trg

(Z)πDαΨ

}
+ Z(µ�g(Ψ)Ψ) +

1

2
trg/

(Z)π/(µ�g(Ψ)Ψ),

(4.0.2)

where trg
(Z)π := (g−1)αβ(Z)παβ.

Proof. We begin by applying Z to µ�g(Ψ)Ψ and using the Leibniz rule for Lie derivatives

and the Lie derivative identity (LZg−1)αβ = −(Z)παβ to obtain the identity Z(µ�g(Ψ)Ψ) =

(Zµ)�g(Ψ)Ψ − µ(Z)παβDαDβΨ + µ(g−1)αβLZDαDβΨ. Applying (4.0.1) with ξ := DΨ, we

obtain DαDβZΨ = LZDαDβΨ + 1
2

{
Dα

(Z)πλβDλΨ + Dβ
(Z)παλDλΨ−Dλ

(Z)παβDλΨ
}

. Con-

tracting the previous identity against (g−1)αβ and using the Leibniz rule for Lie derivatives
and the aforementioned identity (LZg−1)αβ = −(Z)παβ, we find that

�g(Ψ)ZΨ = Z(�g(Ψ)Ψ) + (Z)παβDαDβΨ + (Dα
(Z)παλ)DλΨ−

1

2
Dλ

{
(g−1)αβ(Z)παβ

}
DλΨ

(4.0.3)

= Z(�g(Ψ)Ψ) + Dα

{
(Z)παβDβΨ− 1

2
trg

(Z)πDαΨ

}
+

1

2
trg

(Z)π�g(Ψ)Ψ.

The identity (4.0.2) now follows easily from (4.0.3), the identity 1
2
trg

(Z)π = −1
2

(Z)πLL −
µ−1(Z)πLX̆ + 1

2
trg/

(Z)π/ (see (2.7.1b)), and the assumed properties (Z)πLL = 0 and (Z)πLX̆ =
−Zµ.

�
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In the next proposition, we decompose the first term on RHS (4.0.2) relative to the rescaled
frame. Our proof of the proposition relies on the following lemma.

Lemma 4.3 (Spacetime divergence in terms of derivatives of frame components).

Let J be a spacetime vectorfield. Let µJ = −µJLL−JX̆L−JLX̆ + µJ/ be its decom-

position relative to the rescaled frame, where JL = J αLα, JX̆ = J αX̆α, and J/ = Π/J .
Then

µDαJ
α = −L(µJL)− L(JX̆)− X̆(JL) + div/ (µJ/ )− µtrg/k/JL − trg/χJX̆ , (4.0.4)

where where the `t,u−tangent tensorfields χ and k/ can be expressed via (2.13.1a) and (2.12.3b).

Proof. Using (2.7.1b), we find that

µDαJ
α = µ(g−1)αβDαJβ (4.0.5)

= −L(µJL)− L(JX̆)− X̆(JL) + (g/−1)αβDα(µJβ)

+ (Lµ)JL + µ(DLL
α)Jα + (DLX̆

α)Jα + (DX̆L
α)Jα −J/ · d/µ.

Next, we use Lemma 2.13 to substitute for DLL, DLX̆, and DX̆L; we find that all terms on the
last line of (4.0.5) cancel. We then use the rescaled frame decomposition formula to express

(g/−1)αβDα(µJβ) = div/ (µJ/ ) − µJL(g/−1)αβDαLβ −JX̆(g/−1)αβDαLβ −JL(g/−1)αβDαX̆β

and then Lemma 2.13 to deduce the following identities, which we substitute into the pre-
vious equation: (g/−1)αβDαLβ = trg/χ and (g/−1)αβDαX̆β = µtrg/k/ − µtrg/χ. Straightforward
calculations then lead to (4.0.4). �

We now decompose the term µDα

{
(Z)παβDβΨ− 1

2
trg

(Z)πDαΨ
}

from RHS (4.0.2) relative
to the rescaled frame.

Proposition 4.4 (Frame decomposition of the divergence of the inhomogeneous
term). For vectorfields Z ∈ Z , which have (Z)πLL = 0 and (Z)πLX̆ = −Zµ, we have the
following identity for the first term on RHS (4.0.2):

µDα

{
(Z)παβDβΨ− 1

2
trg

(Z)πDαΨ

}
= K (Z)

(π−Danger)[Ψ] (4.0.6)

+ K (Z)
(π−Cancel−1)[Ψ] + K (Z)

(π−Cancel−2)[Ψ]

+ K (Z)
(π−Less Dangerous)[Ψ] + K (Z)

(π−Good)[Ψ]

+ K (Z)
(Ψ) [Ψ] + K (Z)

(Low)[Ψ],
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where

K (Z)
(π−Danger)[Ψ] := −(div/ (Z)π/#

L )X̆Ψ, (4.0.7a)

K (Z)
(π−Cancel−1)[Ψ] :=

{
1

2
X̆trg/

(Z)π/− div/ (Z)π/#

X̆
− µdiv/ (Z)π/#

L

}
LΨ, (4.0.7b)

K (Z)
(π−Cancel−2)[Ψ] :=

{
−L/X̆

(Z)π/#
L + d/#(Z)πLX̆

}
· d/Ψ, (4.0.7c)

K (Z)
(π−Less Dangerous)[Ψ] :=

1

2
µ(d/#trg/

(Z)π/) · d/Ψ, (4.0.7d)

K (Z)
(π−Good)[Ψ] :=

1

2
µ(Ltrg/

(Z)π/)LΨ + (L(Z)πLX̆)LΨ + (L(Z)πX̆X)LΨ (4.0.7e)

+
1

2
(Ltrg/

(Z)π/)X̆Ψ− µ(L/L
(Z)π/#

L ) · d/Ψ− (L/L
(Z)π/#

X̆
) · d/Ψ,

K (Z)
(Ψ) [Ψ] :=

{
1

2
µtrg/

(Z)π/+ (Z)πLX̆ + (Z)πX̆X

}
L2Ψ (4.0.8)

+ trg/
(Z)π/LX̆Ψ

− 2µ(Z)π/#
L · d/LΨ− 2(Z)π/#

X̆
· d/LΨ− 2(Z)π/#

L · d/X̆Ψ

+ (Z)πLX̆∆/Ψ +
1

2
µtrg/

(Z)π/∆/Ψ,

and

K (Z)
(Low)[Ψ] :=

{
1

2
(Lµ)trg/

(Z)π/+
1

2
µtrg/k/ trg/

(Z)π/+ trg/χ
(Z)πLX̆ + trg/χ

(Z)πX̆X −
(Z)π/#

L · d/µ
}
LΨ

(4.0.9)

+
1

2
trg/χtrg/

(Z)π/X̆Ψ

+
{
−(Lµ)(Z)π/#

L − µtrg/k/
(Z)π/#

L − trg/χ
(Z)π/#

X̆
+ trg/

(Z)π/d/#
µ+ trg/χµζ

#
}
· d/Ψ.

In the above expressions, the `t,u−tangent tensorfields χ, ζ, and k/ , are as in (2.13.1a),
(2.12.3a), and (2.12.3b).

Proof. We define J to be the spacetime vectorfield whose divergence is taken on LHS (4.0.6):
J α := (Z)παβDβΨ− 1

2
(g−1)κλ(Z)πκλDαΨ. With the help of Lemma 2.4, we compute that

JL = −1

2
trg/

(Z)π/LΨ + (Z)π/#
L · d/Ψ, (4.0.10)

JX̆ = −(Z)πLX̆LΨ− (Z)πX̆XLΨ + (Z)π/#

X̆
· d/Ψ− 1

2
trg/

(Z)π/X̆Ψ, (4.0.11)

µJ/ = −µ(Z)π/#
LLΨ− (Z)π/#

X̆
LΨ− (Z)π/#

L X̆Ψ + (Z)πLX̆d/
#Ψ +

1

2
µtrg/

(Z)π/d/#Ψ. (4.0.12)

The proposition then follows from the divergence formula (4.0.4) and tedious but straight-

forward calculations. We remark that in our calculations, we use the identity [L, X̆] =

−d/#
µ − 2µζ# (see (2.9.2) and (2.15.2b)) to replace the term 1

2
trg/

(Z)π/X̆LΨ arising from

(4.0.10) with 1
2
trg/

(Z)π/LX̆Ψ + 1
2
trg/

(Z)π/(d/#
µ) · d/Ψ + trg/

(Z)π/µζ# · d/Ψ. �
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5. Differential Operator Commutation Identities

In this section, we provide a collection of commutation identities that we use when com-
muting the equations. The precise numerical constants and the structure of tensor contrac-
tions in these identities is not important for our estimates. Thus, we present some of the
identities in schematic form.

Definition 5.1 (Notation for repeated differentiation). We recall the commutation
sets Z and P from Def. 2.22. We label the three vectorfields in Z as follows: Z(1) =

L,Z(2) = Y, Z(3) = X̆. Note that P = {Z(1), Z(2)}. We define the following vectorfield
operators:

• If ~I = (ι1, ι2, · · · , ιN) is a multi-index of order |~I| := N with ι1, ι2, · · · , ιN ∈ {1, 2, 3},
then Z

~I := Z(ι1)Z(ι2) · · ·Z(ιN ) denotes the corresponding N th order differential oper-

ator. We write Z N rather than Z
~I when we are not concerned with the structure

of ~I.
• Similarly, L/~IZ := L/Z(ι1)

L/Z(ι2
) · · · L/Z(ιN

) denotes an N th order `t,u−projected Lie deriv-

ative operator (see Def. 2.13), and we write L/NZ when we are not concerned with the

structure of ~I.
• If ~I = (ι1, ι2, · · · , ιN), then ~I1 + ~I2 = ~I means that ~I1 = (ιk1 , ιk2 , · · · , ιkm) and
~I2 = (ιkm+1 , ιkm+2 , · · · , ιkN ), where 1 ≤ m ≤ N and k1, k2, · · · , kN is a permutation of
1, 2, · · · , N .
• Sums such as ~I1 + ~I2 + · · ·+ ~IM = ~I have an analogous meaning.

• Pu−tangent operators such as P
~I are defined analogously, except in this case we

clearly have ι1, ι2, · · · , ιN ∈ {1, 2}.

Remark 5.1 (Schematic depiction of the structure of Z
~I and P

~I). In deriving our

estimates, we often need only partial information about the structure of the operators Z
~I

and P
~I . Thus, in Sect. 7.2, we introduce additional shorthand notation that captures the

information that we need.

Lemma 5.1 (Preliminary identities for commuting Z ∈ Z with ∇/ ). For each

Z −multi-index ~I and integer n ≥ 1, there exist constants C~I1,~I2,··· ,~IM+1,n
such that the fol-

lowing commutator identity holds for all type
(

0
n

)
`t,u−tangent tensorfields ξ:

[∇/ ,L/~IZ ]ξ =

|~I|∑
M=1

∑
~I1+···+~IM+1=~I

|~Ia|≥1 for 1≤a≤M

C~I1,~I2,··· ,~IM+1,n
(g/−1)M (L/~I1Z g/) · · · (L/

~IM−1

Z g/)︸ ︷︷ ︸
absent when M = 1

(∇/L/~IMZ g/)(L/
~IM+1

Z ξ).

(5.0.1)

Moreover, with div/ denoting the torus divergence operator from Def. 2.16, for each Z −multi-

index ~I, there exist constants C~I1,~I2,··· ,~IM+1,i1,i2
such that the following commutator identity
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holds for all symmetric type
(

0
2

)
`t,u−tangent tensorfields ξ:

[div/ ,L/~IZ ]ξ =
∑

i1+i2=1

|~I|∑
M=1

∑
~I1+···+~IM+1=~I

|~Ia|≥1 for 1≤a≤M

(5.0.2)

C~I1,~I2,··· ,~IM+1,i1,i2
(g/−1)M+1 (L/~I1Z g/) · · · (L/

~IM−1

Z g/)︸ ︷︷ ︸
absent when i1 = M = 1

(∇/ i1L/~IMZ g/)(∇/ i2L/
~IM+1

Z ξ).

Finally, for each Z −multi-index ~I and each commutation vectorfield Z ∈ Z , there exist
constants C~I1,~I2,··· ,~IM+1

and C~I1,~I2,··· ,~IM+1,i1,i2
such that the following commutator identity holds

for all scalar-valued functions f :

[∇/ 2,L/~IZ ]f =

|~I|∑
M=1

∑
~I1+···+~IM+1=~I

|~Ia|≥1 for 1≤a≤M

C~I1,~I2,··· ,~IM+1
(g/−1)M (L/~I1Z g/) · · · (L/

~IM−1

Z g/)︸ ︷︷ ︸
absent when M = 1

(∇/L/~IMZ g/)(d/Z
~IM+1f),

(5.0.3a)

[∆/ ,Z
~I ]f =

∑
i1+i2=1

|~I|∑
M=1

∑
~I1+···+~IM+1=~I

|~Ia|≥1 for 1≤a≤M

(5.0.3b)

C~I1,~I2,··· ,~IM+1,i1,i2
(g/−1)M+1 (L/~I1Z g/) · · · (L/

~IM−1

Z g/)︸ ︷︷ ︸
absent when i1 = M = 1

(∇/ i1L/~IMZ g/)(∇/ i2+1Z
~IM+1f).

In equations (5.0.1)-(5.0.3b), we have omitted all tensorial contractions in order to condense
the presentation.

Proof. We claim that for Z ∈ Z , we have the schematic identity [∇/ ,L/Z ]ξ ∼ (∇/L/Zg/)# · ξ,
correct up to constants. From this identity and the fact that L/Zg/−1 = −(L/Zg/)## (see

(2.9.3)), a straightforward argument involving induction in |~I|, omitted here, yields (5.0.1).
We now prove the claim in the case that ξ is an `t,u−tangent one-form. The case of higher-
order tensorfields then follows easily from the Leibniz rules for ∇/ and L/Z and we omit those
details. Moreover, it is easy to reduce the proof to the case ξΘ = 1 (that is, ξ = d/ϑ); we
thus assume for the remainder of the proof that ξ = d/ϑ. We now recall that υ2 = g/(Θ,Θ)
(see (2.7.2)). Note that ∇/ is entirely determined by the formula ∇/ ΘΘ = υ−1(Θυ)Θ. We
first address the case Z = L. By Lemma 2.10 and the fact that Lϑ = 0, we have ∇/L/Lξ =

∇/ 2(Lϑ) = 0. Next, we compute compute that ∇/ 2
ΘΘϑ := (∇/ 2ϑ) ·Θ⊗Θ = ΘΘϑ− (∇/ ΘΘ) ·d/ϑ =

−υ−1Θυ. Also using [L,Θ] = 0, we compute that L/L∇/
2
ΘΘϑ := (L/L∇/

2ϑ) ·Θ⊗Θ = −υ−1ΘLυ+
υ−2(Lυ)Θυ. Similarly, we compute that (L/Lg/)ΘΘ = 2υLυ, (∇/L/Lg/)ΘΘΘ = 2υΘLυ−2(Θυ)Lυ,
and (∇/L/Lg/)# · (ξ⊗Θ⊗Θ) = 2υ−1LΘυ− 2υ−2(Θυ)Lυ. Combining the above computations,

we conclude that [∇/ ,L/L]ξ = 1
2
(∇/L/Lg/)# · ξ as desired. To treat the case Z = X̆, we first fix t

and construct a local coordinate ϑ̃ on ΣU0
t such that X̆ = ∂

∂u
, as in the proof of Lemma 3.6.

The proof then mirrors the proof in the case Z = L. We now treat the case Z = Y , which
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is `t,u−intrinsic. The result follows from Lemma 4.1, which for the `t,u−tangent vectorfield
Y applies with D replaced by ∇/ and g replaced by g/. We have thus proved the claim, which
completes the proof of (5.0.1).

(5.0.2) then follows as a straightforward consequence of (5.0.1), the fact that div/ ξ =
g/−1 · ∇/ ξ for symmetric type

(
0
2

)
`t,u−tangent tensorfields ξ, and the aforementioned identity

L/Zg/−1 = −(L/Zg/)##.

To prove (5.0.3a), we first use Lemma 2.10 to deduce that ∇/ 2L/Zf = ∇/ (L/Zd/f) = LZ∇/ 2f +
[∇/ ,L/Z ]·d/f . The identity (5.0.3a) now follows from (5.0.1) with ξ := d/f and a straightforward

argument involving induction in |~I| and Lemma 2.10; we omit the details.
(5.0.3b) follows easily from (5.0.3a), the identity ∆/ = g/−1 · ∇/ 2, and the aforementioned

identity L/Zg/−1 = −(L/Zg/)##. �

Lemma 5.2 (Preliminary Lie derivative commutation identities). Let ~I = (ι1, ι2, · · · , ιN)
be an N th−order Z multi-index, let f be a function, and let ξ be a type

(
m
n

)
`t,u−tangent

tensorfield with m + n ≥ 1. Let i1, i2, · · · , iN be any permutation of 1, 2, · · · , N and let
~I ′ = (ιi1 , ιi2 , · · · , ιiN ). Then there exist constants C~I1,~I2,ιk1 ,ιk2

such that{
Z

~I −Z
~I′
}
f =

∑
~I1+~I2+ιk1+ιk2=~I

Z(ιk1
)∈{L,X̆}, Z(ιk2

)∈{X̆,Y }, Z(ιk1
) 6=Z(ιk2

)

C~I1,~I2,ιk1 ,ιk2
L/~I1Z

(Z(ιk2
))π/#

Z(ιk1
)
· d/Z ~I2f,

(5.0.4a){
L/~IZ − L/

~I′

Z

}
ξ =

∑
~I1+~I2+ιk1+ιk2=~I

Z(ιk1
)∈{L,X̆}, Z(ιk2

)∈{X̆,Y }, Z(ιk1
) 6=Z(ιk2

)

C~I1,~I2,ιk1 ,ιk2
L/
L/
~I1
Z

(Z(ιk2
))
π/#Z(ιk1

)

L/~I2Z ξ.

(5.0.4b)

In (5.0.4a)-(5.0.4b), ~I1 + ~I2 + ιk1 + ιk2 = ~I means that ~I1 = (ιk3 , ιk4 , · · · , ιkm), and ~I2 =
(ιkm+1 , ιkm+2 , · · · , ιkN ), where k1, k2, · · · , kN is a permutation of 1, 2, · · · , N . In particular,

|~I1|+ |~I2| = N − 2.

Proof. The identities (5.0.4a) and (5.0.4b) are straightforward to verify using Lemmas 2.9

and 2.10, the facts that (W )π/#
Z = −(Z)π/#

W for W ∈ {X̆, Y } and Z ∈ {L, X̆} (see Lemma 2.18),
and the Lie derivative commutation property (2.5.6). �

6. Modified Quantities Needed for Top-Order Estimates

As we explained in Sect. 1.3.2, in order to close our top-order energy estimates without
incurring derivative loss, we must work with modified quantities. The modified quantities
allow us to control the top-order derivatives of trg/χ. In this section, we define these “fully
modified quantities” and derive transport equations for them. At the top order, we also
need “partially modified quantities,” which are similar but serve a different purpose: they
enable us to avoid the appearance of certain Σu

t error integrals in the energy estimates that
are too large to be controlled all the way up to the shock. These error integrals arise when
we integrate by parts with respect to L using the identity (3.1.22).
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6.1. Curvature tensors and the key Ricci component identity. The calculations re-
lated to the modified quantities are involved. A convenient way to organize them is to rely
on the curvature tensors of g.

Definition 6.1 (Curvature tensors of g). The Riemann curvature tensor Rαβκλ of the
spacetime metric g is the type

(
0
4

)
spacetime tensorfield defined by

g(D2
UVW −D2

V UW,Z) = −R(U, V,W,Z), (6.1.1)

where U , V , W , and Z are arbitrary spacetime vectors. In (6.1.1), D2
UVW := UαV βDαDβW .

The Ricci curvature tensor Ricαβ of g is the following type
(

0
2

)
tensorfield:

Ricαβ := (g−1)κλRακβλ. (6.1.2)

We now provide the lemma that forms the crux of the construction of the modified quan-
tities.

Lemma 6.1 (The key identity verified by µRicLL). Assume that �g(Ψ)Ψ = 0. Then the
following identity holds for the Ricci curvature component RicLL := RicαβL

αLβ:

µRicLL = L

{
−GLLX̆Ψ− 1

2
µtrg/G/LΨ− 1

2
µGLLLΨ + µG/#

L · d/Ψ
}

+ A, (6.1.3)

where A has the following schematic structure, where Z ∈ Z and P is P tu−tangent:

A = f(γ, g/−1, d/x1, d/x2, ZΨ)PΨ. (6.1.4)

Furthermore, without assuming �g(Ψ)Ψ = 0, we have

RicLL =
(Lµ)

µ
trg/χ+ L

{
−1

2
trg/G/LΨ− 1

2
GLLLΨ +G/#

L · d/Ψ
}
− 1

2
GLL∆/Ψ + B, (6.1.5)

where B has the following schematic structure:

B = f(γ, g/−1, d/x1, d/x2)(PΨ)Pγ. (6.1.6)

Proof. We sketch the proof instead of providing complete details since the computations are
lengthy and since the identities follow from inserting the schematic relations provided by
Lemma 2.19 into the identities derived in [59, Corollary 11.1.13]. We start by sketching the
proof of (6.1.5). First, we note that straightforward but tedious computations imply that
relative to the rectangular coordinate system, the components of R can be expressed as

Rµναβ =
1

2

{
GβµD

2
ανΨ +GανD

2
βµΨ−GβνD

2
αµΨ−GαµD

2
βνΨ

}
(6.1.7)

+
1

4
GµαGνβ(g−1)κλ(∂κΨ)(∂λΨ)− 1

4
GµβGνα(g−1)κλ(∂κΨ)(∂λΨ)

+
1

4
(g−1)κλ[Gλ(ν∂α)Ψ][Gκ(µ∂β)Ψ]− 1

4
(g−1)κλ[Gλ(µ∂α)Ψ][Gκ(ν∂β)Ψ]

+
1

2

{
G′βµ(∂αΨ)(∂νΨ) +G′αν(∂βΨ)(∂µΨ)−G′βν(∂αΨ)(∂µΨ)−G′αµ(∂βΨ)(∂νΨ)

}
,

where D2Ψ (which is a symmetric type
(

0
2

)
tensorfield) denotes the second covariant deriv-

ative of Ψ. We then contract both sides of (6.1.7) against LµLα(g/−1)νκ, which yields the
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desired term RicLL on the LHS. Finally, we use Lemmas 2.13 and 2.19 to express the RHS
of the contracted identity in the form written on RHS (6.1.5).

To obtain (6.1.3) from (6.1.5), we multiply both sides of (6.1.5) by µ and use the wave
equation in the form (2.14.1a); the wave equation allows us to replace µ times the term

−1
2
GLL∆/Ψ from (6.1.5) with −(1/2)L

{
µGLLLΨ + 2GLLX̆Ψ)

}
up to error terms involving

an admissible number of derivatives. �

6.2. The definitions of the modified quantities and their transport equations. We
now define the modified quantities.

Definition 6.2 (Modified versions of the pure Pu-tangent derivatives of trg/χ). Let
PN be an N th order pure Pu−tangent commutation vectorfield operator. We define the
fully modified function (PN )X as follows:

(PN )X := µPNtrg/χ+ PNX, (6.2.1a)

X := −GLLX̆Ψ− 1

2
µtrg/G/LΨ− 1

2
µGLLLΨ + µG/#

L · d/Ψ. (6.2.1b)

We define the partially modified function (PN )X̃ as follows:

(PN )X̃ := PNtrg/χ+ (PN )X̃, (6.2.2a)

(PN )X̃ := −1

2
trg/G/LPNΨ− 1

2
GLLLPNΨ +G/ #

L · d/P
NΨ. (6.2.2b)

We also define the following “0th−order” version of (6.2.2b):

X̃ := −1

2
trg/G/LΨ− 1

2
GLLLΨ +G/ #

L · d/Ψ. (6.2.3)

We now derive the transport equation verified by the fully modified quantities.

Proposition 6.2 (The transport equation for the fully modified version of PNtrg/χ).
Assume that �g(Ψ)Ψ = 0. Let PN be an N th−order Pu−tangent commutation vectorfield op-

erator, and let (PN )X and X be the corresponding quantities defined in (6.2.1a) and (6.2.1b).

Then the modified quantity (PN )X verifies the following transport equation:

L(PN )X −
(

2
Lµ

µ
− 2trg/χ

)
(PN )X = µ[L,PN ]trg/χ−

(
2
Lµ

µ

)
PNX + 2trg/χP

NX (6.2.4)

+ [L,PN ]X + [µ,PN ]Ltrg/χ+ [PN , Lµ]trg/χ

−
{
PN

(
µ(trg/χ)2

)
− 2µtrg/χP

Ntrg/χ
}
−PNA.

Proof. From (2.6.6a), the identity [L,Θ] = 0, the torsion-free property of D , and Def. 6.1, we
deduce L/LχΘΘ = g(DΘDLL,Θ) + g(DΘL,DΘL) −RLΘLΘ. Viewing both sides to be a type(

0
2

)
`t,u−tangent tensorfield, we take the g/ trace, use L/Lg/−1 = −2χ## (which follows from

definition (2.6.4) and (2.9.3)) use Lemma 2.13, and carry out straightforward calculations to
derive

µLtrg/χ = (Lµ)trg/χ− µ(trg/χ)2 − µRicLL. (6.2.5)
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Then from (6.1.3) and (6.2.5), we find that

L
{
µtrg/χ+ X

}
= 2(Lµ)trg/χ− µ(trg/χ)2 − A. (6.2.6)

Applying PN to (6.2.6) and performing straightforward commutations, we find that

L
{
µPNtrg/χ+ PNX

}
= 2(Lµ)PNtrg/χ− 2µtrg/χP

Ntrg/χ+ µ[L,PN ]trg/χ (6.2.7)

+ [L,PN ]X + [µ,PN ]Ltrg/χ+ [PN , Lµ]trg/χ

−
{
PN

(
µ(trg/χ)2

)
− 2µtrg/χP

Ntrg/χ
}
−PNA.

The identity (6.2.4) now follows easily from (6.2.7) and the definition of (PN )X . �

We now derive the transport equation verified by the partially modified quantities.

Proposition 6.3 (The transport equation for the partially modified version of
PN−1trg/χ). Let PN be an N th order pure Pu−tangent commutation vectorfield operator,

and let (PN−1)X̃ be the corresponding partially modified quantity defined in (6.2.2a). Then
(PN−1)X̃ verifies the following transport equation:

L(PN−1)X̃ =
1

2
GLL∆/PN−1Ψ + (PN−1)B, (6.2.8)

where the inhomogeneous term (PN−1)B is given by

(PN−1)B = −PN−1B−PN−1(trg/χ)2 (6.2.9)

+
1

2
[PN−1, GLL]∆/Ψ +

1

2
GLL[PN−1,∆/ ]Ψ + [L,PN−1]trg/χ

+ [L,PN−1]X̃ + L
{

(PN−1)X̃−PN−1X̃
}
,

B is defined in (6.1.6), is defined in (6.2.2b), and X̃ is defined in (6.2.3).

Proof. From (6.2.5), we find that

Ltrg/χ =
Lµ

µ
trg/χ− (trg/χ)2 − RicLL. (6.2.10)

Then from (6.1.5) and (6.2.10), we deduce that

L
{

trg/χ+ X̃
}

=
1

2
GLL∆/Ψ− (trg/χ)2 −B. (6.2.11)

We note in particular that the dangerous product
Lµ

µ
trg/χ from (6.1.5) and (6.2.10) cancels

from (6.2.11). The desired identity (6.2.9) now follows from applying PN−1 to (6.2.11) and
carrying out straightforward operator commutations. �

7. Norms, Initial Data, Bootstrap Assumptions, and Smallness Assumptions

In this section, we first introduce the pointwise norms that we use to control solutions.
We then describe our assumptions on the size of the initial data. Finally, we state bootstrap
assumptions that we use throughout most of the rest of the paper to derive estimates.
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7.1. Norms. In our analysis, we primarily estimate scalar functions and `t,u−tangent ten-
sorfields. We always use the metric g/ when taking the pointwise norm of `t,u−tangent
tensorfields, a concept which we make precise in the next definition.

Definition 7.1 (Pointwise norms). If ξµ1···µmν1···νn is a type
(
m
n

)
`t,u−tangent tensor, then we

define the norm |ξ| ≥ 0 by

|ξ|2 := g/µ1µ̃1 · · · g/µmµ̃m(g/−1)ν1ν̃1 · · · (g/−1)νnν̃nξµ1···µmν1···νn ξ
µ̃1···µ̃m
ν̃1···ν̃n . (7.1.1)

Our analysis relies on the following L2 and L∞ norms.

Definition 7.2 (L2 and L∞ norms). In terms of the non-degenerate forms of Def. 3.2, we
define the following norms for `t,u−tangent tensorfields:

‖ξ‖2
L2(`t,u) :=

∫
`t,u

|ξ|2 dλg/, ‖ξ‖2
L2(Σut ) :=

∫
Σut

|ξ|2 d$, (7.1.2a)

‖ξ‖2
L2(Ptu) :=

∫
Ptu
|ξ|2 d$,

‖ξ‖L∞(`t,u) := ess supϑ∈T|ξ|(t, u, ϑ), ‖ξ‖L∞(Σut ) := ess sup(u′,ϑ)∈[0,u]×T|ξ|(t, u′, ϑ),

(7.1.2b)

‖ξ‖L∞(Ptu) := ess sup(t′,ϑ)∈[0,t]×T|ξ|(t′, u, ϑ).

Remark 7.1 (Subset norms). In our analysis below, we occasionally use norms ‖ · ‖L2(Ω)

and ‖ · ‖L∞(Ω), where Ω is a subset of Σu
t . These norms are defined by replacing Σu

t with Ω
in (7.1.2a) and (7.1.2b).

7.2. Strings of commutation vectorfields and vectorfield seminorms. The following
shorthand notation captures the relevant structure of our vectorfield operators and allows
us to depict estimates schematically.

Remark 7.2. Some operators in Def. 7.3 are decorated with a ∗. These operators involve
Pu−tangent differentiations that often lead to a gain in smallness in the estimates. More
precisely, the operators PN

∗ always lead to a gain in smallness while the operators Z N ;M
∗

lead to a gain in smallness except when they are applied to µ.

Definition 7.3 (Strings of commutation vectorfields and vectorfield seminorms).

• Z N ;Mf denotes an arbitrary string of N commutation vectorfields in Z (see (2.8.3))
applied to f , where the string contains at most M factors of the Put −transversal

vectorfield X̆.
• PNf denotes an arbitrary string of N commutation vectorfields in P (see (2.8.4))

applied to f .
• For N ≥ 1, Z N ;M

∗ f denotes an arbitrary string of N commutation vectorfields in Z
applied to f , where the string contains at least one Pu−tangent factor and at most
M factors of X̆. We also set Z 0;M

∗ f := f .
• For N ≥ 1, PN

∗ f denotes an arbitrary string of N commutation vectorfields in P
applied to f , where the string must contain at least one factor of Y or at least two
factors of L.
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• For `t,u−tangent tensorfields ξ, we similarly define strings of `t,u−projected Lie deriva-

tives such as L/N ;M
Z ξ.

We also define pointwise seminorms constructed out of sums of the above strings of vec-
torfields:

• |Z ≤N ;Mf | is the sum over all terms of the form |Z N ′;Mf | with N ′ ≤ N and Z N ′;Mf
as defined above. When N = M = 1, we sometimes write |Z ≤1f | instead of |Z ≤1;1f |.
• |Z [1,N ];Mf | is the sum over all terms of the form |Z N ′;Mf | with 1 ≤ N ′ ≤ N and

Z N ′;Mf as defined above.

• Sums such as |P [1,N ]
∗ f |, |L/≤N ;M

Z ξ|, etc., are defined analogously. We write |P∗f |
instead of |P [1,1]

∗ f |. We also use the notation |X̆ [1,N ]f | = |X̆f | + |X̆X̆f | + · · · +

|

N copies︷ ︸︸ ︷
X̆X̆ · · · X̆ f |.

7.3. Assumptions on the initial data and the behavior of quantities along Σ0. In
this section, we introduce our Sobolev norm assumptions on the data, which involve several
size parameters. We then derive identities and estimates for various quantities on Σ0. In
Sect. 7.7, we describe our assumptions on the size parameters.

We first recall that (Ψ|Σ0 , ∂tΨ|Σ0) := (Ψ̊, Ψ̊0) and that we assume (Ψ̊, Ψ̊0) ∈ H19
e (Σ1

0) ×
H18
e (Σ1

0). We assume that the data verify the following size estimates (see Sect. 7.2 regarding
the vectorfield operator notation):∥∥Z ≤17;3

∗ Ψ
∥∥
L∞(Σ1

0)
,
∥∥Z ≤19;3
∗ Ψ

∥∥
L2(Σ1

0)
≤ ε̊,

∥∥∥X̆ [1,3]Ψ
∥∥∥
L∞(Σ1

0)
:= δ̊ > 0. (7.3.1)

In the next definition, we introduce the data-dependent number δ̊∗, which is of crucial
importance. Our main theorem shows that for ε̊ sufficiently small, the time of first shock
formation is (1 +O(̊ε))̊δ−1

∗ .

Definition 7.4 (The quantity that controls the blow-up time). We define

δ̊∗ :=
1

2
sup
Σ1

0

[
GLLX̆Ψ

]
−
. (7.3.2)

Remark 7.3. Our proof of shock formation relies on the assumption δ̊∗ > 0. It is easy to
see that under the assumptions on the nonlinearities described in Sect. 2.2, we indeed have
δ̊∗ > 0 for nontrivial data supported in Σ1

0.

To prove our main theorem, we make assumptions on the relative sizes of the above
parameters; see Sect. 7.7.

Our next goal is to derive estimates for various quantities along Σ1
0 that hold whenever

the data verify (7.3.1) and ε̊ is sufficiently small. We start by providing two lemmas that
yield some identities that are relevant for that analysis.

Lemma 7.1 (Identities involving ∂iu). The following identity holds:

(g−1)ab∂au∂bu = µ−2. (7.3.3)

In (7.3.3), g−1 is the inverse of the Riemannian metric g on ΣU0
t defined by (2.6.1).
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Furthermore, the rectangular spatial derivatives of u verify (for i = 1, 2):

µ∂iu = Xi. (7.3.4)

Proof. Since −µ∂αu = Lα (see (2.3.2) and (2.3.5)), (7.3.4) follows from the first identity in
(2.4.11). To deduce (7.3.3), we use (7.3.4) to substitute for ∂au and ∂bu on LHS (7.3.4) and
use the normalization condition (g−1)abXaXb = g(X,X) = 1 (see (2.4.6a)). �

Lemma 7.2 (Algebraic identities along Σ0). The following identities hold along Σ0 (for
i = 1, 2):

µ =
1√

(g−1)11
, Li(Small) =

(g−1)i1√
(g−1)11

− δi1 − (g−1)0i, Ξi =
(g−1)i1

(g−1)11
− δi1, (7.3.5)

where g is viewed as the 2 × 2 matrix of rectangular spatial components of the Riemann-

ian metric on Σ0 defined by (2.6.1), g−1 is the corresponding inverse matrix, and Ξ is the
`t,u−tangent vectorfield from (2.4.8).

Proof. The identity for µ is a simple consequence of (7.3.3) and the fact that by con-
struction, u|Σ0 = 1 − x1 (see (1.2.2)). Next, using in addition (7.3.4), we deduce that

X i = −µ(g−1)iaδ1
a = −µ(g−1)i1 = − (g−1)i1√

(g−1)11
along Σ0. Also using that Li = N i − X i (see

(2.4.3)), N i = −(g−1)0i (see (2.4.10)), and Li(Small) = Li − δi1 (see (2.8.5)), we easily con-

clude the desired identity for Li(Small). Next, we recall that by construction, ϑ|Σ0 = x2 (see

Def. 2.4). Hence, ∂
∂u

= −∂1 and Θ = ∂2 along Σ0. Also using that X̆ = ∂
∂u
− Ξ (see (2.4.8)),

(7.3.4), and X̆ = µX, we conclude that Ξi = −δi1 − X̆ i = −δi1 + µ
(g−1)i1√
(g−1)11

= −δi1 +
(g−1)i1

(g−1)11

as desired. �

In the next lemma, we provide estimates verified by the eikonal function quantities µ and
Li(Small) along Σ1

0. The estimates are a consequence of the assumptions (7.3.1) on the initial

data of Ψ as well as the evolution equations verified by µ and Li(Small).

Lemma 7.3 (Behavior of the eikonal function quantities along Σ1
0). For initial data

verifying (7.3.1), the following L2 and L∞ estimates hold along Σ1
0 whenever ε̊ is sufficiently

small, where the implicit constants are allowed to depend on δ̊:∥∥Z ≤19;3
∗ Li(Small)

∥∥
L2(Σ1

0)
. ε̊,

∥∥∥X̆ [1,3]Li(Small)

∥∥∥
L2(Σ1

0)
. 1, (7.3.6)

‖µ− 1‖L2(Σ1
0) ,
∥∥P [1,19]

∗ µ
∥∥
L2(Σ1

0)
. ε̊, (7.3.7a)

‖Lµ‖L2(Σ1
0) ,
∥∥∥X̆ [1,2]µ

∥∥∥
L2(Σ1

0)
. 1. (7.3.7b)

∥∥Z ≤17;2
∗ Li(Small)

∥∥
L∞(Σ1

0)
. ε̊,

∥∥∥X̆ [1,2]Li(Small)

∥∥∥
L∞(Σ1

0)
. 1, (7.3.8)
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‖µ− 1‖L∞(Σ1
0) ,
∥∥P [1,17]

∗ µ
∥∥
L∞(Σ1

0)
. ε̊, (7.3.9a)

‖Lµ‖L∞(Σ1
0) ,
∥∥∥X̆ [1,2]µ

∥∥∥
L∞(Σ1

0)
. 1. (7.3.9b)

Sketch of proof. We only sketch the proofs of the estimates because they have a lengthy
component and because we give complete details of related but more complicated estimates
in our proofs of Propositions 8.10 and 9.2 below. An easy part of the proof is deriving
estimates involving derivatives with respect to the Σ0−tangent vectorfields X̆ and Y ; we
can use the identities (7.3.5) to express (µ − 1)|Σ0 and Li(Small)|Σ0 in the form f(Ψ)Ψ with

f smooth. We can then repeatedly differentiate f(Ψ)Ψ with respect to X̆, Y and use the
assumptions (7.3.1) and the standard Sobolev calculus to obtain the desired L2 and L∞

estimates. Under the umbrella of the Sobolev calculus, we include the embedding estimate
‖f‖L∞(`0,u) . ‖Y f‖L2(`0,u)+‖f‖L2(`0,u) (valid with a uniform implicit constant for u ∈ [0, U0]).
This Sobolev embedding estimate is easy to derive because along `0,u, we have Θ = ∂2,
Y = (1 + O(̊ε))∂2, and dλg/ = (1 + O(̊ε)) dϑ. Thus, the embedding result follows from the
standard one on the torus T equipped with the standard Euclidean metric.

Another easy part of the proof is obtaining the desired estimates for L≤19µ, L≤19Li(Small),

and their derivatives up to top order with respect to X̆ and Y (where all X̆ and Y derivatives
occur after the L differentiations). To derive them, we can repeatedly use the evolution
equations (2.11.1) and (2.11.2) to substitute for Lµ and LLi(Small) and argue as in the previous

paragraph. In obtaining these estimates, the main point (which is easy to see with the help
of (2.11.1) and (2.11.2)) is that the quantities that we claim are . ε̊ contain at least one
small factor Z ≤19;3

∗ Ψ, which by (7.3.1) yields the desired smallness factor ε̊.
The lengthy part of the proof is deriving estimates for the derivatives of µ and Li(Small) that

involve both L and the Σ0−tangent operators {X̆, Y }, where the Σ0−tangent differentiation

acts before L does. A model term is LX̆Li(Small). The main idea of the argument is to first

write LX̆Li(Small) = X̆LLi(Small) +[L, X̆]Li(Small). The advantage of this decomposition is that

the arguments given in the previous paragraph imply that
∥∥∥X̆LLi(Small)∥∥∥

L2(Σ1
0)
. ε̊. Thus,

the main step remaining is to establish commutation estimates showing that, roughly speak-
ing, the commutator operators [L, X̆], [L, Y ], and [X̆, Y ] lead to products involving at least
one (good) `t,u−tangent differentiation, which provides the smallness factor ε̊ in the relevant
expressions. The identities in (2.9.2) feature `t,u−tangent right-hand sides and thus imply
the availability of the desired structure after one commutation. To derive estimates up to
top order, we must also show that a suitable version of this structure survives under higher-
order differentiations and commutations. We establish the necessary commutation estimates
in Lemmas 8.7, 8.8, and 9.1 below under bootstrap assumptions that are consistent with the
evolution of the solution. In the inequalities stated in those lemmas, the bootstrap assump-
tions are used to gain a factor of ε1/2 in various quadratic terms that appear on the right-hand
sides, where ε is a small bootstrap parameter. Along Σ0, the lemmas can be established with-
out the bootstrap assumptions by using the same arguments given in their proofs. In fact,
one can ignore the availability of the smallness factor. After establishing the commutation
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Lemmas along Σ0 we can derive the desired estimates using induction in the number of deriva-

tives. For example, to deduce that
∥∥∥LLX̆µ∥∥∥

L2(Σ1
0)
. ε̊, we write LLX̆µ = X̆LLµ+[LL, X̆]µ.

The argument sketched in the previous paragraph implies that
∥∥∥X̆LLµ∥∥∥

L2(Σ1
0)
. ε̊. To con-

clude that
∥∥∥[LL, X̆]µ

∥∥∥
L2(Σ1

0)
. ε̊, we can use the commutator estimate (8.5.6) to derive the

pointwise bound
∣∣∣[LL, X̆]µ

∣∣∣ . ∣∣YZ ≤1;1µ
∣∣ +

∣∣∣P [1,2]
∗ γ

∣∣∣ +
∣∣Z ≤2;1
∗ γ

∣∣ +
∣∣P≤2γ

∣∣. The RHS in-

volves only up-to-order 2 derivatives of quantities that, by induction, would have been shown
to be bounded in the norm ‖·‖L2(Σ1

0) by . ε̊. �

7.4. T(Boot), the positivity of µ, and the diffeomorphism property of Υ. We now
state some basic bootstrap assumptions. We start by fixing a real number T(Boot) with

0 < T(Boot) ≤ 2̊δ−1
∗ . (7.4.1)

We assume that on the spacetime domain MT(Boot),U0 (see (2.3.1e)), we have

µ > 0. (BAµ > 0)

Inequality (BAµ > 0) implies that no shocks are present in MT(Boot),U0 .
We also assume that

The change of variables map Υ from Def. 2.20 is a C1 diffeomorphism from (7.4.2)

[0, T(Boot))× [0, U0]× T onto its image.

7.5. Fundamental L∞ bootstrap assumptions. Our fundamental bootstrap assump-
tions for Ψ are that the following inequalities hold onMT(Boot),U0 (see Sect. 7.2 regarding the

vectorfield operator notation): ∥∥P≤11Ψ
∥∥
L∞(Σut )

≤ ε, (BAΨ)

where ε is a small positive bootstrap parameter whose smallness we describe in Sect. 7.7.

7.6. Auxiliary L∞ bootstrap assumptions. In deriving pointwise estimates, we find it
convenient to make the following auxiliary bootstrap assumptions. In Prop. 8.10, we will
derive strict improvements of these assumptions.
Auxiliary bootstrap assumptions for small quantities. We assume that the following
inequalities hold on MT(Boot),U0 : ∥∥Z ≤10;1

∗ Ψ
∥∥
L∞(Σut )

≤ ε1/2, (AUX1Ψ)

∥∥LP [1,9]µ
∥∥
L∞(Σut )

,
∥∥P≤9

∗ µ
∥∥
L∞(Σut )

≤ ε1/2, (AUX1µ)∥∥Z ≤9;1
∗ Li(Small)

∥∥
L∞(Σut )

≤ ε1/2, (AUX1L(Small))∥∥∥L/≤8;1
Z χ

∥∥∥
L∞(Σut )

≤ ε1/2. (AUX1χ)
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Auxiliary bootstrap assumptions for quantities that are allowed to be large.∥∥∥X̆Ψ
∥∥∥
L∞(Σut )

≤
∥∥∥X̆Ψ

∥∥∥
L∞(Σu0 )

+ ε1/2, (AUX2Ψ)

‖Lµ‖L∞(Σut ) ≤
1

2

∥∥∥GLLX̆Ψ
∥∥∥
L∞(Σu0 )

+ ε1/2, (AUX2µ)

‖µ‖L∞(Σut ) ≤ 1 + 2̊δ−1
∗

∥∥∥GLLX̆Ψ
∥∥∥
L∞(Σu0 )

+ ε1/2, (AUX3µ)∥∥∥X̆Li(Small)∥∥∥
L∞(Σut )

≤
∥∥∥X̆Li(Small)∥∥∥

L∞(Σu0 )
+ ε1/2. (AUX2L(Small))

7.7. Smallness assumptions. For the remainder of the article, when we say that “A is
small relative to B,” we mean that there exists a continuous increasing function f : [0,∞)→
(0,∞) such that A ≤ f(B). In principle, the functions f could always be chosen to be poly-
nomials with positive coefficients or exponential functions.50 However, to avoid lengthening
the paper, we typically do not specify the form of f .

Throughout the rest of the paper, we make the following relative smallness assumptions.
We continually adjust the required smallness in order to close our estimates.

• The bootstrap parameter ε is small relative to δ̊−1, where δ̊ is the data-size parameter
from (7.3.1).

• ε is small relative to the data-size parameter δ̊∗ from (7.3.2).

The first assumption will allow us to control error terms that, roughly speaking, are of size
ε̊δk for some integer k ≥ 0. The second assumption is relevant because the expected blow-
up time is approximately δ̊−1

∗ , and the assumption will allow us to show that various error

products featuring a small factor ε remain small for t < 2̊δ−1
∗ , which is plenty of time for us

to show that a shock forms.
Finally, we assume that

ε̊ ≤ ε, (7.7.1)

where ε̊ is the data smallness parameter from (7.3.1).

Remark 7.4. δ̊ and δ̊∗ do not have to be small.

Remark 7.5 (The existence of data verifying the size assumptions). We now sketch

why there exists an open set of data (Ψ|Σ0 , ∂tΨ|Σ0) = (Ψ̊, Ψ̊0) that are compactly supported

in Σ1
0 and that satisfy the above size assumptions involving ε̊, δ̊−1, and δ̊∗. It is enough

to show that there exist plane symmetric data (Ψ̊, Ψ̊0) (depending only on x1) because
the size assumptions are stable under (asymmetric) Sobolev-class perturbations, where the
relevant Sobolev space is H19

e (Σ1
0) × H18

e (Σ1
0). Note that in plane symmetry, Θ and Y are

proportional to ∂2 and all ∂2 derivatives of all scalar functions defined throughout the article
vanish. Moreover, even though L and X̆ do not necessarily commute, [L, X̆] is `t,u−tangent

(see Lemma 2.9) and therefore proportional to ∂2. Thus, when [L, X̆] acts as a differential
operator on a scalar function, it annihilates it.

50 The exponential functions appear in our energy estimates, during our Gronwall argument; see the proof
of Prop. 14.1 given in Sect. 14.9.



74
Stable Shock Formation

To see that suitable plane symmetric data exist, we first note that since Remark 2.6 and
(7.3.5) imply that X̆ = −(1 + O(Ψ))∂1 along Σ0 and Li(Small) = O(Ψ) along Σ1

0, a simple

argument relative to rectangular coordinates (omitted here) yields that it is possible to

find smooth plane symmetric data such that ‖Ψ̊‖L∞(Σ1
0) is as small as we want relative to

1
2

supΣ1
0

[
GLLX̆Ψ

]
−

(see definition (7.3.2)) and relative to 1/‖X̆ [1,3]Ψ̊‖L∞(Σ1
0) (see (7.3.1)); for

example, one need only to consider highly oscillatory functions Ψ̊ with a small amplitude.
Then, since LΨ|Σ1

0
= ∂tΨ|Σ1

0
+ L1∂1Ψ|Σ1

0
= Ψ̊0 + L1∂1Ψ̊, we can choose Ψ̊0 in terms of Ψ̊

so that ‖X̆ [1,3]LΨ‖L∞(Σ1
0) is as small as we want (we could even make LΨ|Σ1

0
≡ 0 by setting

Ψ̊0 := −L1∂1Ψ̊ ). Moreover, from the above remarks, we conclude that the same smallness

holds for all permutations of the operators X̆ [1,3]L acting on Ψ along Σ1
0. To obtain the desired

smallness of ‖X̆KLJΨ‖L∞(Σ1
0) for 1 ≤ J , K ≤ 3, and J + K ≤ 17 and ‖X̆KLJΨ‖L2(Σ1

0) for

1 ≤ J , K ≤ 3, and J + K ≤ 19, we can inductively use the evolution equations (2.14.1b),
(2.11.1), and (2.11.2) and the relations (7.3.5), much like we described in the proof sketch of
Lemma 7.3 (note that we must simultaneously derive estimates for the derivatives of µ and
Li(Small) in order to obtain the estimates for Ψ).

8. Preliminary pointwise estimates

In this section, we use the assumptions on the data and the bootstrap assumptions from
Sect. 7 to derive pointwise estimates for the simplest error terms that appear in the commuted
wave equation. The arguments are tedious but not too difficult. In Sect. 9, we derive
related estimates involving higher transversal derivatives. In Sects. 10, and 11, we use the
preliminary estimates to derive related but more difficult estimates.

In the remainder of the article, we schematically express many of our inequalities by stating
them in terms of the arrays γ and γ from Def. 2.25. We also remind the reader that we often
use the abbreviations introduced Sect. 7.2 to schematically indicate the structure of various
derivative operators.

8.1. Differential operator comparison estimates. We start by establishing comparison
estimates for various differential operators.

Lemma 8.1 (The norm of `t,u−tangent tensors can be measured via Y contrac-
tions). Let ξα1···αn be a type

(
0
n

)
`t,u−tangent tensor with n ≥ 1. Under the data-size and

bootstrap assumptions of Sects. 7.4-7.6 and the smallness assumptions of Sect. 7.7, we have

|ξ| =
{

1 +O(ε1/2)
}
|ξY Y ···Y |. (8.1.1)

The same result holds if |ξY Y ···Y | is replaced with |ξY ·|, |ξY Y ·|, etc., where ξY · is the type
(

0
n−1

)
tensor with components Y α1ξα1α2···αn, and similarly for ξY Y ·, etc.

Proof. (8.1.1) is easy to derive relative to rectangular coordinates by using the decomposition
(g/−1)ij = 1

|Y |2Y
iY j and the estimate |Y | = 1 + O(ε1/2). This latter estimate follows from

the identity |Y |2 = gabY
aY b = (δab + g

(Small)
ab )(δa2 + Y a

(Small))(δ
b
2 + Y b

(Small)), the fact that

g
(Small)
ab = f(γ)γ with f smooth and similarly for Y a

(Small) (see Lemma 2.19), and the bootstrap
assumptions. �
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Lemma 8.2 (Controlling ∇/ derivatives in terms of Y derivatives). Let f be a scalar
function on `t,u. Under the data-size and bootstrap assumptions of Sects. 7.4-7.6 and the
smallness assumptions of Sect. 7.7, the following comparison estimates hold on MT(Boot),U0:

|d/f | ≤ (1 + Cε1/2) |Y f | , |∇/ 2f | ≤ (1 + Cε1/2) |d/(Y f)|+ Cε|d/f |. (8.1.2)

Proof. The first inequality in (8.1.2) follows directly from Lemma 8.1. To prove the second,
we first use Lemma 8.1, the identity ∇/ 2

Y Y f = Y · d/(Y f) − ∇/ Y Y · d/f , and the estimate
|Y | = 1 +O(ε1/2) noted in the proof of Lemma 8.1 to deduce that

|∇/ 2f | ≤ (1 + Cε1/2)|∇/ 2
Y Y f | ≤ (1 + Cε1/2)|d/(Y f)|+ |∇/ Y Y ||d/f |. (8.1.3)

Next, we use Lemma 8.1 and the identity (Y )π/Y Y = ∇/ Y (g/(Y, Y )) = Y (gabY
aY b) to deduce

that

|∇/ Y Y | . |g(∇/ Y Y, Y )| .
∣∣(Y )π/Y Y

∣∣ . ∣∣Y (gabY
aY b)

∣∣ . (8.1.4)

Since Lemma 2.19 implies that gabY
aY b = f(γ) with f smooth, the bootstrap assumptions

yield that RHS (8.1.4) is . |Y γ| . ε1/2. The desired inequality now follows from this
estimate, (8.1.3), and (8.1.4). �

Lemma 8.3 (Controlling L/V and ∇/ derivatives in terms of L/Y derivatives). Let
ξα1···αn be a type

(
0
n

)
`t,u−tangent tensor with n ≥ 1 and let V be an `t,u−tangent vector-

field. Under the data-size and bootstrap assumptions of Sects. 7.4-7.6 and the smallness
assumptions of Sect. 7.7, the following comparison estimates hold on MT(Boot),U0:

|L/V ξ| . |V | |L/Y ξ|+ |ξ| |L/Y V |+ ε1/2|ξ||V |, (8.1.5)

|∇/ ξ| . |L/Y ξ|+ ε1/2|ξ|. (8.1.6)

Proof. To prove (8.1.5), we first note the schematic identity L/V ξ = ∇/ V ξ +
∑
ξ · ∇/ V , which

follows from applying Π/ to both sides of (2.5.5), recalling that RHS (2.5.5) is invariant upon
replacing all coordinate partial derivatives ∂ with covariant derivatives D , and recalling that
∇/ = Π/D when acting on `t,u−tangent tensorfields ξ. Also using Lemma 8.1, we find that

|L/V ξ| . |V ||∇/ Y ξ|+ |ξ||∇/ Y V |. (8.1.7)

Next, we note that the torsion-free property of ∇/ implies that ∇/ Y V = L/Y V +∇/ V Y . Hence,
using Lemma 8.1, (8.1.4), and the estimate |∇/ Y Y | . ε1/2 shown in the proof of Lemma 8.2,
we find that

|∇/ Y V | . |L/Y V |+ |V ||∇/ Y | . |L/Y V |+ |V ||∇/ Y Y | . |L/Y V |+ ε1/2|V |. (8.1.8)

Similarly, we have

|∇/ Y ξ| . |L/Y ξ|+ ε1/2|ξ|. (8.1.9)

The desired estimate (8.1.5) now follows from (8.1.7), (8.1.8), and (8.1.9).
The estimate (8.1.6) follows from applying Lemma 8.1 to ∇/ ξ and using (8.1.9). �
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8.2. Basic facts and estimates that we use silently. For the reader’s convenience, we
present here some basic facts and estimates that we silently use throughout the rest of the
paper when deriving estimates.

(1) All quantities that we estimate can be controlled in terms of the small quantities

γ = {Ψ,µ − 1, L1
(Small), L

2
(Small)} and their derivatives (where the X̆ derivatives do

not have to be small, nor does Lµ).
(2) We typically use the Leibniz rule for the operators L/Z and ∇/ when deriving pointwise

estimates for the L/Z and ∇/ derivatives of tensor products of the schematic form∏m
i=1 vi, where the vi are scalar functions or `t,u−tangent tensors. Our derivative

counts are such that all vi except at most one are uniformly bounded in L∞ on
MT(Boot),U0 . Thus, our pointwise estimates typically explicitly feature (on the right-

hand sides) only the factor with the most derivatives on it, multiplied by a constant
that uniformly bounds the other factors. In some estimates, the right-hand sides also
gain a smallness factor, such as ε1/2, generated by the remaining v′is.

(3) The operators L/NZ commute through d/, as shown by Lemma 2.10.
(4) As differential operators acting on scalar functions, we have Y = (1+O(ε1/2))d/, a fact

which follows from Lemma 8.1.2, (8.4.2a), and the bootstrap assumptions. Hence,
for scalar functions f , we sometimes schematically depict d/f as Pf . Similarly, by

Lemmas 8.2 and 8.3, we can depict ∆/ f by P [1,2]
∗ f and ∇/ ξ by L/≤1

P ξ for `t,u−tangent
tensorfield ξ.

(5) We remind the reader that all constants are allowed to depend on the data-size

parameters δ̊ and δ̊−1
∗ .

8.3. Pointwise estimates for the rectangular coordinates and the rectangular com-
ponents of some vectorfields.

Lemma 8.4 (Pointwise estimates for xi and the rectangular components of several
vectorfields). Assume that N ≤ 18 and V ∈ {L,X, Y }. Let xi = xi(t, u, ϑ) denote the
rectangular coordinate function and let x̊i = x̊i(u, ϑ) := xi(0, u, ϑ). Under the data-size
and bootstrap assumptions of Sects. 7.4-7.6 and the smallness assumptions of Sect. 7.7, the
following pointwise estimates hold on MT(Boot),U0, for i = 1, 2 (see Sect. 7.2 regarding the
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vectorfield operator notation): ∣∣V i
∣∣ . 1 + |γ| , (8.3.1a)∣∣P [1,N ]V i
∣∣ . ∣∣P≤Nγ

∣∣ , (8.3.1b)∣∣Z [1,N ];1
∗ V i

∣∣ . ∣∣Z ≤N ;1
∗ γ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣ , (8.3.1c)∣∣Z [1,N ];1V i
∣∣ . ∣∣Z ≤N ;1γ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣ , (8.3.1d)∣∣∣X̆ i
∣∣∣ . 1 + |γ|, (8.3.1e)∣∣∣P [1,N ]X̆ i
∣∣∣ . ∣∣P≤Nγ

∣∣ , (8.3.1f)∣∣∣Z [1,N ];1
∗ X̆ i

∣∣∣ . ∣∣Z ≤N ;1
∗ γ

∣∣ , (8.3.1g)∣∣∣Z [1,N ];1X̆ i
∣∣∣ . ∣∣Z ≤N ;1γ

∣∣ , (8.3.1h)

∣∣xi − x̊i∣∣ . 1, (8.3.2a)∣∣d/xi∣∣ . 1 + |γ| , (8.3.2b)∣∣d/P [1,N ]xi
∣∣ . ∣∣P≤Nγ

∣∣ , (8.3.2c)∣∣d/Z [1,N ];1
∗ xi

∣∣ . ∣∣Z ≤N ;1
∗ γ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣ , (8.3.2d)∣∣d/Z [1,N ];1xi
∣∣ . ∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣ , (8.3.2e)

∣∣PNY i
(Small)

∣∣ . ∣∣P≤Nγ
∣∣ , (8.3.3a)∣∣Z N ;1

∗ Y i
(Small)

∣∣ . ∣∣Z ≤N ;1
∗ γ

∣∣ , (8.3.3b)∣∣Z N ;1Y i
(Small)

∣∣ . ∣∣Z ≤N ;1γ
∣∣ . (8.3.3c)

In the case i = 2 at fixed u, ϑ, LHS (8.3.2a) is to be interpreted as the Euclidean distance
traveled by the point x2 in the flat universal covering space R of T along the corresponding
integral curve of L over the time interval [0, t].

Proof. See Sect. 8.2 for some comments on the analysis. Lemma 2.19 implies that for V ∈
{L,X, Y }, the component V i = V xi verifies V i = f(γ) with f smooth. Similarly, Y i

(Small)

verifies Y i
(Small) = f(γ)γ with f smooth and X̆xi = X̆ i verifies X̆ i = f(γ) with f smooth.

The estimates of the lemma therefore follow easily from the bootstrap assumptions, except
for the estimates (8.3.2a)-(8.3.2e). To obtain (8.3.2a), we first argue as above to deduce
|Lxi| = |Li| = |f(γ)| . 1. Since L = ∂

∂t
, we may integrate along the integral curves of L

starting from t = 0 and use the previous estimate to conclude (8.3.2a). To derive (8.3.2b),
we use (8.1.2) with f = xi to deduce |d/xi| . |Y xi| = |Y i| = |f(γ)| . 1 + |γ| as desired. The
proofs of (8.3.2c)-(8.3.2e) are similar, but we also use Lemma 2.10 to commute vectorfields
under d/. �
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8.4. Pointwise estimates for various `t,u−tensorfields.

Lemma 8.5 (Crude pointwise estimates for the Lie derivatives of g/ and g/−1).
Assume that N ≤ 18. Under the data-size and bootstrap assumptions of Sects. 7.4-7.6 and
the smallness assumptions of Sect. 7.7, the following pointwise estimates hold on MT(Boot),U0

(see Sect. 7.2 regarding the vectorfield operator notation):∣∣∣L/N+1
P g/

∣∣∣ , ∣∣∣L/N+1
P g/−1

∣∣∣ ∣∣∣L/NPχ∣∣∣ , ∣∣PNtrg/χ
∣∣ . ∣∣P≤N+1γ

∣∣ , (8.4.1a)∣∣∣L/N+1;1
Z∗

g/
∣∣∣ , ∣∣∣L/N+1;1

Z∗
g/−1
∣∣∣ , ∣∣∣L/N ;1

Z χ
∣∣∣ , ∣∣Z N ;1trg/χ

∣∣ . ∣∣Z ≤N+1;1
∗ γ

∣∣+
∣∣P [1,N+1]
∗ γ

∣∣ , (8.4.1b)∣∣∣L/N+1;1
Z g/

∣∣∣ , ∣∣∣L/N+1;1
Z g/−1

∣∣∣ . ∣∣Z ≤N+1;1γ
∣∣+
∣∣P [1,N+1]
∗ γ

∣∣ . (8.4.1c)

Proof. See Sect. 8.2 for some comments on the analysis. By Lemma 2.19, we have g/ =

f(γ, d/x1, d/x2). The desired estimates for L/N+1
P g/ thus follow from Lemma 8.4 and the bootstrap

assumptions. The desired estimates for L/N+1
P g/−1 then follow from repeated use of the second

identity in (2.9.3) and the estimates for L/N+1
P g/. The estimates for L/NPχ follow from the

estimates for L/N+1
P g/ and L/N+1

P g/−1 since χ ∼ L/Pg/ (see (2.6.4)) and trg/χ ∼ g/−1 · L/Pg/. �

Lemma 8.6 (Pointwise estimates for the Lie derivatives of Y and some defor-
mation tensor components). Assume that N ≤ 18. Under the data-size and bootstrap
assumptions of Sects. 7.4-7.6 and the smallness assumptions of Sect. 7.7, the following point-
wise estimates hold on MT(Boot),U0 (see Sect. 7.2 regarding the vectorfield operator notation):

|Y | ≤ 1 + C |γ| , (8.4.2a)∣∣∣L/[1,N ]
P Y

∣∣∣ ≤ C
∣∣P≤Nγ

∣∣ , (8.4.2b)∣∣∣L/[1,N ];1
Z∗

Y
∣∣∣ ≤ C

∣∣Z ≤N ;1
∗ γ

∣∣+ C
∣∣P [1,N ]
∗ γ

∣∣ , (8.4.2c)∣∣∣L/[1,N ];1
Z Y

∣∣∣ ≤ C
∣∣Z ≤N ;1γ

∣∣+ C
∣∣P [1,N ]
∗ γ

∣∣ , (8.4.2d)

∣∣∣L/NP (Y )π/#
L

∣∣∣ . ∣∣P≤N+1γ
∣∣ , (8.4.3a)∣∣∣L/N ;1

Z
(Y )π/#

L

∣∣∣ . ∣∣Z ≤N+1;1
∗ γ

∣∣+ ε1/2
∣∣Z ≤N ;1γ

∣∣+ ε1/2
∣∣P [1,N ]
∗ γ

∣∣ , (8.4.3b)

∣∣∣L/NP (Y )π/#

X̆

∣∣∣ . ∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣P≤N+1γ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣ , (8.4.4)

∣∣∣(X̆)π/#
L

∣∣∣ . ∣∣Z ≤1Ψ
∣∣+ |P∗µ| , (8.4.5a)∣∣∣L/NP (X̆)π/#

L

∣∣∣ . ∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣P≤N+1γ

∣∣+
∣∣P [1,N+1]
∗ γ

∣∣ , (8.4.5b)
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∣∣∣L/NP (L)π/
∣∣∣ , ∣∣∣L/NP (Y )π/

∣∣∣ . ∣∣P≤N+1γ
∣∣ , (8.4.6a)∣∣∣L/N ;1

Z
(L)π/
∣∣∣ , ∣∣∣L/N ;1

Z
(Y )π/
∣∣∣ . ∣∣Z ≤N+1;1

∗ γ
∣∣+ ε1/2

∣∣Z ≤N ;1γ
∣∣+ ε1/2

∣∣P [1,N ]
∗ γ

∣∣ . (8.4.6b)

Proof. See Sect. 8.2 for some comments on the analysis. To prove (8.4.3a), we first note that

by Lemma 2.19 and (2.15.4b), we have (Y )π/#
L = f(γ, g/−1, d/x1, d/x2)Pγ. We now apply L/NP to

the previous relation. We bound the derivatives of g/−1 and d/x with Lemmas 8.4 and 8.5.
Also using the bootstrap assumptions, we conclude the desired result. The proof of (8.4.3b)
is similar and we omit the details.

Since Lemma 2.19 implies that Y = f(γ, g/−1, d/x1, d/x2), similar reasoning yields (8.4.2c)-
(8.4.2d)

Inequality (8.4.2a) follows from the slightly more precise arguments already given in the
proof of Lemma 8.1.

The proof of (8.4.4) is similar and is based on the observation that by Lemma 2.19 and
(2.15.4c), we have

(Y )π/#

X̆
= f(γ, g/−1, d/x1, d/x2)Pγ+ f(γ, g/−1, d/x1, d/x2, X̆Ψ)γ+ f(γ, g/−1)d/µ.

The proofs of (8.4.5a)-(8.4.5b) are similar and are based on the observation that by
Lemma 2.19, (2.12.3a), and (2.15.2b), we have

(X̆)π/#
L = f(γ, g/−1, d/x1, d/x2)X̆Ψ + f(γ, g/−1, d/x1, d/x2)PΨ + g/−1d/µ.

The proofs of (8.4.6a)-(8.4.6b) are similar and are based on the fact that by Lemma 2.19,
(2.15.3c), and (2.15.4d), we have (L)π/, (Y )π/ = f(γ, g/−1, d/x1, d/x2)Pγ.

�

8.5. Commutator estimates. In this section, we establish some commutator estimates.

Lemma 8.7 (Pure Pu−tangent commutator estimates). Assume that 1 ≤ N ≤ 18. Let
~I be an order |~I| = N + 1 multi-index for the set P of Pu−tangent commutator vectorfields

(see Def. 5.1), and let ~I ′ be any permutation of ~I. Let f be a scalar function, and let
ξ be an `t,u−tangent one-form or a type

(
0
2

)
`t,u−tangent tensorfield. Under the data-size

and bootstrap assumptions of Sects. 7.4-7.6 and the smallness assumptions of Sect. 7.7, the
following commutator estimates hold on MT(Boot),U0 (see Sect. 7.2 regarding the vectorfield

operator notation):∣∣∣P ~If −P
~I′f
∣∣∣ . ε1/2

∣∣P [1,N ]
∗ f

∣∣+
∣∣P [1,bN/2c]
∗ f

∣∣ ∣∣P≤Nγ
∣∣ . (8.5.1a)

Moreover, if 1 ≤ N ≤ 17 and ~I is as above, then the following commutator estimates hold:

∣∣[∇/ 2,PN ]f
∣∣ . ε1/2

∣∣P [1,N ]
∗ f

∣∣+
∣∣P≤dN/2e
∗ f

∣∣ ∣∣P≤N+1γ
∣∣ , (8.5.2a)∣∣[∆/ ,PN ]f

∣∣ . ε1/2
∣∣P [1,N+1]
∗ f

∣∣+
∣∣P≤dN/2e
∗ f

∣∣ ∣∣P≤N+1γ
∣∣ , (8.5.2b)
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∣∣∣L/~IPξ − L/~I′Pξ∣∣∣ . ε1/2
∣∣∣L/≤NP ξ

∣∣∣+
∣∣∣L/≤bN/2cP ξ

∣∣∣ ∣∣P≤N+1γ
∣∣ , (8.5.3a)∣∣∣[∇/ ,L/NP ]ξ

∣∣∣ . ε1/2
∣∣∣L/≤N−1

P ξ
∣∣∣+
∣∣∣L/≤bN/2cP ξ

∣∣∣ ∣∣P≤N+1γ
∣∣ , (8.5.3b)∣∣∣[div/ ,L/NP ]ξ

∣∣∣ . ε1/2
∣∣∣L/≤NP ξ

∣∣∣+
∣∣∣L/≤bN/2cP ξ

∣∣∣ ∣∣P≤N+1γ
∣∣ . (8.5.3c)

Finally, if 1 ≤ N ≤ 17 and ~I is as above, then we have the following alternate version of
(8.5.2a): ∣∣[∇/ 2,PN ]f

∣∣ . ∣∣P≤dN/2e+1γ
∣∣ ∣∣P [1,N ]

∗ f
∣∣+
∣∣P≤dN/2e
∗ f

∣∣ ∣∣P≤N+1γ
∣∣ . (8.5.4)

Proof. See Sect. 8.2 for some comments on the analysis. We first prove (8.5.1a). Using
(5.0.4a) and Lemma 2.9, we see that it suffices to bound∑

N1+N2≤N−1

∣∣∣L/N1

P
(Y )π/#

L

∣∣∣ ∣∣YPN2f
∣∣ . (8.5.5)

The desired bound of (8.5.5) by . RHS (8.5.1a) now follows easily from (8.4.3a) and the
bootstrap assumptions.

The proof of (8.5.3a) is similar but relies on (5.0.4b) in place of (5.0.4a) and also (8.1.5)

with V :=
(Zιk2

)
π/#
Zιk1

(to handle the first Lie derivative operator on RHS (5.0.4b)).

The proofs of (8.5.2a), (8.5.2b), and (8.5.4) are similar and are based on the commutation
identities (5.0.3a)-(5.0.3b), the identity (2.9.3), and the estimate (8.4.6a).

The proofs of (8.5.3b)-(8.5.3c) are similar and are based on the commutation identities
(5.0.1)-(5.0.2) �

Lemma 8.8 (Mixed Pu−transversal-tangent commutator estimates). Assume that

1 ≤ N ≤ 18. Let ~I be an order |~I| = N + 1 multi-index for the set Z of commutator

vectorfields corresponding to exactly one X̆ factor, and let ~I ′ be any permutation of ~I.
Let f be a scalar function. Under the data-size and bootstrap assumptions of Sects. 7.4-
7.6 and the smallness assumptions of Sect. 7.7, the following commutator estimates hold on
MT(Boot),U0 (see Sect. 7.2 regarding the vectorfield operator notation):∣∣∣Z ~If −Z

~I′f
∣∣∣ . ∣∣P [1,N ]

∗ f
∣∣+ ε1/2

∣∣YZ ≤N−1;1f
∣∣ (8.5.6)

+
∣∣P [1,bN/2c]
∗ f

∣∣ ∣∣∣∣( P [1,N ]
∗ γ

Z ≤N ;1
∗ γ

)∣∣∣∣+
∣∣YZ ≤bN/2c−1;1f

∣∣ ∣∣P≤Nγ
∣∣ .

Moreover, if 1 ≤ N ≤ 17, then the following estimates hold:∣∣[∇/ 2,Z N ;1]f
∣∣ . ∣∣Z ≤N ;1

∗ f
∣∣ (8.5.7a)

+
∣∣P≤dN/2ef

∣∣ ∣∣∣∣( P [1,N+1]
∗ γ

Z ≤N+1;1
∗ γ

)∣∣∣∣+
∣∣Z ≤dN/2e
∗ f

∣∣ ∣∣P≤N+1γ
∣∣ ,∣∣[∆/ ,Z N ;1]f

∣∣ . ∣∣Z ≤N+1;1
∗ f

∣∣ (8.5.7b)

+
∣∣P≤dN/2ef

∣∣ ∣∣∣∣( P [1,N+1]
∗ γ

Z ≤N+1;1
∗ γ

)∣∣∣∣+
∣∣Z ≤dN/2e
∗ f

∣∣ ∣∣P≤N+1γ
∣∣ .
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Proof. See Sect. 8.2 for some comments on the analysis. The proof is similar to that of
Lemma 8.7, so we only sketch it by highlighting the few differences worth mentioning. To
illustrate the differences, we prove (8.5.6) in detail. To proceed, we argue as in the proof of

(8.5.5) and use that precisely one factor of Z
~I is equal to X̆, thereby deducing that

LHS (8.5.6) .
∑

N1+N2≤N−1

∣∣∣L/N1

P
(X̆)π/#

L

∣∣∣ ∣∣YPN2f
∣∣+

∑
N1+N2≤N−1

∣∣∣L/N1

P
(Y )π/#

X̆

∣∣∣ ∣∣YPN2f
∣∣ (8.5.8)

+
∑

N1+N2≤N−1

∣∣∣L/N1;1
Z

(Y )π/#
L

∣∣∣ ∣∣YPN2f
∣∣+

∑
N1+N2≤N−1

∣∣∣L/N1

P
(Y )π/#

L

∣∣∣ ∣∣YZ N2;1f
∣∣ .

The key point in (8.5.8) is that all `t,u−projected Lie derivatives that fall on (X̆)π/#
L or (Y )π/#

X̆
are with respect to vectorfields in P. The desired bound (8.5.6) now follows easily from
the estimates (8.4.3a)-(8.4.5b) and the bootstrap assumptions. Note that the first term on
RHS (8.4.5a) is not necessarily small and hence, in contrast to (8.5.1a), we do not gain a
smallness factor of ε1/2 in front of the first term on RHS (8.5.6).

The remaining estimates stated in Lemma 8.8 can be proved by making similar modifica-
tions to our proof of Lemma 8.7 and employing the estimates of Lemma 8.6.

�

Corollary 8.9. Assume that 1 ≤ N ≤ 18. Under the assumptions of Lemma 8.8, the
following pointwise estimates hold on MT(Boot),U0:∣∣PN−1∆/Ψ

∣∣ . ∣∣P≤N+1Ψ
∣∣+
∣∣P≤Nγ

∣∣ . (8.5.9)

Proof. See Sect. 8.2 for some comments on the analysis. Writing PN−1∆/Ψ = ∆/PN−1Ψ +
[PN−1,∆/ ]Ψ, we see that the corollary is a simple consequence of (8.1.2), (8.5.2b) with f = Ψ,
and the bootstrap assumptions. �

8.6. Transport inequalities and improvements of the auxiliary bootstrap assump-
tions. In the next proposition, we use the previous estimates to derive transport inequalities
for the eikonal function quantities and improvements of the auxiliary bootstrap assumptions.
The transport inequalities form the starting point for our derivation of L2 estimates for the
below-top-order derivatives of the eikonal function quantities (see Sect. 14.2). In the proving
proposition, we must in particular propagate the smallness of the ε̊−sized quantities even
though some terms in the evolution equations involve δ̊−sized quantities, which are allowed
to be large. To this end, we must find and exploit effective partial decoupling between var-
ious quantities, which is present because of the special structure of the evolution equations
relative to the geometric coordinates and because of the good properties of the commutator
vectorfield sets Z and P.

Proposition 8.10 (Transport inequalities and improvements of the auxiliary boot-
strap assumptions). Under the data-size and bootstrap assumptions of Sects. 7.4-7.6 and
the smallness assumptions of Sect. 7.7, the following estimates hold on MT(Boot),U0 (see

Sect. 7.2 regarding the vectorfield operator notation):

Transport inequalities for the eikonal function quantities.
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•Transport inequalities for µ. The following pointwise estimate holds:

|Lµ| .
∣∣Z ≤1Ψ

∣∣ . (8.6.1a)

Moreover, for 1 ≤ N ≤ 18, the following estimates hold:∣∣LPNµ
∣∣ , ∣∣PNLµ

∣∣ . ∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+ ε
∣∣P [1,N ]
∗ γ

∣∣ . (8.6.1b)

•Transport inequalities for Li(Small) and trg/χ. For N ≤ 18, the following estimates hold:∣∣∣∣( LPNLi(Small)
LPN−1trg/χ

)∣∣∣∣ , ∣∣∣∣( PNLLi(Small)
PN−1Ltrg/χ

)∣∣∣∣ . ∣∣P≤N+1Ψ
∣∣+ ε

∣∣P≤Nγ
∣∣ , (8.6.2a)∣∣∣∣( LZ N ;1Li(Small)

LZ N−1;1trg/χ

)∣∣∣∣ , ∣∣∣∣( Z N ;1LLi(Small)
Z N−1;1Ltrg/χ

)∣∣∣∣ . ∣∣Z ≤N+1;1
∗ Ψ

∣∣+

∣∣∣∣( εP [1,N ]
∗ γ

Z ≤N ;1
∗ γ

)∣∣∣∣ . (8.6.2b)

L∞ estimates for Ψ and the eikonal function quantities.

•L∞ estimates involving at most one transversal derivative of Ψ. The following
estimates hold: ∥∥∥X̆Ψ

∥∥∥
L∞(Σut )

≤
∥∥∥X̆Ψ

∥∥∥
L∞(Σu0 )

+ Cε, (8.6.3a)∥∥Z ≤10;1
∗ Ψ

∥∥
L∞(Σut )

≤ Cε. (8.6.3b)

•L∞ estimates for µ. The following estimates hold:

‖Lµ‖L∞(Σut ) =
1

2

∥∥∥GLLX̆Ψ
∥∥∥
L∞(Σu0 )

+O(ε), (8.6.4a)∥∥LP [1,9]µ
∥∥
L∞(Σut )

,
∥∥P≤9

∗ µ
∥∥
L∞(Σut )

≤ Cε, (8.6.4b)

‖µ− 1‖L∞(Σut ) ≤ 2̊δ−1
∗

∥∥∥GLLX̆Ψ
∥∥∥
L∞(Σu0 )

+ Cε. (8.6.5a)

•L∞ estimates for Li(Small) and χ. The following estimates hold:∥∥LP≤10Li(Small)
∥∥
L∞(Σut )

,
∥∥P≤10Li(Small)

∥∥
L∞(Σut )

≤ Cε, (8.6.6a)∥∥LZ ≤9;1Li(Small)
∥∥
L∞(Σut )

,
∥∥Z ≤9;1
∗ Li(Small)

∥∥
L∞(Σut )

≤ Cε, (8.6.6b)∥∥∥X̆Li(Small)∥∥∥
L∞(Σut )

≤
∥∥∥X̆Li(Small)∥∥∥

L∞(Σu0 )
+ Cε, (8.6.6c)

∥∥∥L/≤9
P χ
∥∥∥
L∞(Σut )

,
∥∥∥L/≤9

P χ
#
∥∥∥
L∞(Σut )

,
∥∥P≤9trg/χ

∥∥
L∞(Σut )

. ε, (8.6.7)∥∥∥L/≤8;1
Z χ

∥∥∥
L∞(Σut )

,
∥∥∥L/≤8;1

Z χ#
∥∥∥
L∞(Σut )

,
∥∥Z ≤8;1trg/χ

∥∥
L∞(Σut )

. ε. (8.6.8)

Remark 8.1 (The auxiliary bootstrap assumptions of Sect. 7.6 are now redun-
dant). Since Prop. 8.10 in particular provides an improvement of the auxiliary bootstrap
assumptions of Sect. 7.6, we do not bother to include those bootstrap assumptions in the
hypotheses of any of the lemmas or propositions proved in the remainder of the article.
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Proof of Prop. 8.10. See Sect. 8.2 for some comments on the analysis. We must derive the
estimates in a viable order. Throughout this proof, we use the estimates of Lemma 7.3 and
the assumption (7.7.1) without explicitly mentioning them each time. We refer to these as
“conditions on the data.” Similarly, when we say that we use the “bootstrap assumptions,”
we mean the assumptions on MT(Boot),U0 stated in Sects. 7.4-7.6.

Proof of the estimates (8.6.2a) for LPNLi(Small) and PNLLi(Small) and (8.6.6a): We

prove the estimate (8.6.2a) for LPNLi(Small) and omit the proof for PNLLi(Small); the proof
of the latter estimate is similar but simpler because it involves fewer commutation estimates.
To derive the desired bound, in place of (8.6.2a), we first show that∣∣LPNLi(Small)

∣∣ . ∣∣P≤N+1Ψ
∣∣+ ε1/2

∣∣P≤Nγ
∣∣ . (8.6.9)

The factors of ε1/2 in (8.6.9) arise from the auxiliary bootstrap assumptions of Sect. 7.6.
At the end of the proof, we will have shown that the auxiliary bootstrap assumptions have
been improved in that they hold with Cε in place of ε1/2. Using this improvement, we easily
conclude (8.6.2a) for LPNLi(Small) by repeating the proof of (8.6.9) with Cε in place of the

factor ε1/2. To prove (8.6.9), we commute equation (2.11.2) with PN and use Lemma 2.19
to derive the schematic equation

LPNLi(Small) = [L,PN ]Li(Small) + PN
{

f(γ, g/−1, d/x1, d/x2)PΨ
}
. (8.6.10)

To bound the second term on RHS (8.6.10) by RHS (8.6.9), we use Lemmas 8.4 and 8.5

and the bootstrap assumptions. To bound the remaining term
∣∣∣[L,PN ]Li(Small)

∣∣∣, we use the

commutator estimate (8.5.1a) with f = Li(Small) and the bootstrap assumptions. We have

thus proved the desired bound (8.6.9). Next, to derive the estimate
∥∥∥LP≤10Li(Small)

∥∥∥
L∞(Σut )

.

ε stated in (8.6.6a), we use (8.6.9) and the bootstrap assumptions. To obtain the estimates∥∥∥P≤10Li(Small)

∥∥∥
L∞(Σut )

. ε stated in (8.6.6a), we first use the fundamental theorem of calculus

to write

P≤10Li(Small)(t, u, ϑ) = P≤10Li(Small)(0, u, ϑ) +

∫ t

s=0

LP≤10Li(Small)(s, u, ϑ) ds. (8.6.11)

We then use the conditions on the data to bound
∣∣∣P≤10Li(Small)(0, u, ϑ)

∣∣∣ . ε and the inequal-

ity
∥∥∥LP≤10Li(Small)

∥∥∥
L∞(Σut )

. ε to bound the time integral on RHS (8.6.11) by . T(Boot)ε . ε,

which in total yields the desired result.

Proof of (8.6.1a): We first use equation (2.11.1) and Lemma 2.19 to deduce Lµ = f(γ)PΨ+

f(γ)X̆Ψ. The desired estimate (8.6.1a) now follows easily from the previous expression and
the bootstrap assumptions.

Proof of (8.6.3a) and (8.6.3b): We first note that in proving (8.6.3b), we may assume that

the operator Z ≤10;1
∗ contains the factor X̆ since otherwise the estimate is implied by the

bootstrap assumption (BAΨ). To proceed, we use equation (2.14.1a), Lemma 2.19, and the
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aforementioned fact Lµ = f(γ)PΨ + f(γ)X̆Ψ to rewrite the wave equation as

LX̆Ψ = f(γ)∆/Ψ + f(γ, g/−1, d/x1, d/x2, PΨ, X̆Ψ)PPΨ + f(γ, g/−1, d/x1, d/x2, PΨ, X̆Ψ)Pγ.
(8.6.12)

Commuting (8.6.12) with PN , (0 ≤ N ≤ 9), and using Lemmas 8.4 and 8.5 and the
bootstrap assumptions, we find that∣∣∣LPNX̆Ψ

∣∣∣ ≤ ∣∣∣LPNX̆Ψ−PNLX̆Ψ
∣∣∣+
∣∣∣PNLX̆Ψ

∣∣∣ (8.6.13)

.
∣∣∣LPNX̆Ψ−PNLX̆Ψ

∣∣∣+
∣∣[∆/ ,PN ]Ψ

∣∣
+
∣∣P≤N+2;1Ψ

∣∣+ ε1/2
∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣P≤N+1γ

∣∣+ ε1/2
∣∣P [1,N ]
∗ γ

∣∣ .
Using in addition the commutator estimates (8.5.6) and (8.5.2b) with f = Ψ, we bound
the two commutator terms on the second line of RHS (8.6.13) by . the terms on the last
line of RHS (8.6.13). The bootstrap assumptions imply that most terms on the last line of
(8.6.13) are . ε. The exceptional terms (that is, the ones not included in “most terms”) are
P≤10Li(Small) for i = 1, 2, but we have already shown in the previous paragraph that these

terms are bounded in the norm ‖·‖L∞(Σut ) by . ε. In total, we find that
∥∥∥LP≤9X̆Ψ

∥∥∥
L∞(Σut )

.

ε. Integrating along the integral curves of L as in (8.6.11) and using the conditions on the

data, we conclude (8.6.3a) and also the estimate
∥∥∥P [1,9]X̆Ψ

∥∥∥
L∞(Σut )

. ε. Moreover, we use

the commutator estimate (8.5.6) with f = Ψ and the bootstrap assumptions to commute

the factor of X̆ in Z ≤10;1
∗ so that it hits Ψ first, thereby concluding that

∥∥Z ≤10;1
∗ Ψ

∥∥
L∞(Σut )

.∥∥∥P [1,9]X̆Ψ
∥∥∥
L∞(Σut )

+ ε . ε. We have thus proved the desired bound (8.6.3b).

Proof of (8.6.4a) and (8.6.5a): To derive (8.6.4a), we first use equation (2.11.1) and

Lemma 2.19 to write Lµ = 1
2
GLLX̆Ψ + f(γ)PΨ. From the previous expression and the

bootstrap assumptions, we deduce that ‖Lµ‖L∞(Σut ) = 1
2

∥∥∥GLLX̆Ψ
∥∥∥
L∞(Σut )

+O(ε). Next, we

use Lemma 2.19 to deduce that GLLX̆Ψ = f(γ)X̆Ψ. Applying L to the previous expression

and using the bounds
∥∥∥LLi(Small)∥∥∥

L∞(Σut )
,
∥∥∥LX̆Ψ

∥∥∥
L∞(Σut )

. ε proven above and the boot-

strap assumptions, we find that
∥∥∥L(GLLX̆Ψ)

∥∥∥
L∞(Σut )

. ε. Integrating along the integral

curves of L as in (8.6.11) and using the previous inequality, we find that
∥∥∥GLLX̆Ψ

∥∥∥
L∞(Σut )

=∥∥∥GLLX̆Ψ
∥∥∥
L∞(Σu0 )

+ O(ε). Inserting this estimate into the first estimate of this paragraph,

we conclude (8.6.4a). The estimate (8.6.5a) then follows from integrating along the integral
curves of L as in (8.6.11) and using (8.6.4a), the conditions on the data, and the assumption

T(Boot) ≤ 2̊δ−1
∗ .

Proof of (8.6.1b) and (8.6.4b): We now prove (8.6.1b) for LPNµ. The proof for PNLµ
is similar but simpler because it involves fewer commutation estimates; we omit the details.
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To proceed, in place of (8.6.1b), we first prove that∣∣LPNµ
∣∣ . ∣∣Z ≤N+1;1

∗ Ψ
∣∣+
∣∣P≤Nγ

∣∣+ ε1/2
∣∣P [1,N ]
∗ γ

∣∣ . (8.6.14)

As we described above, at the end of the proof, we will have shown that the auxiliary
bootstrap assumptions have been improved in that they hold with Cε in place of ε1/2 and
this improvement implies that (8.6.14) holds with Cε in place of ε1/2 as desired. To prove

(8.6.14), we commute the equation Lµ = f(γ)PΨ + f(γ)X̆Ψ (see equation (2.11.1) and

Lemma 2.19) with PN to deduce the schematic identity

LPNµ = [L,PN ]µ+ PN
{

f(γ)X̆Ψ + f(γ)PΨ
}
. (8.6.15)

To bound the second term on RHS (8.6.15) by RHS (8.6.14), we use the already proven bound
(8.6.6a) and the bootstrap assumptions. To bound the term [L,PN ]µ on RHS (8.6.15) by
RHS (8.6.14), we use the commutator estimate (8.5.1a) with f = µ and the bootstrap as-
sumptions. To prove the estimate

∥∥LP [1,9]µ
∥∥
L∞(Σut )

. ε stated in (8.6.4b), we use (8.6.14),

the already proven bounds (8.6.6a) and (8.6.3b), and the bootstrap assumptions. The esti-
mate (8.6.4b) for

∥∥P≤9
∗ µ

∥∥
L∞(Σut )

then follows from integrating along the integral curves of L

as in (8.6.11) and using the estimate
∥∥LP [1,9]µ

∥∥
L∞(Σut )

. ε and the conditions on the data.

Proof of (8.6.2b) for LZ N ;1Li(Small) and Z N ;1LLi(Small) and (8.6.6b): We now prove

(8.6.2b) for LZ N ;1Li(Small). The proof of (8.6.2b) for Z N ;1LLi(Small) is similar but simpler
because it involves fewer commutation estimates; we omit the details. We may assume that
Z N ;1 contains a factor X̆ since otherwise the desired estimate is implied by (8.6.2a). The
proof is similar to the proof of (8.6.9), the new feature being that we need to exploit the

already proven estimates
∥∥∥P≤10Li(Small)

∥∥∥
L∞(Σut )

. ε and
∥∥Z ≤10;1
∗ Ψ

∥∥
L∞(Σut )

. ε. To pro-

ceed, we note that (8.6.10) holds with Z N ;1 in place of PN on both sides and that the
non-commutator term is easy to bound by using arguments similar to the ones we used

in proving (8.6.2a). It remains for us to bound the commutator term
∣∣∣[L,Z N ;1]Li(Small)

∣∣∣
by . RHS (8.6.2b). This estimate follows from the commutator estimate (8.5.6) with
f = Li(Small), the already proven estimate for P≤10Li(Small) mentioned above (to bound

the factor
∣∣∣P [1,bN/2c]
∗ f

∣∣∣ from the second line of RHS (8.5.6) by . ε ), and the boot-

strap assumptions. We have thus obtained the desired estimate (8.6.2b) for LZ N ;1Li(Small).

Next, from from the estimate (8.6.2b) for LZ N ;1Li(Small), the already proven estimates∥∥∥P≤10Li(Small)

∥∥∥
L∞(Σut )

. ε and
∥∥Z ≤10;1
∗ Ψ

∥∥
L∞(Σut )

. ε, and the bootstrap assumptions, we

find that
∥∥∥LZ ≤9;1Li(Small)

∥∥∥
L∞(Σut )

. ε. This completes the proof of (8.6.6b) for the first term∥∥∥LZ ≤9;1Li(Small)

∥∥∥
L∞(Σut )

on the LHS. Integrating along the integral curves of L as in (8.6.11)

and using the estimate (8.6.6b) for
∥∥∥LZ ≤9;1Li(Small)

∥∥∥
L∞(Σut )

as well as the conditions on the

data, we conclude the estimate (8.6.6b) for
∥∥∥Z ≤9;1
∗ Li(Small)

∥∥∥
L∞(Σut )

as well as (8.6.6c).
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Proof of (8.6.7) and (8.6.8): These two estimates follow from Lemma 8.5, the already

proven estimates
∥∥Z ≤10;1
∗ Ψ

∥∥
L∞(Σut )

,
∥∥∥P≤10Li(Small)

∥∥∥
L∞(Σut )

,
∥∥∥Z ≤9;1
∗ Li(Small)

∥∥∥
L∞(Σut )

. ε and

the bootstrap assumptions.
Proof of the estimate (8.6.2a) for PN−1Ltrg/χ: We first take the g/−trace of equation
(2.13.1a), apply L, and use the schematic identity L/Lg/−1 = (g/−1)−2χ = f(γ, g/−1, d/x1, d/x2)Pγ
to deduce that Ltrg/χ = f(γ, g/−1, d/x1, d/x2)PLγ+l.o.t., where l.o.t. := f(P≤1γ, g/−1, d/x1, d/x2)Pγ

+f(γ,L/≤1
P g/−1, d/x1, d/x2)Pγ +f(γ, g/−1, d/P≤1x)Pγ. Furthermore, applying P to the evolution

equation (2.11.2), we find that PLγ = f(γ, g/−1, d/x1, d/x2)PPΨ+ l.o.t. Thus, we have Ltrg/χ =
f(γ, g/−1, d/x1, d/x2)PPΨ+l.o.t.. We now apply PN−1 to this identity and use Lemmas 8.4 and

8.5 and the already proven estimates
∥∥Z ≤10;1
∗ Ψ

∥∥
L∞(Σut )

. ε and
∥∥∥Z ≤9;1
∗ Li(Small)

∥∥∥
L∞(Σut )

. ε,

thereby arriving at the estimate for
∣∣PN−1Ltrg/χ

∣∣ stated in (8.6.2a). To obtain the same

estimate for
∣∣LPN−1trg/χ

∣∣, we use the commutator estimate (8.5.1a) with f = trg/χ, (8.4.1a),

the already proven estimates
∥∥Z ≤10;1
∗ Ψ

∥∥
L∞(Σut )

. ε and
∥∥∥Z ≤9;1
∗ Li(Small)

∥∥∥
L∞(Σut )

. ε to deduce

that
∣∣LPN−1trg/χ

∣∣ . ∣∣PN−1Ltrg/χ
∣∣+ε ∣∣P≤Nγ

∣∣. The desired bound (8.6.2a) for
∣∣LPN−1trg/χ

∣∣
now follows from the previous estimate and the one already established for

∣∣PN−1Ltrg/χ
∣∣.

Proof sketch of the estimate (8.6.2b) for LZ N−1;1trg/χ and Z N−1;1Ltrg/χ: The proof is
much like the proof of the estimates for PN−1Ltrg/χ and LPN−1trg/χ given in the previous
paragraph. The only notable change is that we must use the commutator estimate (8.5.6)
with f = trg/χ (in place of the one (8.5.1a) used in the previous paragraph) in order to obtain
the estimate for LZ N−1;1trg/χ from the one for Z N−1;1Ltrg/χ. We remark that all factors
leading to the gain of the factor ε on RHS (8.6.2b) have already been bounded in ‖ · ‖L∞ by
. ε.

�

The following corollary is an immediate consequence of the fact that we have improved
the auxiliary bootstrap assumptions by showing that they hold with ε1/2 replaced by Cε.

Corollary 8.11 (ε1/2 can be replaced by Cε). All prior inequalities whose right-hand
sides feature an explicit factor of ε1/2 remain true with ε1/2 replaced by Cε.

9. L∞ Estimates Involving Higher Transversal Derivatives

Our energy estimates are difficult to derive when µ is small because some products in
the energy identities contain the dangerous factor 1/µ. In order to control the degeneracy,

we rely on the estimate ‖X̆X̆µ‖L∞(Σut ) . 1. In particular, we use this estimate in proving
inequality (10.2.3) (see the estimate (10.2.22)), which is essential for showing that the low-

order energies do not blow-up as µ → 0. We derive the bound ‖X̆X̆µ‖L∞(Σut ) . 1 by

commuting the evolution equation (2.11.1) for µ with up to two factors of X̆. Since RHS

(2.11.1) depends on X̆Ψ and Li(Small), in order to derive the desired bound, we must obtain

estimates for ‖X̆X̆X̆Ψ‖L∞(Σut ), ‖X̆X̆Li(Small)‖L∞(Σut ), etc. We provide the necessary estimates
in Sect. 9. The main result is Prop. 9.2.
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9.1. Auxiliary bootstrap assumptions. To facilitate the analysis, we introduce the fol-
lowing auxiliary bootstrap assumptions. In Prop. 9.2, we derive strict improvements of the
assumptions based on our assumptions (7.3.1) on the data.
Auxiliary bootstrap assumptions for small quantities. We assume that following in-
equalities hold on MT(Boot),U0 (see Sect. 7.2 regarding the vectorfield operator notation):∥∥Z ≤4;2

∗ Ψ
∥∥
L∞(Σut )

≤ ε1/2, (BA′1Ψ)

∥∥∥X̆Y µ∥∥∥
L∞(Σut )

,
∥∥∥X̆LLµ∥∥∥

L∞(Σut )
,
∥∥∥X̆Y Y µ∥∥∥

L∞(Σut )
,
∥∥∥X̆LY µ∥∥∥

L∞(Σut )
≤ ε1/2, (BA′1µ)

and

(BA′1µ) also holds for all permutations of the vectorfield operators on LHS (BA′1µ),
(BA′′1µ)∥∥Z ≤3;2

∗ Li(Small)
∥∥
L∞(Σut )

≤ ε1/2. (BA′1L(Small))

Auxiliary bootstrap assumptions for quantities that are allowed to be large. We
assume that following inequalities hold on MT(Boot),U0 :∥∥∥X̆MΨ

∥∥∥
L∞(Σut )

≤
∥∥∥X̆MΨ

∥∥∥
L∞(Σu0 )

+ ε1/2, (2 ≤M ≤ 3), (BA′2Ψ)

∥∥∥LX̆Mµ
∥∥∥
L∞(Σut )

≤ 1

2

∥∥∥X̆M
{
GLLX̆Ψ

}∥∥∥
L∞(Σu0 )

+ ε1/2, (1 ≤M ≤ 2),

(BA′2µ)∥∥∥X̆Mµ
∥∥∥
L∞(Σut )

≤
∥∥∥X̆Mµ

∥∥∥
L∞(Σu0 )

+ 2̊δ−1
∗

∥∥∥X̆M
{
GLLX̆Ψ

}∥∥∥
L∞(Σu0 )

+ ε1/2, (1 ≤M ≤ 2),

(BA′3µ)∥∥∥X̆X̆Li(Small)∥∥∥
L∞(Σut )

≤
∥∥∥X̆X̆Li(Small)∥∥∥

L∞(Σu0 )
+ ε1/2. (BA′2L(Small))

9.2. Commutator estimates involving two transversal derivatives. In this section,
we provide some basic commutation estimates that complement those of Sect. 8.5.

Lemma 9.1 (Mixed Pu−transversal-tangent commutator estimates involving two

X̆ derivatives). Let Z
~I be a Z −multi-indexed operator containing exactly two X̆ factors,

and assume that 3 ≤ |~I| := N + 1 ≤ 4. Let ~I ′ be any permutation of ~I. Under the data-size
and bootstrap assumptions of Sects. 7.4-7.5 and Sect. 9.1, and the smallness assumptions
of Sect. 7.7, the following commutator estimates hold for functions f on MT(Boot),U0 (see

Sect. 7.2 regarding the vectorfield operator notation):∣∣∣Z ~If −Z
~I′f
∣∣∣ . ∣∣YZ ≤N−1;1f

∣∣+ ε
∣∣YZ ≤N−1;2f

∣∣ . (9.2.1)

Moreover, we have ∣∣∣[∆/ , X̆X̆]f
∣∣∣ . ∣∣YZ ≤2;1f

∣∣ . (9.2.2)
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Proof. See Sect. 8.2 for some comments on the analysis. To prove (9.2.1), we split the

terms on RHS (5.0.4a) into the case where at most one X̆ derivative falls on f and the

case where both X̆ derivatives fall on f . In the former case, at most two derivatives fall
on the deformation tensors, while in the latter case, at most one derivative (which must be
Pu−tangent) falls on them. We thus find that

LHS (9.2.1) .
{∣∣∣L/≤2;2

Z
(Y )π/#

L

∣∣∣+
∣∣∣L/≤2;1

Z
(X̆)π/#

L

∣∣∣+
∣∣∣L/≤2;1

Z
(Y )π/#

X̆

∣∣∣} ∣∣YZ ≤N−1;1f
∣∣ (9.2.3)

+
{∣∣∣L/≤1

P
(Y )π/#

L

∣∣∣+
∣∣∣L/≤1

P
(Y )π/#

X̆

∣∣∣} ∣∣YZ ≤N−1;2f
∣∣ .

From the identities (2.15.2b), (2.15.4b), and (2.15.4c) and Lemma 2.19, we deduce that

the terms in braces on the first line of RHS (9.2.3) are .
∣∣∣L/≤2;2

Z f(P≤1γ, g/−1, d/x1, d/x2)
∣∣∣ +∣∣∣L/≤2;1

Z f(P≤1γ, g/−1, d/x1, d/x2,Z ≤1Ψ)
∣∣∣. We now show that both terms from the previous in-

equality are . 1, which yields the desired bound (this is a simple estimate, where the main
point that requires demonstration is that all terms in the braces are sufficiently regular such
that we have control of their relevant derivatives in L∞). To handle the first term from

the previous inequality, we first commute L/≤2;2
Z under d/ and use that Zxi = Zi = f(γ) for

Z ∈ Z to bound factors involving the derivatives of d/x by .
∣∣Z ≤2;1γ

∣∣. Moreover, us-

ing (2.9.3) and the fact that g/ = f(γ, d/x1, d/x2), we deduce that
∣∣∣L/≤2;2

Z g/−1
∣∣∣ . ∣∣Z ≤2;2γ

∣∣ +∣∣Z ≤2;1γ
∣∣. We thus find that

∣∣∣L/≤2;2
Z f(P≤1γ, g/−1, d/x1, d/x2)

∣∣∣ . ∣∣Z ≤3;2γ
∣∣ +

∣∣Z ≤2;1γ
∣∣. From

the L∞ estimates of Prop. 8.10 and the bootstrap assumptions of Sect. 9.1, we deduce
that the RHS of the previous inequality is . 1 as desired. Similar reasoning yields that∣∣∣L/≤2;1

Z f(P≤1γ, g/−1, d/x1, d/x2,Z ≤1Ψ)
∣∣∣ . 1, which completes the proof of the bound for the

terms in braces on the first line of RHS. To handle the terms in braces on the second line of
RHS (9.2.3), we use Lemma 8.6 and the L∞ estimates of Prop. 8.10 to bound them by . ε.
We have thus proved (9.2.1).

The proof of (9.2.2) is similar and relies on the commutation identity (5.0.3b) and the
estimates of Lemma 8.5; we omit the details.

�

9.3. The main estimates involving higher-order transversal derivatives. In the next
proposition, we provide the main estimates of Sect. 9. In particular, the proposition yields
strict improvements of the bootstrap assumptions of Sect. 9.1.

Proposition 9.2 (L∞ estimates involving higher-order transversal derivatives). Un-
der the data-size and bootstrap assumptions of Sects. 7.4-7.5 and Sect. 9.1, and the smallness
assumptions of Sect. 7.7, the following estimates hold on MT(Boot),U0 (see Sect. 7.2 regarding

the vectorfield operator notation):
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L∞ estimates involving two or three transversal derivatives of Ψ.∥∥LZ ≤4;2
∗ Ψ

∥∥
L∞(Σut )

≤ Cε, (9.3.1a)∥∥Z ≤4;2
∗ Ψ

∥∥
L∞(Σut )

≤ Cε, (9.3.1b)∥∥∥X̆X̆Ψ
∥∥∥
L∞(Σut )

≤
∥∥∥X̆X̆Ψ

∥∥∥
L∞(Σu0 )

+ Cε, (9.3.1c)∥∥∥LX̆X̆X̆Ψ
∥∥∥
L∞(Σut )

≤ Cε, (9.3.1d)∥∥∥X̆X̆X̆Ψ
∥∥∥
L∞(Σut )

≤
∥∥∥X̆X̆X̆Ψ

∥∥∥
L∞(Σu0 )

+ Cε. (9.3.1e)

L∞ estimates involving one or two transversal derivatives of µ.∥∥∥LX̆µ∥∥∥
L∞(Σut )

≤ 1

2

∥∥∥X̆ (GLLX̆Ψ
)∥∥∥

L∞(Σu0 )
+ Cε, (9.3.2a)∥∥∥X̆µ∥∥∥

L∞(Σut )
≤
∥∥∥X̆µ∥∥∥

L∞(Σu0 )
+ δ̊−1

∗

∥∥∥X̆ (GLLX̆Ψ
)∥∥∥

L∞(Σu0 )
+ Cε, (9.3.2b)

∥∥∥LX̆Y µ∥∥∥
L∞(Σut )

,
∥∥∥LX̆LLµ∥∥∥

L∞(Σut )
,
∥∥∥LX̆Y Y µ∥∥∥

L∞(Σut )
,
∥∥∥LX̆LY µ∥∥∥

L∞(Σut )
≤ Cε, (9.3.2c)∥∥∥X̆Y µ∥∥∥

L∞(Σut )
,
∥∥∥X̆LLµ∥∥∥

L∞(Σut )
,
∥∥∥X̆Y Y µ∥∥∥

L∞(Σut )
,
∥∥∥X̆LY µ∥∥∥

L∞(Σut )
≤ Cε, (9.3.2d)

(9.3.2c)− (9.3.2d) also hold for all permutations of the vectorfield operators on the LHS ,
(9.3.2e)∥∥∥LX̆X̆µ∥∥∥

L∞(Σut )
≤ 1

2

∥∥∥X̆X̆ (GLLX̆Ψ
)∥∥∥

L∞(Σu0 )
+ Cε, (9.3.2f)∥∥∥X̆X̆µ∥∥∥

L∞(Σut )
≤
∥∥∥X̆X̆µ∥∥∥

L∞(Σu0 )
+ δ̊−1

∗

∥∥∥X̆X̆ (GLLX̆Ψ
)∥∥∥

L∞(Σu0 )
+ Cε. (9.3.2g)

L∞ estimates involving one or two transversal derivatives of Li(Small).∥∥Z ≤3;2
∗ Li(Small)

∥∥
L∞(Σut )

≤ Cε, (9.3.3a)∥∥∥X̆X̆Li(Small)∥∥∥
L∞(Σut )

≤
∥∥∥X̆X̆Li(Small)∥∥∥

L∞(Σu0 )
+ Cε. (9.3.3b)

Sharp pointwise estimates involving the critical factor GLL. Moreover, if 0 ≤M ≤
3 and 0 ≤ s ≤ t < T(Boot), then we have the following estimates:∣∣∣X̆MGLL(t, u, ϑ)− X̆MGLL(s, u, ϑ)

∣∣∣ ≤ Cε(t− s), (9.3.4)∣∣∣X̆M
{
GLLX̆Ψ

}
(t, u, ϑ)− X̆M

{
GLLX̆Ψ

}
(s, u, ϑ)

∣∣∣ ≤ Cε(t− s). (9.3.5)

Furthermore, with L(Flat) = ∂t + ∂1, we have

Lµ(t, u, ϑ) =
1

2
GL(Flat)L(Flat)

(Ψ = 0)X̆Ψ(t, u, ϑ) +O(ε), (9.3.6)
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where GL(Flat)L(Flat)
(Ψ = 0) is a non-zero constant.

Remark 9.1 (The auxiliary bootstrap assumptions of Sect. 9.1 are now redun-
dant). Since Prop. 9.2 in particular provides an improvement of the auxiliary bootstrap
assumptions of Sect. 9.1, we do not bother to include those bootstrap assumptions in the
hypotheses of any of the lemmas or propositions proved in the remainder of the article.

Proof of Prop. 9.2. See Sect. 8.2 for some comments on the analysis. We must derive the
estimates in a viable order. Throughout this proof, we use the estimates of Lemma 7.3 and
the assumption (7.7.1) without explicitly mentioning them each time. We refer to these as
“conditions on the data.” Similarly, when we say that we use “the bootstrap assumptions,”
we mean the assumptions stated in Sect. 9.1.

Proof of (9.3.1a)-(9.3.1c): We may assume that the operator Z ≤4;2
∗ contains two factors of

X̆, since otherwise the desired estimates are implied by (8.6.3b). To proceed, we commute

the wave equation (8.6.12) with X̆PM , (0 ≤M ≤ 2), and use Lemmas 8.4 and 8.5, the L∞

estimates of Prop. 8.10, and the bootstrap assumptions to deduce that∣∣∣LX̆PMX̆Ψ
∣∣∣ . ∣∣Z ≤M+3;1

∗ Ψ
∣∣+
∣∣Z ≤M+2;1
∗ γ

∣∣+
∣∣∣[∆/ , X̆PM ]Ψ

∣∣∣+
∣∣∣[L, X̆PM ]X̆Ψ

∣∣∣ . (9.3.7)

The L∞ estimates of Prop. 8.10 imply that the first two terms on RHS (9.3.7) are . ε.
Moreover, using in addition the commutator estimate (8.5.7b) with f = Ψ, we see that∣∣∣[∆/ , X̆PM ]Ψ

∣∣∣ is . the first term on RHS (9.3.7) and hence . ε as well. To bound

[L, X̆PM ]X̆Ψ, we use the commutator estimate (8.5.6) with f = X̆Ψ, Cor. 8.11, and the

L∞ estimates of Prop. 8.10 to deduce
∣∣∣[L, X̆PM ]X̆Ψ

∣∣∣ . ∣∣Z ≤M+2;1
∗ Ψ

∣∣+ ε
∣∣Z ≤M+2;2
∗ Ψ

∣∣. The

estimates of Prop. 8.10 and the bootstrap assumptions imply that
∣∣Z ≤M+2;1
∗ Ψ

∣∣ . ε, while

the bootstrap assumptions imply that ε
∣∣Z ≤M+2;2
∗ Ψ

∣∣ . ε. Combining these estimates, we

deduce that
∣∣∣LX̆PMX̆Ψ

∣∣∣ . ε. Integrating along the integral curves of L as in (8.6.11) and

using the previous estimate, we find that
∥∥∥X̆PMX̆Ψ

∥∥∥
L∞(Σut )

≤
∥∥∥X̆PMX̆Ψ

∥∥∥
L∞(Σu0 )

+ Cε.

Using the previous estimate and the conditions on the data, and using (9.2.1) with f = Ψ,
the L∞ estimates of Prop. 8.10, and the bootstrap assumptions to reorder the factors in the
operator X̆PMX̆ as desired (up to error terms bounded in ‖ · ‖L∞(Σut ) by . ε), we con-
clude the desired estimates (9.3.1b) and (9.3.1c). Finally, we similarly reorder the factors in

LX̆PMX̆Ψ and use the estimates
∣∣∣LX̆PMX̆Ψ

∣∣∣ . ε and (9.3.1b) to obtain (9.3.1a).

Proof of (9.3.4)-(9.3.5) in the cases 0 ≤M ≤ 1: It suffices to prove∣∣∣LX̆MGLL

∣∣∣ , ∣∣∣LX̆M
{
GLLX̆Ψ

}∣∣∣ . ε, (9.3.8)

for once we have shown (9.3.8), we can obtain the desired estimates by integrating along the
integral curves of L from time s to t (in analogy with (8.6.11)) and using the estimates (9.3.8).

To proceed, we first use Lemma 2.19 to deduce that GLL = f(γ) and GLLX̆Ψ = f(γ)X̆Ψ.
Hence, to obtain (9.3.8) when M = 0, we differentiate these two identities with L and use
the L∞ estimates of Prop. 8.10 and the bootstrap assumptions. The proof is similar in the
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case M = 1, but we must also use the estimate
∥∥∥LX̆X̆Ψ

∥∥∥
L∞(Σut )

. ε, which is a consequence

of the previously established estimate (9.3.1b).

Proof of (9.3.6): We first use (2.11.1), the fact that GLL, GLX = f(γ) (see Lemma 2.19),

and the L∞ estimates of Prop. 8.10 to deduce that Lµ(t, u, ϑ) = 1
2
[GLLX̆Ψ](t, u, ϑ) +O(ε).

Since L0 = L0
(Flat) = 1, Li = Li(Flat) + Li(Small), and Gαβ = Gαβ(Ψ = 0) +O(Ψ), we can use

the L∞ estimates of Prop. 8.10 to deduce that GLL(t, u, ϑ) = GL(Flat)L(Flat)
(Ψ = 0) + O(ε).

Combining this estimate with the previous one and using (8.6.3a), we conclude (9.3.6).

Proof of (9.3.2a)-(9.3.2e): Let 1 ≤ K ≤ 3 be an integer. We commute equation (2.11.1)
with Z K;1 and use the aforementioned relations GLL, GLX = f(γ), the L∞ estimates of
Prop. 8.10, and the bootstrap assumptions to deduce∣∣LZ K;1µ

∣∣ ≤ 1

2

∣∣∣Z K;1
{
GLLX̆Ψ

}∣∣∣+
∣∣Z ≤K+1;1
∗ Ψ

∣∣+
∣∣[L,Z K;1]µ

∣∣ . (9.3.9)

We now show that the last two terms on RHS (9.3.9) are. ε. We already proved
∣∣Z ≤K+1;1
∗ Ψ

∣∣ .
ε in Prop. 8.10. To bound [L,Z K;1]µ, we use the commutator estimate (8.5.6) with f = µ,

the L∞ estimates of Prop. 8.10, and Cor. 8.11 to deduce that
∣∣[L,Z K;1]µ

∣∣ . ∣∣∣P [1,K]
∗ µ

∣∣∣ +

ε
∣∣YZ ≤K−1;1µ

∣∣. The L∞ estimates of Prop. 8.10 imply that
∣∣∣P [1,K]
∗ µ

∣∣∣ . ε, while the boot-

strap assumptions imply that ε
∣∣YZ ≤K−1;1µ

∣∣ . ε as well. We have thus shown that∥∥LZ K;1µ
∥∥
L∞(Σut )

≤ 1

2

∥∥∥Z K;1
{
GLLX̆Ψ

}∥∥∥
L∞(Σut )

+ Cε. (9.3.10)

We split the remainder of the proof into two cases, starting with the case Z K;1 = X̆. Using
the bound (9.3.5) with s = 0 and M = 1 (established in the previous paragraph), we can
replace the norm ‖·‖L∞(Σut ) on RHS (9.3.10) with the norm ‖·‖L∞(Σu0 ) plus an error term that is
bounded in the norm ‖·‖L∞(Σut ) by ≤ Cε, which yields (9.3.2a). Integrating along the integral

curves of L as in (8.6.11), using the resulting estimate for
∥∥LZ K;1µ

∥∥
L∞(Σut )

, and using the

assumption T(Boot) ≤ 2̊δ−1
∗ , we conclude (9.3.2b). In the remaining case, Z K;1 is not the

operator X̆. That is, K > 1 and Z K;1 must contain a Pu−tangent factor, which is equivalent
to Z K;1 = Z K;1

∗ . Recalling that GLLX̆Ψ = f(γ)X̆Ψ and using the estimates of Prop. 8.10,

the bootstrap assumptions, and (9.3.1b), we find that
∥∥∥Z K;1
∗

{
GLLX̆Ψ

}∥∥∥
L∞(Σut )

. ε. Thus,

in this case, we have shown that RHS (9.3.10) . ε as desired. Integrating along the integral
curves of L as in (8.6.11) and using the estimate

∥∥LZ K;1
∗ µ

∥∥
L∞(Σut )

. ε just obtained, we

conclude that
∥∥Z K;1
∗ µ

∥∥
L∞(Σut )

≤
∥∥Z K;1
∗ µ

∥∥
L∞(Σu0 )

+ Cε. All bounds in (9.3.2c)-(9.3.2e) now

follow from the previous estimate and the conditions on the data except for the estimate
(9.3.2e) concerning the permutations of the vectorfields in (9.3.2c). To obtain the remaining
estimate (9.3.2e), we use the commutation estimate (8.5.6) with f = µ, the L∞ estimates of
Prop. 8.10, the estimate (9.3.2d), and the bootstrap assumptions.

Proof of (9.3.3a) and (9.3.3b): We may assume that the operator Z ≤3;2
∗ in (9.3.3a) con-

tains two factors of X̆ since otherwise the desired estimate is implied by (8.6.6b). To

proceed, we express (2.12.8) in the schematic form X̆Li(Small) = f(γ, g/−1, d/x1, d/x2)X̆Ψ +
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f(γ, g/−1, d/x1, d/x2)PΨ+f(g/−1, d/x1, d/x2)d/µ. We now apply PX̆ to this identity, where P ∈P.
Using Lemmas 8.4 and 8.5, the L∞ estimates of Prop. 8.10, the already proven estimates
(9.3.1b), (9.3.2d), and (9.3.2e), and the bootstrap assumptions, we deduce that∣∣∣PX̆X̆Li(Small)∣∣∣ . ∣∣Z ≤3;2

∗ Ψ
∣∣+
∣∣Z ≤3;1
∗ γ

∣∣+
∣∣YZ ≤2;1

∗ µ
∣∣+
∣∣P [1,2]
∗ µ

∣∣ . ε. (9.3.11)

Also using the commutator estimate (9.2.1) with f = Li(Small) to reorder the factors of the

operator PX̆X̆ as desired up to error terms bounded in the norm ‖ · ‖L∞(Σut ) by . ε, we

conclude (9.3.3a). Moreover, a special case of (9.3.3a) is the bound
∣∣∣LX̆X̆Li(Small)∣∣∣ . ε.

Integrating along the integral curves of L as in (8.6.11) and using the previous estimate, we
conclude (9.3.3b).

Proof of (9.3.1d) and (9.3.1e): We commute equation (8.6.12) with X̆X̆ and argue as in
the proof of (9.3.7) to deduce that∣∣∣LX̆X̆X̆Ψ

∣∣∣ . ∣∣Z ≤4;2
∗ Ψ

∣∣+
∣∣Z ≤3;2
∗ γ

∣∣+
∣∣∣[∆/ , X̆X̆]Ψ

∣∣∣+
∣∣∣LX̆X̆X̆Ψ− X̆X̆LX̆Ψ

∣∣∣ . (9.3.12)

We clarify that the proof of (9.3.12) requires the bounds |L/X̆L/X̆g/−1| , |L/X̆L/X̆d/x| . 1, which
we obtained in the proof of Lemma 9.1. Next, we note that the already proven estimates
(9.3.1b) and (9.3.3a) imply that

∣∣Z ≤4;2
∗ Ψ

∣∣ , ∣∣Z ≤3;2
∗ γ

∣∣ . ε. Next, we use (9.2.2) with f = Ψ

to bound the commutator term
∣∣∣[∆/ , X̆X̆]Ψ

∣∣∣ by . the first term on RHS (9.3.12) (and hence

it is . ε too). Next, we use (9.2.1) with f = X̆Ψ to deduce that
∣∣∣LX̆X̆X̆Ψ− X̆X̆LX̆Ψ

∣∣∣ .∣∣Z ≤4;2
∗ Ψ

∣∣ + ε
∣∣Z ≤4;3
∗ Ψ

∣∣. As we have mentioned, we already have shown that
∣∣Z ≤4;2
∗ Ψ

∣∣ .
ε. Using the bootstrap assumptions, we also deduce ε

∣∣Z ≤4;3
∗ Ψ

∣∣ . ε. Combining these

estimates, we deduce that
∣∣∣LX̆X̆X̆Ψ

∣∣∣ . ε, which implies (9.3.1d). Integrating along the

integral curves of L as in (8.6.11) and using the previous estimate, we conclude the desired
estimate (9.3.1e).

Proof of (9.3.4)-(9.3.5) in the case M = 2: The proof is very similar to the proof given
above in the cases M = 0, 1, so we only highlight the main new ingredients needed in the

case M = 2: we must use the estimates
∣∣∣LX̆X̆X̆Ψ

∣∣∣ . ε and
∣∣∣LX̆X̆Li(Small)∣∣∣ . ε established

in (9.3.1d) and (9.3.3a) in order to deduce (9.3.8) in the case M = 2.

(9.3.2f)-(9.3.2g): We commute equation (2.11.1) with X̆X̆ and argue as in the proof of
(9.3.9) to obtain∣∣∣LX̆X̆µ∣∣∣ ≤ 1

2

∣∣∣X̆X̆ {GLLX̆Ψ
}∣∣∣+

∣∣Z ≤3;2
∗ Ψ

∣∣+
∣∣∣LX̆X̆µ− X̆X̆Lµ∣∣∣ . (9.3.13)

Using the commutator estimate (9.2.1) with f = µ, the L∞ the estimates of Prop. 8.10,

and the already proven bound (9.3.2d), we deduce that
∣∣∣LX̆X̆µ− X̆X̆Lµ∣∣∣ . ∣∣YZ ≤1µ

∣∣ . ε.

Next, we use (9.3.1b) to deduce that
∣∣Z ≤3;2
∗ Ψ

∣∣ . ε. Thus, we have shown that the last two
terms on RHS (9.3.13) are . ε. The remainder of the proof of (9.3.2f)-(9.3.2g) now proceeds
as in the proof of (9.3.2a)-(9.3.2b), thanks to the availability of the already proven estimates
(9.3.4)-(9.3.5) in the case M = 2.
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�

10. Sharp Estimates for µ

In this section, we derive sharp pointwise estimates for µ and its derivatives that are far
more detailed than those of Sects. 8 and 9. We use these estimates in Sect. 14 when we derive
a priori energy estimates. To close the energy estimates, we must have precise knowledge of
how µ vanishes, which is the main information derived in Sect. 10.

Many results derived in this section are based on a posteriori estimates in which the
behavior of a quantity at times 0 ≤ s ≤ t is tied to the behavior of other quantities at the
“late time” t, where t < T(Boot). For this reason, some of our analysis refers to quantities
q = q(s, u, ϑ; t) that are functions of the geometric coordinates (s, u, ϑ) and the “late time
parameter” t. When we state and derive estimates for such quantities, s is the “moving”
time variable verifying 0 ≤ s ≤ t.

10.1. Auxiliary quantities for analyzing µ and first estimates. We start by defining
some quantities that play a role in our analysis of µ.

Definition 10.1 (Auxiliary quantities used to analyze µ). We define the following
quantities, where we assume that 0 ≤ s ≤ t for those quantities that depend on both s and
t :

M(s, u, ϑ; t) :=

∫ s′=t

s′=s

{Lµ(t, u, ϑ)− Lµ(s′, u, ϑ)} ds′, (10.1.1a)

µ̊(u, ϑ) := µ(s = 0, u, ϑ), (10.1.1b)

M̃(s, u, ϑ; t) :=
M(s, u, ϑ; t)

µ̊(u, ϑ)−M(0, u, ϑ; t)
, (10.1.1c)

µ(Approx)(s, u, ϑ; t) := 1 +
Lµ(t, u, ϑ)

µ̊(u, ϑ)−M(0, u, ϑ; t)
s+ M̃(s, u, ϑ; t). (10.1.1d)

The following quantity captures the worst-case smallness of µ along Σu
t . We use it to

capture the degeneracy of our high-order energy estimates.

Definition 10.2 (Definition of µ?).

µ?(t, u) := min{1,min
Σut
µ}. (10.1.2)

Remark 10.1. It is redundant to take the min with 1 in (10.1.2) because µ ≡ 1 along P0;
we have done this only to emphasize that µ?(t, u) ≤ 1.

We now provide some basic estimates for the auxiliary quantities.

Lemma 10.1 (First estimates for the auxiliary quantities). Under the data-size and
bootstrap assumptions of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the fol-
lowing estimates hold for (t, u, ϑ) ∈ [0, T(Boot))× [0, U0]× T and 0 ≤ s ≤ t:

µ̊(u, ϑ) = 1 +O(ε), (10.1.3)

µ̊(u, ϑ) = 1 +M(0, u, ϑ; t) +O(ε). (10.1.4)
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In addition, the following pointwise estimates hold:

|Lµ(t, u, ϑ)− Lµ(s, u, ϑ)| . ε(t− s), (10.1.5)

|M(s, u, ϑ; t)|, |M̃(s, u, ϑ; t)| . ε(t− s)2, (10.1.6)

µ(s, u, ϑ) = (1 +O(ε))µ(Approx)(s, u, ϑ; t). (10.1.7)

Proof. (10.1.3) follows from (7.3.9a) and (7.7.1). To prove (10.1.5), we note that (8.6.4b)
implies that |LLµ| . ε. Integrating this estimate along the integral curves of L from time
s to time t, we conclude (10.1.5). The estimate (10.1.4) and the estimate (10.1.6) for M

then follow from definition (10.1.1a) and the estimate (10.1.5). (10.1.6) for M̃ follows from
definition (10.1.1c), the estimate (10.1.6) for M , and (10.1.4). To prove (10.1.7), we first
note the following identity, which is a straightforward consequence of Def. 10.1:

µ(s, u, ϑ) = {µ̊(u, ϑ)−M(0, u, ϑ; t)}µ(Approx)(s, u, ϑ; t). (10.1.8)

The desired estimate (10.1.7) now follows from (10.1.8) and (10.1.4).
�

To derive sharp estimates for µ, we must distinguish between regions where µ is rapidly
shrinking and regions where it is not.

Definition 10.3 (Regions of distinct µ behavior). For each t ∈ [0, T(Boot)), s ∈ [0, t],
and u ∈ [0, U0], we partition

[0, u]× T = (+)Vut ∪ (−)Vut , (10.1.9a)

Σu
s = (+)Σu

s;t ∪ (−)Σu
s;t, (10.1.9b)

where

(+)Vut :=

{
(u′, ϑ) ∈ [0, u]× T | Lµ(t, u′, ϑ)

µ̊(u′, ϑ)−M(0, u′, ϑ; t)
≥ 0

}
, (10.1.10a)

(−)Vut :=

{
(u′, ϑ) ∈ [0, u]× T | Lµ(t, u′, ϑ)

µ̊(u′, ϑ)−M(0, u′, ϑ; t)
< 0

}
, (10.1.10b)

(+)Σu
s;t :=

{
(s, u′, ϑ) ∈ Σu

s | (u′, ϑ) ∈ (+)Vut
}
, (10.1.10c)

(−)Σu
s;t :=

{
(s, u′, ϑ) ∈ Σu

s | (u′, ϑ) ∈ (−)Vut
}
. (10.1.10d)

Remark 10.2 (Positive denominators). Our analysis shows that the denominator µ̊(u′, ϑ)−
M(0, u′, ϑ; t) in (10.1.10a)-(10.1.10b) remains strictly positive all the way up to the shock
in the solution regime under consideration. We include the denominator in the definitions
(10.1.10a)-(10.1.10b) because it helps to clarify the connection between the sets (+)Vut , (−)Vut
and the parameter κ defined in (10.2.4).

10.2. Sharp pointwise estimates for µ and its derivatives. In the next proposition,
we derive sharp pointwise estimates for µ and its derivatives.

Proposition 10.2 (Sharp pointwise estimates for µ, Lµ, and X̆µ). Under the data-
size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7,
the following estimates hold for (t, u, ϑ) ∈ [0, T(Boot))× [0, U0]× T and 0 ≤ s ≤ t.
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Upper bounds for
[Lµ]+
µ

. ∥∥∥∥ [Lµ]+
µ

∥∥∥∥
L∞(Σus )

≤ C. (10.2.1)

Small µ implies Lµ is negative.

µ(s, u, ϑ) ≤ 1

4
=⇒ Lµ(s, u, ϑ) ≤ −1

4
δ̊∗. (10.2.2)

Upper bound for [X̆µ]+
µ

. ∥∥∥∥∥ [X̆µ]+
µ

∥∥∥∥∥
L∞(Σus )

≤ C√
T(Boot) − s

. (10.2.3)

Sharp spatially uniform estimates. Consider a time interval s ∈ [0, t] and define the
(t, u−dependent) constant κ by

κ := − inf
(u′,ϑ)∈[0,u]×T

Lµ(t, u′, ϑ)

µ̊(u′, ϑ)−M(0, u′, ϑ; t)
, (10.2.4)

and note that κ ≥ 0 since Lµ vanishes along the flat null hyperplane P0. Then

µ?(s, u) = {1 +O(ε)} {1− κs} , (10.2.5a)

‖[Lµ]−‖L∞(Σus ) =

{{
1 +O(ε1/2)

}
κ, if κ ≥

√
ε,

O(ε1/2), if κ ≤
√
ε.

(10.2.5b)

We have

κ ≤ {1 +O(ε)} δ̊∗. (10.2.6a)

Moreover, when u = 1, we have

κ = {1 +O(ε)} δ̊∗. (10.2.6b)

Sharp estimates when (u′, ϑ) ∈ (+)Vut . We recall that the set (+)Vut is defined in (10.1.10a).
If 0 ≤ s1 ≤ s2 ≤ t, then the following estimate holds:

sup
(u′,ϑ)∈(+)Vut

µ(s2, u
′, ϑ)

µ(s1, u′, ϑ)
≤ C. (10.2.7)

In addition, if s ∈ [0, t] and (+)Σu
s;t is as defined in (10.1.10c), then we have

inf
(+)Σus;t

µ ≥ 1− Cε. (10.2.8)

In addition, if s ∈ [0, t] and (+)Σu
s;t is as defined in (10.1.10c), then we have∥∥∥∥ [Lµ]−
µ

∥∥∥∥
L∞((+)Σus;t)

≤ Cε. (10.2.9)
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Sharp estimates when (u′, ϑ) ∈ (−)Vut . Assume that the set (−)Vut defined in (10.1.10b) is

non-empty, and consider a time interval s ∈ [0, t]. Let κ > 0 be as in (10.2.4). Then the
following estimate holds:

sup
0≤s1≤s2≤t

(u′,ϑ)∈(−)Vut

µ(s2, u
′, ϑ)

µ(s1, u′, ϑ)
≤ 1 + Cε. (10.2.10)

Furthermore, if s ∈ [0, t] and (−)Σu
s;t is as defined in (10.1.10d), then the following estimate

holds:

‖[Lµ]+‖L∞((−)Σus;t)
≤ Cε. (10.2.11)

Finally, there exists a constant C > 0 such that if 0 ≤ s ≤ t, then

‖[Lµ]−‖L∞((−)Σus;t)
≤

{{
1 + Cε1/2

}
κ, if κ ≥

√
ε,

Cε1/2, if κ ≤
√
ε.

(10.2.12)

Approximate time-monotonicity of µ−1
? (s, u). There exists a constant C > 0 such that

if 0 ≤ s1 ≤ s2 ≤ t, then

µ−1
? (s1, u) ≤ (1 + Cε)µ−1

? (s2, u). (10.2.13)

Proof. See Sect. 8.2 for some comments on the analysis.

Proof of (10.2.1): Clearly it suffices for us to prove that for (s, u, ϑ) ∈ [0, t]× [0, U0]×T, we
have [Lµ(s, u, ϑ)]+/µ(s, u, ϑ) ≤ C. We may assume that [Lµ(s, u, ϑ)]+ > 0 since otherwise

the desired estimate is trivial. Then by (10.1.5), for 0 ≤ s′ ≤ s ≤ t < T(Boot) ≤ 2̊δ−1
∗ , we have

that Lµ(s′, u, ϑ) ≥ Lµ(s, u, ϑ) − Cε(s − s′) ≥ −Cε. Integrating this estimate with respect
to s′ starting from s′ = 0 and using (10.1.3), we find that µ(s, u, ϑ) ≥ 1−Cεs ≥ 1−Cε and
thus 1/µ(s, u, ϑ) ≤ 1 + Cε. Also using the bound |Lµ(s, u, ϑ)| ≤ C (that is, (8.6.4a)), we
conclude the desired estimate.

Proof of (10.2.2): By (10.1.5), for 0 ≤ s ≤ t < T(Boot) ≤ 2̊δ−1
∗ , we have that Lµ(s, u, ϑ) =

Lµ(0, u, ϑ) + O(ε). Integrating this estimate with respect to s starting from s = 0 and
using (10.1.3), we find that µ(s, u, ϑ) = 1 + O(ε) + sLµ(0, u, ϑ). It follows that whenever

µ(s, u, ϑ) < 1/4, we have Lµ(0, u, ϑ) < −1
2
δ̊∗(3/4 + O(ε)) = −3

8
δ̊∗ + O(ε). Again using

(10.1.5) to deduce that Lµ(s, u, ϑ) = Lµ(0, u, ϑ) + O(ε), we arrive at the desired estimate
(10.2.2).

Proof of (10.2.6a) and (10.2.6b): We prove only (10.2.6b) since (10.2.6a) follows from

nearly identical arguments. Above we showed that for 0 ≤ t < T(Boot) ≤ 2̊δ−1
∗ , we have

Lµ(t, u, ϑ) = Lµ(0, u, ϑ) + O(ε). Moreover, equation (2.11.1) and Lemma 2.19 imply that

Lµ = 1
2
GLLX̆Ψ+f(γ)PΨ. From this relation and the L∞ estimates of Prop. 8.10, we deduce

that Lµ(0, u, ϑ) = 1
2
[GLLX̆Ψ](0, u, ϑ) + O(ε). In addition, from (10.1.4), we deduce that

µ̊(u, ϑ) −M(0, u, ϑ; t) = 1 +O(ε). Combining these estimates and appealing to definitions
(7.3.2) and (10.2.4), we conclude (10.2.6b).
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Proof of (10.2.5a) and (10.2.13): We first prove (10.2.5a). We start by establishing the
following preliminary estimate for the crucial quantity κ = κ(t, u) (see (10.2.4)):

tκ < 1. (10.2.14)

We may assume that κ > 0 since otherwise the estimate is trivial. We now use (10.1.7)
and Def. 10.1 with s = t to deduce that there exists u∗ ∈ [0, u] such that µ(t, u∗, ϑ) =
(1 + O(ε))µ(Approx)(t, u∗, ϑ; t) = (1 + O(ε))(1 − κt). Similar reasoning yields that for all
u′ ∈ [0, u], we have µ(t, u′, ϑ) ≥ (1+O(ε))(1−κt). Consequently, we conclude from Def. 10.2
that µ?(t, u) = (1 +O(ε))(1− κt). Since µ?(t, u) > 0 by (BAµ > 0), we conclude (10.2.14).

Having established the preliminary estimate, we now let (s, u∗, ϑ∗) ∈ Σu
s be such that

µ(s, u∗, ϑ∗) = min(u′,ϑ)∈[0,u]×T µ(s, u′, ϑ), where 0 ≤ s ≤ t. Using (10.1.1d), (10.1.8), (10.1.4),
and (10.1.6), we deduce that the following estimate holds:

µ(s, u∗, ϑ∗) = (1 +O(ε))

{
1 +

Lµ(t, u∗, ϑ∗)

µ̊(u∗, ϑ∗)−M(0, u∗, ϑ∗; t)
s+O(ε)(t− s)2

}
. (10.2.15)

If κ = 0, then RHS (10.2.15) ≥ 1 + O(ε), and the desired estimate (10.2.5a) follows from
Def. 10.2. It remains for us to consider the case κ > 0. From (10.2.15), we deduce that

min
(u′,ϑ)∈[0,u]×T

µ(s, u′, ϑ) = (1 +O(ε))
{

1− κs+O(ε)(t− s)2
}
. (10.2.16)

We will show that the terms in braces on RHS (10.2.16) verify

1− κs+O(ε)(t− s)2 = (1 + f(s, u; t)) {1− κs} , (10.2.17)

where

f(s, u; t) = O(ε). (10.2.18)

The desired estimate (10.2.5a) then follows easily from (10.2.16)-(10.2.18). To prove (10.2.18),
we first use (10.2.17) to solve for f(s, u; t):

f(s, u; t) =
O(ε)(t− s)2

1− κs
=

O(ε)(t− s)2

1− κt+ κ(t− s)
. (10.2.19)

We start by considering the case κ ≤ (1/4)̊δ∗. Since 0 ≤ s ≤ t < T(Boot) ≤ 2̊δ−1
∗ , the

denominator in the middle expression in (10.2.19) is≥ 1/2, and the desired estimate (10.2.18)

follows easily whenever ε is sufficiently small. In remaining case, we have κ > (1/4)̊δ∗. Using

(10.2.14), we deduce that RHS (10.2.19) ≤ 1
κ
O(ε)(t− s) ≤ Cε̊δ−2

∗ . ε as desired.
Inequality (10.2.13) then follows as a simple consequence of (10.2.5a).

Proof of (10.2.5b) and (10.2.12): To prove (10.2.5b), we first use (10.1.5) to deduce that
for 0 ≤ s ≤ t < T(Boot) and (u′, ϑ) ∈ [0, u] × T, we have Lµ(s, u′, ϑ) = Lµ(t, u′, ϑ) +
O(ε)(t − s). Appealing to definition (10.2.4) and using the estimate (10.1.4), we find that

‖[Lµ]−‖L∞(Σus ) = κ + O(ε(t − s)). If
√
ε ≤ κ, then since 0 ≤ s ≤ t < T(Boot) ≤ 2̊δ−1

∗ ,

we see that as long as ε is sufficiently small relative to δ̊∗, we have the desired bound
κ + O(ε(t − s)) = κ + O(ε) = (1 + O(ε1/2))κ. On the other hand, if κ ≤

√
ε, then similar

reasoning yields that ‖[Lµ]−‖L∞(Σus ) = κ + O(ε(t − s)) = O(
√
ε) as desired. We have thus

proved (10.2.5b).
The proof of (10.2.12) is similar and we omit the details.
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Proof of (10.2.3): We fix a time s with 0 ≤ s < T(Boot) and a point p ∈ Σu
s with geometric

coordinates (s, ũ, ϑ̃). Let ι : [0, u] → Σu
s be the integral curve of X̆ that passes through p

and that is parameterized by the values u′ of the eikonal function. We set F (u′) := µ ◦ ι(u′)
and Ḟ (u′) :=

d

du′
F (u′) = (X̆µ) ◦ ι(u′). We must bound

(
[X̆µ]+/µ

)
|p = [Ḟ (ũ)]+/F (ũ). We

split the proof into three cases that exhaust all possibilities. In the first case, we assume
that Ḟ (ũ) = X̆µ|p ≤ 0. Then [Ḟ (ũ)]+/F (ũ) = 0 ≤ RHS (10.2.3) as desired. In the second

case, we assume that Ḟ (u′) ≥ 0 for u′ ∈ [0, ũ]. Then since F (0) = 1 (because the solution
is trivial in the exterior of the flat null hyperplane P0), we have that F (u′) ≥ F (0) = 1

for u′ ∈ [0, ũ]. Also using the bounds ‖µ‖L∞(Σus ), ‖X̆µ‖L∞(Σus ) ≤ C (that is, (8.6.5a) and

(9.3.2b)), we deduce that [Ḟ (ũ)]+/F (ũ) ≤ C ≤ RHS (10.2.3) as desired. In the final case,

we have Ḟ (ũ) = X̆µ|p > 0 and there exists a largest number u∗ ∈ (0, ũ) such that Ḟ (u∗) = 0

(and hence Ḟ (u′) > 0 for u′ ∈ (u∗, ũ]). We will use the following estimate for µ(Min)(s, u
′) :=

min(u′′,ϑ)∈[0,u′]×T µ(s, u′′, ϑ), which holds for all 0 ≤ s ≤ t < T(Boot) and u′ ∈ [0, u]:

µ(Min)(s, u
′) ≥ max {(1− Cε)κ(t− s), (1− Cε)(1− κs)} . (10.2.20)

We prove (10.2.20) below in the last paragraph of the proof.

To proceed, we set H := supMT(Boot),U0
X̆X̆µ. By the mean value theorem, we have H > 0

(since Ḟ (ũ) > 0 and Ḟ (u∗) = 0). Moreover, by (9.3.2g), we have H ≤ C. In the next
paragraph, we will use the mean value theorem to prove that at the point p of interest, we
have

µ− µ(Min) ≥ (1/4)[X̆µ]2+/H. (10.2.21)

Rearranging (10.2.21), we find that [X̆µ]+ ≤ 2H1/2√µ− µ(Min) and thus the following bound
holds at p:

[X̆µ]+
µ

≤ 2H1/2

√
µ− µ(Min)

µ
. (10.2.22)

We now view RHS (10.2.22) as a function of the real variable µ (with all other parameters
fixed) on the domain [µ(Min),∞). A simple calculus exercise yields that RHS (10.2.22)

≤ H1/2/
√
µ(Min). Combining this estimate with (10.2.20) and using the aforementioned

bound H ≤ C, we deduce that
[X̆µ]+
µ
|p ≤ C min

{
1/(κ1/2(t− s)1/2), 1/(1− κs)1/2

}
. If

κ ≤ (1/4)̊δ∗, then 1 − κs ≥ 1 − (1/4)̊δ∗T(Boot) ≥ 1/2, and the desired bound
[X̆µ]+
µ
|p ≤

C ≤ C/T
1/2
(Boot) ≤ C/(T(Boot) − s)1/2 ≤ RHS (10.2.3) follows easily from the second term in

the min. If κ ≥ (1/4)̊δ∗, then 1/κ ≤ C, and using the first term in the min, we deduce that

[X̆µ]+
µ
|p ≤ C/(t− s)1/2. Since this estimate holds for all t < T(Boot) with a uniform constant

C, we conclude (10.2.3) in this case.
To prove the bound (10.2.21) used above, we set u1 := ũ− (1/2)Ḟ (ũ)/H and use the mean

value theorem to deduce that for u′ ∈ [u1, ũ], we have Ḟ (ũ)−Ḟ (u′) ≤ H(ũ−u′) ≤ (1/2)Ḟ (ũ).
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Thus, we have

Ḟ (u′) ≥ 1

2
Ḟ (ũ), for u′ ∈ [u1, ũ]. (10.2.23)

Again using the mean value theorem and also (10.2.23), we deduce that F (ũ) − F (u1) ≥
(1/2)Ḟ (ũ)(ũ−u1) = (1/4)Ḟ 2(ũ)/H. Noting that the definition of µ(Min) implies that F (u1) ≥
µ(Min)(s, ũ), we conclude the desired estimate (10.2.21).

It remains for us to prove (10.2.20). Reasoning as in the proof of (10.2.15)-(10.2.18) and
using (10.2.14), we find that for 0 ≤ s ≤ t < T(Boot) and u′ ∈ [0, u], we have µ(Min)(s, u

′) ≥
(1− Cε) {1− κs} ≥ (1− Cε)κ(t− s). From these two inequalities, we conclude the desired
bound (10.2.20).

Proof of (10.2.10): A straightforward modification of the proof of (10.2.5a), based on
replacing κ in (10.2.15)-(10.2.17) with Lµ(t, u′, ϑ) and using the estimate (10.1.4), yields
that for 0 ≤ s ≤ t and (u′, ϑ) ∈ (−)Vut , we have µ(s, u′, ϑ) = {1 +O(ε)} {1− Lµ(t, u′, ϑ)s}.
The estimate (10.2.10) then follows as a simple consequence.

Proof of (10.2.7), (10.2.8), and (10.2.9): By (10.1.5), if (u′, ϑ) ∈ (+)Vut and 0 ≤ s < T(Boot),
then Lµ(s, u, ϑ) ≥ −Cε. Integrating this estimate with respect to s from 0 to t and using
(10.1.3), we find that if 0 ≤ s < T(Boot) and (u′, ϑ) ∈ (+)Vut , then µ(s, u′, ϑ) ≥ 1−Cε(1+s) ≥
1 − Cε. Moreover, from (8.6.5a), we have the crude bound µ(s, u′, ϑ) ≤ C. The desired
bounds (10.2.7), (10.2.8), and (10.2.9) now readily follow from these estimates.

Proof of (10.2.11): By (10.1.5), if (u′, ϑ) ∈ (−)Vut and 0 ≤ s ≤ t < T(Boot), then [Lµ]+(s, u′, ϑ) =
[Lµ]+(t, u′, ϑ) +O(ε) = O(ε). The desired bound (10.2.11) thus follows.

�

10.3. Sharp time-integral estimates. In Prop. 10.3, we use the sharp pointwise estimates
of Prop. 10.2 to derive sharp estimates for time integrals involving powers of µ−1

? . The
time-integral estimates are a primary ingredient in the Gronwall-type argument that we use
to derive a priori energy estimates (see Prop. 14.1), which are degenerate with respect to
powers of µ−1

? at the high orders (see inequality (14.1.1a)). The estimates of Prop. 10.3
directly influence the degree of µ−1

? −degeneracy found in our high-order energy estimates.

Proposition 10.3 (Fundamental estimates for time integrals involving µ−1). Let
µ?(t, u) be as defined in (10.1.2). Let

B > 1

be a real number. Under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the
smallness assumptions of Sect. 7.7, the following estimates hold for (t, u) ∈ [0, T(Boot)] ×
[0, U0]:

Estimates relevant for borderline top-order spacetime integrals. There exists a con-

stant C > 0 such that if B
√
ε ≤ 1, then∫ t

s=0

‖[Lµ]−‖L∞(Σus )

µB? (s, u)
ds ≤ 1 + C

√
ε

B − 1
µ1−B
? (t, u). (10.3.1)
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Estimates relevant for borderline top-order hypersurface integrals. There exists
a constant C > 0 such that

‖Lµ‖L∞((−)Σut;t)

∫ t

s=0

1

µB? (s, u)
ds ≤ 1 + C

√
ε

B − 1
µ1−B
? (t, u). (10.3.2)

Estimates relevant for less dangerous top-order spacetime integrals. There exists

a constant C > 0 such that if B
√
ε ≤ 1, then∫ t

s=0

1

µB? (s, u)
ds ≤ C

{
1 +

1

B − 1

}
µ1−B
? (t, u). (10.3.3)

Estimates for integrals that lead to only lnµ−1
? degeneracy. There exists a constant

C > 0 such that ∫ t

s=0

‖[Lµ]−‖L∞(Σus )

µ?(s, u)
ds ≤ (1 + C

√
ε) lnµ−1

? (t, u) + C
√
ε. (10.3.4)

In addition, there exists a constant C > 0 such that∫ t

s=0

1

µ?(s, u)
ds ≤ C

{
lnµ−1

? (t, u) + 1
}
. (10.3.5)

Estimates for integrals that break the µ−1
? degeneracy. There exists a constant C >

0 such that ∫ t

s=0

1

µ
9/10
? (s, u)

ds ≤ C. (10.3.6)

Proof. Proof of (10.3.1), (10.3.2), and (10.3.4): To prove (10.3.1), we first consider the case
κ ≥
√
ε in (10.2.5b). Using (10.2.5a) and (10.2.5b), we deduce that∫ t

s=0

‖[Lµ]−‖L∞(Σus )

µB? (s, u)
ds = (1 +O(ε1/2))

∫ t

s=0

κ

(1− κs)B
ds (10.3.7)

≤ 1 +O(ε1/2)

B − 1

1

(1− κt)B−1
=

1 +O(ε1/2)

B − 1
µ1−B
? (t, u)

as desired. We now consider the case κ ≤
√
ε in (10.2.5b). Using (10.2.5a) and (10.2.5b)

and the fact that 0 ≤ s ≤ t < T(Boot) ≤ 2̊δ−1
∗ , we see that for ε sufficiently small relative to

δ̊∗, we have ∫ t

s=0

‖[Lµ]−‖L∞(Σus )

µB? (s, u)
ds ≤ Cε1/2

∫ t

s=0

1

(1− κs)B
ds (10.3.8)

≤ Cε1/2 1

(1− κt)B−1
≤ 1

B − 1
µ1−B
? (t, u)

as desired. We have thus proved (10.3.1). The estimate (10.3.4) can be proved in a similar
fashion; we omit the details.

Inequality (10.3.2) can be proved in a similar fashion with the help of the estimate
(10.2.12); we omit the details.
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Proof of (10.3.3), (10.3.5), and (10.3.6): To prove (10.3.3), we first use (10.2.5a) to deduce∫ t

s=0

1

µB? (s, u)
ds ≤ C

∫ t

s=0

1

(1− κs)B
ds. (10.3.9)

We first assume that κ ≤ (1/4)̊δ∗. Then since 0 ≤ t < T(Boot) < 2̊δ−1
∗ , we see from (10.2.5a)

that µ?(s, u) ≥ (1/4) for 0 ≤ s ≤ t and that RHS (10.3.9) ≤ Ct ≤ Cδ̊−1
∗ ≤ C ≤ Cµ1−B

? (t, u)

as desired. In the remaining case, we have κ > (1/4)̊δ∗, and we can use (10.2.5a) and the
estimate 1/κ ≤ C to bound RHS (10.3.9) by

≤ C

κ

1

B − 1

1

(1− κt)B−1
≤ C

B − 1
µ1−B
? (t, u) (10.3.10)

as desired.
Inequalities (10.3.5) and (10.3.6) can be proved in a similar fashion; we omit the details,

aside from remarking that the last step of the proof of (10.3.6) relies on the trivial estimate
(1− κt)1/10 ≤ 1.

�

11. Pointwise estimates for the error integrands

Recall that if PN is an N th−order Pu−tangent vectorfield operator, then PNΨ solves
an inhomogeneous wave equation of the form �g(PNΨ) = F. In this section, we start by
identifying the difficult error terms in F; see Sect. 11.1. The difficult terms are products
that contain a factor involving certain top derivatives of the eikonal function; we have to
work hard to control these products in the energy estimates. The remaining terms have a
structure that we call “Harmless≤N” (see Def. 11.1) and are easy to control. Next, we derive
pointwise estimates for the difficult products. After deriving some preliminary estimates, we
provide the main result in this direction in Prop. 11.10. Finally, in Sect. 11.6, we derive
pointwise estimates for the error terms

∑5
i=1

(T )P(i) on RHS (3.1.13), which are generated
by the deformation tensor of the multiplier vectorfield T .

The following definition encapsulates error term factors that are easy to bound in the
energy estimates. Most factors that arise in our analysis are of this form.

Definition 11.1 (Harmless terms). A Harmless≤N term is any term such that under
the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assumptions of
Sect. 7.7, the following bound holds on MT(Boot),U0 (see Sect. 7.2 regarding the vectorfield

operator notation):∣∣Harmless≤N ∣∣ . ∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣Z ≤N ;1
∗ γ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣ . (11.0.1)

In the next lemma, we provide L∞ estimates for Harmless≤9 terms.

Lemma 11.1 (L∞ estimate for Harmless≤9 terms). Under the data-size and bootstrap
assumptions of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the following point-
wise estimates hold for the terms Harmless≤9 from Def. 11.1 on MT(Boot),U0:∣∣Harmless≤9

∣∣ . ε. (11.0.2)

Proof. The estimate (11.0.2) follows directly from the L∞ estimates of Prop. 8.10. �
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11.1. Identification of the key difficult error term factors. In the next proposition,
we identify the products that are difficult to control in the energy estimates.

Proposition 11.2 (Identification of the key difficult error term factors). For 1 ≤
N ≤ 18 in (11.1.1a) and N ≤ 18 in (11.1.1b), we have the following decompositions:

�g(Y
N−1LΨ) = (d/#Ψ) · (µd/Y N−1trg/χ) +Harmless≤N , (11.1.1a)

�g(Y
NΨ) = (X̆Ψ)Y Ntrg/χ+ ρ(d/#Ψ) · (µd/Y N−1trg/χ) +Harmless≤N . (11.1.1b)

Furthermore, if N ≥ 2 and PN is any N th order Pu−tangent operator except for Y N−1L or
Y N , then

�g(P
NΨ) = Harmless≤N . (11.1.1c)

We provide the proof of Prop. 11.2 in Sect. 11.4. In Sects. 11.2-11.3, we establish some
preliminary identities and estimates. As in Sect. 6, we use the Riemann curvature tensor of
g to aid our calculations.

11.2. Preliminary lemmas connected to commutation. We start with lemma that
provides an identity for the curvature component trg/RX̆·L·. It is an analog of Lemma 6.1.

Lemma 11.3 (An expression for trg/RX̆·L·). Let Rαβκλ be the Riemann curvature tensor
from Def. 6.1. Then the curvature component trg/RX̆·L· := (g/−1) ·RX̆·L· can be expressed as
follows, where all terms are exact except for f(· · · ):

trg/RX̆·L· =
1

2

{
µG/#

X · d/LΨ +G/#
L · d/X̆Ψ− trg/G/LX̆Ψ− µGLX∆/Ψ

}
(11.2.1)

+
1

4
µ−1G/#

L ·G/L (X̆Ψ)2 − 1

2
µ−1G/#

L · (d/µ)X̆Ψ

+
1

2

{
GLXtrg/χX̆Ψ + µtrg/χG/

#
L · d/Ψ− µtrg/χG/

#
X · d/Ψ

}
+ f(γ, g/−1, d/x1, d/x2, ZΨ)PΨ.

Proof. Lemma 11.3 follows from inserting the schematic relations provided by Lemma 2.19
into the identities derived in [59, Lemma 15.1.3]. We therefore do not provide a detailed
proof here. We remark that the main ideas behind the proof are the same as those of
Lemma 6.1. In particular, the main idea is to contract the curvature tensor Rµναβ, given by

(6.1.7), against X̆µLα(g/−1)νκ and to use Lemmas 2.13 and 2.19 to express the RHS of the
contracted identity in the form written on RHS (11.2.1). �

We now use Lemma 11.3 to derive an identity for X̆trg/χ.

Lemma 11.4 (An expression for X̆trg/χ in terms of other variables). X̆trg/χ can be
expressed as follows, where the first term on the RHS is exact and the terms f(· · · ) are
schematic:

X̆trg/χ = ∆/µ+ f(γ, g/−1, d/x1, d/x2)PX̆Ψ + f(γ, g/−1, d/x1, d/x2)PPΨ (11.2.2)

+ f(γ, X̆Ψ, Pγ, g/−1, d/x1, d/x2) · (Pγ,∇/ 2x1,∇/ 2x2).
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Proof. We start with the following analog of (6.2.5). The proof is similar but is slightly more

computationally intensive due in part to the fact that [X̆,Θ] 6= 0 (see [59, Lemma 15.1.4] for
detailed computations):

X̆trg/χ = ∆/µ+ trg/∇/ (µζ)− trg/RX̆·L· (11.2.3)

+ µζ# · ζ+ ζ# · d/µ− trg/
(X̆)π/trg/χ− (Lµ)trg/χ− µ(trg/χ)2 + trg/χ(µtrg/k/ ).

We now substitute RHS (11.2.1) for the third term on RHS (11.2.3) and use (2.13.1b),
(2.11.1), (2.12.3a), and (2.12.3b) to substitute for trg/χ, Lµ, ζ, and k/ on RHS (11.2.3). The
only important observation is that the two µ−1−singular products on the second line of
RHS (11.2.1) (generated by the term −trg/RX̆·L· on RHS (11.2.3)) are, in view of the expres-

sion (2.12.4a) for ζ(Trans−Ψ)#, exactly canceled by the corresponding terms µ−1ζ(Trans−Ψ)# ·
ζ(Trans−Ψ) and µ−1ζ(Trans−Ψ)# ·d/µ (generated, in view of equation (2.12.3a), by the products
µζ# · ζ and ζ# · d/µ on RHS (11.2.3)). Also using Lemma 2.19, we arrive at the desired
expression (11.2.2). �

We now derive higher-order analogs of Lemma 11.4.

Lemma 11.5 (The only non-Harmless≤N term in PN−1X̆trg/χ). Assume that 1 ≤ N ≤
18. Under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness as-
sumptions of Sect. 7.7, the following estimate holds on MT(Boot),U0 (see Sect. 7.2 regarding

the vectorfield operator notation):∣∣∣PN−1X̆trg/χ−∆/PN−1µ
∣∣∣ . ∣∣Z ≤N+1;1

∗ Ψ
∣∣+
∣∣P≤Nγ

∣∣+ ε
∣∣P [1,N ]
∗ γ

∣∣ . (11.2.4)

Proof. We start by applying PN−1 to (11.2.2). We then decompose the first term as
PN−1∆/µ = ∆/PN−1µ+ [PN−1,∆/ ]µ. We put the principal term ∆/PN−1µ on LHS (11.2.4),
while to bound

∣∣[PN−1,∆/ ]µ
∣∣ by . RHS (11.2.4), we use the commutator estimate (8.5.2b)

with N − 1 in the role of N and f = µ, the L∞ estimates of Prop. 8.10, and Cor. 8.11. To
deduce that the PN−1 derivative of the remaining terms on RHS (11.2.2), with the excep-
tion of terms involving ∇/ 2x1 and ∇/ 2x2, are bounded in magnitude by . RHS (11.2.4), we
use Lemmas 8.4 and 8.5 and the L∞ estimates of Prop. 8.10. We now bound the PN−1

derivative of the terms on RHS (11.2.2) involving derivatives of ∇/ 2x1 and ∇/ 2x2. We first
show that

∣∣∇/ 2xi
∣∣ . ∣∣P≤1γ

∣∣. To this end, we note that inequality (8.1.3) and the argument

given just below it imply that
∣∣∇/ 2xi

∣∣ . |d/Y xi| + |d/xi| |Y γ|. The desired bound now follows
from the previous inequality, Lemma 8.4, and the L∞ estimates of Prop. 8.10. We now show

that for 1 ≤ M ≤ N − 1, we have
∣∣∣L/MP∇/ 2xi

∣∣∣ . ∣∣P≤M+1γ
∣∣. To this end, we first decompose

L/MP∇/
2xi = ∇/ 2PMxi+[L/MP ,∇/

2]xi. Next, using (8.1.2), we deduce
∣∣∇/ 2PMxi

∣∣ . ∣∣d/P [1,M+1]xi
∣∣.

Using Lemma 8.4, we bound the RHS of the previous inequality by .
∣∣P≤M+1γ

∣∣ as desired.

To deduce that
∣∣∣[L/MP ,∇/ 2]xi

∣∣∣ . ∣∣P≤M+1γ
∣∣, we also use the commutator estimate (8.5.4) with

f = xi and the L∞ estimates of Prop. 8.10. We have thus shown that for 0 ≤ M ≤ N − 1,

we have
∣∣∣L/MP∇/ 2xi

∣∣∣ . ∣∣P≤M+1γ
∣∣ Combining the previous inequality with the L∞ estimates

of Prop. 8.10, we find that the PN−1 derivative of the products on RHS (11.2.2) involving a
factor ∇/ 2xi are bounded in magnitude by . RHS (11.2.4). We have thus proved the lemma.

�
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11.3. The important terms in the derivatives of (L)π and (Y )π. The most difficult
terms in our energy estimates depend on the “top-order non−L−involving derivatives” of
the eikonal function quantities, which appear in some frame components of the top derivatives
of the deformation tensors (L)π and (Y )π. In the next lemma, we identify the difficult terms.

Lemma 11.6 (Identification of the important top-order terms in (L)π and (Y )π).
Under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assump-
tions of Sect. 7.7, the following estimates hold on MT(Boot),U0 (see Sect. 7.2 regarding the

vectorfield operator notation).
Important top-order terms in (L)π. We have∣∣∣PN−1X̆trg/

(L)π/− 2∆/PN−1µ
∣∣∣ . ∣∣Z ≤N+1;1

∗ Ψ
∣∣+
∣∣Z ≤N ;1
∗ γ

∣∣+ ε
∣∣P [1,N ]
∗ γ

∣∣ , (11.3.1a)

∣∣∣L/N−1
P d/#(L)πLX̆

∣∣∣ , ∣∣∣PN−1div/ (L)π/#

X̆
−∆/PN−1µ

∣∣∣ , ∣∣∣L/N−1
P d/#trg/

(L)π/− 2d/#PN−1trg/χ
∣∣∣

(11.3.1b)

.
∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣Z ≤N ;1
∗ γ

∣∣+ ε
∣∣P [1,N ]
∗ γ

∣∣ .
Important top-order terms in (Y )π. We have∣∣∣L/N−1

P L/X̆
(Y )π/#

L + (∆/PN−1µ)Y
∣∣∣ , ∣∣∣PN−1X̆trg/

(Y )π/− 2ρ∆/PN−1µ
∣∣∣ (11.3.2a)

.
∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣Z ≤N ;1
∗ γ

∣∣+ ε
∣∣P [1,N ]
∗ γ

∣∣ ,
∣∣∣PN−1div/ (Y )π/#

L + YPN−1trg/χ
∣∣∣ , ∣∣∣PN−1div/ (Y )π/#

X̆
−
{
µYPN−1trg/χ+ ρ∆/PN−1µ

}∣∣∣ ,
(11.3.2b)∣∣∣L/N−1

P d/#(Y )πLX̆ + (∆/PN−1µ)Y
∣∣∣ , ∣∣∣L/N−1

P d/#trg/
(Y )π/− 2ρd/#PN−1trg/χ

∣∣∣
.
∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣Z ≤N ;1
∗ γ

∣∣+ ε
∣∣P [1,N ]
∗ γ

∣∣ .
Above, within a given inequality, the symbol PN−1 on the LHS always denotes the same
order N − 1 Pu−tangent vectorfield operator.

Proof. See Sect. 8.2 for some comments on the analysis. We first prove (11.3.2a), starting

with the estimate for
∣∣∣L/N−1

P L/X̆ (Y )π/#
L + (∆/PN−1µ)Y

∣∣∣. We apply L/N−1
P L/X̆ to the g/−dual

of (2.15.4b). Note that χ = trg/χg/. The principal top-order term is generated when all
derivatives fall on trg/χ in the product −trg/χY . The top-order product of interest is therefore

−(PN−1X̆trg/χ)Y . Using (11.2.4), Lemma 8.6, and the L∞ estimates of Prop. 8.10, we see
that this top-order product is equal to −(∆/PN−1µ)Y (whose negative is found on LHS
(11.3.2a)) plus an error term that is . RHS (11.3.2a) as desired. Also using Lemma 8.5,

we deduce that the remaining terms in the Leibniz expansion of −L/N−1
P L/X̆(trg/χY ) are .

RHS (11.3.2a). Using Lemma 2.19, we see that the remaining terms on the g/−dual of RHS

(2.15.4b) are of the form f(γ, g/−1, d/x1, d/x2)PΨ. Hence, their L/N−1
P L/X̆ = L/N ;1

Z derivatives
can be bounded by . RHS (11.3.2a) via the estimates of Lemmas 8.4 and 8.5, and the L∞

estimates of Prop. 8.10. We have thus proved the desired estimate. The proof of (11.3.2a) for
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(Y )π/− 2ρ∆/PN−1µ

∣∣∣ follows similarly from the identity (2.15.4d) for (Y )π/, and the

proof of (11.3.1a) follows similarly from the identity (2.15.3c) for (L)π/; we omit the details.

To prove (11.3.2b) for
∣∣∣PN−1div/ (Y )π/#

L + YPN−1trg/χ
∣∣∣, we apply PN−1div/ to the g/−dual

of (2.15.4b). As in the previous paragraph, the principal top-order term is generated when
all derivatives fall on trg/χ in the product −trg/χY . The top-order product of interest,
found on LHS (11.3.2b), is therefore −(d/PN−1trg/χ) · Y = YPN−1trg/χ. Using the identity

div/ Y = (1/2)trg/
(Y )π/ = g/−1L/Y g/, we see that the remaining terms in the Leibniz expansion of

−PN−1div/ (trg/χY ) are.
∑

N1+N2≤N
N1≤N−1

∣∣PN1trg/χ
∣∣ ∣∣∣L/N2

P Y
∣∣∣+ ∑

N1+N2+N3≤N
N1≤N−1

∣∣PN1trg/χ
∣∣ ∣∣∣L/N2

P g/−1
∣∣∣ ∣∣∣L/N3

P g/
∣∣∣.

We now bound these terms by . RHS (11.3.2b) via the estimates of Lemmas 8.5 and 8.6 and
the L∞ estimates of Prop. 8.10. Using Lemma 2.19, we see that the remaining terms on the
g/−dual of RHS (2.15.4b) are of the form f(γ, g/−1, d/x1, d/x2)PΨ. To bound their PN−1div/
derivatives by . RHS (11.3.2b), we use the same arguments given in the previous paragraph
with the minor new addition that we also need the bound

∣∣PN−1∇/ 2xi
∣∣ . ∣∣P≤Nγ

∣∣ obtained
in the proof of Lemma 11.5. We have thus obtained the desired result. The proof of (11.3.1b)

for
∣∣∣L/N−1

P d/#trg/
(L)π/− 2d/#PN−1trg/χ

∣∣∣ is based on the identity (2.15.3c) for (L)π/ and is simi-

lar but simpler. The proof of (11.3.2b) for
∣∣∣PN−1div/ (Y )π/#

X̆
−
{
µYPN−1trg/χ+ ρ∆/PN−1µ

}∣∣∣
follows similarly from equation (2.15.4c) with one minor new addition. The new addi-
tion is that we must address the terms PN−1(ρ∆/µ) arising from the second product on
RHS (2.15.4c). The principal top-order term occurs when all derivatives fall on ∆/µ and
we commute PN−1 past ∆/ ; this top-order term is found on LHS (11.3.2b). The remain-

ing terms in the Leibniz expansion for PN−1(ρ∆/µ) are .
∑

N1+N2≤N+1

N1≤N−1,1≤N2≤N

∣∣PN1ρ
∣∣ ∣∣PN2µ

∣∣+

∑
N1+N2≤N−1

∣∣PN1ρ
∣∣ ∣∣[∆/ ,PN2 ]µ

∣∣. The first sum can be bounded by . RHS (11.3.2b) by using

the arguments given above and the fact that ρ = f(γ)γ (see Lemma 2.19), while to bound
the second, we also need to use the commutator estimate (8.5.2b) with f = µ. The proof

of (11.3.2b) for
∣∣∣L/N−1

P d/#(Y )πLX̆ + (∆/PN−1µ)Y
∣∣∣ follows similarly from the identity (2.15.4a)

for (Y )πLX̆ and the trivial identity −Y µ = −Y · d/µ relevant for the term on the RHS of

the identity. The proof of (11.3.1b) for
∣∣∣PN−1div/ (L)π/#

X̆
−∆/PN−1µ

∣∣∣ follows similarly from

the identity (2.15.3b) for (L)π/X̆ . The proof of (11.3.2b) for
∣∣∣L/N−1

P d/#trg/
(Y )π/− 2ρd/#PN−1trg/χ

∣∣∣
follows similarly from the identity (2.15.4d) for (Y )π/. �

The top derivatives of (L)π and (Y )π involving at least one L differentiation and the below
top derivatives of (L)π and (Y )π lead to negligible error terms in the energy estimates. In the
next lemma, we derive the relevant pointwise estimates that will allow us to establish this
fact.

Lemma 11.7 (Pointwise estimates for the negligible derivatives of (L)π and (Y )π).
Assume that 1 ≤ N ≤ 18 and let P ∈ P = {L, Y }. Under the data-size and bootstrap
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assumptions of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the following esti-
mates hold on MT(Boot),U0:∣∣P≤N−1Ltrg/

(P )π/
∣∣ , ∣∣P≤N−1L(P )πLX̆

∣∣ , ∣∣P≤N−1L(P )πX̆X
∣∣ , ∣∣∣L/≤N−1

P L/L
(P )π/#

L

∣∣∣ , ∣∣∣L/≤N−1
P L/L

(P )π/#

X̆

∣∣∣
(11.3.3)

.
∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣ .
Moreover, the following below-top-order estimates hold:∣∣P≤N−1trg/

(P )π/
∣∣ , ∣∣P≤N−1(P )πLX̆

∣∣ , ∣∣P≤N−1(P )πX̆X
∣∣ , ∣∣∣L/≤N−1

P
(P )π/#

L

∣∣∣ , ∣∣∣L/≤N−1
P

(P )π/#

X̆

∣∣∣ (11.3.4)

.
∣∣Z ≤N ;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣ .
Proof. See Sect. 8.2 for some comments on the analysis. We first prove (11.3.3). From
Prop. 2.18, equation (2.11.1), and Lemma 2.19, we see that the deformation tensor compo-

nents trg/
(P )π/, (P )πLX̆ , · · · , (P )π/#

X̆
on LHS (11.3.3) are schematically of the form

f(γ, g/−1, d/x1, d/x2)PΨ + f(γ, g/−1, d/x1, d/x2)X̆Ψ + f(γ, g/−1, d/x1, d/x2)trg/χ+ f(γ, g/−1, d/x1, d/x2)d/µ.

We now apply L/≤N−1
P L/L. If all derivatives fall on trg/χ, then we use (8.6.2a) to bound

P≤N−1Ltrg/χ and we bound the remaining factors multiplying P≤N−1Ltrg/χ by . 1 via
Lemmas 8.4 and 8.5 and the L∞ estimates of Prop. 8.10. Similarly, if all derivatives fall on
d/µ, we bound d/P≤N−1Lµ with (8.6.1b) and we bound the remaining factors the remaining
factors multiplying d/P≤N−1Lµ by . 1. If most (but not all) derivatives fall on trg/χ or d/µ,
then we bound all terms using the above arguments and also (8.4.1a). If most derivatives

fall on PΨ or X̆Ψ, then we bound these factors by the first term on RHS (11.3.3) and use
the above arguments to bound the remaining factors by . 1.

The proof of (11.3.4) is similar but simpler and we therefore omit the details.
�

11.4. Proof of Prop. 11.2. We now use the previous results to establish Prop. 11.2. See
Sect. 8.2 for some comments on the analysis. Throughout the proof, we silently use the
definition of Harmless≤N terms from Def. 11.1 and the estimates of Lemma 11.1. We give
a detailed proof of (11.1.1b) and then at the end, we sketch the minor changes needed to
prove (11.1.1a). To condense the notation, we define the following commutation vectorfield
(Z)J α[Ψ], which is just alternate notation for the term in braces on RHS (4.0.2):

(Z)J α[Ψ] := (Z)παβDβΨ− 1

2
trg

(Z)πDαΨ. (11.4.1)

Iterating (4.0.2), using �g(Ψ)Ψ = 0, and using the estimate
∥∥P≤9trg/

(Y )π
∥∥
L∞(Σut )

. ε (which

follows from (2.9.3), (8.4.1a), and the L∞ estimates of Prop. 8.10), we find that

µ�g(Ψ)(Y
NΨ) = Y N−1

(
µD (Y )

α J α[Ψ]
)

+ Error, (11.4.2)

where

|Error| .
∑

N1+N2+N3≤N−1

N1,N2≤N−2

(
1 +

∣∣Y N1trg/
(Y )π/
∣∣) ∣∣Y N2

(
µD (Y )

α J α[Y N3Ψ]
)∣∣ . (11.4.3)
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We first analyze the main term Y N−1
(
µD (Y )

α J α[Ψ]
)

on RHS (11.4.2), which contains all of
the top-order derivatives of the eikonal function quantities. By (4.0.6), we may equivalently

analyze Y N−1K (Y )
(π−Danger)[Ψ] + Y N−1K (Y )

(π−Cancel−1)[Ψ] + · · ·+ Y N−1K (Y )
(Low)[Ψ]. We argue one

term at a time.

Analysis of Y N−1K (Y )
(π−Danger)[Ψ]. By (4.0.7a), we have

Y N−1K (Y )
(π−Danger)[Ψ] = −

∑
N1+N2=N−1

(Y N1div/ (Y )π/#
L )Y N2X̆Ψ. (11.4.4)

We first consider the case N1 = N−1. Inequality (8.6.3a) and the first inequality in (11.3.2b)

yield that −(Y N−1div/ (Y )π/#
L )X̆Ψ = (Y Ntrg/χ)X̆Ψ + Harmless≤N , which in particular yields

the desired first product on RHS (11.1.1b). To show that the remaining summands are
Harmless≤N , we again use the first inequality in (11.3.2b) (now with N1 + 1 in the role of

N) to deduce that (Y N1div/ (Y )π/#
L )Y N2X̆Ψ = (Y N1+1trg/χ)Y N2X̆Ψ+(Harmless≤N1)Y N2X̆Ψ+

O(ε)Y N2X̆Ψ. Since N1 ≤ N − 2, (8.4.1a) implies that Y N1+1trg/χ = Harmless≤N1+2 ≤
Harmless≤N . From these estimates and the L∞ estimates of Prop. 8.10, we easily conclude
that (Y N1div/ (Y )π/#

L )Y N2X̆Ψ = Harmless≤N as desired.

Analysis of Y N−1K (Y )
(π−Cancel−1)[Ψ]. From (4.0.7b), we have

Y N−1K (Y )
(π−Cancel−1)[Ψ] (11.4.5)

=
∑

N1+N2=N−1

{
1

2
Y N1X̆trg/

(Y )π/− Y N1div/ (Y )π/#

X̆
− Y N1(µdiv/ (Y )π/#

L )

}
Y N2LΨ.

We first consider the case in which N1 = N − 1 in all three terms in braces on RHS (11.4.5)
and all derivatives fall on the deformation tensor components. From the second inequality
in (11.3.2a) and the first and second inequalities in (11.3.2b), we see that the main top-order
eikonal function terms 2ρ∆/ Y N−1µ and µY Ntrg/χ completely cancel from the terms in braces,
leaving only products of the form Harmless≤N × LΨ = Harmless≤N . When N1 = N − 1,
there are also terms in which at least one derivative falls on the factor µ in the product{
Y N−1(µdiv/ (Y )π/#

L )
}
LΨ on RHS (11.4.5). We will show that these terms = Harmless≤N .

We first bound them by .
∑

N1+N2≤N−1N2≤N−2

∣∣Y N1µ
∣∣ ∣∣∣Y N2div/ (Y )π/#

L

∣∣∣ |LΨ|. Again using the

first inequality in (11.3.2b) (now with N2 + 1 in the role of N) to control Y N2div/ (Y )π/#
L , we

bound the RHS of the previous inequality by

.
∑

N1+N2≤N−1

N2≤N−2

Harmless≤N1
∣∣Y N2+1trg/χ+Harmless≤N2

∣∣ |LΨ| .

Since N2 ≤ N − 2, the arguments given in our analysis of Y N−1K (Y )
(π−Danger)[Ψ] yield that

Y N2+1trg/χ = Harmless≤N . From these estimates and the L∞ estimates of Prop. 8.10, we
easily conclude that the terms under consideration = Harmless≤N as desired. We now
consider the remaining cases, in which N1 ≤ N − 2 in all three terms in braces on RHS
(11.4.5). Again using second inequality in (11.3.2a) and the first and second inequalities in
(11.3.2b) (now with N1 + 1 in the role of N) and the arguments given above, we deduce
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that the products under consideration = Harmless≤N plus error products generated by the
terms on LHS (11.3.2a) and LHS (11.3.2b). The error products are in magnitude

.
∑

N1+N2+N3≤N−1

N1≤N−2

∣∣Y N1+1trg/χ
∣∣ ∣∣Y N2µ

∣∣ ∣∣Y N3LΨ
∣∣+

∑
N1+N2≤N−1

N1≤N−2

∣∣ρ∆/ Y N1µ
∣∣ ∣∣Y N2LΨ

∣∣ .
Since N1 ≤ N − 2, the arguments given above and the fact that ρ = f(γ)γ (see Lemma 2.19)
combine to yield that the RHS of the previous expression = Harmless≤N as desired.

Analysis of Y N−1K (Y )
(π−Cancel−2)[Ψ]. From (4.0.7c), we have

Y N−1K (Y )
(π−Cancel−2)[Ψ] =

∑
N1+N2=N−1

{
−L/N1

Y L/X̆
(Y )π/#

L + L/N1

Y d/#(Y )πLX̆

}
· d/Y N2Ψ. (11.4.6)

In the case N1 = N − 1, we use the first inequality in (11.3.2a), and the third inequality
in (11.3.2b) to deduce that the top-order eikonal function terms (∆/PN−1µ)Y completely
cancel from the terms in braces on RHS (11.4.6). The remaining analysis now parallels

our analysis of Y N−1K (Y )
(π−Cancel−1)[Ψ], with the minor addition that we must also use the

estimate (8.4.2a) to bound the factors |Y | that arise. We thus conclude that RHS (11.4.6)
= Harmless≤N as desired.

Analysis of Y N−1K (Y )
(π−Less Dangerous)[Ψ]. From (4.0.7d), we have

Y N−1K (Y )
(π−Less Dangerous)[Ψ] =

∑
N1+N2=N−1

1

2

{
L/N1

Y (µd/#trg/
(Y )π/))

}
· d/Y N2Ψ. (11.4.7)

We first consider the case N1 = N−1 on RHS (11.4.7) and all derivatives fall on trg/
(Y )π/. Using

the fourth inequality in (11.3.2b), we see that 1
2
µ(d/#Y N−1trg/

(Y )π/) · d/Ψ = ρµ(d/#PN−1trg/χ) ·
d/Ψ +Harmless≤N , which in particular yields the desired second product on RHS (11.1.1b).

All remaining terms on RHS (11.4.6) have ≤ N − 2 derivatives falling on d/#trg/
(Y )π/, and the

arguments given in our analysis of K (Y )
(π−Cancel−1)[Ψ] yield that the corresponding products

= Harmless≤N as desired.

Analysis of Y N−1K (Y )
(π−Good)[Ψ]. From (4.0.7e), we have

Y N−1K (Y )
(π−Good)[Ψ] =

∑
N1+N2=N−1

{
1

2
Y N1(µLtrg/

(X̆)π/) + Y N1L(X̆)πLX̆ + Y N1L(X̆)πX̆X

}
Y N2LΨ

(11.4.8)

+
1

2

∑
N1+N2=N−1

(Y N1Ltrg/
(Z)π/)Y N2X̆Ψ

−
∑

N1+N2=N−1

{
L/N1

Y (µL/L
(Z)π/#

L ) + (L/N1

Y L/L
(Z)π/#

X̆
)
}
· d/Y N2Ψ.

We claim that all terms on RHS (11.4.8) = Harmless≤N without the need to observe any
cancellations. The main point is that all deformation tensor components are hit with an L
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derivative and hence can be bounded with the estimate (11.3.3). Otherwise, the analysis is

essentially the same as our analysis of Y N−1K (Y )
(π−Cancel−1)[Ψ].

Analysis of Y N−1K (Y )
(Ψ) [Ψ]. We will show that these terms = Harmless≤N . The terms

in K (Y )
(Ψ) [Ψ] (see (4.0.8)) are of the form f(γ)πPZΨ + f(γ)∆/Ψ where P ∈ P, Z ∈ Z , and

π ∈ {trg/(Y )π/, (Y )πLX̆ ,
(Y )πX̆X ,

(Y )π/#
L ,

(Y )π/#

X̆
}. We therefore conclude that

∣∣∣Y N−1K (Y )
(Ψ) [Ψ]

∣∣∣ .∣∣Z ≤N+1;1
∗ Ψ

∣∣ +
∣∣P≤Nγ

∣∣ +
∣∣∣P [1,N ]
∗ γ

∣∣∣ = Harmless≤N by using (8.5.9), (11.3.4), and the L∞

estimates of Prop. 8.10

Analysis of Y N−1K (Y )
(Low)[Ψ]. We will show that these terms = Harmless≤N . Using

Lemma 2.19, we see that (see (4.0.9)) K (Y )
(Low)[Ψ] = f(P≤1γ, g/−1, d/x1, d/x2, X̆Ψ)πPγ where

π is as in the previous paragraph. Hence, we conclude that Y N−1K (Y )
(Low)[Ψ] = Harmless≤N

by using the same arguments as in the previous paragraph together with Lemmas 8.4 and 8.5
(to bound the derivatives of g/−1 and d/x).

Summing the above results and recalling the splitting (4.0.6), we conclude that the main
term Y N−1

(
µD (Y )

α J α[Ψ]
)

on RHS (11.4.2) is equal to RHS (11.1.1b) as desired.
To complete the proof of (11.1.1b), it remains only for us to show that RHS (11.4.3)
. Harmless≤N . The main point is that N2 ≤ N − 2 in these terms and hence they do
not involve the top-order derivatives of µ or L1

(Small), L
2
(Small). We first consider the case

N1 ≤ 9 in inequality (11.4.3). Using the bound
∥∥P≤9trg/

(Y )π
∥∥
L∞(Σut )

. ε mentioned just

below (11.4.1), we see that when N1 ≤ 9, it suffices to bound∑
N2+N3≤N−1

N2≤N−2

∣∣Y N2
(
µD (Y )

α J α[Y N3Ψ]
)∣∣ . (11.4.9)

That is, we must bound the terms Y N2K (Y )
(π−Danger)[Y

N3Ψ] + · · · + Y N2K (Y )
(Low)[Y

N3Ψ]. To

this end, we repeat the proofs of the above estimates for Y N−1K (Y )
(π−Danger)[Ψ] + · · · +

Y N−1K (Y )
(Low)[Ψ] but with N2 in place of N − 1 and Y N3Ψ in place of the explicitly writ-

ten Ψ terms, the key point being that N2 ≤ N − 2. The same arguments immediately
yield that all terms = Harmless≤N2+N3+1 ≤ Harmless≤N except for products of the form
(X̆Y N3Ψ)Y N2+1trg/χ and ρ(d/#Y N3Ψ) · (µd/Y N2trg/χ) corresponding to the two explicitly writ-
ten products on RHS (11.1.1b). Since N2 ≤ N − 2, we can bound these two products
by ≤ Harmless≤max{N3,N2+2} ≤ Harmless≤N with the help of the relation ρ = f(γ)γ (see
Lemma 2.19), (8.4.1a), and the L∞ estimates of Prop. 8.10.

To complete the proof of the desired bound for RHS (11.4.3), we must handle the case N1 ≥
10 on RHS (11.4.3) (and thus N2 +N3 ≤ 7). The arguments given in the previous paragraph
yield that Y N2

(
µD (Y )

α J α[Y N3Ψ]
)

= Harmless≤max{N2+N3+1,N2+2} ≤ Harmless≤9. Using

this estimate and Lemma 11.1, we deduce that
∣∣Y N2

(
µD (Y )

α J α[Y N3Ψ]
)∣∣ . ε. From this esti-

mate, we deduce that the terms on RHS (11.4.3) with N1 ≥ 10 are .
∣∣Y ≤N−1trg/

(Y )π/
∣∣. Finally,
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(2.9.3), (8.4.1a), and the L∞ estimates of Prop. 8.10) together yield that
∣∣Y ≤N−1trg/

(Y )π/
∣∣ .∣∣P≤Nγ

∣∣ = Harmless≤N as desired. We have thus proved (11.1.1b).
The proof of (11.1.1a) is essentially the same with a few minor differences that we now

mention. The term Y N−1K (L)
(π−Danger)[Ψ] (see (4.0.7a)) is actually trivial in this case because

(L)π/#
L = 0 (see (2.15.3b)). We again observe cancellation of the top-order eikonal func-

tion quantities in Y N−1K (L)
(π−Cancel−1)[Ψ] (see (4.0.7b)) up to Harmless≤N errors. Specifi-

cally, with the help of (11.3.1a)-(11.3.1b) and the fact that (L)π/#
L = 0, we observe cancel-

lation of ∆/ Y N−1µ. In contrast, without the need to observe any cancellations, all terms

in Y N−1K (L)
(π−Cancel−2)[Ψ] (see (4.0.7c)) = Harmless≤N , thanks to the estimate (11.3.1b) for

L/N−1
P d/#(L)πLX̆ and the fact that (L)π/#

L = 0. The main term on RHS (11.1.1a) comes from

the case when all N − 1 derivatives in the term Y N−1K (L)
(π−Less Dangerous)[Ψ] fall on the factor

trg/
(L)π/ from (4.0.7d), where we substitute RHS (2.15.3c) for (L)π/. All other terms on RHS

(11.1.1a) are Harmless≤N , as in the proof of (11.1.1b).
To prove (11.1.1c), we first note that PN must be either of the form PN−1L or PN−1Y ,

where PN−1 contains a factor of L. In the former case, by using essentially the same
arguments we used in the proof of (11.1.1a) but with PN−1L in the role of Y N−1L, we
deduce that

�g(P
N−1LΨ) = (d/#Ψ) · (µd/PN−1trg/χ) +Harmless≤N . (11.4.10)

The L∞ estimates of Prop. 8.10 imply that the first product on RHS (11.4.10) is .
∣∣PNtrg/χ

∣∣,
where PN contains a factor of L. We now commute the operator L to the front and
use (8.5.1a) with f = trg/χ, (8.4.1a), and the L∞ estimates of Prop. 8.10 to deduce that
the commutator error terms = Harmless≤N . We then use (8.6.2a) to bound the non-
commutator term as follows:

∣∣LPN−1trg/χ
∣∣ . ∣∣P≤N+1Ψ

∣∣ +
∣∣P≤Nγ

∣∣ = Harmless≤N . We
have thus proved (11.1.1c) in this case.

In the remaining case of (11.1.1c), in which PN is of the form PN−1Y and PN−1 contains
a factor of L, we use essentially the same arguments we used in the proof of (11.1.1b) but
with PN−1Y in the role of Y N to deduce

�g(P
N−1YΨ) = (X̆Ψ)PN−1Y trg/χ+ ρ(d/#Ψ) · (µd/PN−1trg/χ) +Harmless≤N , (11.4.11)

where the operators PN−1 in (11.4.11) contain a factor of L. The L∞ estimates of Prop. 8.10
imply that the first product on RHS (11.4.11) is .

∣∣PNtrg/χ
∣∣, where PN contains a fac-

tor of L. Therefore, the arguments from the previous paragraph yield that this term
= Harmless≤N as desired. Also using that ρ = f(γ)γ (see (2.16.2c)), we find that the
second product on RHS (11.4.11) is .

∣∣PNtrg/χ
∣∣, where PN contains a factor of L. The

arguments from the previous paragraph yield that this term = Harmless≤N as desired. We
have thus proved (11.1.1c) and completed the proof of Prop. 11.2.

11.5. Pointwise estimates for the fully modified quantities. In this section, we obtain
pointwise estimates for the most difficult product we encounter in our energy estimates:
(X̆Ψ)Y Ntrg/χ. The main result is Prop. 11.10. The proof of the proposition relies on pointwise
estimates for the fully modified quantities, which we first derive. We start with a simple
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lemma in which we obtain pointwise estimates for some of the inhomogeneous terms in the
transport equations verified by the fully modified and partially modified quantities.

Lemma 11.8 (Pointwise estimates for PNX and PN X̃). Assume that N ≤ 18. Let

X be the quantity defined in (6.2.1b), let X̃ be the quantity defined in (6.2.3), let (Y N−1)X̃ be

the quantity from (6.2.2b) (with Y N−1 in the role of PN), and let (PN−1)B be the quantity
defined in (6.2.9). Under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the
smallness assumptions of Sect. 7.7, the following pointwise estimates hold on MT(Boot),U0:∣∣∣Y NX +GLLX̆Y

NΨ
∣∣∣ . µ ∣∣P≤N+1Ψ

∣∣+
∣∣Z ≤N ;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣ , (11.5.1a)∣∣P≤NX
∣∣ . ∣∣Z ≤N+1;1

∗ Ψ
∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣ , (11.5.1b)∣∣∣PN X̃
∣∣∣ . ∣∣P≤N+1Ψ

∣∣+
∣∣P≤Nγ

∣∣ , (11.5.1c)∣∣∣Y (Y N−1)X̃
∣∣∣ . ∣∣P≤N+1Ψ

∣∣ , (11.5.1d)∣∣∣(PN−1)B
∣∣∣ . ε

∣∣P≤Nγ
∣∣ . (11.5.1e)

Proof. See Sect. 8.2 for some comments on the analysis. Throughout this proof, we silently
use the L∞ estimates of Prop. 8.10.

To prove (11.5.1a), we first use (6.2.1b) and Lemma 2.19 to obtain X = −GLLX̆Ψ +
µf(γ, g/−1, d/x1, d/x2)PΨ. We now apply Y N to this identity and bring the top-order term

GLLX̆Y
NΨ over to the left (as indicated on LHS (11.5.1a)), which leaves the commutator

terms [GLL, Y
N ]X̆Ψ and GLL[X̆, Y N ]Ψ on the RHS. To bound

∣∣Y N {µf(γ, g/−1, d/x1, d/x2)PΨ}
∣∣

by ≤ RHS (11.5.1a), we use Lemmas 8.4 and 8.5. Note that we have paid special attention
to terms in which all derivatives Y N fall on PΨ; these terms are bounded by the first term

on RHS (11.5.1a). To bound
∣∣∣[GLL, Y

N ]X̆Ψ
∣∣∣ by ≤ RHS (11.5.1a), we use the fact that

GLL = f(γ) (see Lemma 2.19). To bound
∣∣∣GLL[X̆, Y N ]Ψ

∣∣∣ by ≤ RHS (11.5.1a), we also use

the commutator estimate (8.5.6) with f = Ψ. The proof of (11.5.1b) is similar but simpler
and we omit the details. The same is true for the proof of (11.5.1c) since by Lemma 2.19,

we have X̃ = f(γ, g/−1, d/x1, d/x2)PΨ.
We now prove (11.5.1e). We bound term PN−1(trg/χ)2 from RHS (6.2.9) by ≤ RHS

(11.5.1e) with the help of inequality (8.4.1a). We bound the term [GLL,P
N−1]∆/Ψ using

the aforementioned relation GLL = f(γ) and Cor. 8.9. To bound the term GLL[∆/ ,PN−1]Ψ,
we also use the commutator estimate (8.5.2b) with Ψ in the role of f and Cor. 8.11. We
bound the term [L,PN−1]trg/χ with the help of the commutator estimate (8.5.1a) with trg/χ

in the role of f and inequality (8.4.1a). We bound [L,PN−1]X̃ with the help of the com-

mutator estimate (8.5.1a) with f = X̃ and (11.5.1c). To bound L
{

(PN−1)X̃−PN−1X̃
}

,

we first note that (6.2.2b), (6.2.3), and the Leibniz rule imply that the magnitude of this

term is .
∑

N1+N2≤N
N1≥1

∣∣∣L/N1

P G#
(Frame)

∣∣∣ ∣∣PN2+1Ψ
∣∣. Since Lemma 2.19 implies that G#

(Frame) =

f(γ, g/−1, d/x1, d/x2), the desired bound for the sum follows from Lemmas 8.4 and 8.5.
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To derive (11.5.1d), we first use (6.2.2b) and Lemma 2.19 to deduce that Y (Y N−1)X̃ =
Y
{

f(γ, g/−1, d/x1, d/x2)PNΨ
}

. The estimate (11.5.1d) now follows easily from the previous
expression and Lemmas 8.4 and 8.5.

�

Recall that the fully modified quantities (PN )X verify the transport equation (6.2.4). In
the next lemma, we integrate this transport equation and derive pointwise estimates for
(PN )X . The lemma is a preliminary ingredient in the proof of Prop. 11.10.

Lemma 11.9 (Inverting the transport equation verified by (PN )X ). Assume that

1 ≤ N ≤ 18 and let (PN )X , X, and (PN )I be as in Prop. 6.2. Assume that PN = Y N . Under
the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assumptions of
Sect. 7.7, the following pointwise estimate holds on MT(Boot),U0:∣∣∣(Y N )X

∣∣∣ (t, u, ϑ) ≤ C
∣∣∣(Y N )X

∣∣∣ (0, u, ϑ) (11.5.2)

+ 2(1 + C
√
ε)

∫ t

s=0

[Lµ(s, u, ϑ)]−
µ(s, u, ϑ)

∣∣Y NX
∣∣ (s, u, ϑ) ds

+ C

∫ t

s=0

{∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣} (s, u, ϑ) ds.

Furthermore, when PN = Y N−1L, the modified quantity
∣∣∣(Y N−1L)X

∣∣∣ (t, u, ϑ) verifies inequal-

ity (11.5.2), but with the term
∣∣∣(Y N )X

∣∣∣ (0, u, ϑ) on the right replaced by
∣∣∣(Y N−1L)X

∣∣∣ (0, u, ϑ)+

Cε
∣∣∣(Y N )X

∣∣∣ (0, u, ϑ) and
∣∣Y NX

∣∣ (s, u, ϑ) replaced by
∣∣Y N−1LX

∣∣ (s, u, ϑ) + Cε
∣∣Y NX

∣∣ (s, u, ϑ).

Proof. To prove (11.5.2), we set PN = Y N in equation (6.2.4) and, in this part of the proof,
we view the terms in the equation as functions of (s, u, ϑ). Corresponding to the factor(
−2

Lµ

µ
+ 2trg/χ

)
on the left-hand side, we define the integrating factor

ι(s, u, ϑ) := exp

{∫ s

t′=0

(
−2

Lµ

µ
(t′, u, ϑ) + 2trg/χ

)
(t′, u, ϑ) dt′

}
. (11.5.3)

We then rewrite (6.2.4) as L(ι(P
N )X ) = ι × RHS (6.2.4) and integrate this equation with

respect to s from s = 0 to s = t. Using the estimate (8.6.7) for trg/χ, we find that

ι(s, u, ϑ) = (1 +O(ε))
µ2(0, u, ϑ)

µ2(s, u, ϑ)
. (11.5.4)

From Def. 10.3, and the estimates (10.2.7) and (10.2.10), we find that

sup
0≤s′≤t

µ(t, u, ϑ)

µ(s′, u, ϑ)
≤ C. (11.5.5)

From (11.5.4) and (11.5.5), it is straightforward to see that the desired bound (11.5.2) follows
once we establish the following bounds for terms generated by terms on RHS (6.2.4) (recall
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that PN = Y N):∣∣µ[L, Y N ]trg/χ
∣∣ (s, u, ϑ) (11.5.6)

≤ Cε
∣∣∣(Y N )X

∣∣∣ (s, u, ϑ) + Cε
∣∣Z ≤N+1;1
∗

∣∣ (s, u, ϑ) + Cε
∣∣P≤Nγ

∣∣ (s, u, ϑ) + Cε
∣∣P [1,N ]
∗ γ

∣∣ (s, u, ϑ),

2

(
µ(t, u, ϑ)

µ(s, u, ϑ)

)2 ∣∣∣∣Lµ(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣∣ ∣∣Y NX
∣∣ (s, u, ϑ) (11.5.7)

≤ 2(1 + C
√
ε)

∣∣∣∣ [Lµ]−(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣∣ ∣∣Y NX
∣∣ (s, u, ϑ)

+ C
∣∣Z ≤N+1;1
∗ Ψ

∣∣ (s, u, ϑ) + C
∣∣P≤Nγ

∣∣ (s, u, ϑ) + C
∣∣P [1,N ]
∗ γ

∣∣ (s, u, ϑ),

all remaining terms on RHS (6.2.4) are in magnitude (11.5.8)

≤ C
∣∣Z ≤N+1;1
∗ Ψ

∣∣ (s, u, ϑ) + C
∣∣P≤Nγ

∣∣ (s, u, ϑ) + C
∣∣P [1,N ]
∗ γ

∣∣ (s, u, ϑ).

We note that in deriving (11.5.2), the product Cει
∣∣∣(Y N )X

∣∣∣ arising from the first term on

RHS (11.5.6) needs to be treated with Gronwall’s inequality. However, due to the small
factor ε, this product has only the negligible effect of contributing to the factors Cε on RHS
(11.5.2).

To derive (11.5.7), we first note the trivial bound

∣∣∣∣Lµ(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣∣ ≤ ∣∣∣∣ [Lµ]−(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣∣ +∣∣∣∣ [Lµ]+(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣∣. To bound terms on LHS (11.5.7) arising from the factor

∣∣∣∣ [Lµ]+(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣∣
by ≤ the terms on the second line of RHS (11.5.7), we use (10.2.1), (11.5.5), and the es-

timate (11.5.1b). To bound terms on LHS (11.5.7) arising from the factor

∣∣∣∣ [Lµ]−(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣∣,
we consider the partitions from Def. 10.3. When (u, ϑ) ∈ (+)Vut , we use the bounds (10.2.9)

and (11.5.5) to deduce that

(
µ(t, u, ϑ)

µ(s, u, ϑ)

)2 ∣∣∣∣ [Lµ]−(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣∣ ≤ Cε. Combining this bound

with (11.5.1b), we easily conclude that the terms of interest are ≤ the terms on the sec-
ond line of RHS (11.5.7). Finally, when (u, ϑ) ∈ (−)Vut , we use (10.2.10) to deduce that

2

(
µ(t, u, ϑ)

µ(s, u, ϑ)

)2 ∣∣∣∣ [Lµ]−(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣∣ ≤ 2(1 + C
√
ε)

∣∣∣∣ [Lµ]−(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣∣. Thus, we conclude that the

terms under consideration are ≤ the terms on the first line of RHS (11.5.7) as desired.
To deduce (11.5.6), we use definition (6.2.1a), use the commutator estimate (8.5.1a) with

f = trg/χ, the estimates (8.6.7), (8.4.1a), and (8.6.5a), and Cor. 8.11 to deduce that

µ[L, Y N ]trg/χ . εµ
∣∣Y Ntrg/χ

∣∣+ ε
∣∣P≤Nγ

∣∣ (11.5.9)

. ε
∣∣∣(Y N )X

∣∣∣+ ε
∣∣P≤Nγ

∣∣+ ε
∣∣Y NX

∣∣ .
To bound the last term on RHS (11.5.9), we simply quote (11.5.1b). We have thus proved
the desired estimate (11.5.6).

We now prove (11.5.8). To bound the term 2trg/χY
NX from RHS (6.2.4), we use the

estimate (8.6.7) for trg/χ and (11.5.1b).
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To bound the term [L, Y N ]X from RHS (6.2.4), we first note that (11.5.1b) and the L∞

estimates of Prop. 8.10 yield that
∥∥P≤9X

∥∥
L∞(Σut )

≤ Cε. Hence, using the commutator

estimate (8.8) with f = X and (11.5.1b), we conclude that
∣∣[L, Y N ]X

∣∣ . ∣∣Z ≤N+1;1
∗ Ψ

∣∣ +∣∣P≤Nγ
∣∣+
∣∣P [1,N ]
∗ γ

∣∣ as desired.

To bound the product [PN , Lµ]trg/χ from RHS (6.2.4), we first note that its magnitude

is .
∥∥P [1,9]Lµ

∥∥
L∞(Σut )

∣∣P≤N−1trg/χ
∣∣+
∣∣P≤NLµ

∣∣ ∥∥P≤8trg/χ
∥∥
L∞(Σut )

. We now bound the first

product in the previous inequality by . RHS (11.5.8) with the help of (8.4.1a) and (8.6.4b)
and the second by . RHS (11.5.8) with the help of (8.6.1b) and (8.6.7) as desired. A similar
argument that takes into account the estimates (8.6.2a), (8.6.4a), (8.6.4b) and (8.6.5a), yields
the same bound for the term [µ,PN ]Ltrg/χ from RHS (6.2.4). A similar argument yields

the same bound for the term
{
PN

(
µ(trg/χ)2

)
− 2µtrg/χP

Ntrg/χ
}

from RHS (6.2.4), the key

point being that the top-order term PNtrg/χ cancels from this difference. To bound the last
term PNA from RHS (6.2.4) in magnitude by . RHS (11.5.8), we apply PN to both sides
of (6.1.4). The desired bound now follows from Lemmas 8.4 and 8.5 and the L∞ estimates
of Prop. 8.10. We have thus established (11.5.2) in the case PN = Y N .

To prove (11.5.2) in the case PN = Y N−1L, we use the same reasoning with one small
change. The new feature is that the following analog of (11.5.6) holds (the proof is the same
as that of (11.5.6)):

µ[L, Y N−1L]trg/χ ≤ Cε
∣∣∣(Y N )X

∣∣∣+ Cε
∣∣Z ≤N+1;1
∗

∣∣+ Cε
∣∣P≤Nγ

∣∣+ Cε
∣∣P [1,N ]
∗ γ

∣∣ . (11.5.10)

The term Cει
∣∣∣(Y N )X

∣∣∣ arising from the first term on RHS (11.5.10) can no longer be treated

with Gronwall’s inequality as in the previous case. Instead, using that ι(s, u, ϑ)/ι(t, u, ϑ) =
(1 + O(ε))µ2(t, u, ϑ)/µ2(s, u, ϑ) (see (11.5.4)), we allow this term to contribute the ad-

ditional error term Cε

∫ t

s=0

µ2(t, u, ϑ)

µ2(s, u, ϑ)

∣∣∣(Y N )X
∣∣∣ (s, u, ϑ) ds to the RHS of the estimate for∣∣∣(Y N−1L)X

∣∣∣ (t, u, ϑ). Hence, from the already established bound (11.5.2) for
∣∣∣(Y N )X

∣∣∣ (s, u, ϑ),

we see that the desired bound for
∣∣∣(Y N−1L)X

∣∣∣ (t, u, ϑ) will follow once we establish the fol-

lowing bounds (note the sentence just below (11.5.2)):

ε

∫ t

s=0

(
µ(t, u, ϑ)

µ(s, u, ϑ)

)2 ∣∣∣(Y N )X
∣∣∣ (0, u, ϑ) ds . ε

∣∣∣(Y N )X
∣∣∣ (0, u, ϑ), (11.5.11)

ε

∫ t

s=0

(
µ(t, u, ϑ)

µ(s, u, ϑ)

)2 ∫ s

s′=0

(
µ(s, u, ϑ)

µ(s′, u, ϑ)

)2
[Lµ(s′, u, ϑ)]−
µ(s′, u, ϑ)

∣∣Y NX
∣∣ (s′, u, ϑ) ds′ ds (11.5.12)

. ε

∫ t

s=0

[Lµ(s, u, ϑ)]−
µ(s, u, ϑ)

∣∣Y NX
∣∣ (s, u, ϑ) ds,

ε

∫ t

s=0

(
µ(t, u, ϑ)

µ(s, u, ϑ)

)2 ∫ s

s′=0

{∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣} (s′, u, ϑ) ds′ ds (11.5.13)

. ε

∫ t

s=0

{∣∣Z ≤N+1;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣} (s, u, ϑ) ds.
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The desired bounds (11.5.11)-(11.5.13) follow from (11.5.5) and the fact that 0 ≤ s′ ≤ s ≤
t < T(Boot) ≤ 2̊δ−1

∗ . �

We now use Lemmas 11.9 and 11.8 to establish the proposition.

Remark 11.1 (Boxed constants affect high-order energy blow-up rates). The “boxed

constants” such as the 2 appearing on the RHS of inequality (11.5.14) and the 8.1 ap-
pearing on the RHS of inequality (14.1.2a) are important because they affect the blow-up
rate of our high-order energy estimates with respect to powers of µ−1

? .

Proposition 11.10 (The key pointwise estimate for (X̆Ψ)Y Ntrg/χ). Assume that 1 ≤
N ≤ 18. Under the assumptions of Lemma 11.9, the following pointwise estimate holds on
MT(Boot),U0:∣∣∣(X̆Ψ)Y Ntrg/χ

∣∣∣ ≤ 2

∥∥∥∥ [Lµ]−
µ

∥∥∥∥
L∞(Σut )

∣∣∣X̆Y NΨ
∣∣∣ (11.5.14)

+ 4 (1 + C
√
ε)
‖[Lµ]−‖L∞(Σut )

µ?(t, u)

∫ t

t′=0

‖[Lµ]−‖L∞(Σu
t′ )

µ?(t′, u)

∣∣∣X̆Y NΨ
∣∣∣ (t′, u, ϑ) dt′

+ Error,

where

|Error| . 1

µ?(t, u)

∣∣∣(Y N )X
∣∣∣ (0, u, ϑ) +

∣∣Z ≤N+1;1
∗ Ψ

∣∣ (11.5.15)

+
1

µ?(t, u)

∣∣Z ≤N ;1
∗ Ψ

∣∣+
1

µ?(t, u)

∣∣P≤Nγ
∣∣+

1

µ?(t, u)

∣∣P [1,N ]
∗ γ

∣∣
+

∫ t

t′=0

∣∣Z ≤N+1;1
∗ Ψ

∣∣ (t′, u, ϑ) dt′

+
1

µ?(t, u)

∫ t

t′=0

1

µ?(t′, u)

{∣∣Z ≤N ;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣} (t′, u, ϑ) dt′.

Furthermore, we have the following less precise pointwise estimate:∣∣µY Ntrg/χ
∣∣ (t, u, ϑ) (11.5.16)

.
∣∣∣(Y N )X

∣∣∣ (0, u, ϑ) + µ
∣∣PN+1Ψ

∣∣ (t, u, ϑ) +
∣∣∣X̆PNΨ

∣∣∣ (t, u, ϑ) +
∣∣Z ≤N ;1
∗ Ψ

∣∣ (t, u, ϑ)

+
∣∣P≤Nγ

∣∣ (t, u, ϑ) +
∣∣P [1,N ]
∗ γ

∣∣ (t, u, ϑ)

+

∫ t

t′=0

‖[Lµ]−‖L∞(Σu
t′ )

µ?(t′, u)

{∣∣∣X̆PNΨ
∣∣∣+
∣∣Z ≤N ;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣} (t′, u, ϑ) dt′

+

∫ t

t′=0

∣∣Z ≤N+1;1
∗ Ψ

∣∣ (t′, u, ϑ) dt′

+

∫ t

t′=0

1

µ?(t′, u)

{∣∣Z ≤N ;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣} (t′, u, ϑ) dt′.
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Proof. We first prove (11.5.14)-(11.5.15). Using (6.2.1a) and (6.2.1b), we split

(X̆Ψ)Y Ntrg/χ = −X̆Ψ

µ
Y NX +

X̆Ψ

µ
(Y N )X . (11.5.17)

We now bound the first product on RHS (11.5.17). Using (2.11.1) and (11.5.1a), we deduce
that ∣∣∣∣∣X̆Ψ

µ
Y NX

∣∣∣∣∣ ≤ 2

∣∣∣∣Lµµ
∣∣∣∣ ∣∣∣X̆Y NΨ

∣∣∣+ C

∣∣∣∣12GLLLΨ +GLXLΨ

∣∣∣∣ ∣∣∣X̆Y NΨ
∣∣∣ (11.5.18)

+ C
∣∣∣X̆Ψ

∣∣∣ ∣∣P≤N+1Ψ
∣∣+ C

∣∣∣∣∣X̆Ψ

µ

∣∣∣∣∣ {∣∣Z ≤N ;1
∗ Ψ

∣∣+
∣∣P≤Nγ

∣∣+
∣∣P [1,N ]
∗ γ

∣∣} .
To handle the first product on RHS (11.5.18), we use (10.2.1) to deduce that 2

∣∣∣∣Lµµ
∣∣∣∣ ≤

2

∣∣∣∣ [Lµ]−
µ

∣∣∣∣ + 2

∣∣∣∣ [Lµ]+
µ

∣∣∣∣ ≤ 2

∥∥∥∥ [Lµ]−
µ

∥∥∥∥
L∞(Σut )

+ C, which easily leads to the product under

consideration being bounded by ≤ the sum of the first term on RHS (11.5.14) and the
second term on RHS (11.5.15). To handle the second product on RHS (11.5.18), we first
note that by Lemma 2.19, we have GLL, GLX = f(γ). The L∞ estimates of Prop. 8.10

thus yield that

∣∣∣∣12GLLLΨ +GLXLΨ

∣∣∣∣ ≤ Cε, from which we easily deduce that the second

term on RHS (11.5.15) is ≤ the term |Error| from (11.5.15). Moreover, it is easy to deduce
that all products on the second line of RHS (11.5.18) are ≤ |Error|, thanks to the estimate∥∥∥X̆Ψ

∥∥∥
L∞(Σut )

≤ C (that is, (8.6.3a)).

We now bound the second product on RHS (11.5.17). We start by multiplying both sides of

(11.5.2) by
X̆Ψ

µ
. We first address the product of

X̆Ψ

µ
and the second product 2(1+C

√
ε) · · ·

on RHS (11.5.2). We start by using inequality (11.5.1a) to substitute for the term
∣∣Y NX

∣∣
appearing in the integrand. The easy terms to bound are those that arise from RHS (11.5.1a);

using the bound
∥∥∥X̆Ψ

∥∥∥
L∞(Σut )

≤ C mentioned above and the bound ‖Lµ‖L∞(Σut ) ≤ C (that

is, (8.6.4a)), it is easy to see that their contribution to the product of
X̆Ψ

µ
and the first

product 2(1 + C
√
ε) · · · is ≤ the term |Error| from (11.5.15). It remains for us bound the

error term generated by the main part of the integrand factor
∣∣Y NX

∣∣, which is given by the

term GLLX̆Y
NΨ from LHS (11.5.1a). Specifically, we must bound

2(1 + C
√
ε)

{
X̆Ψ

µ

}
(t, u, ϑ)

∫ t

s=0

[Lµ]−(s, u, ϑ)

µ(s, u, ϑ)

∣∣∣GLLX̆Y
NΨ
∣∣∣ (s, u, ϑ) ds. (11.5.19)

We use (9.3.4) to replace the factor GLL(s, u, ϑ) with GLL(t, u, ϑ) up to the error factor Cε.

We then pull GLL(t, u, ϑ) out of the ds integral, multiply it against

{
X̆Ψ

µ

}
(t, u, ϑ), and
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use the arguments used to deduce (11.5.18) as well as those given just below it to deduce

that

{
GLL

X̆Ψ

µ

}
(t, u, ϑ) = 2

[Lµ]−(t, u, ϑ)

µ(t, u, ϑ)
+O(1). The portion of (11.5.19) corresponding

to the factor 2
[Lµ]−(t, u, ϑ)

µ(t, u, ϑ)
is clearly ≤ the product 4(1 + C

√
ε) · · · on the second line of

RHS (11.5.14). Moreover, using the bound ‖Lµ‖L∞(Σut ) ≤ C mentioned above to bound the

[Lµ]−(s, u, ϑ) integrand factor and also using the bound
∥∥∥X̆Ψ

∥∥∥
L∞(Σut )

≤ C mentioned above,

we find that the portion of (11.5.19) corresponding to the factor O(1) from above is ≤ the

last product on RHS (11.5.15) (here we are using the simple fact that the factor
1

µ?(t, u)
on

the outside of the integral in the last product is ≥ 1). For the same reason, the error factor
Cε from above, generated by replacing GLL(s, u, ϑ) with GLL(t, u, ϑ), leads to a term that
is ≤ |Error|, where |Error| verifies (11.5.15).

To complete the proof, it remains for us to bound the product of
X̆Ψ

µ
and the term

C
∣∣∣(Y N )X

∣∣∣ (0, u, ϑ) on RHS (11.5.2) and the product of
X̆Ψ

µ
and the last product C

∫ t
s=0
· · · on

RHS (11.5.2) by≤ |Error|. The desired estimates follow easily from the bounds
∥∥∥X̆Ψ

∥∥∥
L∞(Σut )

≤

C and ‖Lµ‖L∞(Σut ) ≤ C mentioned above. We have thus proved (11.5.14)-(11.5.15).

The proof of (11.5.16) is similar but simpler so we omit the details. The main simplifica-
tions are the presence of an additional power of µ on LHS (11.5.16) and that we no longer
have to observe the special structure that led to the factor Lµ on RHS (11.5.18). �

11.6. Pointwise estimates for the error terms generated by the multiplier vec-
torfield. In this section, we derive simple pointwise estimates for the energy estimate error
terms generated by the deformation tensor of the multiplier vectorfield T .

Lemma 11.11 (Pointwise bounds for the error terms generated by the deforma-
tion tensor of T ). Consider the multiplier vectorfield error terms (T )P(1)[Ψ], · · · , (T )P(5)[Ψ]
defined in (3.1.14a)-(3.1.14e). Let ς > 0 be a real number. Under the data-size and bootstrap
assumptions of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the following point-
wise inequality holds on MT(Boot),U0 (without any absolute value taken on the left), where the
implicit constants are independent of ς:

5∑
i=1

(T )P(i)[Ψ] . (1 + ς−1)(LΨ)2 + (1 + ς−1)(X̆Ψ)2 + µ|d/Ψ|2 + ς δ̊∗|d/Ψ|2 (11.6.1)

+
1√

T(Boot) − t
µ|d/Ψ|2.

Proof. See Sect. 8.2 for some comments on the analysis. All terms except (T )P(3)[Ψ] are
easily seen to be . the sum of the terms on the first line of RHS (11.6.1), thanks to the L∞

estimates of Props. 8.10 and 9.2. The quantities ς and δ̊∗ enter into the analysis because we
bound (T )P(4)[Ψ] . |LΨ||d/Ψ| ≤ ς−1̊δ−1

∗ (LΨ)2+ς δ̊∗|d/Ψ|2. Similar remarks apply to (T )P(5)[Ψ].
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To bound the term (T )P(3)[Ψ], we also need to use the estimates (10.2.1) and (10.2.3), which
allow us to bound the first two terms in braces on RHS (3.1.14c). Note that since no absolute

value is taken on LHS (11.6.1), we are free to replace the factor (X̆µ)/µ from RHS (3.1.14c)

with the factor [X̆µ]+/µ bounded in (10.2.3). �

11.7. Pointwise estimates for the partially modified quantities. Recall that the par-

tially modified quantity (Y N−1)X̃ verifies the transport equation (6.2.8). In this section, we

use the transport equation to derive pointwise estimates for (Y N−1)X̃ and its L derivative.

Lemma 11.12 (Pointwise estimates for the partially modified quantities). Assume

that 1 ≤ N ≤ 17 and let (Y N−1)X̃ be the partially modified quantity defined by (6.2.2a). Under
the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assumptions of
Sect. 7.7, the following pointwise estimates hold on MT(Boot),U0:∣∣∣L(Y N−1)X̃

∣∣∣ ≤ 1

2
|GLL|

∣∣∆/ Y N−1Ψ
∣∣+ Cε

∣∣P≤N+1Ψ
∣∣+ Cε

∣∣P≤Nγ
∣∣ , (11.7.1a)∣∣∣(Y N−1)X̃

∣∣∣ (t, u, ϑ) ≤
∣∣∣(Y N−1)X̃

∣∣∣ (0, u, ϑ) +
1

2
|GLL| (t, u, ϑ)

∫ t

t′=0

∣∣∆/ Y N−1Ψ
∣∣ (t′, u, ϑ) dt′

(11.7.1b)

+ Cε

∫ t

t′=0

{∣∣P≤N+1Ψ
∣∣+
∣∣P≤Nγ

∣∣} (t′, u, ϑ) dt′.

Proof. To prove (11.7.1a), we must bound the terms on RHS (6.2.8), where Y N−1 is in the
role of PN−1. Clearly the first term on RHS (11.7.1a) arises from the first term on RHS
(6.2.8). To bound the terms on RHS (6.2.9), we simply quote (11.5.1e).

To derive (11.7.1b), we integrate (11.7.1a) along the integral curves of L. The only
subtle point is that we bound the time integral of the first term on RHS (11.7.1a) as

follows by using (9.3.4) with M = 0 and s = t′:
∫ t
t′=0

{
|GLL|

∣∣∆/ Y N−1Ψ
∣∣} (t′, u, ϑ) dt′ ≤

|GLL| (t, u, ϑ)
∫ t
t′=0

∣∣∆/ Y N−1Ψ
∣∣ (t′, u, ϑ) dt′ + Cε

∫ t
t′=0

∣∣P≤N+1Ψ
∣∣ (t′, u, ϑ) dt′. �

12. The fundamental L2−controlling quantities

In this section, we define the controlling quantities that we use in our L2 analysis of
solutions and exhibit their coercivity.

Definition 12.1 (The main coercive quantities used for controlling the solution
and its derivatives in L2). In terms of the energy-flux quantities of Def. 3.3, we define

QN(t, u) := max
|~I|=N

sup
(t′,u′)∈[0,t]×[0,u]

{
E[P

~IΨ](t′, u′) + F[P
~IΨ](t′, u′)

}
, (12.0.1a)

Q[1,N ](t, u) := max
1≤M≤N

QM(t, u). (12.0.1b)

We use the following coercive spacetime integrals to control non−µ−weighted error inte-
grals involving geometric torus derivatives.
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Definition 12.2 (Key coercive spacetime integrals). We associate the following inte-
grals to Ψ, where [Lµ]− = |Lµ| when Lµ < 0 and [Lµ]− = 0 when Lµ ≥ 0:

K[Ψ](t, u) :=
1

2

∫
Mt,u

[Lµ]−|d/Ψ|2 d$, (12.0.2a)

KN(t, u) := max
|~I|=N

K[P
~IΨ](t, u), (12.0.2b)

K[1,N ](t, u) := max
1≤M≤N

KM(t, u). (12.0.2c)

Remark 12.1 (We derive energy estimates only for the P−commuted wave equa-
tion with P ∈ P). We stress that definitions (12.0.1b) and (12.0.2c) provide L2−type
quantities that correspond to commuting the wave equation only with the elements of the
set P, which are Pu−tangent. As we described in Sect. 1.4.4, we rely on the special null
structure of the equations and the special properties of the vectorfields in P to close our
energy estimates without deriving energy estimates for the X̆−commuted wave equation.

In the next lemma, we quantify the coercive nature of the spacetime integrals from
Def. 12.2.

Lemma 12.1 (Strength of the coercive spacetime integral). Under the data-size and
bootstrap assumptions of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the fol-
lowing lower bound holds for (t, u) ∈ [0, T(Boot))× [0, U0]:

K[Ψ](t, u) ≥ 1

8
δ̊∗

∫
Mt,u

1{µ≤1/4} |d/Ψ|2 d$ (12.0.3)

Proof. The lemma follows easily from definition (12.0.2a) and the estimate (10.2.2). �

In the next lemma, we quantify the coercive nature of the controlling quantities from
Def. 12.1.

Remark 12.2. The sharp constants 1 and 1
2

in front the quantities
∥∥∥X̆P [1,N ]Ψ

∥∥∥2

L2(Σut )
and

1
2

∥∥√µd/P [1,N ]Ψ
∥∥2

L2(Σut )
in the estimate (12.0.4) influence the blow-up rate of our top-order

energy estimates. In turn, this affects the number of derivatives that we need to close our
estimates.

Lemma 12.2 (The coercivity of Q[1,N ]). Let 1 ≤ M ≤ N ≤ 18, and let PM be an
M th−order Pu-tangent vectorfield operator. Under the assumptions of Lemma 12.1, the
following lower bounds hold for (t, u) ∈ [0, T(Boot))× [0, U0]:

Q[1,N ](t, u) ≥ max
{1

2

∥∥√µLPMΨ
∥∥2

L2(Σut )
,
∥∥∥X̆PMΨ

∥∥∥2

L2(Σut )
,

1

2

∥∥√µd/PMΨ
∥∥2

L2(Σut )
,

(12.0.4)

C−1
∥∥PMΨ

∥∥2

L2(Σut )
,
∥∥LPMΨ

∥∥2

L2(Ptu)
,
∥∥√µd/PMΨ

∥∥2

L2(Ptu)
,

C−1
∥∥PMΨ

∥∥2

L2(`t,u)

}
.
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Moreover,

‖Ψ‖L2(Σut ) ≤ Cε̊+ CQ1/2
1 (t, u), (12.0.5a)∥∥∥X̆Ψ

∥∥∥
L2(Σut )

≤ C
∥∥∥X̆Ψ

∥∥∥
L2(Σu0 )

+ Cε̊+ CQ1/2
1 (t, u). (12.0.5b)

Proof. We first prove (12.0.4). We prove the estimates for
∥∥PMΨ

∥∥2

L2(Σut )
and

∥∥PMΨ
∥∥2

L2(`t,u)

in detail; the other estimates in (12.0.4) follow easily from Lemma 3.4 and we omit those

details. To derive the estimate (12.0.4) for
∥∥PMΨ

∥∥2

L2(Σt,u)
and

∥∥PMΨ
∥∥2

L2(`t,u)
, we first note

that the estimates for the former quantities follow easily from integrating the estimates for
the latter quantities with respect to u and using that the solution is trivial when u = 0.

Hence, it suffices to prove the estimates for
∥∥PMΨ

∥∥2

L2(`t,u)
, and for this, we rely on the

identity (3.1.19b). Using (8.4.1c) and the L∞ estimates of Prop. 8.10, we bound the factor

(1/2)trg/
(X̆)π/ in (3.1.19b) as follows: (1/2)

∣∣∣trg/(X̆)π/
∣∣∣ = |L/X̆g/| . 1. Using the previous estimate,

(3.1.19b) with f = (PMΨ)2, Young’s inequality, and the fact that the solution is trivial when
u = 0, we deduce that∥∥PMΨ

∥∥2

`t,u
≤
∫ u

u′=0

∥∥∥X̆PMΨ
∥∥∥2

`t,u′
+ C

∥∥PMΨ
∥∥2

`t,u′
du′. (12.0.6)

From (12.0.6) and Gronwall’s inequality, we find that∥∥PMΨ
∥∥2

`t,u
≤ Cecu

∫ u

u′=0

∥∥∥X̆PMΨ
∥∥∥2

`t,u′
du′ = Cecu

∥∥∥X̆PMΨ
∥∥∥2

Σut

≤ C
∥∥∥X̆PMΨ

∥∥∥2

Σut

.

(12.0.7)

The desired bound for
∥∥PMΨ

∥∥2

`t,u
now follows from (12.0.7) and the already proven estimate

(12.0.4) for
∥∥∥X̆PMΨ

∥∥∥2

Σut

.

To derive (12.0.5b), we use (14.2.2) with f = LΨ and F (t, u, ϑ) = Ψ(t, u, ϑ) − Ψ̊(u, ϑ),

where Ψ̊(u, ϑ) = Ψ(0, u, ϑ). Also using the data bound
∥∥∥Ψ̊
∥∥∥
L∞(Σu0 )

≤ Cε̊ (see (7.3.1)), we

find that ‖Ψ‖L2(Σut ) ≤ Cε̊ ‖1‖L2(Σut ) + C

∫ t

s=0

‖LΨ‖Σus
ds. The desired estimate now follows

easily from this inequality, (13.2.4), and the estimate (12.0.4) for ‖LΨ‖Σus
.

To prove (12.0.5b), we first use the commutator estimate (8.5.1a) and the L∞ estimates

of Prop. 8.10 to deduce that LX̆Ψ = X̆LΨ + O(P≤1Ψ). Taking the norm ‖·‖L2(Σut ) of

this inequality, we find that
∥∥∥LX̆Ψ

∥∥∥
L2(Σut )

≤
∥∥∥X̆LΨ

∥∥∥
L2(Σut )

+ C
∥∥P≤1Ψ

∥∥
L2(Σut )

. We have

already bounded all terms on the RHS of this inequality by . ε̊ + CQ1/2
1 (t, u). Hence,

much like in the previous paragraph, the desired estimate (12.0.5b) follows from (14.2.2)

with F (t, u, ϑ) = X̆Ψ(t, u, ϑ) − X̆Ψ(0, u, ϑ) and f(t, u, ϑ) = LX̆Ψ(t, u, ϑ) and the estimate
(13.2.2), which ensures that the norms ‖·‖L2(Σut ) and ‖·‖L2(Σu0 ) are uniformly comparable when

applied to the t−independent function X̆Ψ(0, u, ϑ).
�
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13. Sobolev embedding and estimates for the change of variables map

In this section, we provide some simple Sobolev embedding estimates adapted to the `t,u.
We use them in the proof of our main theorem, after deriving energy estimates, in order to
recover the fundamental L∞ bootstrap assumptions (BAΨ) for Ψ. We also derive a basic
regularity estimate for the change of variables map Υ from Def. 2.20.

13.1. Estimates for some `t,u−tangent vectorfields. We start with the following pre-
liminary lemma.

Lemma 13.1 (Comparison of Y , Ξ, and Θ). Recall that Y is the commutator vectorfield
(2.8.2) and that Θ is the geometric torus coordinate partial derivative vectorfield. There
exists a scalar function υ such that

Y = υΘ. (13.1.1)

Moreover, under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the small-
ness assumptions of Sect. 7.7, the following pointwise estimates hold on MT(Boot),U0:

|υ− 1| . ε, |Lυ| , |Y υ| . ε,
∣∣∣X̆υ∣∣∣ . 1. (13.1.2)

Similarly, the following estimate holds for the scalar-valued function ξ from (2.4.8):∣∣Z ≤1ξ
∣∣ . 1. (13.1.3)

Proof. The existence of υ is a trivial consequence of the fact that Y is `t,u−tangent.
To prove (13.1.2), we first note the data estimates ‖υ− 1‖L∞(`0,u) , ‖Y υ‖L∞(`0,u) . ε and∥∥∥X̆υ∥∥∥

L∞(`0,u)
. 1. These data estimates are a simple consequence of the fact that Θ = ∂2

when t = 0, the identities (2.4.11), (2.8.6a), and (2.8.7), the data assumptions (7.3.1), and
Lemma 7.3. A similar argument that also relies on the last identity of (7.3.5) yields that

‖ξ‖L∞(`0,u) , ‖Y ξ‖L∞(`0,u) . ε and
∥∥∥X̆ξ∥∥∥

L∞(`0,u)
. 1.

See Sect. 8.2 for some comments on the analysis. Next, we use (2.4.11), (2.8.6a), (2.8.7),
(2.13.1a), (2.15.4b), and Lemma 2.19 to deduce that υ satisfies the evolution equation

L lnυ =
(Y )π/L · Y
|Y |2

= f(γ, g/−1, d/x1, d/x2)Pγ. (13.1.4)

In deriving (13.1.4), we used the identities L/LΘ = 0, L/LY = [L, Y ] = (Y )π/#
L and L/Y g/ = (Y )π/

(see Lemma 2.9). Hence, from Lemmas 8.4 and 8.5 and the L∞ estimates of Prop. 8.10, we
deduce |L lnυ| . ε. Integrating along the integral curves of L as in (8.6.11) and using the
data estimates and the previous estimate, we conclude the desired estimates (13.1.2) for υ
and Lυ.

To derive the estimate for Y υ, we commute (13.1.4) with Y to obtain

LY lnυ = (Y )π/#
L · d/ lnυ+ Y

{
f(γ, g/−1, d/x1, d/x2)Pγ

}
(13.1.5)

= f(γ, g/−1, d/x1, d/x2)(Pγ)d/ lnυ+ Y
{

f(γ, g/−1, d/x1, d/x2)Pγ
}
.

Using the same estimates as before, we deduce from (13.1.5) that |LY lnυ| . ε |Y lnυ|+ ε.
Hence, integrating along the integral curves of L as before and using the data estimates
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and Gronwall’s inequality, we conclude that |Y lnυ| . ε. Combining this estimate with
υ = 1 +O(ε), we conclude the desired estimate (13.1.2) for Y υ.

To derive the estimate for X̆υ, we commute (13.1.4) with X̆ and use above reasoning as
well as the formula (2.15.2b) to obtain

LX̆ lnυ = (X̆)π/#
L · d/ lnυ+ X̆

{
f(γ, g/−1, d/x1, d/x2)Pγ

}
(13.1.6)

= f(Z ≤1γ,P≤1γ, g/−1, d/x1, d/x2)d/ lnυ+ X̆
{

f(γ, g/−1, d/x1, d/x2)Pγ
}
.

Using the same estimates as before and the already proven estimates for υ and Y υ (which

imply that |d/ lnυ| . ε), we deduce from (13.1.6)
∣∣∣LX̆ lnυ

∣∣∣ . ε
∣∣∣X̆ lnυ

∣∣∣ + ε. Hence, inte-

grating along the integral curves of L as before and using the data estimates and Gronwall’s

inequality, we conclude that
∣∣∣X̆ lnυ

∣∣∣ . 1. Combining this estimate with υ = 1 + O(ε), we

conclude the desired estimate (13.1.2) for X̆υ.

Next, we use (2.4.8), (2.9.2), and the fact that [L, ∂
∂u

] = 0 to deduce that L/LΞ = −L/LX̆ =

−(X̆)π/L. Combining this identity with (2.15.2b) and (13.1.1) and arguing as in the previous
paragraph, we derive the evolution equation

Lξ = − 1

g(Θ,Θ)
(X̆)π/L ·Θ =

1

υ|Y |2
(X̆)π/L · Y =

1

υ
f(Z ≤1γ,P≤1γ, g/−1, d/x1, d/x2). (13.1.7)

Using the same estimates as in the previous paragraph and (13.1.2), we find that |Lξ| . 1
as desired. Moreover, integrating along the integral curves of L as before and using the
data estimates, we conclude that |ξ| . 1 as desired. It remains for us to derive the desired

estimates for Y ξ and X̆ξ. To this end, we commute (13.1.7) with Y and X̆ and use the same
arguments as in the previous paragraph as well as the L∞ estimates of Prop. 9.2 and (13.1.2)

to deduce that |LY ξ| ,
∣∣∣LX̆ξ∣∣∣ . 1. Integrating along the integral curves of L as before and

using the data estimates, we conclude the desired bounds |Y ξ| ,
∣∣∣X̆ξ∣∣∣ . 1.

�

13.2. Comparison estimates for length forms on `t,u. Before proving our Sobolev em-
bedding result, we first establish a comparison result for the length forms dλg/ and dϑ on `t,u.
We start with a preliminary lemma in which we derive simple pointwise estimates for the
metric component υ defined in (2.7.2).

Lemma 13.2 (Pointwise estimates for υ). Let υ be the metric component from Def. 2.19.
Under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assump-
tions of Sect. 7.7, the following estimate holds on MT(Boot),U0:

υ = 1 +O(ε). (13.2.1)

Proof. From (2.13.1c) and the estimate (8.6.7), we deduce that L ln υ = O(ε). Integrating
the previous estimate along the integral curves of L as in (8.6.11), we find that ln υ(t, u, ϑ) =
ln υ(0, u, ϑ) +O(ε). To complete the proof, we need only to show that υ(0, u, ϑ) = 1 +O(ε).
To this end, we note that by construction of the geometric coordinates, at t = 0 we have
u = 1−x1 and ϑ = x2, which implies that Θ = ∂2. Therefore, υ2|t=0 = g(Θ,Θ)|t=0 = g22|t=0.
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Using (2.2.1)-(2.2.2) and the bootstrap assumptions (BAΨ), we conclude that g22 = 1 +
O(Ψ) = 1 +O(ε), from which the desired estimate υ(0, u, ϑ) = 1 +O(ε) easily follows. �

Lemma 13.3 (Comparison of the forms dλg/ and dϑ). Let p = p(ϑ) be a non-negative
function of ϑ. Under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the small-
ness assumptions of Sect. 7.7, the following pointwise estimates hold for (t, u) ∈ [0, T(Boot))×
[0, U0]:

(1− Cε)
∫
ϑ∈T

p(ϑ)dϑ ≤
∫
`t,u

p(ϑ)dλg/(t,u,ϑ) ≤ (1 + Cε)

∫
ϑ∈T

p(ϑ)dϑ, (13.2.2)

where dϑ denotes the standard integration measure on T.
Furthermore, let p = p(u′, ϑ) be a non-negative function of (u′, ϑ) ∈ [0, u] × T that does

not depend on t. Then for s, t ∈ [0, T(Boot)) and u ∈ [0, U0], we have:

(1− Cε)
∫

Σus

p d$ ≤
∫

Σut

p d$ ≤ (1 + Cε)

∫
Σus

p d$. (13.2.3)

Finally, we have

‖1‖L2(Σut ) ≤ C. (13.2.4)

Proof. From (3.1.6) and inequality (13.2.1), we deduce that dλg/ = (1+O(ε)) dϑ, which yields
(13.2.2). (13.2.3) then follows as a simple consequence of (13.2.2) and the fact that along
Σu
t , we have d$ = dλg/(t,u,ϑ)du

′. Finally, to derive (13.2.4), we use (13.2.2) and (13.2.3) to

deduce that ‖1‖2
L2(Σut ) ≤ C

∫ u
u′=0

∫
ϑ∈T 1 dϑ du′ ≤ C as desired. �

13.3. Sobolev embedding along `t,u. We now state and prove our main Sobolev embed-
ding result of interest.

Lemma 13.4 (Sobolev embedding along `t,u). Under the data-size and bootstrap assump-
tions of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the following estimate holds
for scalar-valued functions f defined on `t,u for (t, u) ∈ [0, T(Boot))× [0, U0]:

‖f‖L∞(`t,u) ≤ C
∥∥Y ≤1f

∥∥
L2(`t,u)

. (13.3.1)

Proof. Standard Sobolev embedding yields that ‖f‖L∞(T) ≤ C
∥∥Θ≤1f

∥∥
L2(T)

, where the inte-

gration measure defining ‖ · ‖L2(T) is dϑ. Thus, in view of Lemma 13.3, the desired estimate
(13.3.1) follows from (13.1.1)-(13.1.2).

�

Corollary 13.5 (L∞ bounds for Ψ in terms of the fundamental controlling quan-
tities). Under the assumptions of Lemma 13.4, the following estimates hold for (t, u) ∈
[0, T(Boot))× [0, U0]: ∥∥P≤11Ψ

∥∥
L∞(Σut )

. Q1/2
[1,12](t, u) + ε̊. (13.3.2)

Proof. The bound
∥∥P [1,11]Ψ

∥∥
L∞(Σut )

. Q1/2
[1,12](t, u) follows from Lemma 12.2 and Lemma 13.4.

In particular, we have ‖LΨ‖L∞(Σut ) . Q1/2
[1,12](t, u). Integrating along the integral curves of L as

in (8.6.11) and using this bound and the small-data assumption ‖Ψ‖L∞(Σu0 ) ≤ ε̊ (see (7.3.1)),

we deduce that ‖Ψ‖L∞(Σut ) ≤ CQ1/2
[1,12](t, u) + Cε̊. We have thus proved the corollary. �
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Lemma 13.6 (Basic estimates for the rectangular components Θi and Ξi). Under
the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assumptions of
Sect. 7.7, the following estimates hold on MT(Boot),U0 (for i = 1, 2):∥∥Z ≤1Θi

∥∥
L∞(Σut )

. 1, (13.3.3)∥∥Z ≤1Ξi
∥∥
L∞(Σut )

. 1, (13.3.4)

where Ξ is the `t,u−tangent vectorfield from (2.4.8).

Proof. The estimate (13.3.3) follows from (13.1.1), (13.1.2), and the bounds
∥∥Z ≤1Y i

∥∥
L∞(Σut )

.

1 +
∥∥Z ≤1Y i

(Small)

∥∥
L∞(Σut )

. 1, which follow from (2.8.5), (8.3.3c), and the L∞ estimates of

Prop. 8.10. Similarly, to prove (13.3.4), we use (2.4.8) to express Ξi = ξΘi. The desired
bounds then follow from (13.1.3) and (13.3.3).

�

Lemma 13.7 (Uniform C1,1 bounds for Υ). Under the data-size and bootstrap assump-
tions of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the change of variables
map Υ from Def. 2.20 is a C1,1 function of the geometric coordinates51 that verifies the
following estimates on MT(Boot),U0:

∑
i1+i2+i3≤2

2∑
α=0

∥∥∥∥∥
(
∂

∂t

)i1 ( ∂

∂u

)i2 ( ∂

∂ϑ

)i3
Υα

∥∥∥∥∥
L∞(Σut )

≤ C, (13.3.5a)

∑
i1+i2+i3≤1

2∑
α=0

∣∣∣∣∣
(
∂

∂t

)i1 ( ∂

∂u

)i2 ( ∂

∂ϑ

)i3
Υα(t2, u2, ϑ2)−

(
∂

∂t

)i1 ( ∂

∂u

)i2 ( ∂

∂ϑ

)i3
Υα(t1, u1, ϑ1)

∣∣∣∣∣
(13.3.5b)

≤ C {|t2 − t1|+ |u2 − u1|+ |ϑ2 − ϑ1|} .

On RHS (13.3.5b), |ϑ2 − ϑ1| denotes the flat distance between ϑ2 and ϑ1 on T.

Proof. Recall that Υα = xα (we view these quantities as a function of the geometric co-
ordinates). It is a standard embedding result relative to geometric coordinates (Morrey’s
inequality) that (13.3.5b) follows once we prove (13.3.5a). Clearly t = x0 is uniformly
bounded in the norm ‖ · ‖L∞(Σut ), while the xi were bounded in (8.3.2a). The first derivatives
of the xα are the terms on RHS (2.7.8). They were bounded in the norm ‖ · ‖L∞(Σut ) in

Lemmas 8.4 and 13.6. To bound the second derivatives of the xα, we first note that ∂
∂t

= L,
∂
∂ϑ

= Θ = (1+O(ε))Y (see Lemma 13.1), and ∂
∂u

= X̆+O(1)Y (see (2.4.8) and Lemma 13.6).

Hence, it suffices to bound the norm ‖ · ‖L∞(Σut ) of the L, Y , and X̆ derivatives of the scalar
functions on RHS (2.7.8). The desired bounds were derived in Lemmas 8.4 and 13.6. We
have thus proved (13.3.5a). �

51The notation “C1,1” means that the up-to-first order geometric coordinate partial derivatives of the Υα

are Lipschitz continuous.
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14. Energy estimates

This section contains the most important technical estimates in the article: a priori esti-
mates for the controlling quantities Q[1,N ] from Def. 12.1 and the coercive spacetime integrals
K[1,N ] from Def. 12.2. The main result is Prop. 14.1. To obtain the proposition, we use the
pointwise estimates of Sect. 11 to establish suitable estimates for the error integrals on RHS
(3.1.12), where PNΨ is in the role of Ψ and the factor F in (3.1.12) is the inhomogeneous
term in the commuted wave equation �g(Ψ)(P

NΨ) = F. We have divided the error integrals
into various classes that we separately treat in the ensuing sections.

14.1. Statement of the main a priori energy estimates. We start by stating the propo-
sition featuring our main a priori energy estimates, the proof of which is located in Sect. 14.9.

Proposition 14.1 (The main a priori energy estimates). Consider the fundamental
L2−controlling quantities {Q[1,N ](t, u)}N=1,··· ,18 from Def. 12.1. There exists a constant C >
0 such that under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness
assumptions of Sect. 7.7, the following estimates hold for (t, u) ∈ [0, T(Boot))× [0, U0]:

Q1/2
[1,13+M ](t, u) + K1/2

[1,13+M ](t, u) ≤ Cε̊µ−(M+.9)
? (t, u), (0 ≤M ≤ 5), (14.1.1a)

Q1/2
[1,1+M ](t, u) + K1/2

[1,1+M ](t, u) ≤ Cε̊, (0 ≤M ≤ 11). (14.1.1b)

We prove Prop. 14.1 through a long Gronwall argument that relies on the sharp estimates
for µ derived in Sect. 10 as well as the energy inequalities provided by the following result,
Prop. 14.2. The proof of the proposition is located in Sect. 14.8. See Remark 11.1 regarding
the boxed constants on RHS (14.1.2a).

Proposition 14.2 (Inequalities derived from energy identities). Assume that 1 ≤
N ≤ 18 and ς > 0. There exists a constant C > 0, independent of ς, such that under
the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assumptions of
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Sect. 7.7, the following pointwise estimates hold for (t, u) ∈ [0, T(Boot))× [0, U0]:

Q[1,N ](t, u) + K[1,N ](t, u) (14.1.2a)

≤ C(1 + ς−1)̊ε2µ−3/2
? (t, u)

+ 6

∫ t

t′=0

‖[Lµ]−‖L∞(Σu
t′ )

µ?(t′, u)
Q[1,N ](t

′, u) dt′

+ 8.1

∫ t

t′=0

‖[Lµ]−‖L∞(Σu
t′ )

µ?(t′, u)
Q1/2

[1,N ](t
′, u)

∫ t′

s=0

‖[Lµ]−‖L∞(Σus )

µ?(s, u)
Q1/2

[1,N ](s, u) ds dt′

+ 2
1

µ
1/2
? (t, u)

Q1/2
[1,N ](t, u) ‖Lµ‖L∞((−)Σut;t)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′

+ Cε

∫ t

t′=0

1

µ?(t′, u)
Q[1,N ](t

′, u) dt′

+ Cε
1

µ
1/2
? (t, u)

Q1/2
[1,N ](t, u)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′

+ CQ1/2
[1,N ](t, u)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′

+ C

∫ t

t′=0

1√
T(Boot) − t′

Q[1,N ](t
′, u) dt′

+ C(1 + ς−1)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q[1,N ](t
′, u) dt′

+ C

∫ t

t′=0

1

µ?(t′, u)
Q1/2

[1,N ](t
′, u)

∫ t′

s=0

1

µ
1/2
? (s, u)

Q1/2
[1,N ](s, u) ds dt′

+ C

∫ t

t′=0

1

µ?(t′, u)
Q1/2

[1,N ](t
′, u)

∫ t′

s=0

1

µ?(s, u)

∫ s

s′=0

1

µ
1/2
? (s′, u)

Q1/2
[1,N ](s

′, u) ds′ ds dt′

+ C(1 + ς−1)

∫ u

u′=0

Q[1,N ](t, u
′) du′

+ CεQ[1,N ](t, u) + CςQ[1,N ](t, u) + CςK[1,N ](t, u)

+ C

∫ t

t′=0

1

µ
3/2
? (t′, u)

Q[1,N−1](t
′, u) dt′,
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Q[1,N−1](t, u) + K[1,N−1](t, u) (14.1.2b)

≤ Cε̊2

+ C

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N−1](t

′, u)

∫ t′

s=0

1

µ
1/2
? (s, u)

Q1/2
[1,N ](s, u) ds dt′

+ C

∫ t

t′=0

1√
T(Boot) − t′

Q[1,N−1](t
′, u) dt′

+ C(1 + ς−1)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q[1,N−1](t
′, u) dt′

+ Cε̊

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N−1](t

′, u) dt′

+ C(1 + ς−1)

∫ u

u′=0

Q[1,N−1](t, u
′) du′

+ CςK[1,N−1](t, u).

Remark 14.1 (Less degeneracy at the cost of one derivative). Note that the estimate
(14.1.2b) does not involve any of the difficult “boxed-constant” error integrals appearing on

RHS (14.1.2a). The price paid is that the term Q1/2
[1,N ] on RHS (14.1.2b) corresponds to

one derivative above the level of LHS (14.1.2b) (that is, the estimate (14.1.2b) loses one
derivative).

14.2. Preliminary L2 estimates for the eikonal function quantities that do not
require modified quantities. In this section, we provide preliminary L2 estimates for
some error term factors. The main result is Lemma 14.4, in which we bound the below-top-
order derivatives of µ, Li(Small), and trg/χ in terms of the fundamental controlling quantities
of Def. 12.1. These estimates are not difficult to obtain because we allow them to lose one
derivative relative to Ψ. We also derive estimates for the top-order derivatives involving at
least one L differentiation. These estimates are also not difficult because to obtain them, we
do not need to rely on the modified quantities of Sect. 6.

To derive the desired estimates, we will integrate the transport equations of Lemma 2.12
and their higher-order analogs with respect to t at fixed (u, ϑ) and apply Lemma 14.3.

Lemma 14.3 (Estimate for the norm ‖ · ‖L2(Σut ) of time-integrated functions). Let f
be a scalar function on MT(Boot),U0 and let

F (t, u, ϑ) :=

∫ t

t′=0

f(t′, u, ϑ) dt′. (14.2.1)

Under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assump-
tions of Sect. 7.7, the following estimate holds for (t, u) ∈ [0, T(Boot))× [0, U0]:

‖F‖L2(Σut ) ≤ (1 + Cε)

∫ t

t′=0

‖f‖L2(Σu
t′ )
dt′. (14.2.2)



128
Stable Shock Formation

Proof. Recall that ‖F‖L2(Σut ) :=
{∫ u

u′=0

∫
`t,u′

F 2(t, u′, ϑ) dλg/ du
′
}1/2

. Using the estimate (13.2.2),

we may replace dλg/ in the previous formula with the standard integration measure dϑ up to
an overall multiplicative error factor of 1 +O(ε). The desired estimate (14.2.2) follows from
this estimate and from applying Minkowski’s inequality for integrals to equation (14.2.1).

�

We now prove the main result of Sect. 14.2.

Lemma 14.4 (L2 bounds for the eikonal function quantities that do not require
modified quantities). Assume that N ≤ 18. Under the data-size and bootstrap assumptions
of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the following L2 estimates hold
for (t, u) ∈ [0, T(Boot))× [0, U0] (see Sect. 7.2 regarding the vectorfield operator notation):

∥∥LP [1,N ]
∗ µ

∥∥
L2(Σut )

,
∥∥LP≤NLi(Small)

∥∥
L2(Σut )

,
∥∥LP≤N−1trg/χ

∥∥
L2(Σut )

. ε̊+
Q1/2

[1,N ](t, u)

µ
1/2
? (t, u)

,

(14.2.3a)∥∥LZ ≤N ;1Li(Small)
∥∥
L2(Σut )

,
∥∥LZ ≤N−1;1trg/χ

∥∥
L2(Σut )

. ε̊+
Q1/2

[1,N ](t, u)

µ
1/2
? (t, u)

,

(14.2.3b)∥∥P [1,N ]
∗ µ

∥∥
L2(Σut )

,
∥∥P≤NLi(Small)

∥∥
L2(Σut )

,
∥∥P≤N−1trg/χ

∥∥
L2(Σut )

. ε̊+

∫ t

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds,

(14.2.3c)∥∥Z ≤N ;1
∗ Li(Small)

∥∥
L2(Σut )

,
∥∥Z ≤N−1;1trg/χ

∥∥
L2(Σut )

. ε̊+

∫ t

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds.

(14.2.3d)

Proof. See Sect. 8.2 for some comments on the analysis. We set

qN(t) :=
2∑

a=1

∥∥P≤NLa(Small)
∥∥
L2(Σut )

+
∥∥P≤N−1trg/χ

∥∥
L2(Σut )

. (14.2.4)

From (8.6.2a), Lemma 12.2, (13.2.3), and Lemma 14.3, we deduce that

qN(t) ≤ CqN(0) + Cε

∫ t

t′=0

qN(t′) dt′ + C

∫ t

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds. (14.2.5)

Next, we note that qN(0) . ε̊, an estimate that follows from the estimate (8.4.1a) for trg/χ
and Lemma 7.3. We now apply Gronwall’s inequality to (14.2.5) to conclude that qN(t) .
RHS (14.2.3c) as desired. We have thus proved the desired estimates for P≤NLi(Small) and

P≤N−1trg/χ.
Next, we consider the first term on RHS (8.6.1b). We use the commutation estimate (8.5.6)

with f = Ψ, the L∞ estimates of Prop. 8.10, and Cor. 8.11 to commute the factor of X̆ in
the operator Z N+1;1 to the front, which allows us to write |Z ≤N+1;1

∗ Ψ| . |X̆P [1,N ]Ψ| +
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|P≤N+1Ψ| + ε|Z ≤N ;1
∗ γ| + ε|P [1,N ]

∗ γ|. Thanks to the previous estimate, we can use an
argument similar to the one that we used to derive (14.2.5) in order to deduce∥∥P [1,N ]

∗ µ
∥∥
L2(Σut )

≤
∥∥P [1,N ]

∗ µ
∥∥
L2(Σu0 )

+ Cε̊+ C

∫ t

t′=0

qN(t′) dt′ (14.2.6)

+ Cε

∫ t

t′=0

∥∥P [1,N ]
∗ µ

∥∥
L2(Σu

t′ )
dt′ + C

∫ t

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds.

We clarify that the term Cε̊ on RHS (14.2.6) comes from the first term on RHS (12.0.5a).

Moreover, Lemma 7.3 yields that
∥∥∥P [1,N ]

∗ µ
∥∥∥
L2(Σu0 )

. ε̊, while the estimates we have already

derived for P≤NLi(Small) imply that C

∫ t

t′=0

qN(t′) dt . ε̊+

∫ t

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds, which yields

the desired estimate.
To obtain the estimates (14.2.3a), we take the norm ‖·‖L2(Σut ) of the inequalities (8.6.1b)

and (8.6.2a) and argue as above using the already proven estimates (14.2.3c). In these

estimates, we encounter the integrals

∫ t

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds, which we bound by . Q1/2
[1,N ](t, u) ≤

µ
−1/2
? (t, u)Q1/2

[1,N ](t, u) with the help of inequality (10.3.6).

The proofs of (14.2.3b) and (14.2.3d) are similar and are based on inequality (8.6.2b) and
the already proven estimates (14.2.3c); we omit the details.

�

14.3. Estimates for the easiest error integrals. In this section, we derive estimates for
the simplest error integrals that appear in our energy estimates, that is, for the simplest
integrals on RHS (3.1.12).

We start with the following simple lemma, which shows that the fundamental controlling
quantities from Def. 12.1 are size O(̊ε2) at time 0.

Lemma 14.5 (The fundamental controlling quantities are initially small). Assume
that 1 ≤ N ≤ 18. Under the data-size assumptions of Sect. 7.4, the following estimates hold
for u ∈ [0, U0]:

QN(0, u) . ε̊2. (14.3.1)

Proof. From Def. 12.1, Lemma 3.4, and Lemma 7.3, we see that QN(0, u) .
∥∥Z ≤N+1;1
∗ Ψ

∥∥2

L2(Σu0 )
.

The estimate (14.3.1) now follows from the initial data assumptions (7.3.1). �

The next lemma provides control over the error integrals corresponding to the deformation
tensor of the multiplier vectorfield (3.1.4), that is, for the last integral on RHS (3.1.12). We
stress that one of these error integrals is coercive in the geometric torus derivatives and was
treated separately in Lemma 12.1.

Lemma 14.6 (Error integrals involving the deformation tensor of the multiplier
vectorfield). Assume that 1 ≤ N ≤ 18 and ς > 0. Let (T )P(i)[P

NΨ] be the quantities
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defined by (3.1.14a)-(3.1.14e) (with PNΨ in the role of Ψ). Under the data-size and boot-
strap assumptions of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the following
integral estimates hold for (t, u) ∈ [0, T(Boot))× [0, U0], where the implicit constants are inde-
pendent of ς (and without any absolute value taken on the left):

∫
Mt,u

5∑
i=1

(T )P(i)[P
NΨ] d$ .

∫ t

t′=0

1√
T(Boot) − t′

Q[1,N ](t
′, u) dt′ (14.3.2)

+ (1 + ς−1)

∫ t

t′=0

Q[1,N ](t
′, u) dt′

+ (1 + ς−1)

∫ u

u′=0

Q[1,N ](t, u
′) du′ + ςK[1,N ](t, u).

Proof. We integrate (11.6.1) (with PNΨ in the role of Ψ) over Mt,u and use Lemmas 12.1
and 12.2. �

The next lemma yields control over the simplest energy estimate error integrals generated
by the commutator terms. These terms appear in the first error integral on RHS (3.1.12),
where PNΨ is in the role of Ψ and F is the inhomogeneous term in the wave equation
�g(Ψ)(P

NΨ) = F.

Lemma 14.7 (L2 bounds for error integrals involving Harmless≤N terms). Assume
that N ≤ 18 and ς > 0. Recall that the terms Harmless≤N are defined in Def. 11.1. Under
the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assumptions of
Sect. 7.7, the following integral estimates hold for (t, u) ∈ [0, T(Boot)) × [0, U0], where the
implicit constants are independent of ς:∫

Mt,u

∣∣∣∣( (1 + µ)LP≤NΨ

X̆P≤NΨ

)∣∣∣∣ ∣∣Harmless≤N ∣∣ d$ (14.3.3a)

. (1 + ς−1)

∫ t

t′=0

Q[1,N ](t
′, u) dt′ + (1 + ς−1)

∫ u

u′=0

Q[1,N ](t, u
′) du′

+ ςK[1,N ](t, u) + ε̊2,∫
Mt,u

∣∣d/P≤NΨ
∣∣ ∣∣Harmless≤N ∣∣ d$ (14.3.3b)

.
∫ t

t′=0

Q[1,N ](t
′, u) dt′ +

∫ u

u′=0

Q[1,N ](t, u
′) du′ + K[1,N ](t, u) + ε̊2.

Proof. See Sect. 8.2 for some comments on the analysis. To prove (14.3.3a) and (14.3.3b),
we must estimate the spacetime integrals of various quadratic terms. We derive the desired
estimates for three representative quadratic terms. The remaining terms can be similarly
bounded and we omit those details. We first bound the integral of

∣∣LPNΨ
∣∣ ∣∣YP≤NΨ

∣∣.
Using spacetime Cauchy-Schwarz, Lemmas 12.1 and 12.2, and simple estimates of the form
ab . a2 + b2, and separately treating the regions {µ ≥ 1/4} and {µ < 1/4} when bounding
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the integral of
∣∣YP≤NΨ

∣∣2, we derive the desired estimate as follows:∫
Mt,u

∣∣LPNΨ
∣∣ ∣∣YP≤NΨ

∣∣ d$ (14.3.4)

.

{∫
Mt,u

∣∣LPNΨ
∣∣2 d$}1/2{∫

Mt,u

∣∣YP≤NΨ
∣∣2 d$}1/2

. (1 + ς−1)

∫ u

u′=0

∫
Pt
u′

∣∣LPNΨ
∣∣2 d$ du′

+

∫ u

u′=0

∫
Pt
u′

µ
∣∣d/P≤NΨ

∣∣2 d$ du′ + ς δ̊∗

∫
Mt,u

1{µ<1/4}
∣∣d/P≤NΨ

∣∣2 d$
. (1 + ς−1)

∫ u

u′=0

Q[1,N ](t, u
′) du′ + ςK[1,N ](t, u),

which is . RHS (14.3.3a) as desired.

As our second example, we bound the integral of
∣∣LPNΨ

∣∣ ∣∣∣P [1,N ]
∗ µ

∣∣∣. Using spacetime

Cauchy-Schwarz, Lemmas 12.1 and 12.2, inequalities (10.3.6) and (14.2.3c), simple estimates
of the form ab . a2 + b2, and the fact that Q[1,N ] is increasing in its arguments, we derive
the desired estimate as follows:∫

Mt,u

∣∣LPNΨ
∣∣ ∣∣P [1,N ]

∗ µ
∣∣ d$ (14.3.5)

.
∫ u

u′=0

∫
Pt
u′

∣∣LPNΨ
∣∣2 d$ du′ +

∫ t

t′=0

∫
Σu
t′

∣∣P [1,N ]
∗ µ

∣∣2 d$ dt′

.
∫ u

u′=0

Q[1,N ](t, u
′) du′ +

∫ t

t′=0

{∫ t′

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds

}2

+ ε̊2 dt′

.
∫ u

u′=0

Q[1,N ](t, u
′) du′ +

∫ t

t′=0

Q[1,N ](t
′, u) dt′ + ε̊2,

which is . RHS (14.3.3a) as desired.
As our final example, we bound the integral of the product

∣∣LPNΨ
∣∣ ∣∣Z N+1;1Ψ

∣∣. We first
recall the following estimate obtained in the second paragraph of the proof of Lemma 14.4:

|Z N+1;1Ψ| . |X̆P [1,N ]Ψ|+ |P≤N+1Ψ|+ ε|Z ≤N ;1
∗ γ|+ ε|P [1,N ]

∗ γ|. Thus, we must bound the
integral of the four corresponding products from the RHS of the previous inequality. To
bound the integral of the first product, we argue as in the proof of (14.3.4) to deduce that∫

Mt,u

∣∣LPNΨ
∣∣ ∣∣∣X̆P [1,N ]Ψ

∣∣∣ d$ (14.3.6)

.
∫ u

u′=0

∫
Pt
u′

∣∣LPNΨ
∣∣2 d$ du′ +

∫ t

t′=0

∫
Σu
t′

∣∣∣X̆P [1,N ]Ψ
∣∣∣2 d$ dt′

.
∫ u

u′=0

Q[1,N ](t, u
′) du′ +

∫ t

t′=0

Q[1,N ](t
′, u) dt′,
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which is . RHS (14.3.3a) as desired. Similar reasoning yields that the integral of the
second product |LPNΨ||P≤N+1Ψ| is . RHS (14.3.4) plus RHS (14.3.5) as desired. We
clarify that the factor ε̊2 is generated by the square of RHS (12.0.5a). Similar reasoning,
together with inequalities (14.2.3c) and (14.2.3d), yields that the integral of the third product

ε|LPNΨ||Z ≤N ;1
∗ γ| and the integral of the fourth product ε|LPNΨ||P [1,N ]

∗ γ| are . RHS
(14.3.4) plus RHS (14.3.5) as desired. We clarify that we have used the fact that Q[1,N ] is
increasing in its arguments and the estimate (10.3.6) to bound the time integrals on RHSs
(14.2.3c) and (14.2.3d) by . Q[1,N ](t, u), as we did in passing to the last line of (14.3.5).

�

14.4. L2 bounds for the difficult top-order error integrals in terms of Q[1,N ]. In the
next lemma, we estimate, in the norm ‖ · ‖L2(Σut ), the most difficult product that appears in
our energy estimates.

Lemma 14.8 (L2 bound for the most difficult product). There exists a constant C > 0
such that under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness
assumptions of Sect. 7.7, the following L2 estimate holds for the difficult product (X̆Ψ)Y Ntrg/χ
from Prop. 11.10 whenever (t, u) ∈ [0, T(Boot))× [0, U0]:∥∥∥(X̆Ψ)Y Ntrg/χ

∥∥∥
L2(Σut )

≤ 2
‖[Lµ]−‖L∞(Σut )

µ?(t, u)
Q1/2

[1,N ](t, u) (14.4.1)

+ 4.05
‖[Lµ]−‖L∞(Σut )

µ?(t, u)

∫ t

s=0

‖[Lµ]−‖L∞(Σus )

µ?(s, u)
Q1/2

[1,N ](s, u) ds

+ C
1

µ?(t, u)

∫ t

s′=0

1

µ?(s′, u)

∫ s′

s=0

1

µ
1/2
? (s, u)

Q1/2
[1,N ](s, u) ds ds′

+ C
1

µ
1/2
? (t, u)

Q1/2
[1,N ](t, u) + C

1

µ
3/2
? (t, u)

Q1/2
[1,N−1](t, u)

+ C
1

µ
3/2
? (t, u)

ε̊.

Furthermore, we have the following less precise estimate:∥∥µY Ntrg/χ
∥∥
L2(Σut )

. Q1/2
[1,N ](t, u) +

1

µ
1/2
? (t, u)

Q1/2
[1,N−1](t, u) + ε̊

{
lnµ−1

? (t, u) + 1
}

(14.4.2)

+

∫ t

s=0

1

µ?(s, u)
Q1/2

[1,N ](s, u) ds.

Proof. See Sect. 8.2 for some comments on the analysis. We first prove (14.4.1). We take
the norm ‖ · ‖L2(Σut ) of both sides of (11.5.14). Using (12.0.4), we see that the norm of
the first term on RHS (11.5.14) is ≤ the first term on RHS (14.4.1) as desired. Also using
Lemma 14.3, we see that the norm of the second term on RHS (11.5.14) is ≤ the second term
on RHS (14.4.1). We now explain why the norm ‖ · ‖L2(Σut ) of the term |Error| from (11.5.15)
is ≤ the sum of the terms on lines three to five of RHS (14.4.1). With the exception of the

bound for the first term
1

µ?(t, u)

∣∣∣(Y N )X
∣∣∣ (0, u, ϑ) on RHS (11.5.15), the desired bounds follow
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from the same estimates used above together with those of Lemma 14.4, inequalities (10.3.3)
and (10.3.6), the fact that Q[1,N ] is increasing in its arguments, and simple inequalities of

the form ab . a2 + b2. Finally, we must bound

∥∥∥∥ 1

µ?(t, ·)

∣∣∣(Y N )X
∣∣∣ (0, ·)∥∥∥∥

L2(Σut )

. We first use

(13.2.3) with s = 0 to deduce

∥∥∥∥ 1

µ?(t, ·)

∣∣∣(Y N )X
∣∣∣ (0, ·)∥∥∥∥

L2(Σut )

.
1

µ?(t, u)

∥∥∥(Y N−1)X̃
∥∥∥
L2(Σu0 )

. We

now use definition (6.2.2a), the simple inequality |G(Frame)| = |f(γ, d/x1, d/x2)| . 1 (which
follows from Lemmas 2.19 and 8.4 and the L∞ estimates of Prop. 8.10), the estimates of
Lemma 7.3, the estimate (8.4.1a), and the assumptions on the data to deduce the desired

bound
1

µ?(t, u)

∥∥∥(Y N )X
∥∥∥
L2(Σu0 )

.
1

µ?(t, u)
ε̊. We have thus proved (14.4.1).

The proof of (14.4.2) is based on inequality (11.5.16) and is similar but much simpler;
we omit the details, noting only that inequality (10.3.5) leads to the presence of the factor
lnµ−1

? (t, u) + 1. �

14.5. L2 bounds for less degenerate top-order error integrals in terms of Q[1,N ].
In the next lemma, we bound some top-order error integrals that appear in our energy
estimates. As in the proof of Lemma 14.8, we need to use the modified quantities to avoid
losing a derivative. However, the estimates of the lemma are much less degenerate than
those of Lemma 14.8 because of the availability of a helpful factor of µ in the integrands.

Lemma 14.9 (Bounds for less degenerate top-order error integrals). Assume that
N ≤ 18. Under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness
assumptions of Sect. 7.7, the following integral estimates hold for (t, u) ∈ [0, T(Boot))× [0, U0]:

∣∣∣∣∣
∫
Mt,u

ρ(X̆Y NΨ)(X̆Ψ)(d/#Ψ) · (µd/Y N−1trg/χ) d$

∣∣∣∣∣ (14.5.1a)

.
∫ t

t′=0

{
lnµ−1

? (t′, u) + 1
}2 Q[1,N ](t

′, u) dt′

+

∫ t

t′=0

1

µ?(t′, u)
Q[1,N−1](t

′, u) dt′ + ε̊2,∣∣∣∣∣
∫
Mt,u

(1 + 2µ)ρ(LY NΨ)(X̆Ψ)(d/#Ψ) · (µd/Y N−1trg/χ) d$

∣∣∣∣∣ (14.5.1b)

.
∫ t

t′=0

{
lnµ−1

? (t′, u) + 1
}2 Q[1,N ](t

′, u) dt′ +

∫ u

u′=0

Q[1,N ](t, u
′) du′

+

∫ t

t′=0

1

µ?(t′, u)
Q[1,N−1](t

′, u) dt′ + ε̊2.

Proof. See Sect. 8.2 for some comments on the analysis. To prove (14.5.1b), we use the fact
that ρ = f(γ)γ (see (2.16.2c)), the L∞ estimates of Prop. 8.10, Cauchy-Schwarz, and (12.0.4)
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to deduce

LHS (14.5.1b) .
∫
Mt,u

∣∣LY NΨ
∣∣2 d$ +

∫
Mt,u

∣∣µY Ntrg/χ
∣∣2 d$ (14.5.2)

.
∫ u

u′=0

∥∥LY NΨ
∥∥2

Pt
u′
du′ +

∫ t

t′=0

∥∥µY Ntrg/χ
∥∥2

Σu
t′
dt′

.
∫ u

u′=0

Q[1,N ](t, u
′) du′ +

∫ t

t′=0

∥∥µY Ntrg/χ
∥∥2

Σu
t′
dt′.

To complete the proof of (14.5.1b), we must handle the final integral on RHS (14.5.2). To
bound the integral by ≤ RHS (14.5.1b) we use inequality (14.4.2) (with t′ in place of t),
simple estimates of the form ab . a2 + b2, and we in addition use (10.3.5) and the fact that
Q[1,N ] is increasing in its arguments to bound the last integral on RHS (14.4.2) as follows:∫ t′

s=0

1

µ?(s, u)
Q1/2

[1,N ](s, u) ds .
{

lnµ−1
? (t′, u) + 1

}
Q1/2

[1,N ](t
′, u).

In carrying out this procedure, we encounter the following integral generated by the next-
to-last term on RHS (14.4.2):

ε̊2

∫ t

t′=0

{
lnµ−1

? (t′, u) + 1
}2

dt′.

Using (10.3.6), we deduce that the above term is . ε̊2 as desired. We have thus proved
(14.5.1b).

The proof of (14.5.1a) starts with the following analog of (14.5.2), which can proved in
the same way:

LHS (14.5.1a) .
∫ t

t′=0

∥∥∥X̆Y NΨ
∥∥∥2

Σu
t′

dt′ +

∫ t

t′=0

∥∥µY Ntrg/χ
∥∥2

Σu
t′
dt′.

The remaining details are similar to those given in the proof of (14.5.1b); we therefore omit
them. �

14.6. Error integrals requiring integration by parts with respect to L. In deriving
top-order energy estimates, we encounter the error integral

−
∫
Mt,u

(1 + 2µ)(LY NΨ)(X̆Ψ)Y Ntrg/χ d$.

It turns out that to suitably bound it, we must rely on the partially modified quantity
(Y N−1)X̃ defined in (6.2.2a), and we must also integrate by parts via the identity (3.1.22).
We derive the main estimate of interest for the above error integral in Lemma 14.12. Before
proving the lemma, we first establish some preliminary estimates for various error integrals
that arise from the integration by parts procedure. We bound the most difficult of these
integrals, which is a Σu

t boundary integral, in Lemma 14.10.
We start by deriving ‖·‖L2(Σut ) estimates for the second most difficult products that appear

in our energy estimates.
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Lemma 14.10 (A difficult hypersurface L2 estimate). Under the data-size and bootstrap
assumptions of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the following L2

estimate holds for (t, u) ∈ [0, T(Boot))× [0, U0]:∥∥∥∥ 1
√
µ

(X̆Ψ)L(Y N−1)X̃

∥∥∥∥
L2(Σut )

≤
√

2
‖[Lµ]−‖C0(Σut )

µ?(t, u)
Q1/2

[1,N ](t, u) (14.6.1a)

+ C
1

µ
1/2
? (t, u)

Q1/2
[1,N ](t, u) + Cε

1

µ?(t, u)
Q1/2

[1,N ](t, u)

+ Cε̊
1

µ
1/2
? (t, u)

,∥∥∥∥ 1
√
µ

(X̆Ψ)(Y N−1)X̃

∥∥∥∥
L2(Σut )

≤
√

2 ‖Lµ‖L∞((−)Σut;t)

1

µ
1/2
? (t, u)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′

(14.6.1b)

+ C

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′

+ Cε
1

µ
1/2
? (t, u)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′

+ Cε̊
1

µ
1/2
? (t, u)

.

Moreover, we have the following less precise estimates:∥∥∥L(Y N−1)X̃
∥∥∥
L2(Σut )

.
1

µ
1/2
? (t, u)

Q1/2
[1,N ](t, u) + ε̊, (14.6.2a)

∥∥∥(Y N−1)X̃
∥∥∥
L2(Σut )

.
∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′ + ε̊. (14.6.2b)

Proof. See Sect. 8.2 for some comments on the analysis. We first prove (14.6.1b). We take

the norm ‖ · ‖L2(Σut ) of
1
√
µ

(X̆Ψ) times (11.7.1b). We bound the terms arising from the

second line of RHS (11.7.1b) by ≤ the sum of the last two terms on RHS (14.6.1b) with the

help of Lemma 14.3, Lemma 12.2, Lemma 14.4, and the estimate ‖X̆Ψ‖L∞(Σut ) . 1 (that is,
(8.6.3a)).

To bound the norm ‖·‖L2(Σut ) of the product
1

2

1
√
µ

(X̆Ψ) |GLL|
∫ t

t′=0

∣∣∆/ Y N−1Ψ
∣∣ dt′, we first

use equation (2.11.1), the relations GLL, GLX = f(γ) (see Lemma 2.19), inequality (8.1.2),
the L∞ estimates of Prop. 8.10, and Cor. 8.11 to pointwise bound the product by ≤ (1 +

Cε)

{
|Lµ(t, u, ϑ)|√
µ(t, u, ϑ)

+ Cε

}∫ t

t′=0

∣∣d/Y ≤NΨ
∣∣ (t′, u, ϑ) dt′. As above, we can bound the product

involving the factor Cε by ≤ the next-to-last term on RHS (14.6.1b) by using Lemmas 14.3

and 12.2. To bound the remaining (difficult) term (1 +Cε)

∥∥∥∥∣∣∣∣Lµ√µ
∣∣∣∣ ∫ t

t′=0

∣∣d/Y ≤NΨ
∣∣ dt′∥∥∥∥

L2(Σut )

,
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we first decompose Σu
t = (+)Σu

t;t ∪ (−)Σu
t;t as in Def. 10.3 and use Lemmas 14.3 and 12.2 to

bound it by ≤ (1 + Cε) times

√
2

∥∥∥∥Lµ√µ
∥∥∥∥
L∞((−)Σut;t)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′ (14.6.3)

+ C

∥∥∥∥Lµ√µ
∥∥∥∥
L∞((+)Σut;t)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′.

The fact that (1+Cε)×RHS (14.6.3) ≤ RHS (14.6.1b) follows from using (8.6.4a), (8.6.5a),

(10.2.1), and (10.2.9) to deduce that (1 +Cε)

∥∥∥∥Lµ√µ
∥∥∥∥
L∞((−)Σut;t)

≤ ‖Lµ‖L∞((−)Σut;t)
µ−1/2
? (t, u) +

Cεµ−1/2
? (t, u) and

∥∥∥∥Lµ√µ
∥∥∥∥
L∞((+)Σut;t)

≤ C.

Finally, we must bound the norm ‖ · ‖L2(Σut ) of the product arising from the first term∣∣∣(Y N−1)X̃
∣∣∣ (0, ·) on RHS (11.7.1b). We first use (8.6.3a) and (13.2.3) with s = 0 to de-

duce

∥∥∥∥ 1
√
µ

(X̆Ψ)
∣∣∣(Y N−1)X̃

∣∣∣ (0, ·)∥∥∥∥
L2(Σut )

.
1

µ
1/2
? (t, u)

∥∥∥(Y N−1)X̃
∥∥∥
L2(Σu0 )

. Next, from definition

(6.2.2a), the simple inequality |G(Frame)| = |f(γ, d/x1, d/x2)| . 1 (which follows from Lem-
mas 2.19 and 8.4 and the L∞ estimates of Prop. 8.10), the estimates of Lemma 7.3, the

estimate (8.4.1a), and the assumptions on the data, we find that
∥∥∥(Y N−1)X̃

∥∥∥
L2(Σu0 )

. ε̊. In

total, we conclude that the product under consideration is . the last term on RHS (14.6.1b)
as desired. We have thus proved (14.6.1b).

To prove (14.6.1a), we take the norm ‖ · ‖L2(Σut ) of
1
√
µ

(X̆Ψ) times (11.7.1a). We bound

the terms arising from the last two terms on RHS (11.7.1a) by ≤ the last two terms on

RHS (14.6.1b) with the help of Lemma 12.2, and the estimates ‖X̆Ψ‖L∞(Σut ) . 1, (10.3.6),
(14.2.3c), and (14.2.3d). Note that we have used (10.3.6) and the fact that the Q[1,N ] are
increasing in their arguments to bound the time integrals on RHS (14.2.3c)-(14.2.3d) by

. Q[1,N ](t, u). To bound the norm ‖ · ‖L2(Σut ) of the product
1

2

1
√
µ

(X̆Ψ) |GLL|
∣∣∆/ Y N−1Ψ

∣∣,
we first use the reasoning from the second paragraph of this proof to pointwise bound

the product by ≤ 1

µ?(t, u)
‖[Lµ]−‖L∞(Σut )

∣∣√µd/Y ≤NΨ
∣∣ + C

∥∥∥∥ [Lµ]+
µ

∥∥∥∥
L∞(Σut )

∣∣√µd/Y ≤NΨ
∣∣ +

Cε

µ?(t, u)

∣∣√µd/Y ≤NΨ
∣∣. Thus, using inequality (10.2.1) and Lemma 14.6.1a, we bound the

norm ‖ · ‖L2(Σut ) of these products by ≤ the sum of the first, second, and third terms on RHS
(14.6.1a).

The proofs of (14.6.2a) and (14.6.2b) are based on a strict subset of the above arguments
and are much simpler; we omit the details. �

We now derive estimates for some error integrals that are much easier to estimate than
the ones treated in Lemma 14.10.
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Lemma 14.11 (Bounds connected to easy top-order error integrals requiring in-
tegration by parts with respect to L). Assume that 1 ≤ N ≤ 18 and ς > 0. Let

Errori[Y
NΨ; (Y N−1)X̃ ] be the error integrands defined in (3.1.23a) and (3.1.23b), where Y NΨ

is in the role of PNΨ and the partially modified quantity (Y N−1)X̃ defined in (6.2.2a) is in
role of η. Under the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness
assumptions of Sect. 7.7, the following estimates hold for (t, u) ∈ [0, T(Boot))× [0, U0], where
the implicit constants are independent of ς:∫

Mt,u

∣∣∣Error1[Y NΨ; (Y N−1)X̃ ]
∣∣∣ d$ (14.6.4a)

. (1 + ς−1)

∫ t

s=0

1

µ
1/2
? (s, u)

Q[1,N ](s, u) ds+

∫ t

s=0

1

µ
3/2
? (s, u)

Q[1,N−1](s, u) ds

+ ςK[1,N ](t, u) + (1 + ς−1)̊ε2,

∫
Σut

∣∣∣Error2[Y NΨ; (Y N−1)X̃ ]
∣∣∣ d$ . ε̊2 + εQ[1,N ](t, u), (14.6.4b)∫

Σu0

∣∣∣Error2[Y NΨ; (Y N−1)X̃ ]
∣∣∣ d$ . ε̊2, (14.6.4c)∫

Σu0

∣∣∣(1 + 2µ)(X̆Ψ)(YPNΨ)(Y N−1)X̃
∣∣∣ d$ . ε̊2. (14.6.4d)

Proof. See Sect. 8.2 for some comments on the analysis. We first prove (14.6.4a). All

products on RHS (3.1.23a) contain a quadratic factor of (Y N+1Ψ)(Y N−1)X̃ , (Y NΨ)(Y N−1)X̃ ,

or (Y NΨ)L(Y N−1)X̃ . With the help of Prop. 8.10, it is easy to see that the remaining factors
are bounded in L∞ by . 1. Hence it suffices to bound the spacetime integrals of the three

quadratic terms by . RHS (14.6.4a). To bound the spacetime integral of
∣∣∣(Y N+1Ψ)(Y N−1)X̃

∣∣∣,
we use spacetime Cauchy-Schwarz, Lemmas 12.1 and 12.2, inequalities (10.3.6) and (14.6.2b),
simple estimates of the form ab . a2+b2, and the fact that Q[1,N ] is increasing in its arguments
to deduce∫

Mt,u

∣∣∣(Y N+1Ψ)(Y N−1)X̃
∣∣∣ d$ (14.6.5)

. ς δ̊∗

∫
Mt,u

∣∣d/Y NΨ
∣∣2 d$ + ς−1̊δ−1

∗

∫ t

s=0

∥∥∥(Y N−1)X̃
∥∥∥2

L2(Σus )
ds

. ςK[1,N ](t, u) + ς−1

∫ t

s=0

{∫ s

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′

}2

+ ς−1ε̊2 ds

. ςK[1,N ](t, u) + ς−1

∫ t

s=0

Q[1,N ](s, u) ds+ ς−1ε̊2,

which is ≤ RHS (14.6.4a) as desired. We clarify that in passing to the last inequality in
(14.6.5), we have used the fact that Q[1,N ] is increasing in its arguments and the estimate
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(10.3.6) to deduce that

∫ s

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′ . Q1/2
[1,N ](s, u), as we did in passing to

the last line of (14.3.5).

The spacetime integral of
∣∣∣(Y NΨ)(Y N−1)X̃

∣∣∣ can be bounded by ≤ RHS (14.6.4a) by using

essentially the same arguments; we omit the details.

To bound the spacetime integral of
∣∣∣(Y NΨ)L(Y N−1)X̃

∣∣∣, by ≤ RHS (14.6.4a), we first use

Cauchy-Schwarz, Lemmas 12.1 and 12.2, and inequality (14.6.2a) to deduce∫
Mt,u

∣∣∣(Y NΨ)L(Y N−1)X̃
∣∣∣ d$ . ∫ t

s=0

∥∥Y NΨ
∥∥
L2(Σus )

∥∥∥L(Y N−1)X̃
∥∥∥
L2(Σus )

ds (14.6.6)

.
∫ t

s=0

1

µ?(s, u)
Q1/2

[1,N−1](s, u)Q1/2
[1,N ](s, u) ds

+ ε̊

∫ t

s=0

1

µ
1/2
? (s, u)

Q1/2
[1,N−1](s, u) ds.

Finally, using simple estimates of the form ab . a2 + b2 the estimate (10.3.6), and the fact
that Q[1,N ] is increasing in its arguments, we bound RHS (14.6.6) by . RHS (14.6.4a) as
desired. This concludes the proof of (14.6.4a).

We now prove (14.6.4b) and (14.6.4c). We first note that RHS (3.1.23b) is in magni-

tude . ε
∣∣Y NΨ

∣∣ ∣∣∣(Y N−1)X̃
∣∣∣, an estimate that can easily be verified with the help of the

estimate (8.4.1a) and the L∞ estimates of Prop. 8.10. Next, using Cauchy-Schwarz on Σu
t ,

Lemma 12.2, (14.6.2b), and the estimate (10.3.6), we deduce that

ε

∫
Σut

∣∣Y NΨ
∣∣ ∣∣∣(Y N−1)X̃

∣∣∣ d$ . ε
∥∥Y NΨ

∥∥
L2(Σut )

∥∥∥(Y N−1)X̃
∥∥∥
L2(Σut )

(14.6.7)

. εQ1/2
[1,N ](t, u)

{
Q1/2

[1,N ](t, u) + ε̊
}

. RHS (14.6.4b),

as desired. We clarify that in passing to the second line of (14.6.7), we have used (10.3.6)
and the fact that Q[1,N ] is increasing in its arguments to bound the time integral on RHS

(14.6.2b) by . Q1/2
[1,N ](t, u). (14.6.4c) then follows from (14.6.4b) with t = 0 and Lemma 14.5.

The proof of (14.6.4d) is similar. The main difference is that the L∞ estimates of Prop. 8.10

imply only that LHS (14.6.4d) is .
∫

Σu0

∣∣Y N+1Ψ
∣∣ ∣∣∣(Y N−1)X̃

∣∣∣ d$, without a gain of a factor

ε. However, this integral is quadratically small in the data parameter ε̊, as is easy to verify
using the arguments given in the previous paragraph. We have thus proved (14.6.4d) and
established the lemma. �

We now combine the previous results to prove the main lemma of Sect. 14.6.

Lemma 14.12 (Bounds for difficult top-order error integrals connected to inte-
gration by parts involving L). Assume that 1 ≤ N ≤ 18 and ς > 0. There exists a
constant C > 0, independent of ς, such that under the data-size and bootstrap assumptions
of Sects. 7.4-7.5 and the smallness assumptions of Sect. 7.7, the following estimates hold for
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(t, u) ∈ [0, T(Boot))× [0, U0]:∣∣∣∣∣
∫
Mt,u

(1 + 2µ)(X̆Ψ)(Y N+1Ψ)L(Y N−1)X̃ d$

∣∣∣∣∣ (14.6.8)

≤ 2

∫ t

t′=0

‖[Lµ]−‖L∞(Σu
t′ )

µ?(t′, u)
Q[1,N ](t

′, u) dt′

+ Cε

∫ t

t′=0

1

µ?(t′, u)
Q[1,N ](t

′, u) dt′ + C

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q[1,N ](t
′, u) dt′

+ Cε̊2,∣∣∣∣∣
∫

Σut

(1 + 2µ)(X̆Ψ)(Y N+1Ψ)(Y N−1)X̃ d$

∣∣∣∣∣ (14.6.9)

≤ 2
1

µ
1/2
? (t, u)

Q1/2
[1,N ](t, u) ‖Lµ‖L∞((−)Σut;t)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′

+ Cε
1

µ
1/2
? (t, u)

Q1/2
[1,N ](t, u)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′

+ CQ1/2
[1,N ](t, u)

∫ t

t′=0

1

µ
1/2
? (t′, u)

Q1/2
[1,N ](t

′, u) dt′

+ CςQ[1,N ](t, u) + Cς−1ε̊2 1

µ?(t, u)
.

Proof. See Sect. 8.2 for some comments on the analysis. To prove (14.6.8), we first use
Cauchy-Schwarz and the estimate |Y | ≤ 1 + Cε (which follows from (8.4.2a) and the L∞

estimates of Prop. 8.10) and in particular the estimates
∥∥∥X̆Ψ

∥∥∥
L∞(Σut )

. 1 and ‖µ‖L∞(Σut ) . 1

to bound the LHS by

≤ (1 + Cε)

∫ t

t′=0

∥∥√µd/Y NΨ
∥∥
L2(Σu

t′ )

∥∥∥∥ 1
√
µ

(X̆Ψ)L(Y N−1)X̃

∥∥∥∥
L2(Σu

t′ )

dt′ (14.6.10)

+ C

∫ t

t′=0

∥∥√µd/Y NΨ
∥∥
L2(Σu

t′ )

∥∥∥L(Y N−1)X̃
∥∥∥
L2(Σu

t′ )
dt′.

The desired estimate (14.6.8) now follows from (14.6.10), Lemma 12.2, and inequalities

(14.6.1a) and (14.6.2a). Note that to bound the integral C
∫ t
t′=0

ε̊ 1

µ
1/2
? (t′,u)

Q1/2
[1,N ](t

′, u) dt′,

which is generated by the last term on RHS (14.6.1a), we first use Young’s inequality to

bound the integrand by .
ε̊2

µ
1/2
? (t′, u)

+
Q[1,N ](t

′, u)

µ
1/2
? (t′, u)

. We then bound the time integral of the

first term in the previous expression by . ε̊2 with the help of the estimate (10.3.6) and the
time integral of the second by ≤ the third term on RHS (14.6.8).

The proof of (14.6.9) is very similar but relies on (14.6.1b) and (14.6.2b) in place of
(14.6.1a) and (14.6.2a); We omit the details except to note that we encounter the term
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Cε̊ 1

µ
1/2
? (t,u)

Q1/2
[1,N ](t, u) generated by the last term on RHS (14.6.1b); We bound this term by

using the simple Cε̊ 1

µ
1/2
? (t,u)

Q1/2
[1,N ](t, u) ≤ Cς−1ε̊2 1

µ?(t,u)
+ CςQ[1,N ](t, u).

�

14.7. Estimates for error integrals involving a loss of one derivative. The following
lemma plays a central role in our proof that the energy estimates become successively less
degenerate with respect to powers of µ−1

? as we descend below top order. In the lemma, we
consider the two most difficult error integrals that we encounter in our proof of Prop. 14.2.
Here, we bound them in a much simpler way that incurs a loss of one derivative (which is
permissible below top order). The main advantage of these estimates compared to the ones
that do not lose derivatives is: the derivative-losing estimates are much less degenerate with
respect to µ−1

? .

Lemma 14.13 (Estimates for error integrals involving a loss of one derivative).
Assume that 2 ≤ N ≤ 18. Under the data-size and bootstrap assumptions of Sects. 7.4-
7.5 and the smallness assumptions of Sect. 7.7, the following estimates hold for (t, u) ∈
[0, T(Boot))× [0, U0]:∣∣∣∣∣

∫
Mt,u

(X̆PN−1Ψ)(X̆Ψ)Y N−1trg/χ d$

∣∣∣∣∣ (14.7.1a)

.
∫ t

t′=0

Q1/2
[1,N−1](t

′, u)

{∫ t′

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds

}
dt′ + ε̊

∫ t

t′=0

Q1/2
[1,N−1](t

′, u)

µ
1/2
? (t′, u)

dt′,∣∣∣∣∣
∫
Mt,u

(1 + 2µ)(LPN−1Ψ)(X̆Ψ)Y N−1trg/χ d$

∣∣∣∣∣ (14.7.1b)

.
∫ t

t′=0

Q1/2
[1,N−1](t

′, u)

µ
1/2
? (t′, u)

{∫ t′

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds

}
dt′ + ε̊

∫ t

t′=0

Q1/2
[1,N−1](t

′, u)

µ
1/2
? (t′, u)

dt′.

Proof. See Sect. 8.2 for some comments on the analysis. We first prove (14.7.1b). We begin
by using the L∞ estimates of Prop. 8.10 to bound two of the factors in the integrand on the

LHS as follows:
∥∥∥(1 + 2µ)(X̆Ψ)

∥∥∥
L∞(Σut )

. 1. Using the previous estimate, Cauchy-Schwarz,

Lemma 12.2, and the estimate (14.2.3c), we bound LHS (14.7.1b) by

.
∫ t

t′=0

1

µ
1/2
? (t, u)

∥∥√µLPN−1Ψ
∥∥
L2(Σu

t′ )

∥∥Y N−1trg/χ
∥∥
L2(Σu

t′ )
dt′ (14.7.2)

.
∫ t

t′=0

Q1/2
[1,N−1](t

′, u)

µ
1/2
? (t′, u)

{
ε̊+

∫ t′

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds

}
dt′

.
∫ t

t′=0

Q1/2
[1,N−1](t

′, u)

µ
1/2
? (t′, u)

{∫ t′

s=0

Q1/2
[1,N ](s, u)

µ
1/2
? (s, u)

ds

}
dt′ + ε̊

∫ t

t′=0

Q1/2
[1,N−1](t

′, u)

µ
1/2
? (t′, u)

dt′

as desired.
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The proof of (14.7.1a) is similar, the only difference being that we start by bounding LHS

(14.7.1a) by .
∫ t

t′=0

∥∥∥X̆PN−1Ψ
∥∥∥
L2(Σu

t′ )

∥∥Y N−1trg/χ
∥∥
L2(Σu

t′ )
dt′. �

14.8. Proof of Prop. 14.2.

Proof of (14.1.2a): Assume that 1 ≤ N ≤ 18 and let PN be an N th−order Pu-tangent
vectorfield operator. From (3.1.12) with PNΨ in the role of Ψ, the decomposition (3.1.13)
with PNΨ in the role of Ψ, and definition (12.0.2a), we have

E[PNΨ](t, u) + F[PNΨ](t, u) + K[PNΨ](t, u) (14.8.1)

= E[PNΨ](0, u)−
∫
Mt,u

{
(1 + 2µ)(LPNΨ) + 2X̆PNΨ

}
µ�g(P

NΨ) d$

+
5∑
i=1

∫
Mt,u

(T )P(i)[P
NΨ] d$.

We will show that RHS (14.8.1) ≤ RHS (14.1.2a). Then, taking the max over that estimate
for all such operators of order in between 1 and N and appealing to Defs. 12.1 and 12.2, we
conclude (14.1.2a).

To show that RHS (14.8.1) ≤ RHS (14.1.2a), we first use Lemma 14.5 to deduce that
E[PNΨ](0, u) . ε̊2, which is ≤ the first term on RHS (14.1.2a) as desired.

To bound the last integral
∑5

i=1

∫
Mt,u
· · · on RHS (14.8.1) by ≤ RHS (14.1.2a), we use

Lemma 14.6.
We now address the first integral −

∫
Mt,u
· · · on RHS (14.8.1). If N ≥ 2 and PN is not of

the form Y N−1L or Y N , then the desired bound follows from (11.1.1c) and (14.3.3a). Note
that these bounds do not involve the difficult “boxed-constant-involving” terms on RHS
(14.1.2a).

We now consider the case PN = Y N . The case PN = Y N−1L can be treated in an
identical fashion and we omit those details. We start by substituting RHS (11.1.1b) for the
term µ�g(PNΨ) on RHS (14.8.1). It suffices for us to bound the integrals corresponding

to the terms (X̆Ψ)Y Ntrg/χ and ρ(d/#Ψ) · (µd/Y N−1trg/χ) from RHS (11.1.1b), for the above
argument has already addressed how to bound the integrals generated byHarmless≤N terms.
To bound the difficult integral

−2

∫
Mt,u

(X̆Y NΨ)(X̆Ψ)Y Ntrg/χ d$

by ≤ RHS (14.1.2a), we first use Cauchy-Schwarz and (12.0.4) to bound it by

≤ 2

∫ t

t′=0

Q1/2
[1,N ](t

′, u)
∥∥∥(X̆Ψ)Y Ntrg/χ

∥∥∥
Σu
t′

dt′. (14.8.2)

We now substitute the estimate (14.4.1) (with t in (14.4.1) replaced by t′) for the second
factor in the integrand (14.8.2). Following this substitution, the desired bound of (14.8.2)
by ≤ RHS (14.1.2a) follows easily with the help of simple estimates of the form ab . a2 + b2.

Note that these estimates account for the portion 4 · · · of the first boxed constant integral
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6 · · · on RHS (14.1.2a) and the full portion of the boxed constant integral 8.1 · · · on RHS
(14.1.2a).

We now bound the error integral

−
∫
Mt,u

(1 + 2µ)(LY NΨ)(X̆Ψ)Y Ntrg/χ d$.

To proceed, we use (6.2.2a)-(6.2.2b) to decompose Y Ntrg/χ = Y (Y N−1)X̃ − Y (Y N−1)X̃. Since
RHS (11.5.1d) = Harmless≤N , we have already suitably bounded the error integrals gener-

ated by Y (Y N−1)X̃. We therefore must bound

−
∫
Mt,u

(1 + 2µ)(LY NΨ)(X̆Ψ)Y (Y N−1)X̃ d$ (14.8.3)

by ≤ RHS (14.1.2a). To this end, we integrate by parts using (3.1.22) with η := (Y N−1)X̃ .
We bound the error integrals on the last line of RHS (3.1.22) and the

∫
Σu0
· · · integral on

the second line using Lemma 14.11. It remains for us to bound the first two (difficult)
integrals on RHS (3.1.22) by ≤ RHS (14.1.2a). The desired bounds have been derived in

Lemma 14.12. Note that these estimates account for the remaining portion 2 · · · of the first

boxed constant integral 6 · · · on RHS (14.1.2a) and the full portion of the boxed constant

integral 2 · · · on RHS (14.1.2a).
To complete the proof of (14.1.2a), it remains for us to bound the two error integrals

generated by the term ρ(d/#Ψ) · (µd/Y N−1trg/χ) from RHS (11.1.1b). These two integrals were
suitably bounded by ≤ RHS (14.1.2a) in Lemma 14.9 (note that we are using the simple

bound {lnµ−1
? (t′, u) + 1}2 . µ−1/2

? (t′, u) in order to bound the integrand factors in the first
integrals on RHS (14.5.1a) and RHS (14.5.1b) ). Note that these estimates do not contribute
to the difficult boxed constant terms on RHS (14.1.2a). We have thus proved (14.1.2a).

Proof of (14.1.2b): We repeat the proof of (14.1.2a) with N − 1 in the role of N and with
one critically important change: we bound the difficult error integrals

−2

∫
Mt,u

(X̆PN−1Ψ)(X̆Ψ)Y N−1trg/χ d$

and

−
∫
Mt,u

(1 + 2µ)(LPN−1Ψ)(X̆Ψ)Y N−1trg/χ d$

using the derivative-losing Lemma 14.13 in place of the arguments used in proving (14.1.2a).
�

14.9. Proof of Prop. 14.1.

Estimates for Q[1,18] and Q[1,17]: We first derive the estimates (14.1.1a) for Q[1,18] and
Q[1,17], which are highly coupled and must be treated as a system. To this end, we set

F (t, u) := sup
(t̂,û)∈[0,t]×[0,u]

ι−1
F (t̂, û)

{
Q[1,18](t̂, û) + K[1,18](t̂, û)

}
, (14.9.1)

G(t, u) := sup
(t̂,û)∈[0,t]×[0,u]

ι−1
G (t̂, û)

{
Q[1,17](t̂, û) + K[1,17](t̂, û)

}
, (14.9.2)
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where for t′ ≤ t̂ ≤ t and u′ ≤ û ≤ U0, we define

ι1(t′) := exp

(∫ t′

s=0

1√
T(Boot) − s

ds

)
= exp

(
2
√
T(Boot) − 2

√
T(Boot) − t′

)
, (14.9.3)

ι2(t′, u′) := exp

(∫ t′

s=0

1

µ
9/10
? (s, u′)

ds

)
, (14.9.4)

ιF (t′, u′) := µ−11.8
? (t′, u′)ιc1(t′)ιc2(t′, u′)ect

′
ecu
′
, (14.9.5)

ιG(t′, u′) := µ−9.8
? (t′, u′)ιc1(t′)ιc2(t′, u′)ect

′
ecu
′
, (14.9.6)

and c is a sufficiently large positive constant that we choose below. The functions (14.9.3)-
(14.9.6) are approximate integrating factors that will allow us to absorb all of the error
integrals on the RHS’s of the inequalities of Prop. 14.2. We claim that to obtain the desired
estimates for Q[1,18] and Q[1,17], it suffices to show that

F (t, u) ≤ Cε̊2, G(t, u) ≤ Cε̊2, (14.9.7)

where C in (14.9.7) is allowed to depend on c. To justify the claim, we use the fact that for
a fixed c, the functions ιc1(t), ιc2(t, u), ect, and ecu are uniformly bounded from above by a
positive constant for (t, u) ∈ [0, T(Boot))× [0, U0]; all of these estimates are simple to derive,
except for (14.9.4), which relies on (10.3.6).

To prove (14.9.7), it suffices to show that there exist positive constants α1, α2, β1, and
β2 with

α1 +
α2β1

1− β2

< 1, β2 < 1 (14.9.8)

such that if c is sufficiently large, then

F (t, u) ≤ Cε̊2 + α1F (t, u) + α2G(t, u), (14.9.9)

G(t, u) ≤ Cε̊2 + β1F (t, u) + β2G(t, u). (14.9.10)

Once we have obtained (14.9.9)-(14.9.10), we easily deduce from those estimates that

G(t, u) ≤ Cε̊2 +
β1

1− β2

F (t, u), (14.9.11)

F (t, u) ≤ Cε̊2 +

{
α1 +

α2β1

1− β2

}
F (t, u). (14.9.12)

The desired bounds (14.9.7) now follow easily from (14.9.8) and (14.9.11)-(14.9.12).
It remains for us to derive (14.9.9)-(14.9.10). To this end, we will use the critically im-

portant estimates of Prop. 10.3 as well as the following simple estimates, which are easy to
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derive:

∫ t̂

t′=0

ιc1(t′)
1√

T(Boot) − t′
dt′ =

1

c

∫ t̂

t′=0

d

dt′
{ιc1(t′)} dt′ ≤ 1

c
ιc1(t̂), (14.9.13)∫ t̂

t′=0

ιc2(t′, û)
1

µ
9/10
? (t′, û)

dt′ =
1

c

∫ t̂

t′=0

d

dt′
{ιc2(t′, û)} dt′ ≤ 1

c
ιc2(t̂, û), (14.9.14)∫ t̂

t′=0

ect
′
dt′ ≤ 1

c
ect̂, (14.9.15)∫ û

u′=0

ecu
′
du′ ≤ 1

c
ecû. (14.9.16)

The smallness needed to close our estimates will come from taking c to be large and ε to be
small.

We stress that from now through inequality (14.9.30), the constants C can be chosen to
be independent of c.

We also use the fact that ιc1(·), ιc2(·) ec·, and ec· are non-decreasing in their arguments, and
the estimate (10.2.13), which implies that for t′ ≤ t̂ and u′ ≤ û, we have the approximate
monotonicity inequality

(1 + C
√
ε)µ?(t

′, u′) ≥ µ?(t̂, û). (14.9.17)

In our arguments below, we do not explicitly mention these monotonicity properties each
time we use them.

We now set N = 18, multiply both sides of inequality (14.1.2a) by ι−1
F (t, u) and then set

(t, u) = (t̂, û). Similarly, we multiply both sides of inequality (14.1.2b) by ι−1
G (t, u) and then

set (t, u) = (t̂, û). To deduce (14.9.9)-(14.9.10), the difficult step is to obtain suitable bounds
for the terms generated by the integrals on RHSs (14.1.2a)-(14.1.2b). Once we have such
bounds, we can then take sup(t̂,û)∈[0,t]×[0,u] of both sides of the resulting inequalities, and by
virtue of definitions (14.9.1)-(14.9.2), we will easily conclude (14.9.9)-(14.9.10).

We now show how to obtain suitable bounds for the terms generated by the “border-

line” terms 6
∫
· · · , 8.1

∫
· · · , and 2 1

µ
1/2
? (t,u)

Q1/2
[1,N ](t, u)

∫
· · · on RHS (14.1.2a). The terms

generated by the remaining “non-borderline” terms on RHS (14.1.2a) are easier to treat.

We start with the term 6 ι−1
F (t̂, û)

∫ t̂
t′=0
· · · . Multiplying and dividing by µ11.8

? (t′, û) in the
integrand, taking supt′∈[0,t̂] µ

11.8
? (t′, û)Q[1,18](t

′, û), pulling the sup−ed quantity out of the
integral, and using the critically important integral estimate (10.3.1) with B = 12.8, we find
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that

6 ι−1
F (t̂, û)

∫ t̂

t′=0

‖[Lµ]−‖L∞(Σû
t′ )

µ?(t′, û)
Q[1,18](t

′, û) dt′ (14.9.18)

≤ 6 ι−1
F (t̂, û) sup

t′∈[0,t̂]

{
µ11.8
? (t′, û)Q[1,18](t

′, û)
}∫ t̂

t′=0

‖[Lµ]−‖L∞(Σû
t′ )
µ−12.8
? (t′, û) dt′

≤ 6 µ11.8
? (t̂, û) sup

t′∈[0,t̂]

{
ι−c1 (t′)ι−c2 (t′, û)e−ct

′
e−cûµ11.8

? (t′, û)Q[1,18](t
′, û)

}
×
∫ t̂

t′=0

‖[Lµ]−‖L∞(Σû
t′ )
µ−12.8
? (t′, û) dt′

≤ 6 + C
√
ε

11.8
F (t̂, û) ≤ 6 + C

√
ε

11.8
F (t, u).

To handle the integral 8.1 ι−1
F (t̂, û)

∫
· · · , we use a similar argument, but this time taking

into account that there are two time integrations. We find that

8.1 ι−1
F (t̂, û)

∫ t̂

t′=0

‖[Lµ]−‖L∞(Σû
t′ )

µ?(t′, û)
Q1/2

[1,18](t
′, û)

∫ t′

s=0

‖[Lµ]−‖L∞(Σûs )

µ?(s, û)
Q1/2

[1,18](s, û) ds dt′ (14.9.19)

≤ 8.1 + C
√
ε

11.8× 11.8
F (t, u).

To handle the integral 2 ι−1
F (t̂, û)

∫
· · · , we use a similar argument based on the critically

important estimate (10.3.2). We find that

2 ι−1
F (t̂, û)

1

µ
1/2
? (t̂, û)

Q1/2
[1,18](t̂, û) ‖Lµ‖L∞((−)Σû

t̂;t̂
)

∫ t

t′=0

1

µ
1/2
? (t′, û)

Q1/2
[1,18](t

′, û) dt′ (14.9.20)

≤ 2 + C
√
ε

5.4
F (t, u).

The important point is that for small ε, the factors
6 + C

√
ε

11.8
on RHS (14.9.18),

8.1 + C
√
ε

11.8× 11.8

on RHS (14.9.19), and
2 + C

√
ε

5.4
on RHS (14.9.20) sum to

6

11.8
+

8.1

11.8× 11.8
+

2

5.4
+C
√
ε < 1.

This sum is the main contributor to the constant α1 on RHS (14.9.9).
The remaining integrals are easier to treat. We now show how to bound the term arising

from the integral on the 11th line of RHS (14.1.2a), which involves three time integrations.
The term arising from the integrals on the 9th and 10th lines of RHS (14.1.2a) can be handled
using similar arguments, so we do not provide those details. We claim that the following
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sequence of inequalities holds for the term of interest, which yields the desired bound:

Cι−1
F (t̂, û)

∫ t̂

t′=0

1

µ?(t′, û)
Q1/2

[1,18](t
′, û)

∫ t′

s=0

1

µ?(s, û)

∫ s

s′=0

1

µ
1/2
? (s′, û)

Q1/2
[1,18](s

′, û) ds′ ds dt′

(14.9.21)

≤ C

c
ι−1
F (t̂, û)ι

c/2
2 (t̂, û)

∫ t̂

t′=0

1

µ?(t′, û)
Q1/2

[1,18](t
′, û)

×
∫ t′

s=0

1

µ?(s, û)
sup

(s′,u′)∈[0,s]×[0,û]

{
ι
−c/2
2 (s′, u′)Q1/2

[1,18](s
′, u′)

}
ds dt′

≤ C

c
ι−1
F (t̂, û)ι

c/2
2 (t̂, û)

∫ t̂

t′=0

1

µ?(t′, û)
Q1/2

[1,18](t
′, û)

× sup
(s′,u′)∈[0,t′]×[0,û]

{
µ?(s

′, u′)ι
−c/2
2 (s′, u′)Q1/2

[1,18](s
′, u′)

}∫ t′

s=0

1

µ2
?(s, û)

ds dt′

≤ C

c
ι−1
F (t̂, û)ι

c/2
2 (t̂, û) sup

(s′,u′)∈[0,t̂]×[0,û]

{
µ?(s

′, u′)ι
−c/2
2 (s′, u′)Q1/2

[1,18](s
′, u′)

}
× sup

(s′,u′)∈[0,t̂]×[0,û]

{
Q1/2

[1,18](s
′, u′)

}∫ t̂

t′=0

1

µ?(t′, û)

∫ t′

s=0

1

µ2
?(s, û)

ds dt′

≤ C

c
µ?(t̂, û) sup

(s′,u′)∈[0,t̂]×[0,û]

{
ι−1
F (s′, u′)Q[1,18](s

′, u′)
}
×
∫ t̂

t′=0

1

µ?(t′, û)

∫ t′

s=0

1

µ2
?(s, û)

ds dt′

≤ C

c
F (t̂, û) ≤ C

c
F (t, u),

which yields the desired smallness factor
1

c
. We now explain how to derive (14.9.21). To de-

duce the first inequality, we multiplied and divided by ι
c/2
2 (t′, û) in the integral

∫
· · · ds′, then

pulled sup
(s′,u′)∈[0,s]×[0,û]

{
ι
−c/2
2 (s′, u′)Q1/2

[1,18](s
′, u′)

}
out of the integral, and finally used (14.9.14)

to gain the smallness factor
1

c
from the remaining terms

∫ s

s′=0

1

µ
1/2
? (s′, û)

ι
c/2
2 (s′, û) ds′. To

derive the second inequality in (14.9.21), we multiplied and divided by µ?(s, û) in the in-
tegral

∫
· · · ds, and used the approximate monotonicity property (14.9.17) to pull the fac-

tor sup
(s′,u′)∈[0,t′]×[0,û]

{
µ?(s

′, u′)ι
−c/2
2 (s′, u′)Q1/2

[1,18](s
′, u′)

}
out of the ds integral, which costs us a

harmless multiplicative factor of 1+C
√
ε. The third inequality in (14.9.21) follows easily. To

derive the fourth inequality, we use the monotonicity of ιc1(·), ιc2(·) ec·, and ec·, and (14.9.17).
To derive the fifth inequality, we use inequality (10.3.3) twice. The final inequality follows
easily.
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Similarly, we claim that we can bound the terms on the 5th through 7th lines of RHS
(14.1.2a) as follows:

ι−1
F (t̂, û)Cε

∫ t̂

t′=0

1

µ?(t′, û)
Q[1,18](t

′, û) dt′ ≤ CεF (t̂, û) ≤ CεF (t, u),

(14.9.22)

ι−1
F (t̂, û)Cε

1

µ
1/2
? (t̂, û)

Q1/2
[1,18](t̂, û)

∫ t̂

t′=0

1

µ
1/2
? (t′, û)

Q1/2
[1,18](t

′, û) dt′ ≤ CεF (t̂, û) ≤ CεF (t, u),

(14.9.23)

ι−1
F (t̂, û)CQ1/2

[1,18](t̂, û)

∫ t̂

t′=0

1

µ
1/2
? (t′, û)

Q1/2
[1,18](t

′, û) dt′ ≤ C

c
F (t̂, û) ≤ C

c
F (t, u).

(14.9.24)

To derive (14.9.22), we use arguments similar to the ones we used in deriving (14.9.18), but
in place of the delicate estimate (10.3.1), we use the estimate (10.3.3), whose imprecision is
compensated for by the availability of the smallness factor ε. To derive (14.9.23), we use
arguments similar to the ones we used above, but we now multiply and divide by µ5.9

? (t′, û)
in the time integral on LHS (14.9.23) and use (10.3.3). To derive (14.9.24), we use similar

arguments based on multiplying and dividing by ι
c/2
2 (t′, û) in the time integral and using

(14.9.14).
Similarly, we derive the bound

Cι−1
F (t̂, û)

∫ t̂

t′=0

1√
T(Boot) − t′

Q[1,18](t
′, û) dt′ ≤ C

c
F (t̂, û) ≤ C

c
F (t, u) (14.9.25)

for the term on the 8th line of RHS (14.1.2a) by multiplying and dividing by ιc1(t′) in the

integrand and using (14.9.13) to gain the smallness factor
1

c
.

Similarly, we derive the bound

C(1 + ς−1)ι−1
F (t̂, û)

∫ û

u′=0

Q[1,18](t̂, u
′) du′ ≤ C

c
F (t̂, û) ≤ C

c
F (t, u) (14.9.26)

for the term on the 12th line of RHS (14.1.2a) by multiplying and dividing by ecu
′

in the

integrand and using (14.9.16) to gain the smallness factor
1

c
.

It is easy to see that the terms arising from the terms on the first and the next-to-last

lines of RHS (14.1.2a), namely C(1 + ς−1)̊ε2µ
−3/2
? (t, u), CεQ[1,N ](t, u), CςQ[1,N ](t, u), and

CςK[1,N ](t, u), are respectively bounded (after multiplying by ι−1
F and taking the relevant

sup) by ≤ C(1 + ς−1)̊ε2, ≤ CεF (t, u), ≤ CςF (t, u), and ≤ CςF (t, u).
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To bound the term arising from the last integral on RHS (14.1.2a), we use (14.9.13) and
(14.9.17) and argue as follows (we recall that N = 18):

Cι−1
F (t̂, û)

∫ t̂

t′=0

1

µ
3/2
? (t′, û)

Q[1,17](t
′, û) dt′ (14.9.27)

≤ Cµ10.8
? (t̂, û)ι−c1 (t̂)ι−c2 (t̂, û)e−ct̂e−cû sup

t′∈[0,t̂]

µ?(t̂, û)

µ?(t′, û)

× sup
t′∈[0,t̂]

{
ι−c1 (t′)Q[1,17](t

′, û)
}
×
∫ t̂

t′=0

ιc1(t′)

µ
1/2
? (t′, û)

dt′

≤ Cι−c1 (t̂) sup
t′∈[0,t̂]

{
ι−1
G (t′, û)Q[1,17](t

′, û)
}
×
∫ t̂

t′=0

ιc1(t′)

µ
1/2
? (t′, û)

dt′

≤ C

c
G(t̂, û) ≤ C

c
G(t, u).

We now bound the terms ι−1
G (t̂, û)×· · · arising from the terms on RHS (14.1.2b). All terms

except the one arising from the integral involving the top-order factor Q1/2
[1,18] (featured in the

ds integral on RHS (14.1.2b)) can be bounded by ≤ Cε̊2 +
C

c
(1 + ς−1)G(t, u) +CςG(t, u) by

using essentially the same arguments given above. To handle the remaining term involving

the top-order factor Q1/2
[1,18], we use arguments similar to the ones we used to prove (14.9.21)

(in particular, we use inequality (10.3.3) twice) to bound it as follows:

Cι−1
G (t̂, û)

∫ t̂

t′=0

1

µ
1/2
? (t′, û)

Q1/2
[1,17](t

′, û)

∫ t′

s=0

1

µ
1/2
? (s, û)

Q1/2
[1,18](s, û) ds dt′ (14.9.28)

≤ Cι−1
G (t̂, û) sup

(t′,u′)∈[0,t̂]×[0,û]

{
µ4.9
? (t′, û)Q1/2

[1,17](t
′, u′)

}
× sup

(t′,u′)∈[0,t̂]×[0,û]

{
µ5.9
? (t′, û)Q1/2

[1,18](t
′, u′)

}
×
∫ t̂

t′=0

1

µ5.4
? (t′, û)

∫ t′

s=0

1

µ6.4
? (s, û)

ds dt′

≤ CF 1/2(t̂, û)G1/2(t̂, û) ≤ CF (t, u) +
1

2
G(t, u).

Inserting all of these estimates into the RHSs of ι−1
F (t̂, û)× (14.1.2a)(t̂, û) and ι−1

G (t̂, û)×
(14.1.2b)(t̂, û) and taking sup(t̂,û)∈[0,t]×[0,u] of both sides, we deduce that

F (t, u) ≤ C(1 + ς−1)̊ε2 +

{
6

11.8
+

8.1

11.8× 11.8
+

2

5.4
+ C
√
ε

}
F (t, u) (14.9.29)

+
C

c
(1 + ς−1)F (t, u) +

C

c
G(t, u) + CςF (t, u),

G(t, u) ≤ Cε̊2 +
C

c
F (t, u) + CF (t, u) +

C

c
(1 + ς−1)G(t, u) + CςG(t, u) +

1

2
G(t, u).

(14.9.30)
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We remind the reader that the constants C in (14.9.29)-(14.9.30) can be chosen to be inde-
pendent of c. The desired estimates (14.9.9)-(14.9.10) now follow from first choosing ς to be
sufficiently small, then choosing c to be sufficiently large, then choosing ε to be sufficiently

small, and using the aforementioned fact that
6

11.8
+

8.1

11.8× 11.8
+

2

5.4
+ C
√
ε < 1.

Estimates for Q[1,≤16] + K[1,≤16] via a descent scheme: We now explain how to use
inequality (14.1.2b) to derive the estimates for Q[1,≤16] + K[1,≤16] by downward induction.
Unlike our analysis of the strongly coupled pair Q[1,18] + K[1,18] and Q[1,17] + K[1,17], we can
derive the desired estimates for Q[1,16] + K[1,16] by using only inequality (14.1.2b) and the
already derived estimates for Q[1,17] + K[1,17]. At the end of the proof, we will describe the
minor changes needed to derive the desired estimates for Q[1,15] + K[1,15], · · · , Q1 + K1.

To begin, we define the following analogs of (14.9.6) and (14.9.2):

ιH(t′, u′) := µ−7.8
? (t′, u′)ιc1(t′)ιc2(t′, u′)ect

′
ecu
′
, (14.9.31)

H(t, u) := sup
(t̂,û)∈[0,t]×[0,u]

{
ι−1
H (t̂, û)Q[1,16](t̂, û) + ι−1

H (t̂, û)K[1,16]

}
. (14.9.32)

Note that the power of µ−1
? in the factor µ−7.8

? has been reduced by two in (14.9.31) compared
to (14.9.6), which corresponds to less singular behavior of Q[1,16] +K[1,16] near the shock. As
before, to prove the desired estimate (14.1.1a) (now with M = 4), it suffices to prove

H(t, u) ≤ Cε̊2. (14.9.33)

We now set N = 16, multiply both sides of inequality (14.1.2b) by ι−1
H (t, u) and then

set (t, u) = (t̂, û). With one exception, we can bound all terms arising from the integrals

on RHS (14.1.2b) by ≤ Cε̊2 +
C

c
(1 + ς−1)H(t, u) + ςH(t, u) (where C is independent of

c) by using the same arguments that we used in deriving the estimate for Q[1,17] + K[1,17].
The exceptional term is the one arising from the integral involving the above-present-order

factor Q1/2
[1,17]. We bound the exceptional term as follows by using inequality (10.3.3), the

approximate monotonicity of ιH , and the estimate Q1/2
[1,17] ≤ Cc̊εµ

−4.9
? (t, u) (which follows

from the already proven estimate (14.9.7) for G(t, u)):

Cι−1
H (t̂, û)

∫ t̂

t′=0

1

µ
1/2
? (t′, û)

Q1/2
[1,16](t

′, û)

∫ t′

s=0

1

µ
1/2
? (s, û)

Q1/2
[1,17](s, û) ds dt′ (14.9.34)

≤ Cc̊ει
−1/2
H (t̂, û) sup

(t′,u′)∈[0,t̂]×[0,û]

{
ι
−1/2
H (t′, u′)Q1/2

[1,16](t
′, u′)

}
×
∫ t̂

t′=0

1

µ
1/2
? (t′, û)

∫ t′

s=0

1

µ5.4
? (s, û)

ds dt′

≤ Cc̊ει
−1/2
H (t̂, û)µ−3.9

? (t̂, û) sup
(t′,u′)∈[0,t̂]×[0,û]

{
ι
−1/2
H (t′, u′)Q1/2

[1,16](t
′, u′)

}
≤ Cc̊εH

1/2(t̂, û) ≤ Cc̊ε
2 +

1

2
H(t, u).

In total, we have obtained the following analog of (14.9.30):

H(t, u) ≤ Cc̊ε
2 +

C

c
(1 + ς−1)H(t, u) +

1

2
H(t, u) + CςH(t, u), (14.9.35)
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where Cc is the only constant that depends on c. The desired bound (14.9.33) easily follows
from (14.9.35) by first choosing ς to be sufficiently small and then c to be sufficiently large
so that we can absorb all factors of H on RHS (14.9.35) into the LHS.

The desired bounds (14.1.1b) for Q[1,15] + K[1,15], Q[1,14] + K[1,14], · · · can be (down-
ward) inductively derived by using an argument similar to the one we used to bound
Q[1,16] + K[1,16], which relied on the already available bounds for Q[1,17] + K[1,17]. The only
difference is that we define the analog of the approximating integrating factor (14.9.31)
to be µ−p? ιc1(t′)ιc2(t′, u′)ect

′
ecu
′
, where p = 5.8 for the Q[1,15] + K[1,15] estimate, p = 3.8 for

the Q[1,14] + K[1,14] estimate, p = 1.8 for the Q[1,13] + K[1,13] estimate, and p = 0 for the
Q[1,≤12] +K[1,≤12] estimates; these latter estimates do not involve any singular factor of µ−1

? .
There is one important new detail that is relevant for these estimates: in deriving the analog
of the inequalities (14.9.34) for Q[1,≤12] +K[1,≤12], we use the estimate (10.3.6) in place of the
estimate (10.3.3); the estimate (10.3.6) is what allows us to break the µ−1

? degeneracy.

15. The Stable Shock-Formation Theorem

In this section, we state and prove our main stable shock-formation theorem.

15.1. The diffeomorphic nature of Υ and continuation criteria. We first provide a
technical lemma concerning the change of variables map Υ and a lemma providing continu-
ation criteria.

Lemma 15.1 (Sufficient conditions for Υ to be a global diffeomorphism). Assume
the data-size and bootstrap assumptions of Sects. 7.4-7.5 and the smallness assumptions of
Sect. 7.7. Assume in addition that

inf
(t,u)∈[0,T(Boot))×[0,U0]

µ?(t, u) > 0. (15.1.1)

Then the change of variables map Υ extends to a global C1,1 diffeomorphism from [0, T(Boot)]×
[0, U0]× T onto its image.

Proof. First, from Lemma 13.7, we see that that Υ extends as a C1,1 function defined on
[0, T(Boot)] × [0, U0] × T. Hence, to prove the lemma, it remains for us to show that Υ is a
diffeomorphism from [0, T(Boot)]× [0, U0]×T onto its image. To this end, we first use (2.7.9),
(13.2.1), the bootstrap assumptions (BAΨ), the fact that g

ij
= δij + O(Ψ), (8.6.5a), and

the assumption inf(t,u)∈[0,T(Boot))×[0,U0] µ?(t, u) > 0 to deduce that the Jacobian determinant
of Υ is uniformly bounded from above and from below strictly away from 0. Hence, from
the inverse function theorem, we deduce that Υ extends as a C1,1 local diffeomorphism from
[0, T(Boot)]× [0, U0]× T onto its image.

To show that Υ is a global diffeomorphism on the domain under consideration, it suffices to
show that for u1, u2 ∈ [0, U0] with u1 < u2, the distinct curves `T(Boot),u1 , `T(Boot),u2 ⊂ ΣU0

T(Boot)

do not intersect each other and that for each u ∈ [0, U0], Υ(T(Boot), u, ·) is an injection from
T onto its image. To rule out the intersection of two distinct curves, we use (7.3.3), (8.6.5a),
the assumption inf(t,u)∈[0,T(Boot))×[0,U0] µ?(t, u) > 0, the bootstrap assumptions (BAΨ), and

the fact that g
ij

= δij +O(Ψ) to deduce that
∑2

a=1 |∂au| is uniformly bounded from above

and strictly from below away from 0. It follows that the (closed) null plane portions PT(Boot)u

corresponding to two distinct values of u ∈ [0, U0] cannot intersect, which yields the desired
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result. It remains for us to show that when u ∈ [0, U0], Υ(T(Boot), u, ·) is a diffeomorphism
from T onto its image. To this end, we note that for each fixed u ∈ [0, U0], the rectangular
component Υ2(T(Boot), u, ·) (which can be identified with the local rectangular coordinate x2

along the curve), viewed as a T-valued function of ϑ ∈ T, is homotopic to the degree-one
map Υ2(0, u, ·) by the homotopy Υ2(·, u, ·) : [0, T(Boot)] × T → T. Hence, it is a basic result
of degree theory (see, for example, the Hopf Degree Theorem in [22]) that Υ2(T(Boot), u, ·) is
also a degree-one map. Next, we note that (2.8.5), (8.3.3a) with N = 0, the L∞ estimates of
Prop. 8.10, and Lemma 13.1 together imply that ΘΥ2(T(Boot), u, ϑ) = υ−1Y 2 = 1 +O(ε) for
ϑ ∈ T. From this estimate and the degree-one property of Υ2(T(Boot), u, ·), we deduce52 that
(for sufficiently small ε), Υ2(T(Boot), u, ·) is a bijection53 from T to T. Hence, Υ(T(Boot), u, ·)
is injective, which is the desired result. �

We now provide some continuation criteria, which we will use to ensure that the solution
survives until the shock forms.

Lemma 15.2 (Continuation criteria). Let (Ψ̊, Ψ̊0) := (Ψ|Σ0 , ∂tΨ|Σ0) ∈ H19
e (Σ1

0)×H18
e (Σ1

0)
be initial data for the geometric wave equation �g(Ψ)Ψ = 0 that are compactly supported in
Σ1

0 (see Remark 1.1 regarding the Sobolev spaces HN
e (Σ1

0)). Let T(Local) > 0 and U0 ∈ (0, 1],
and assume that the corresponding classical solution Ψ exists on an (“open at the top”)
spacetime region MT(Local),U0 (see Def. 2.1) that is completely determined by the non-trivial

data lying in ΣU0
0 and the trivial data lying to the right of the line {x1 = 0} in Σ0 (see Figure 1

on pg. 7). Let u be the eikonal function that verifies the eikonal equation (1.2.1) with the
initial data (1.2.2). Assume that µ > 0 on MT(Local),U0 and that the change of variables

map Υ from geometric to rectangular coordinates (see Def. 2.20) is a C1 diffeomorphism
from [0, T(Local)) × [0, U0] × T onto MT(Local),U0. Let H be the regime of hyperbolicity of
�g(Ψ) relative to constant-time hypersurfaces, that is, the set of real numbers b such that the
following conditions hold:

• The rectangular components gµν(·), (µ, ν = 0, 1, 2), are smooth on a neighborhood of
b.
• g00(b) < 0.
• The eigenvalues of the 2× 2 matrix g

ij
(b) (see Def. 2.15), (i, j = 1, 2), are positive.

Assume that none of the following 4 breakdown scenarios occur:

(1) infMT(Local),U0
µ = 0.

(2) supMT(Local),U0
µ =∞.

(3) There exists a sequence pn ∈MT(Local),U0 such that Ψ(pn) escapes every compact subset
of H as n→∞.

(4) supMT,U0
maxκ=0,1,2,3 |∂κΨ| =∞.

In addition, assume that the following condition is verified:

52Recall that if f : T → T is a C1 surjective map without critical points, then f is degree-one if for
p, q ∈ T, 1 =

∑
p∈f−1(q) sign (dpf), where dpf denotes the differential of f at p and the dpf are computed

relative to an atlas corresponding to the smooth orientation on T chosen at the beginning of the article. It
is a basic fact of degree theory that the sum is independent of q. Note that in the context of the present
argument, the role of df(·) is effectively played by ΘΥ2(T(Boot), u, ·).

53The surjective property of this map is easy to deduce.
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(5) The change of variables map Υ extends to the compact set [0, T(Local)]× [0, U0]×T as
a (global) C1 diffeomorphism onto its image.

Then there exists a ∆ > 0 such that Ψ, u, and all of the other geometric quantities defined
throughout the article can be uniquely extended (where Ψ and u are classical solutions) to a
strictly larger region of the form MT(Local)+∆,U0 into which their Sobolev regularity relative
to both geometric and rectangular coordinates is propagated. Moreover, if ∆ is sufficiently
small, then none of the four breakdown scenarios occur in the larger region, and Υ extends
to [0, T(Local) + ∆]× [0, U0]× T as a (global) C1 diffeomorphism onto its image.

Sketch of a proof. Lemma 15.2 is mostly standard. A sketch of the proof was provided in
[59, Proposition 21.1.1], to which we refer the reader for more details. Here, we only mention
the main ideas. Criterion (3) is connected to avoiding a breakdown in hyperbolicity of the
equation. Criterion (4) is a standard criterion used to locally continue the solution relative to
the rectangular coordinates. Criteria (1) and (2) and the assumption on Υ are connected to
ruling out the blow-up of u, degeneracy of the change of variables map, and degeneracy of the
regionMT(Local),U0 . In particular, criteria (1) and (2) play a role in a proving that

∑2
a=1 |∂au|

is uniformly bounded from above and strictly from below away from 0 on MT(Local),U0 (the

proof was essentially given in the proof of Lemma 15.1). �

15.2. The main stable shock formation theorem. We now state and prove the main
result of the article.

Theorem 15.1 (Stable shock formation). Let (Ψ̊, Ψ̊0) := (Ψ|Σ0 , ∂tΨ|Σ0) ∈ H19
e (Σ1

0) ×
H18
e (Σ1

0) (see Remark 1.1) be initial data for the geometric wave equation �g(Ψ)Ψ = 0 that
are compactly supported in Σ1

0 and that verify the data-size assumptions54 of Sect. 7.3. In

particular, let ε̊, δ̊, and δ̊∗ be the data-size parameters from (7.3.1) and (7.3.2). Assume
that the rectangular metric component functions verify the structural assumptions (2.2.7) and
(2.2.9). For each U0 ∈ [0, 1], let T(Lifespan);U0 be the classical lifespan of the solution in the

region that is completely determined by the non-trivial data lying in ΣU0
0 and the trivial data

lying to the right of the line {x1 = 0} in Σ0 (see Figure 1 on pg. 7). If ε̊ is sufficiently small

relative to δ̊−1 and δ̊∗ (in the sense explained in Sect. 7.7), then the following conclusions
hold, where all constants can be chosen to be independent of U0.
Dichotomy of possibilities. One of the following mutually disjoint possibilities must oc-
cur, where µ?(t, u) is defined in (10.1.2).

I) T(Lifespan);U0 > 2̊δ−1
∗ . In particular, the solution exists classically on the space-

time region clM2̊δ−1
∗ ,U0

, where cl denotes closure. Furthermore, inf{µ?(s, U0) | s ∈
[0, 2̊δ−1

∗ ]} > 0.

II) T(Lifespan);U0 ≤ 2̊δ−1
∗ , and

T(Lifespan);U0 = sup
{
t ∈ [0, 2̊δ−1

∗ ) | inf{µ?(s, U0) | s ∈ [0, t)} > 0
}
. (15.2.1)

In addition, case II) occurs when U0 = 1. In this case, we have

T(Lifespan);1 = {1 +O(̊ε)} δ̊−1
∗ . (15.2.2)

54Recall that in Remark 7.5, we outlined why such data exist.
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What happens in Case I). In case I), all bootstrap assumptions, the estimates of Props. 8.10
and 9.2, and the energy estimates of Prop. 14.1 hold on clM2̊δ−1

∗ ,U0
with the factors ε on

the RHS replaced by Cε̊. Moreover, for 0 ≤ M ≤ 5, the following estimates hold for
(t, u) ∈ [0, 2̊δ−1

∗ ]× [0, U0]:∥∥P≤12
∗ µ

∥∥
L2(Σut )

,
∥∥P≤12Li(Small)

∥∥
L2(Σut )

,
∥∥P≤11trg/χ

∥∥
L2(Σut )

≤ Cε̊, (15.2.3a)∥∥P13+M
∗ µ

∥∥
L2(Σut )

,
∥∥P13+MLi(Small)

∥∥
L2(Σut )

,
∥∥P12+Mtrg/χ

∥∥
L2(Σut )

≤ Cε̊µ−(M+.4)
? (t, u),

(15.2.3b)∥∥LP18µ
∥∥
L2(Σut )

,
∥∥LZ 18;1Li(Small)

∥∥
L2(Σut )

,
∥∥LZ 17;1trg/χ

∥∥
L2(Σut )

≤ Cε̊µ−6.4
? (t, u), (15.2.3c)∥∥µP18

∗ trg/χ
∥∥
L2(Σut )

≤ Cε̊µ−5.9
? (t, u). (15.2.3d)

What happens in Case II). In case II), all bootstrap assumptions, the estimates of
Props. 8.10 and 9.2, and the energy estimates of Prop. 14.1 hold on MT(Lifespan);U0

,U0 with

the factors ε on the RHS replaced by Cε̊. Moreover, for 0 ≤M ≤ 5, the estimates (15.2.3a)-
(15.2.3d) hold for (t, u) ∈ [0, T(Lifespan);U0)×[0, U0]. In addition, the scalar functions Z ≤9;1Ψ,

Z ≤4;2Ψ, X̆X̆X̆Ψ, Z ≤9;1Li, X̆X̆Li, P≤9µ, Z ≤2;1µ, and X̆X̆µ extend to ΣU0
T(Lifespan);U0

as

functions of the geometric coordinates (t, u, ϑ) that are uniformly bounded in L∞. Further-
more, the rectangular component functions gαβ(Ψ) verify the estimate gαβ = mαβ + O(̊ε)
(where mαβ = diag(−1, 1, 1) is the standard Minkowski metric) and have the same extension
properties as Ψ and its derivatives with respect to the vectorfields mentioned above.

Moreover, let Σ
U0;(Blow−up)
T(Lifespan);U0

be the (non-empty) subset of ΣU0
T(Lifespan);U0

defined by

Σ
U0;(Blow−up)
T(Lifespan);U0

:=
{

(T(Lifespan);U0 , u, ϑ) | µ(T(Lifespan);U0 , u, ϑ) = 0
}
. (15.2.4)

Then for each point (T(Lifespan);U0 , u, ϑ) ∈ Σ
U0;(Blow−up)
T(Lifespan);U0

, there exists a past neighborhood

containing it such that the following lower bound holds in the neighborhood:

|XΨ(t, u, ϑ)| ≥ δ̊∗

8|GL(Flat)L(Flat)
(Ψ = 0)|

1

µ(t, u, ϑ)
. (15.2.5)

In (15.2.5),
δ̊∗

8
∣∣∣GL(Flat)L(Flat)

(Ψ = 0)
∣∣∣ is a positive data-dependent constant (see (2.2.7)), and

the `t,u−transversal vectorfield X is near-Euclidean-unit length: δabX
aXb = 1 + O(̊ε). In

particular, XΨ blows up like 1/µ at all points in Σ
U0;(Blow−up)
T(Lifespan);U0

. Conversely, at all points in

(T(Lifespan);U0 , u, ϑ) ∈ ΣU0
T(Lifespan);U0

\ΣU0;(Blow−up)
T(Lifespan);U0

, we have

∣∣XΨ(T(Lifespan);U0 , u, ϑ)
∣∣ <∞. (15.2.6)
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Proof. Let C∗ > 1 be a constant (we will adjust C∗ throughout the proof). We define

T(Max);U0 := The supremum of the set of times T(Boot) ∈ [0, 2̊δ−1
∗ ] such that: (15.2.7)

•Ψ, u, µ, Li(Small), Υ, and all of the other quantities

defined throughout the article exist classically on MT(Boot),U0 .

• The change of variables map Υ is a (global) C1,1 diffeomorphism from

[0, T(Boot))× [0, U0]× T onto its image MT(Boot),U0

• inf
{
µ?(t, U0) | t ∈ [0, T(Boot))

}
> 0.

• The fundamental L∞ bootstrap assumptions (BAΨ)

hold with ε := C∗ε̊ for (t, u) ∈ ×[0, T(Boot))× [0, U0].

• The L2−type energy bounds

Q1/2
[1,13+M ](t, u) + K1/2

[1,13+M ](t, u) ≤ C∗ε̊µ
−(M+.9)
? (t, u), (0 ≤M ≤ 5), (15.2.8)

Q1/2
[1,1+M ](t, u) + K1/2

[1,1+M ](t, u) ≤ C∗ε̊, (0 ≤M ≤ 11) (15.2.9)

hold for (t, u) ∈ ×[0, T(Boot))× [0, U0].

It is a standard result that if ε̊ is sufficiently small and C∗ is sufficiently large, then T(Max);U0 >
0 (this is a standard local well-posedness result combined with the initial smallness of the
L2−controlling quantities shown in Lemma 14.5).

We now show that the energy bounds (15.2.8)-(15.2.9) and the fundamental L∞ boot-
strap assumption (BAΨ) are not saturated for (t, u) ∈ [0, T(Max);U0) × [0, U0]. The non-
saturation of the energy bounds (for C∗ sufficiently large) is provided by Prop. 14.1. The
non-saturation of the fundamental L∞ bootstrap assumptions (BAΨ) then follows from
Cor. 13.5. Consequently, we conclude that all of the estimates proved throughout the ar-
ticle hold on MT(Boot),U0 with the smallness parameter ε replaced by Cε̊. We use this fact
throughout the remainder of the proof without further remark.

Next, we show that (15.2.3a)-(15.2.3d) hold for (t, u) ∈ [0, T(Max);U0) × [0, U0]. To obtain
(15.2.3a)-(15.2.3c), we insert the energy estimates of Prop. 14.1 into the RHS of the inequal-
ities of Lemma 14.4 and use inequalities (10.3.3) and (10.3.6) as well as the fact that Q[1,M ]

is increasing in its arguments. Similarly, to obtain inequality (15.2.3d), we insert the energy
estimates of Prop. 14.1 into RHS (14.4.2) and use inequality (10.3.3).

We now establish the dichotomy of possibilities. We first show that if

inf
{
µ?(t, U0) | t ∈ [0, T(Max);U0)

}
> 0,

then T(Max);U0 = 2̊δ−1
∗ . To proceed, we assume for the sake of contradiction that the pre-

vious bound for µ? holds but that T(Max);U0 < 2̊δ−1
∗ . To reach a contradiction, we will use

Lemmas 15.1 and 15.2 to deduce that we can classically extend the solution to a region
of the form MT(Max);U0

+∆,U0 , with ∆ > 0 and T(Max);U0 + ∆ < 2̊δ−1
∗ , such that all of the

properties defining T(Max);U0 hold for the larger time T(Max);U0 + ∆. Since we have already
shown that the energy bounds (15.2.8)-(15.2.9) are not saturated and that the fundamental
L∞ bootstrap assumption (BAΨ) are not saturated for (t, u) ∈ [0, T(Max);U0) × [0, U0], the
contradiction will follow once we show that the change of variables map Υ extends as a
global C1,1 diffeomorphism from [0, T(Max);U0 ] × [0, U0] × T onto its image and that none of
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the four breakdown scenarios of Lemma 15.2 occur on MT(Max);U0
,U0 . Breakdown scenario

(1) from Lemma 15.2 is ruled out by assumption. Scenario (2) is ruled out by the estimate
(8.6.5a). Scenario (3) is ruled out by the bootstrap assumptions (BAΨ) and the fact that
g
ij

= δij +O(Ψ) with δij the standard Kronecker delta. From Lemma 15.1, we obtain that

Υ extends as a global C1,1 diffeomorphism from [0, T(Max);U0 ] × [0, U0] × T onto its image.
Hence, we can rule out the scenario (4) once we show that

sup
(t,u,ϑ)∈[0,T(Max);U0

]×[0,U0]×T

∑
i1+i2+i3≤1

∣∣∣∣∣
(
∂

∂t

)i1 ( ∂

∂u

)i2 ( ∂

∂ϑ

)i3
Ψ(t, u, ϑ)

∣∣∣∣∣ <∞.
This desired bound is a simple consequence of the estimates (8.6.3a)-(8.6.3b) (which hold for
(t, u) ∈ [0, T(Max);U0 ]× [0, U0]) and the fact that, as we showed in the proof of Lemma 13.7,

we have L = ∂
∂t

, Y = (1 + O(̊ε))Θ (recall that Θ := ∂
∂ϑ

) and ∂
∂u

= X̆ + O(1)Y . We

have thus reached a contradiction and established that either I) T(Max);U0 = 2̊δ−1
∗ or II)

inf
{
µ?(t, U0) | t ∈ [0, T(Max);U0)

}
= 0.

We now show that case II) corresponds to a true singularity and that the classical lifespan
is characterized by (15.2.1). To this end, we first use (9.3.6), (10.2.2), and the identity

X̆ = µX to deduce that inequality (15.2.5) holds. Furthermore, from (2.2.1), (2.4.11), and

the L∞ estimates of Prop. 8.10, we deduce that |X| :=
√
gabXaXb = 1 + f(γ)γ = 1 +O(̊ε).

From this estimate and (15.2.5), we deduce that at points in ΣT(Max);U0
,U0 where µ vanishes,

|XΨ| must blow up like 1/µ. Hence, T(Max);U0 is the classical lifespan. That is, we have
T(Max);U0 = T(Lifespan);U0 as well as the characterization (15.2.1) of the classical lifespan.
The estimate (15.2.6) is an immediate consequence of the estimate (8.6.3a) and the identity

X̆ = µX.
To obtain (15.2.2), we use (10.2.5a) and (10.2.6b) to deduce that µ?(t, 1) vanishes for the

first time when t = δ̊−1
∗ +O(̊ε).

To derive the statements regarding the quantities that extend to ΣU0
T(Lifespan);U0

, let q denote

any of the quantities Z ≤9;1Ψ, · · · , X̆X̆µ stated in theorem. The L∞ estimates of Props. 8.10
and 9.2 imply that ‖Lq‖

L∞(Σ
U0
t )

is uniformly bounded. Recalling that L = ∂
∂t

, we conclude

that q extends to ΣU0
T(Lifespan);U0

as an element of L∞(ΣU0
T(Lifespan);U0

) as desired. The estimate

gαβ = mαβ +O(̊ε) and the extension properties of the Z −derivatives of the scalar functions
gαβ then follow from (2.2.1), the already proven bound ‖Ψ‖

L∞(Σ
U0
t )
. ε̊, and the above

extension properties of the Z −derivatives of Ψ.
�
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Appendix A. Extending the results to the equations (g−1)αβ(∂Φ)∂α∂βΦ = 0

In this appendix, we sketch how to extend our shock-formation results to the Cauchy
problem

(g−1)αβ(∂Φ)∂α∂βΦ = 0, (A.0.1a)

(Φ|Σ0 , ∂tΦ|Σ0) = (Φ̊, Φ̊0), (A.0.1b)

where equation (A.0.1a) is written relative to the rectangular coordinates {xα}α=0,1,2, and

gαβ(∂Φ) = mαβ + g
(Small)
αβ (∂Φ), g

(Small)
αβ (0) = 0. (A.0.1c)

Dividing the wave equation by −(g−1)00 if necessary, we may assume as before that

(g−1)00 ≡ −1. (A.0.1d)

A.1. Basic setup. We start by defining Ψν , (ν = 0, 1, 2), and ~Ψ as follows:

Ψν := ∂νΦ, ~Ψ := (Ψ0,Ψ1,Ψ2). (A.1.1)

The main strategy behind extending our results is to take rectangular derivatives of the
equation (A.0.1a) to form a system of wave equations in the unknowns ~Ψ; see Lemma A.1.
The system has a special null structure that plays an important role in the analysis; see
Lemma A.3. The vast majority of the proof of shock formation for the system is the same
as it is in the case of the scalar equation (1.0.1a), but now with ~Ψ in the role of Ψ. We
can treat the system using essentially the same methods that we used to treat the scalar
equation (1.0.1a) because the coupling between the Ψν is not very difficult to handle and
because the tensorial structure of the equations matters only in a few key places. We devote
the remainder of this appendix to highlighting those key places and to describing the handful
of new ingredients that are needed.

We first note that the analogs of the scalar functions (2.2.5) for equation (A.0.1a) are

Gλ
µν = Gλ

µν(~Ψ) :=
∂g

(Small)
µν (~Ψ)

∂Ψλ

, (A.1.2a)

Gµαβ(~Ψ) := (g−1)αα
′
(g−1)ββ

′
Gµ
α′β′ . (A.1.2b)

For our proof to work, we assume an analog of (2.2.7), specifically that there exist coordinates
such that mαβ = diag(−1, 1, 1) (that is, Minkowski-rectangular coordinates) and such that
with L(Flat) := ∂t + ∂1, we have

mκλG
κ
µν(~Ψ = 0)Lα(Flat)L

β
(Flat)L

λ
(Flat) 6= 0. (A.1.3)

The assumption ensures that in the regime under study, the term ω(Trans−~Ψ) on RHS (A.3.4)
is sufficiently strong to drive µ to 0 in finite time.

We now provide the system of covariant wave equations implied by equation (A.0.1a). The
proof is a straightforward but tedious computation that relies on the identity ∂αΨβ = ∂βΨα;
we omit the details.
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Lemma A.1 (The system of covariant wave equations). As a consequence of equation
(A.0.1a), the quantities Ψν := ∂νΦ verify the following system of covariant wave equations
(where Ψν is viewed to be a scalar-valued function under covariant differentiation):

�g(~Ψ)Ψν = Q(∂~Ψ, ∂Ψν), (ν = 0, 1, 2), (A.1.4)

where �g(~Ψ)Ψ := 1√
|detg|

∂α

(√
|detg|(g−1)αβ∂βΨ

)
is the covariant wave operator of g applied

to Ψ,

Q(∂~Ψ, ∂Ψ) := Gµαβ {∂βΨα∂µΨ− ∂µΨα∂βΨ}+ (g−1)αβΩλ∂αΨλ∂βΨ, (A.1.5)

Gµαβ is defined in (A.1.2b), and Ων(~Ψ) := 1√
|detg|(~Ψ)

∂
√
|detg|(~Ψ)

∂Ψν
.

�
The quadratic term Q on RHS (A.1.4) has a special null structure that is of critical

importance for our proof. We describe this structure in Lemma A.3 below. We first recall
the definitions of the standard null (relative to g) forms Q(0) and Q(αβ):

Q(0)(∂φ, ∂φ̃) := (g−1)αβ∂αφ∂βφ̃, (A.1.6a)

Q(αβ)(∂φ, ∂φ̃) := ∂αφ∂βφ̃− ∂αφ̃∂βφ. (A.1.6b)

In the next lemma, we decompose the standard null forms relative to the non-rescaled
frame (2.4.4b) and exhibit their good geometric properties from the point of view of the

shock-formation problem. The main point is that there is no term proportional to (Xφ)Xφ̃
on RHS (A.1.7).

Lemma A.2 (Good properties of the standard null forms). If Q is a standard null
form, then we can decompose it as follows relative to the non-rescaled frame (2.4.4b):

Q(∂φ, ∂φ̃) = f1(Lφ)Lφ̃+ f2(Lφ)Xφ̃+ f3(Xφ)Lφ̃ (A.1.7)

+ (f4 · d/φ)Lφ̃+ (f5 · d/φ)Xφ̃+ (Lφ)f6 · d/φ̃+ (Xφ)f7 · d/φ̃+ f8 · d/φ⊗ d/φ̃,
where f1, f2 and f3 are scalar functions, f4, f5, f6, f7 are `t,u−tangent vectorfields, and f8

is a symmetric type
(

2
0

)
`t,u−tangent tensorfield with the following properties: f1, f2 and f3

and the rectangular components fα4 , fα5 , fα6 , fα7 , and fαβ8 are smooth scalar-valued functions

of ~Ψ and the rectangular components of the vectorfields L and X.

Proof. When Q = Q(0), (A.1.7) follows from Lemma 2.4. When Q = Q(αβ), we view Q(αβ)

to be the rectangular components of an anti-symmetric type
(

0
2

)
spacetime tensor which we

decompose relative to the non-rescaled frame: Q(αβ) = FLX(LαXβ −XαLβ) + FLΘ(LαΘβ −
ΘαLβ) +FXΘ(XαΘβ−ΘαXβ), where the F··· are scalar functions. To obtain the F···, we con-
tract both sides of the identity against pairs of elements of the non-rescaled frame {L,X,Θ}.
For example, contracting against XαΘβ and using (2.7.2), we find that (Xφ)Θφ̃−(Xφ̃)Θφ =

FLΘυ
2. This leads to the decomposition Q(αβ) =

{
(Lφ̃)Xφ− (Lφ)Xφ̃

}
{LαXβ −XαLβ} +

· · · + υ−2
{

(Xφ)Θφ̃− (Xφ̃)Θφ
}
{XαΘβ −ΘαXβ}. Using (2.7.2), we can rewrite terms in-

volving Θ as in the following example: υ−2(Xφ)(Θφ̃)XαΘβ = (Xφ)(Π/ #
β · d/φ̃)Xα, where Π/ λ

β

is defined in (2.5.1b). The desired decomposition (A.1.7) thus follows. �
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In the next lemma, we characterize the good structure of the quadratic term Q on RHS
(A.1.4). The proof follows from observation.

Lemma A.3 (Special null structure of the inhomogeneous terms). The quadratic

term Q(∂~Ψ, ∂Ψ) on the right-hand side of (A.1.4) is a linear combination of the standard

null forms in ∂~Ψ with coefficients depending on ~Ψ.

�

A.2. Additional smallness assumptions in the present context. To close the proof
of shock formation for solutions to the system (A.1.4), we assume that each scalar function
Ψν has data verifying the same size assumptions as the data for the scalar function Ψ, as de-
scribed in Sects. 7.3 and 7.7. Similarly, to derive estimates, we make the same L∞ bootstrap
assumptions for each Ψν that we did for Ψ. As we show below in (A.3.7) and the discussion
surrounding (A.3.9a)-(A.3.9b), these assumptions impose some subtle smallness restrictions
on the data (A.0.1b) in the sense that they imply the O(̊ε) smallness of special combinations

of the elements of {X̆Ψ0, X̆Ψ1, X̆Ψ2}. These smallness restrictions are consequences of our
size assumptions on the Ψν and their derivatives and the symmetry property ∂αΨβ = ∂βΨα.
As we will see in Sect. A.3, we especially rely on the following small-data estimates:∥∥∥LX̆Φ

∥∥∥
L∞(Σ1

0)
,
∥∥∥Y X̆Φ

∥∥∥
L∞(Σ1

0)
. ε̊. (A.2.1)

We note that the O(̊ε) smallness of
∥∥∥LX̆Φ

∥∥∥
L∞(Σ1

0)
is a simple consequences of the identity

LX̆Φ = L(µXaΨa) = (Lµ)XaΨa + µ(LXa
(Small))Ψa + µXaLΨa (A.2.2)

and the O(̊ε) smallness of ‖Ψa‖L∞(Σ1
0) and ‖LΨa‖L∞(Σ1

0). Similar remarks apply to the term∥∥∥Y X̆Φ
∥∥∥
L∞(Σ1

0)
on LHS (A.2.1). It is of course important that the smallness conditions (A.2.1)

are propagated by the nonlinear flow. Specifically, in the analog of the proof of Prop. 8.10,
we could derive the estimates∥∥∥LX̆Φ

∥∥∥
L∞(Σut )

,
∥∥∥Y X̆Φ

∥∥∥
L∞(Σut )

. ε (A.2.3)

at the end of the proof. For example, the estimate (A.2.3) for
∥∥∥LX̆Φ

∥∥∥
L∞(Σut )

would follow

from the identity (A.2.2) and L∞ estimates for all of the terms on RHS (A.2.2), which would
already have been obtained in the proof of the proposition.

A.3. The main new estimate needed at the top order. We now explain how to extend
Theorem 15.1 to the system (A.1.4). As we have suggested above, we can derive energy
identities for each scalar function Ψν by using essentially the same arguments that we used
to treat the scalar equation (1.0.1a). To derive inequalities that control ~Ψ, we replace the
controlling quantity QN from Def. 12.1 with

QN(t, u) := max
|~I|=N

max
ν=0,1,2

sup
(t′,u′)∈[0,t]×[0,u]

{
E[P

~IΨν ](t
′, u′) + F[P

~IΨν ](t
′, u′)

}
, (A.3.1)

and similarly for the other controlling quantities.



J. Speck, G. Holzegel, J. Luk, and W. Wong 159

Thanks to Lemma A.3, the terms on RHS (A.1.4) are easy to treat without invoking any
new ideas. In the remainder of this appendix, we explain the one new ingredient that we need
to close the estimates. It is needed for the top-order L2 estimates for the Ψν . To motivate the
discussion, we first recall a critically important aspect of our analysis of the scalar equation
(1.0.1a). At several points in our argument for deriving top-order L2 estimates for solutions
to (1.0.1a), we had to use equation (2.11.1), the fact that GLL, GLX = f(γ) (see Lemma 2.19),
and the L∞ estimates of Prop. 8.10 to obtain∣∣∣GLLX̆Ψ

∣∣∣ ≤ 2|Lµ|+ µO(ε). (A.3.2)

For example, (A.3.2) was used to derive55 equation (1.3.10). Since we are treating the coupled

system ~Ψ by separately deriving energy identities for each scalar function Ψν , our energy
estimates rely on the following analog of (A.3.2) for each of the three Ψν :∣∣∣GL

LLX̆Ψν

∣∣∣ ≤ 2 |Lµ|+ µO(ε), (A.3.3)

where GL
LL := Gκ

αβL
αLβLκ. The estimate (A.3.3) is the main new ingredient that we need

at the top order. As we will see, it does not follow directly from the evolution equation
Lµ = · · · and instead relies on a few new tensorial observations and the estimate (A.2.3).
Thus, we dedicate the remainder of this appendix to sketching a proof of (A.3.3).

We start by providing the evolution equation for µ in the present context.

Lemma A.4 (The transport equation verified by µ). In the case of equation (A.0.1a),
the inverse foliation density µ defined in (2.3.4) verifies the following transport equation:

Lµ = ω(Trans−~Ψ) + µω(Tan−~Ψ) := ω, (A.3.4)

where

ω(Trans−~Ψ) := −1

2
GL
LLX

aX̆Ψa, (A.3.5a)

ω(Tan−~Ψ) := −1

2
GL
LLX

aLΨa −
1

2
GX
LLX

aLΨa +
1

2
G/#
LL ·X

ad/Ψa −
1

2
Gλ
LLLΨλ −Gλ

LXLΨλ.

(A.3.5b)

The scalar-valued function Gλ
µν above is defined in (A.1.2a), GL

LL := Gκ
αβL

αLβLκ, G/ λLL :=

Gκ
αβL

αLβΠ/ λ
κ , etc.

Proof. The proof is very similar to the proof of (2.11.1). The main difference is that we use
the identity ∂αΨβ = ∂βΨα to rewrite

Gλ
LLX̆Ψλ = µGλ

LLX
a∂λΨa (A.3.6)

= −GL
LLX

aX̆Ψa − µGL
LLX

aLΨa − µGX
LLX

aLΨa + µG/#
LL ·X

ad/Ψa.

�

55Actually, in deriving (1.3.10), we used a version of (A.3.2) in which the absolute value signs are missing
and “≤” is replaced with “=.” However, (A.3.2) would have been sufficient for all of the arguments to go
through.
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The L∞ estimates provided by the analogs of the estimate |G#
(Frame)| = |f(γ, g/−1, d/x1, d/x2)| .

1 (see Lemmas 2.19 and 8.4 and the L∞ estimates of Prop. 8.10) and Prop. 8.10 allow us to

obtain the following bound for the term (A.3.5a): |ω(Tan−~Ψ)| = O(ε). Also using (A.3.4)-
(A.3.5b), we see that the desired estimate (A.3.3) will follow once we show that∥∥∥X̆Ψ0 +XaX̆Ψa

∥∥∥
L∞(Σut )

,
∥∥∥X̆Ψ1 +XaX̆Ψa

∥∥∥
L∞(Σut )

,
∥∥∥X̆Ψ2

∥∥∥
L∞(Σut )

. ε. (A.3.7)

The proof of (A.3.7) is not difficult. Inequality (A.3.7) for the second term on the LHS
follows from the identity (see (2.8.5))

X̆Ψ1 +XaX̆Ψa = X1
(Small)X̆Ψ1 +X2

(Small)X̆Ψ2 (A.3.8)

and the bound ‖X i
(Small)‖L∞(Σut ) . ε provided by the relation (2.16.2c), the estimate (8.6.6a),

and the bootstrap assumptions (BAΨ) (the version for ~Ψ). The main idea of the proof of the
other two estimates in (A.3.7) is to exploit the smallness (A.2.3) and the following identities,

which yield expressions for X̆Ψ0 + X̆Ψ1 and X̆Ψ2:

LX̆Φ = X̆Ψ0 + X̆Ψ1 + L1
(Small)X̆Ψ1 + (Lµ)XaΨa + µ(LXa

(Small))Ψa, (A.3.9a)

Y X̆Φ = X̆Ψ2 + Y 1
(Small)X̆Ψ1 + Y 2

(Small)X̆Ψ2 + (Y µ)XaΨa + µ(Y Xa
(Small))Ψa. (A.3.9b)

The identities (A.3.9a)-(A.3.9b) follow from the identity ∂αΨβ = ∂βΨα, (2.4.11), Def. 2.23,
and the fact that L0 = 1. From (2.16.2c) the L∞ estimates of the analog of Prop. 8.10 in the

present context, and the estimate (A.2.3), we find that ‖X̆Ψ0+X̆Ψ1‖L∞(Σut ), ‖X̆Ψ2‖L∞(Σut ) .
ε. Also using the already proven estimate (A.3.7) for the second term on the LHS, we
conclude the remaining two estimates stated in (A.3.7).

Appendix B. Extending the Results to the Irrotational Euler Equations

We now sketch the minor changes needed to extend the shock formation results outlined
in Sect. A to the irrotational Euler equations of fluid mechanics in two space dimensions.
The necessary changes are all connected to normalization. Under the assumption of irrota-
tionality, the Euler equations reduce to a quasilinear wave equation for a potential function56

Φ on the spacetime manifold R× Σ. The wave equation is the Euler-Lagrange equation (in
particular it can be expressed in divergence form) for a Lagrangian depending on ∂Φ which
must satisfy various physical assumptions allowing for a fluid interpretation; see [15] for the
details in the case of the non-relativistic Euler equations and [11] in the case of the (special)
relativistic Euler equations. A representative wave equation in the special relativistic case,
derivable from the Lagrangian57 L := [−(m−1)κλ∂κΦ∂λΦ]s+1, is (see [54] for more details):

∂α
{

[−(m−1)κλ∂κΦ∂λΦ]s(m−1)αβ∂βΦ
}

= 0, (B.1)

56 In general, the potential function Φ can only be locally defined because R×Σ is not simply connected.
However, the quasilinear wave equation for irrotational Euler flows is of the form (g−1)αβ(∂Φ)∂α∂βΦ = 0.
In particular, the equation depends only on the gradient of Φ, which is defined throughout the maximal
development of the data.

57This Lagrangian corresponds to the fluid equation of state p = ρ/(2s+ 1), where p is the pressure and
ρ is the proper energy density.
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where s ∈ (0,∞) is a constant and mαβ = diag(−1, 1, 1) is the standard Minkowski metric.
The background solutions with perturbations that we are able to treat correspond to static
solutions with non-zero energy density.58 In terms of the potential, these solutions are
Φ = kt, where k is non-zero constant. For some fluid wave equations, the values of k that
correspond to a physical fluid solution are restricted to a subset of R; this is not the case for
equation (B.1).

Note that the spacetime metric corresponding to the background solution is flat but typ-
ically not equal to diag(−1, 1, 1). We can fix this by rescaling time. That is, we can rescale
the Minkowski time coordinate by t → αt (where the constant α > 0 generally depends on
k and the Lagrangian) so that the metric corresponding to the quasilinear wave equation is
equal to diag(−1, 1, 1) for the background solution. This is equivalent to choosing rescaled
rectangular coordinates such that the speed of sound (propagation speed) corresponding to
the background solution is 1. Note that after this rescaling, 00 component of the tensorfield
called “m” in (B.1) is no longer −1. The rescaling also changes k to αk, but we will ignore
that minor change in the rest of this appendix. Moreover, in a slight abuse of notation, we
also refer to the rescaled time variable as x0 and/or t. Having normalized the rectangular
coordinates, we may now divide the wave equation by −(g−1)00, which allows us to assume
that (A.0.1d) holds. In total, we obtain a wave equation of the form (A.0.1a) verifying
(A.0.1d). For the rest of this appendix, we assume that this is the case.

We now define Ψν and ~Ψ as in (A.1.1), except that we change the definition of Ψ0 to
Ψ0 := ∂tΦ − k. This is a good definition because for the kinds of perturbations of the
background solutions that we consider, the (undifferentiated) Ψν are small quantities. The
condition (A.0.1c) concerning the functional dependence of the metric on the wave variables
takes the following form in the present context:

gαβ(~Ψ) = mαβ + g
(Small)
αβ (~Ψ), g

(Small)
αβ (~Ψ = 0) = 0, (B.2)

where mαβ = diag(−1, 1, 1) in (B.2).
To derive our main shock-formation results, we again assume that (A.1.3) holds. For

all fluid Lagrangians in the regime of physically relevant k, aside from one exceptional
Lagrangian (mentioned in Footnote 11 on pg. 9), it is possible to construct Minkowski-
rectangular coordinates such that (A.1.3) holds. One can compute that the Ψν verify the
system (A.1.4). We have thus massaged the wave equations of irrotational fluid mechanics
into a form such that we can apply the shock-formation proof outlined in Appendix A. We
note in passing that for these wave equations, the first product Gµαβ{· · · } on RHS (A.1.5)
vanishes. The vanishing is a consequence of the symmetry property Gµαβ = Gβαµ, which
holds for Euler-Lagrange equations since Gµαβ is proportional to the third partial derivative
of the Lagrangian with respect its arguments ∂µΦ, ∂αΦ, ∂βΦ.

Appendix C. Notation

In Appendix C, we collect some important notation and conventions that we use through-
out the paper so that the reader can refer to it as needed.

58When the energy density vanishes, the wave equation becomes degenerate.
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C.1. Coordinates.

• (x0, x1, x2) denote the rectangular spacetime coordinates.
• (x1, x2) denote the rectangular spatial coordinates.
• We often use the alternate notation t = x0.
• (t, u, ϑ) are the geometric coordinates (where t is the rectangular time coordinate, u

is the eikonal function, and ϑ is the geometric torus coordinate).

C.2. Indices. Lowercase Greek indices µ, ν, etc. correspond to components with respect
to the rectangular spacetime coordinates x0, x1, x2, and lowercase Latin indices i, j, etc.
correspond to components with respect to the rectangular spatial coordinates x1, x2. That
is, lowercase Greek indices vary over 0, 1, 2 and lowercase Latin indices vary over 1, 2. All
lowercase Greek indices are lowered and raised with the spacetime metric g and its inverse
g−1, and not with the Minkowski metric. We use Einstein’s summation convention in that
repeated indices are summed over their respective ranges.

C.3. Constants.

• δ̊ is the parameter corresponding to the initial size of the Pu−transversal derivatives
of the solution; pg. 69.
• ε̊ is a small parameter corresponding to the initial size of Ψ and its derivatives

involving at least one Pu−tangential differentiation; pg. 69.

• δ̊∗ = 1
2

supΣ1
0

[
GLLX̆Ψ

]
−

is the key quantity that controls the blow-up time; pg. 69.

• C denotes a uniform constant that is free to vary from line to line.
• The constants C are allowed to depend on the data-size parameters δ̊ and δ̊−1

∗ .
• If we want to emphasize that the constant C depends on an a quantity Q, then we

use notation such as “CQ.”
• We use the notation

f1 . f2

to indicate that there exists a uniform constant C > 0 such that f1 ≤ Cf2. We
sometimes use the alternate notation O(f2) to denote a quantity f1 that verifies
|f1| . |f2|.
• If we want to emphasize that the implicit constant C depends on an a quantity Q,

then we use the alternate notation

f1

Q

. f2.

C.4. Spacetime subsets.

• Σt′ := {(t, x1, x2) ∈ R× R× T | t = t′}; pg. 32.
• Pu = the outgoing null hypersurface equal to the corresponding level set of the eikonal

function; pg. 32.
• Σu

t = the portion of Σt in between P0 and Pu; pg. 32.
• P tu = the portion of Pu in between Σ0 and Σt; pg. 32.
• `t′,u′ = a topological one-dimensional torus equal to P t′u′ ∩ Σu′

t′ ; pg. 32.
• Mt,u = the spacetime region trapped in between Σu

0 , Σu
t , P tu, and P t0; pg. 32.



J. Speck, G. Holzegel, J. Luk, and W. Wong 163

C.5. Metrics.

• g = g(Ψ) denotes the spacetime metric.

• Relative to rectangular coordinates, gµν(Ψ) = mµν + g
(Small)
µν (Ψ), where mµν =

diag(−1, 1, 1); pg. 30.
• Relative to rectangular coordinates, Gµν(Ψ) = d

dΨ
gµν(Ψ) and G′µν(Ψ) = d

dΨ
Gµν(Ψ);

pg. 31.
• g denotes the first fundamental form of Σt, that is, g

ij
= gij; pg. 37.

• g−1 denotes the inverse first fundamental form of Σt; pg. 37.
• g/ denotes the first fundamental form of `t,u; pg. 37.
• g/−1 denotes the inverse first fundamental form of `t,u; pg. 37.

C.6. Musical notation, contractions, and inner products.

• We denote the g/−dual of an `t,u−tangent one-form ξ by ξ#. Similarly, if Y is an
`t,u−tangent vector, then Y[ denotes the g/−dual of Y , which is an `t,u−tangent
covector. Similarly, if ξ is a symmetric type

(
0
2

)
`t,u−tangent tensor, then ξ# denotes

the type
(

1
1

)
tensor that is g/−dual to ξ, and ξ## denotes the type

(
2
0

)
tensor that is

g/−dual to ξ. We use similar notation to denote the g/−duals of general type
(
m
0

)
and

type
(

0
n

)
`t,u−tangent tensors; pg. 29.

• g(X, Y ) = gαβX
αY β denotes the inner product of the vectors X and Y with respect

to the metric g. Similarly, if X and Y are `t,u−tangent, then g/(X, Y ) = g/abX
aY b.

• · denotes the natural contraction between two tensors. For example, if ξ is a spacetime
one-form and V is a spacetime vectorfield, then ξ ·V := ξαV

α. As a second example, if
T is a symmetric type

(
2
0

)
`t,u−tangent tensorfield and ξ is an `t,u−tangent one-form,

then (div/ T ) · ξ = (∇/aT ab)ξb; pg. 29.
• If ξ is a one-form and V is a vectorfield, then ξV := ξαV

α. Similarly, if W is a
vectorfield, then WV := WαV

α = g(W,V ). We use similar notation when contracting
higher-order tensorfields against vectorfields. Similarly, if Γακβ are the rectangular
Christoffel symbols (2.10.1), then ΓUVW := UαV κW βΓακβ; pg. 29.
• If ξ is a symmetric type

(
0
2

)
spacetime tensor and V is a vector, then ξV is the

one-form with rectangular components (ξV )ν = ξανV
α; pg. 29.

C.7. Tensor products and the trace of tensors.

• (ξ⊗ω)ΘΘ = ξΘωΘ denotes the ΘΘ component of the tensor product of the `t,u−tangent
one-forms ξ and ω.
• trgπ = (g−1)αβπαβ denotes the g−trace of the type

(
0
2

)
spacetime tensor πµν .

• trg/ξ = (g/−1)αβξαβ denotes the g/−trace of the type
(

0
2

)
`t,u−tangent tensor ξ.

C.8. Eikonal function quantities.

• The eikonal function u verifies the eikonal equation (g−1)αβ∂αu∂βu = 0 and has the
initial condition u|t=0 = 1− x1; pg. 11.

• µ = −
{

(g−1)αβ∂αu∂βt
}−1

denotes the inverse foliation density; pg. 33.
• Lν(Geo) = −(g−1)να∂αu denotes the Pu−tangent outgoing null geodesic vectorfield;

pg. 32.
• Lν = µLν(Geo) denotes a rescaled outgoing null vectorfield; pg. 33.
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• Li(Small) = Li − δi1 is a re-centered version of Li; pg. 41.

• X i
(Small) = X i + δi1 is a re-centered version of X i; pg. 41.

• χ = 1
2
L/Lg/ is the null second fundamental form of Pu relative to g; pg. 38.

C.9. Additional `t,u tensorfields related to the frame connection coefficients.

• k = 1
2
LNg is the second fundamental form of Σt relative to g; pg. 38.

• ζΘ = k/XΘ = g(DΘL,X); pg. 44.
• ζ = µ−1ζ(Trans−Ψ) + ζ(Tan−Ψ) is a splitting of ζ; pg. 45.

• k/ = µ−1k/ (Trans−Ψ) + k/ (Tan−Ψ) is a splitting of k/ ; pg. 45.

C.10. Vectorfields.

• L is Pu−tangent, outward pointing, and verifies g(L,L) = 0 and Lt = 1.
• L = ∂

∂t
relative to the geometric coordinates; pg. 34.

• X̆ is Σt−tangent, `t,u−orthogonal, and verifies g(X̆, X̆) = µ2, X̆u = 1; pg. 34.

• X̆ = ∂
∂u
− Ξ relative to the geometric coordinates, where Ξ is `t,u−tangent; pg. 34.

• X = µ−1X̆; pg. 34.

• Θ =
∂

∂ϑ
is the geometric torus coordinate partial derivative vectorfield; pg. 33.

• N = L+X is the future-directed unit normal to Σt; pg. 34.
• {L, X̆,Θ} denotes the rescaled frame; pg. 34.
• {L,X,Θ} denotes the non-rescaled frame; pg. 34.

C.11. Projection operators and frame components.

• Π denotes the type
(

1
1

)
tensorfield that projects onto Σt; pg. 35.

• Π/ denotes the type
(

1
1

)
tensorfield that projects onto `t,u; pg. 35.

• If ξ is a spacetime tensor, then ξ/ = Π/ ξ is the projection of ξ onto `t,u; pg. 35.
• If ξ is a type

(
0
2

)
spacetime tensor, then ξ/V = Π/ (ξV ); pg. 35.

• G(Frame) = (GLL, GLX , GXX , G/L , G/X , G/ ) is the array of components of Gµν relative
to the non-rescaled frame {L,X,X1, X2}; pg. 36.
• G′(Frame) = (G′LL, G

′
LX , G

′
XX , G

′/L , G
′/X , G

′/ ) is the array of components of G′µν relative

to the non-rescaled frame {L,X,X1, X2}; pg. 36.

C.12. Arrays of solution variables and schematic functional dependence.

• γ =
(

Ψ, L1
(Small), L

2
(Small)

)
; pg. 52.

• γ =
(

Ψ,µ− 1, L1
(Small), L

2
(Small)

)
; pg. 52.

• f(ξ(1), ξ(2), · · · , ξ(m)) schematically denotes an expression depending smoothly on the
`t,u−tangent tensorfields ξ(1), ξ(2), · · · , ξ(m); pg. 52.

C.13. Rescaled frame components of a vector.

• If J is a spacetime vector, then µJ = −µJLL −JX̆L −JLX̆ + µJ/ denotes

its decomposition relative to the rescaled frame {L, X̆,Θ}, where JL = J αLα,

JX̆ = J αX̆α, and J/ = Π/J ; pg. 60.



J. Speck, G. Holzegel, J. Luk, and W. Wong 165

C.14. Energy-momentum tensorfield and multiplier vectorfields.

• Qµν [Ψ] = DµΨDνΨ− 1
2
gµν(g

−1)αβDαΨDβΨ denotes the energy-momentum tensorfield
associated to Ψ; pg. 53.
• T = (1 + 2µ)L+ 2X̆ denotes the timelike multiplier vectorfield; pg. 53.

C.15. Commutation vectorfields.

• Y(Flat) denotes the Σt−tangent vectorfield with rectangular spatial components Y i
(Flat) =

δi2; pg. 41.
• Y = Π/ Y(Flat) denotes the `t,u−tangent commutation vectorfield; pg. 41.

• Z = {L, X̆, Y } denotes the full set of commutation vectorfields; pg. 41.
• P = {L, Y } are the Pu−tangent commutation vectorfields; pg. 41.

C.16. Differential operators and commutator notation.

• ∂µ denotes the rectangular coordinate partial derivative vectorfield
∂

∂xµ
.

• ∂

∂t
,
∂

∂u
,Θ =

∂

∂ϑ
denote the geometric coordinate partial derivative vectorfields.

• V f = V α∂αf denotes the V−directional derivative of a function f .
• df denotes the standard differential of a function f on spacetime.
• d/f = Π/ df , where f is a function on spacetime and Π/ denotes projection onto `t,u;

pg. 36. Alternatively, d/f can be viewed as the inherent differential of a function f
defined on `t,u.
• D = Levi-Civita connection of g.
• ∇/ = Levi-Civita connection of g/.
• ∇ = Levi-Civita connection of the Minkowski metric m.
• D2

XY = XαY βDαDβ and similarly for other connections (contractions against X and
Y are taken after the two covariant differentiations).
• ∇/ 2 denotes the second `t,u covariant derivative corresponding to g/.

• ∆/ = trg/∇/ 2f denotes the covariant Laplacian on `t,u corresponding to g/.
• If ξ is an `t,u−tangent one-form, then div/ ξ is the scalar-valued function div/ ξ :=
g/−1 · ∇/ ξ. Similarly, if V is an `t,u−tangent vectorfield, then div/ V := g/−1 · ∇/ V[, where
V[ is the one-form g/−dual to V . If ξ is a symmetric type

(
0
2

)
`t,u−tangent tensorfield,

then div/ ξ is the `t,u−tangent one-form div/ ξ := g/−1 · ∇/ ξ, where the two contraction
indices in ∇/ ξ correspond to the operator ∇/ and the first index of ξ.
• LV ξ denotes the Lie derivative of ξ with respect to V ; pg. 36.
• [V,W ] = LVW when V and W are vectorfields; pg. 36.
• More generally, if P and Q are two operators, then [P,Q] = PQ−QP denotes their

commutator.
• LV ξ = ΠLV ξ is the Σt−projected Lie derivative of ξ with respect to V ; pg. 36.
• L/V ξ = Π/LV ξ is the `t,u−projected Lie derivative of ξ with respect to V ; pg. 36.

C.17. Floor and ceiling functions and repeated differentiation.

• If M is a non-negative integer, then bM/2c = M/2 for M even and bM/2c = (M −
1)/2 for M odd, while dM/2e = M/2 for M even and dM/2e = (M + 1)/2 for M
odd.
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• We label the three vectorfields in Z as follows: Z(1) = L,Z(2) = Y, Z(3) = X̆. Note
that P = {Z(1), Z(2)}.
• If ~I = (ι1, ι2, · · · , ιN) is a multi-index of order |~I| := N with ι1, ι2, · · · , ιN ∈ {1, 2, 3},

then Z
~I := Z(ι1)Z(ι2) · · ·Z(ιN ) denotes the corresponding N th order differential oper-

ator. We write Z N rather than Z
~I when we are not concerned with the structure

of ~I.
• Similarly, L/~IZ := L/Z(ι1)

L/Z(ι2
) · · · L/Z(ιN

) denotes an N th order `t,u−projected Lie deriv-

ative operator (see Def. 2.13), and we write L/NZ when we are not concerned with the

structure of ~I.
• If ~I = (ι1, ι2, · · · , ιN), then ~I1 + ~I2 = ~I means that ~I1 = (ιk1 , ιk2 , · · · , ιkm) and
~I2 = (ιkm+1 , ιkm+2 , · · · , ιkN ), where 1 ≤ m ≤ N and k1, k2, · · · , kN is a permutation of
1, 2, · · · , N .
• Sums such as ~I1 + ~I2 + · · ·+ ~IM = ~I have an analogous meaning.

• Pu−tangent operators such as P
~I are defined analogously, except in this case we

clearly have ι1, ι2, · · · , ιN ∈ {1, 2}.
• Z N ;Mf denotes an arbitrary string of N commutation vectorfields in Z (see (2.8.3))

applied to f , where the string contains at most M factors of the Put −transversal

vectorfield X̆.
• PNf denotes an arbitrary string of N commutation vectorfields in P (see (2.8.4))

applied to f .
• For N ≥ 1, Z N ;M

∗ f denotes an arbitrary string of N commutation vectorfields in Z
applied to f , where the string contains at least one Pu−tangent factor and at most
M factors of X̆. We also set Z 0;M

∗ f := f .
• For N ≥ 1, PN

∗ f denotes an arbitrary string of N commutation vectorfields in P
applied to f , where the string must contain at least one factor of Y or at least two
factors of L.
• For `t,u−tangent tensorfields ξ, we similarly define strings of `t,u−projected Lie deriva-

tives such as L/N ;M
Z ξ.

• |Z ≤N ;Mf | is the sum over all terms of the form |Z N ′;Mf | with N ′ ≤ N and Z N ′;Mf
as defined above. When N = M = 1, we sometimes write |Z ≤1f | instead of |Z ≤1;1f |.
• |Z [1,N ];Mf | is the sum over all terms of the form |Z N ′;Mf | with 1 ≤ N ′ ≤ N and

Z N ′;Mf as defined above.

• Sums such as |P [1,N ]
∗ f |, |L/≤N ;M

Z ξ|, etc., are defined analogously. We write |P∗f |
instead of |P [1,1]

∗ f |. We also use the notation |X̆ [1,N ]f | = |X̆f | + |X̆X̆f | + · · · +

|

N copies︷ ︸︸ ︷
X̆X̆ · · · X̆ f |.

C.18. Length, area, and volume forms.

• dλg/(t′,u′,ϑ) = υ(t′, u′, ϑ)dϑ denotes the length form on `t,u induced by g; pg. 54.
• d$ = dλg/(t′,u′,ϑ) du

′ denotes an area form on Σt; µ d$ is the area form on Σt induced
by g; pg. 54.
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• d$ = dλg/(t′,u′,ϑ) dt
′ denotes an area form on Pu; pg. 54.

• d$ = dλg/(t′,u′,ϑ) du
′ dt′ denotes a volume form onMt,u; µ d$ is the area form onMt,u

induced by g; pg. 54.

C.19. Norms.

• |ξ|2 = g/µ1µ̃1 · · · g/µmµ̃m(g/−1)ν1ν̃1 · · · (g/−1)νnν̃nξµ1···µmν1···νn ξ
µ̃1···µ̃m
ν̃1···ν̃n denotes the square of the

norm of the type
(
m
n

)
`t,u tensor ξ; pg. 68.

• ‖ξ‖L∞(`t,u) = ess supϑ∈T|ξ|(t, u, ϑ); pg. 68.

• ‖ξ‖L∞(Σut ) = ess sup(u′,ϑ)∈[0,u]×T|ξ|(t, u′, ϑ); pg. 68.

• ‖ξ‖L∞(Ptu) = ess sup(t′,ϑ)∈[0,t]×T|ξ|(t′, u, ϑ); pg. 68.

• ‖f‖2
HN
e (Σ0) =

∑
|~I|≤N

∫
Σ0

(∂~If)2 d2x, where ∂~I is a multi-indexed differential operator

representing repeated differentiation with respect to the spatial coordinate partial
derivatives and d2x is the area form corresponding to the standard Euclidean metric
e on Σ0; pg. 6.
• ‖f‖2

L2(`t,u) =
∫
ϑ∈T f

2(t, u, ϑ)dλg/ =
∫
`t,u

f 2dλg/; pg. 68.

• ‖f‖2
L2(Σut ) =

∫ u
u′=0

∫
ϑ∈T f

2(t, u′, ϑ)dλg/ du
′ =
∫

Σut
f 2 d$; pg. 68.

• ‖f‖2
L2(Ptu) =

∫ t
t′=0

∫
ϑ∈T f

2(t′, u, ϑ)dλg/ dt
′ =
∫
Ptu
f 2 d$; pg. 68.

• We use similar notation for the norms ‖ · ‖L2(Ω) and ‖ · ‖L∞(Ω) of functions defined on
subsets Ω of `t,u, Σu

t , or P tu.

C.20. L2−controlling quantities.

• E[Ψ](t, u) denotes the energy of Ψ along Σu
t corresponding the multiplier T ; pg. 55.

• F[Ψ](t, u) denotes the null flux of Ψ along P tu corresponding the multiplier T ; pg. 55.

• QN(t, u) = max|~I|=N sup(t′,u′)∈[0,t]×[0,u]

{
E[P

~IΨ](t′, u′) + F[P
~IΨ](t′, u′)

}
; pg. 118.

• Q[1,N ](t, u) = max1≤M≤N QM(t, u); pg. 118.
• K[Ψ](t, u) = 1

2

∫
Mt,u

[Lµ]−|d/Ψ|2 d$ denotes the coercive spacetime integral associated

to Ψ; pg. 119.

• KN(t, u) = max|~I|=N K[P
~IΨ](t, u); pg. 119.

• K[1,N ](t, u) = max1≤M≤N KM(t, u); pg. 119.

C.21. Modified quantities.

• (PN )X = µPNtrg/χ+ PNX is the fully modified version of PNtrg/χ; pg. 66.

• (PN )X̃ = PNtrg/χ+ (PN )X̃ is the partially modified version of PNtrg/χ; pg. 66.

C.22. Curvature tensors.

• Rµναβ is the Riemann curvature tensor of g; pg. 65.
• Ricαβ = (g−1)κλRακβλ is the Ricci curvature tensor of g; pg. 65.

C.23. Omission of the independent variables in some expressions.

• Many of our pointwise estimates are stated in the form

|f1| . h(t, u)|f2|
for some function h. Unless we otherwise indicate, it is understood that both f1 and
f2 are evaluated at the point with geometric coordinates (t, u, ϑ).
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• Unless we otherwise indicate, in integrals
∫
`t,u

f dλg/, the integrand f and the length

form dλg/ are viewed as functions of (t, u, ϑ) and ϑ is the integration variable.
• Unless we otherwise indicate, in integrals

∫
Σut
f d$, the integrand f and the area form

d$ are viewed as functions of (t, u′, ϑ) and (u′, ϑ) are the integration variables.
• Unless we otherwise indicate, in integrals

∫
Ptu
f d$, the integrand f and the area form

d$ are viewed as functions of (t′, u, ϑ) and (t′, ϑ) are the integration variables.
• Unless we otherwise indicate, in integrals

∫
Mt,u

f d$, the integrand f and the vol-

ume form d$ are viewed as functions of (t′, u′, ϑ) and (t′, u′, ϑ) are the integration
variables.
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