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Abstract

We analyse the behaviour of the spectrum of the system of Maxwell equations of elec-
tromagnetism, with rapidly oscillating periodic coefficients, subject to periodic boundary
conditions on a “macroscopic” domain (0, T )d, T > 0. We consider the case when the con-
trast between the values of the coefficients in different parts of their periodicity cell increases
as the period of oscillations η goes to zero. We show that the limit of the spectrum as η → 0
contains the spectrum of a “homogenised” system of equations that is solved by the limits
of sequences of eigenfunctions of the original problem. We investigate the behaviour of this
system and demonstrate phenomena not present in the scalar theory for polarised waves.

1 Introduction

The behaviour of systems (of Maxwell equations) with periodic coefficients in the regime of “high
contrast”, or “large coupling” i.e. when the ratio between material properties of some of the
constituents within the composite is large, is understood to be of special interest in applications.
This is due to the improved band-gap properties of the spectra for such materials compared to
the usual moderate-contrast composites. A series of recent studies have analysed asymptotic
limits of scalar high-contrast problems, either in the strong L2-sense (see [10], [11]) or in the
norm-resolvent L2-sense, see [2]. These have resulted in sharp operator convergence estimates
in the homogenisation of such problems (i.e. in the limit as the period tends to zero) and have
provided a link between the study of effective properties of periodic media and the behaviour of
waves in such media, in particular their scattering characteristics. This suggests a potential for
applications of the abstract operator theory to the study of such problems. The studies have also
highlighted the need to extend the classical compactness techniques in homogenisation to cases
when the symbol of the operator involved is no longer uniformly positive definite, thus leading to
“degenerate” problems. The work [5] has opened a way to one such extension procedure, based
on a “generalised Weyl decomposition”, from the perspective of the strong L2-convergence.
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The set of tools developed in the literature is now poised for the treatment of vector problems
with degeneracies such as the linearised elasticity equations and the Maxwell equations; these
examples are typically invoked in the physics and applications literature, and are prototypes
for wider varieties of partial differential equations (PDE). The recent work [9] has studied the
spectral behaviour of periodic operators with rapidly oscillating coefficients in the context of
linearised elasticity. It shows that the related spectrum exhibits the phenomenon of “partial”
wave propagation, depending on the number of eigenmodes available at each give frequency. This
is close in spirit to the work of [6], where “partial wave propagation” was studied for a wider class
of vector problems, with a general high-contrast anisotropy.

The high-contrast system of Maxwell equations poses an analytic challenge in view of the
special structure of the “space of microscopic oscillations” (using the terminology of [5]), which
consists of the functions that are curl-free on the “stiff” component, in the case of a two-component
composite of a “stiff” matrix and “soft” inclusions. In the work [1] we analysed the two-scale
structure of solutions to the high-contrast system of Maxwell equations in the low-frequency limit,
and derived the corresponding system of homogenised equations, by developing an appropriate
compactness argument on the basis of the general theory of [5]. In the present paper we consider
the associated wave propagation problem for monochromatic waves of a given frequency by con-
structing two-scale asymptotic series for eigenfunctions. We justify these asymptotic series by
demonstrating that for each element of the spectrum of the homogenised equations their exist
convergent eigenvalues and eigenfunctions for the original heterogeneous problem. Our analysis
is set in the context of a “supercell” spectral problem, i.e. the problem of vibrations of a square-
shaped domain with periodicity conditions on the boundary (equivalently seen as a torus). The
problem of the “spectral completeness” of the homogenised description in question remains open:
it is not known, for the full-space problem, whether there may exist sequences of eigenvalues
converging to a point outside the spectrum of the homogenised problem. We shall address this
in a future publication, using the method we developed in [2].

2 Problem formulation and main results

In this paper we consider Maxwell equations for a three-dimensional two-component periodic
dielectric composite when the dielectric properties of the constituent materials exhibit a high
degree of contrast between each other. We assume that the reference cell Q := [0, 1)3 contains an
inclusion Q0, which is an open set with sufficiently smooth boundary. We also assume that the
“matrix” Q1 := Q\Q0 is simply connected Lipschitz set.

We consider a composite with high contrast in the dielectric permittivity ǫη = ǫ(x/η) at points
x ∈ η(Q1 +m), m ∈ Z

3, and x ∈ η(Q0 +m), m ∈ Z
3, namely

ǫη(y) =

{
1, y ∈ Q1,
η−2, y ∈ Q0,

where η ∈ (0, 1) is the period. We also assume moderate contrast in the magnetic permeability,
and for simplicity of exposition we shall set µ ≡ 1. We consider the open cube T := (0, T )3 and
those values of the parameter η for which T/η ∈ N. By re-scaling the spatial variable (which can
also be viewed as non-dimensionalisation) we assume that T = 1 and that η−1 ∈ N. We shall
study the behaviour of the magnetic component Hη of the electromagnetic wave of frequency ω
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propagating through the domain T occupied by a dielectric material with permittivity ǫη(x/η).
More precisely, we consider pairs

(
ωη, H

η
)
∈ R+ × [H1

#(T)]
3 satisfying the system of equations

curl
(
ǫ−1
η

(
x
η

)
curlHη

)
= ω2

ηH
η. (2.1)

Notice that solutions of (2.1) are automatically solenoidal, i.e. divHη = 0.
We seek solutions to the above problem in the form of an asymptotic expansion

Hη(x) = H0
(
x, xη

)
+ ηH1

(
x, xη

)
+ η2H2

(
x, xη

)
+ ..., (2.2)

where the vector functions Hj(x, y), j = 0, 1, 2, ..., are Q-periodic in the variable y. Substituting
(2.2) into (2.1) and gathering the coefficients for each power of the parameter η results in a system
of recurrence relations for Hj, j = 0, 1, 2, ..., see Section 4. In particular, the function H0 is an
eigenfunction of a limit (“homogenised”) system of PDE, as described in the following theorem.

Theorem 2.1. Consider the constant matrix

Ahom :=

∫

Q1

(
curlN(y) + I

)
dy,

where the vector-function N is a solution to the “unit-cell problem”

curl
(
curlN(y) + I

)
= 0 in Q1,

(
curlN(y) + I

)
× n = 0 on ∂Q0, N is Q−periodic. (2.3)

Suppose that ω ∈ R+ and H0(x, y) = u(x) + ∇yv(x, y) + z(x, y), where the triplet1 (u, v, z) ∈[
H1

#curl(T)
]3

× L2
(
R

3;H1
#(Q)

)
×
[
L2

(
T;H1

0 (Q0)
)]3

, satisfies the system of equations

curlx
(
Ahomcurlxu(x)

)
= ω2

(
u(x) + ∫

Q0

z(x, y)dy
)
, x ∈ T, (2.4)

divy
(
∇yv(x, y) + z(x, y)

)
= 0, (x, y) ∈ T×Q, (2.5)

curly
(
curlyz(x, y)

)
= ω2

(
u(x) +∇yv(x, y) + z(x, y)

)
, (x, y) ∈ T×Q0. (2.6)

Then:
1) There exists at least one eigenfrequency ωη for (2.1) such that |ωη − ω| < Cη, with an

η-independent constant C > 0.
2) Consider the finite-dimensional vector space

Xη := span
{
Hη : (2.1) holds, where ωη satisfies (2.1)

}
.

There exists an η-independent constant Ĉ > 0 such that dist
(
H0, Xη

)
< Ĉη.

1For a cube T, we denote by H1
#(T), H1

#curl(T), the closures of the set of T-periodic smooth functions with

respect to the norm of H1(T) and the norm

(
∫

T

| · |2 +

∫

T

|curl · |2
)1/2

,

respectively.

3



Remark 2.1. A. The matrix Ahom is described by solutions to certain degenerate “cell problems”,
which are presented in our work [1]. Therein (see [1, Lemma 4.4]), we prove the duality relation

Ahom =
(
ǫhomstiff

)−1
,

where the positive-definite matrix ǫhomstiff is given by

ǫhomstiff ξ · ξ := inf
u∈H1

#(Q),

∇u=−ξ inQ0

∫

Q1

(∇u+ ξ) · (∇u+ ξ) , ξ ∈ R
3. (2.7)

The matrix ǫhomstiff arises in the homogenisation of periodic problems with stiff inclusions, see also
[4]. In particular, the Euler-Lagrange equation for (2.7) is as follows: find u such that ∇u = −ξ
in Q0 and ∫

Q1

(∇u+ ξ) · ∇φ = 0 ∀φ ∈ H1
#(Q), ∇φ = 0 in Q0.

The equivalent “strong” form of the same problem is to find a Q-periodic function u that is such
that

div (∇u+ ξ) = 0 in Q1,

∫

∂Q0

(∇u+ ξ)·n = 0, u is continuous across ∂Q0, ∇u = −ξ, in Q0.

B. It is a straightforward consequence of (2.3), see also [1, Lemma 4.4], that

Ahom = min
U∈[H1

#
(Q)]3

∫

Q1

(
curlU + I

)(
curlU + I

)
(2.8)

and that the function the function N = N(y), see (2.3), is the minimiser in (2.8).
C. The representation

(
ǫhomstiff

)−1
ξ · ξ = inf

v∈[L2(Q)]3sol,
〈v〉=0

∫

Q1

(v + ξ) · (v + ξ) , ξ ∈ R
3,

holds, see [4, p. 102].

3 On the spectrum of the limit problem

In this section we study the set of values ω2 such that there exists a non-trivial triple (u, v, z)
solving the two-scale limit spectral problem (2.4)–(2.6).

3.1 Equivalent formulation and spectral decomposition of the limit

problem

Let G be the Green function for the scalar periodic Laplacian, i.e. for all y ∈ Q one has

−∆G(y) = δ0(y)− 1, y ∈ Q, G is Q-periodic,
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where δ0 is the Dirac delta-function supported at zero, on Q considered as a torus. Then, as the
functions v, z solve (2.5), we have v(x, ·) = G ∗ (divyz)(x, ·), and (2.6) takes the form

curly curly z(x, y) = ω2

(
u(x) +∇y

∫

Q0

G(y − y′) divy′z(x, y′) dy′ + z(x, y)

)
, (x, y) ∈ T×Q0.

(3.1)
For the case ω = 0 the set of solutions z to (3.1) subject to the condition z(x, y) = 0, x ∈ T,
y ∈ ∂Q0, is clearly given by L2(T,H0), where H0 := {u ∈ [H1

0 (Q0)]
3 : curlu = 0}.

Further, for ω 6= 0, as (3.1) is linear in u(x) and curly∇y = 0, we set

∇y

∫

Q0

G(y − y′) divy′z(x, y′) dy′ + z(x, y) = ω2B(y)u(x), (3.2)

where B is a 3×3 matrix function whose column vectors Bj , j = 1, 2, 3, are solutions in [H1
#(Q)]3

to the system

curl curlBj = ej + ω2Bj in Q0, (3.3)

curlBj(y) = 0, y ∈ Q1, (3.4)

divBj(y) = 0, y ∈ Q, (3.5)

a(Bj) = 0, (3.6)

where ej , j = 1, 2, 3, are the Euclidean basis vectors and a(Bj) is the “circulation” of Bj , that
is defined as the continuous extension, in the sense of the H1 norm, of the map given by a(φ)i =∫ 1

0 φi(tei)dt, i = 1, 2, 3, for φ ∈ [C∞(Q)]3, see [1, Lemma 3.1] for details. Note that, since
Bj ∈ [H1(Q)]3, (3.4) implies curlBj × n|− = 0 on ∂Q0. Furthermore, the system (3.3)-(3.6)
implies the variational problem: find Bj ∈ [H1

#(Q)]3 subject to the constraints (3.4)-(3.6) such
that the identity

∫

Q0

curlBj · curlϕ =

∫

Q

ej · ϕ+ ω2

∫

Q

Bj · ϕ, ∀ϕ ∈ [H1
#(Q)]3 satisfying (3.4)–(3.6). (3.7)

Indeed, functions ϕ ∈ [H1
#(Q)]3 which satisfy (3.4),(3.6) admit (see Lemma 4.1 below) the

representation ϕ = ∇p+ ψ, p ∈ H2
#(Q), ψ ∈ [H1

0 (Q0)]
3. Therefore, it is straightforward to show

(3.7) holds for ϕ = ψ if and only if (3.3) holds. Similarly, one can show (3.7) holds for ϕ = ∇p if
and only if (3.5) holds.

Substituting the representation (3.2) into (2.4) and using the fact that
∫

Q

(
∇y′G ∗ (divyz)(x, y

′) + z(x, y′)
)
dy′ =

∫

Q0

z(x, y)dy,

leads to the operator-pencil spectral problem

curl
(
Ahomcurl u(x)

)
= Γ(ω)u(x), x ∈ T, (3.8)

where Γ is a matrix-valued function that vanishes at ω = 0, and for ω 6= 0 has elements

Γij(ω) = ω2

(
δij + ω2

∫

Q

Bj
i

)
, i, j = 1, 2, 3. (3.9)
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We denote by H1 the space of vector fields in [H1
#(Q)]3 that satisfy the conditions (3.4)– (3.6). It

can be shown2 that there exist countably many pairs (αk, rk) ∈ R×H1 such that ‖rk‖[L2(Q)]3 = 1
and

curl curl rk = αkrk in Q0.

Moreover, the sequence (rk)k∈N can be chosen to form an orthonormal basis of the closure H1 of
H1 in [L2(Q)]3 and, upon a suitable rearrangement, one has

0 < α1 ≤ α2 ≤ ... ≤ αk ≤ ...
k→∞
−→ ∞.

Performing a decomposition3 of the functions Bj , j = 1, 2, 3, with respect to the above basis
yields

Bj
i =

∞∑

k=1

∫
Q
rkj

αk − ω2
rki , ω2 /∈ ∪{αk}

∞
k=1,

where rkj , j = 1, 2, 3, are the components of the vector rk, k ∈ N.

Consider the functions φk ∈ [H1
0 (Q0)]

3, k ∈ N, that solve the non-local problems

curl curl φk(y) = αk

(
∇

∫

Q0

G(y − y′) div φk(y′) dy′ + φk(y)

)
, y ∈ Q0, (3.10)

and satisfy the orthonormality conditions

∫

Q0

∫

Q0

(
∇2G(y − y′) + I

)
φj(y) · φk(y′) dy dy

′ = δjk, j, k = 1, 2, , ...,

where ∇2G is the Hessian matrix of G. Using the formula

rk(y) = ∇

∫

Q0

G(y − y′) div φk(y′) dy′ + φk(y), y ∈ Q,

we obtain the following representation for Γ :

Γij(ω) = ω2δij + ω4
∞∑

k=1

(∫
Q0
φki

)(∫
Q0
φkj

)

αk − ω2
, i, j = 1, 2, 3, ω2 /∈ {0} ∪ {αk}

∞
k=1. (3.11)

2Note that ||| · ||| :=
(∫

Q0
|curl · |2

)1/2
is a norm in H1 equivalent to the [H1(Q)]3-norm, due to the fact that

(

|a(·)|2 + ‖div · ‖2
L2(Q)

+ ‖curl · ‖2
[L2(Q)]3

)1/2
is an equivalent norm in the space

{

u ∈ [H1
#(Q)]3 : curlu = 0},

whose description is given in [1, Lemma 3.1]. Therefore, the equation curl curl u = λu, u ∈ H1, can be written
as λ−1u = Ku in the sense of the “energy” inner product generated by the norm ||| · ||| and K is a compact
self-adjoint operator in (H1, ||| · |||). The claim then follows by a standard Hilbert-Schmidt argument.

3When applying the standard Fourier representation approach with respect to the basis (rk)k∈N, the vector
ej in the right-hand side of (3.3) is treated as an element of the “dual” of H1, the space of linear continuous
functionals on H1.
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3.2 Analysis of the limit spectrum

Now, we consider the Fourier expansion for the function u in (3.8):

u(x) =
∑

m∈Z3

exp(2πim · x)û(m), û(m) :=

∫

T

exp(−2πim · x)u(x) dx,

where the integral is taken component-wise. As u solves (3.8), the coefficients û(m) satisfy the
equation

M(m)û(m) = Γ(ω)û(m), m ∈ Z
3, (3.12)

with the matrix-valued function M is given by

Mlp(m) = 4π2εilsmsA
hom
ij εjptmt = 4π2(el ×m) ·Ahom(ep ×m), m ∈ Z

3, l, p = 1, 2, 3,

where ej , j = 1, 2, 3 are the Euclidean basis vectors. Here ε is the Levi-Civita symbol:

εjkl =





1, (jkl) = (123), (231), (312),
−1, (jkl) = (132), (321), (213),
0, otherwise.

Notice that, for all m ∈ Z
3 \ {0}, zero is a simple eigenvalue of M(m) with eigenvector m, and

since the matrix Ahom is symmetric and positive-definite, the values of M are also symmetric
and positive-definite on vectors ξ such that ξ ·m = 0. In particular, for all m ∈ Z

3, one has

Γ(ω)û(m) ·m = 0 (3.13)

whenever û(m) is a solution to (3.12). Denote m̃ := |m|−1m and notice that M(m) = |m|2M(m̃).
Further, we denote by ẽ1(m̃) =

(
ẽ11(m̃), ẽ12(m̃), ẽ13(m̃)

)
and ẽ2(m̃) =

(
ẽ21(m̃), ẽ22(m̃), ẽ23(m̃)

)

the normalised eigenvectors of the matrix M(m̃) corresponding to its two positive eigenvalues
λ1(m̃) and λ2(m̃) respectively.

We write û(m) in terms of the basis
(
ẽ1(m̃), ẽ2(m̃), m̃

)
, as follows:

û(m) = C(m̃)⊤ũ(m̃)+α(m̃)m̃, ũ(m̃) ∈ R
2, α(m̃) ∈ R, C(m̃) =

(
ẽ11(m̃) ẽ12(m̃) ẽ13(m̃)
ẽ21(m̃) ẽ22(m̃) ẽ23(m̃)

)
.

Finding a non-trivial solution to the problem (3.12), (3.13) is equivalent to determining
(
ũ(m̃), α(m̃)

)
∈

R
3 \ {0} such that

|m|2Λ(m̃)ũ(m̃) = C(m̃)Γ(ω)C(m̃)⊤ũ(m̃) + α(m̃)C(m̃)Γ(ω)m̃,

Γ(ω)C(m̃)⊤ũ(m̃) · m̃ = −α(m̃)Γ(ω)m̃ · m̃,
(3.14)

where

Λ(m̃) :=

(
λ1(m̃) 0

0 λ2(m̃)

)
.

We have thus proved the following statement.

Proposition 3.1. The spectrum of the problem (2.4)–(2.6) is the union of the following sets.
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1. The elements of {αk : k ∈ Z} such that at least one of the corresponding rk has zero mean
over Q. These are eigenvalues of infinite multiplicity and the corresponding eigenfunctions
H0(x, y) are of the form w(x)rk(y) for an arbitrary w ∈ L2(T).

2. The set
{
ω2 : ∃m ∈ Z

3 such that (3.14) holds
}
, with the corresponding eigenfunctions

H0(x, y) of (2.4)–(2.6) having the form u(x)+∇yv(x, y)+z(x, y), where u(x) = exp(2πim ·
x)û(m) is an eigenfunction of (3.8) and

∇yv(x, y) + z(x, y) = ω2B(y)u(x, y) a.e. (x, y) ∈ T×Q,

that is H0(x, y) =
(
I + ω2B(y)

)
exp(2πim · x)û(m).

An immediate consequence of the above analysis is the following result.

Corollary 3.1. If the matrix Γ(ω) is negative-definite, the value λ = ω2 does not belongs to the
spectrum of (2.4)–(2.6).

Proof. Since M admits the spectral decomposition C′(m̃)Λ′(m̃)C′(m̃)⊤, where

C′(m̃) :=



ẽ11(m̃) ẽ12(m̃) ẽ13(m̃)
ẽ21(m̃) ẽ22(m̃) ẽ23(m̃)
m̃1 m̃2 m̃3


 , Λ′(m̃) :=



λ1(m̃) 0 0

0 λ2(m̃) 0
0 0 0


 ,

a necessary condition for pairs (m,ω) such that (3.12) has a solution is as follows:

det
(
|m|2Λ′(m̃)− C′(m̃)Γ(ω)C′(m̃)

)
= 0.

This is not possible since Λ′(m̃) is positive-semidefinite and, by assumption, the matrix Γ(ω) and,
consequently, the matrix C′(m̃)Γ(ω)C′(m̃) are negative-definite.

3.3 Examples of different admissible wave propagation regimes for the

effective spectral problem

In this section we explore the effective wave propagation properties of high-contrast electromag-
netic media. We demonstrate that the sign-indefinite nature of the matrix-valued function Γ gives
rise to phenomena not present in the case of polarised waves.

Suppose that the inclusion is symmetric under a rotation by π around at least two of the
three coordinate axes, then the matrices Ahom and Γ(ω) are diagonal (see Appendix): Ahom =
diag(a1, a2, a3), Γ(ω) = diag

(
β1(ω), β2(ω), β3(ω)

)
. Here ai are positive constants and βi are real-

valued scalar functions. Notice that, since |m̃| = 1, the eigenvalues λ1,2(m̃) of M(m̃) are the
solutions to the quadratic equation

λ2 − λ
{
(a2 + a3)m̃

2
1 + (a1 + a3)m̃

2
2 + (a1 + a2)m̃

2
3)
}
+
(
a1a2m̃

2
3 + a2a3m̃

2
1 + a1a3m̃

2
2

)
= 0. (3.15)

We will now solve the eigenvalue problem (3.12), equivalently (3.14), for particular examples of
such inclusions.
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3.3.1 Isotropic propagation (no “weak” band gaps)

If the inclusion Q0 is symmetric by a π/2 rotation around at least two of the three axes, say x1
and x2, then a = a1 = a2 = a3 and β(ω) = β1(ω) = β2(ω) = β3(ω). The equation (3.15) takes
the form (λ − a)2 = 0, and therefore λ1(m̃) = λ2(m̃) = a is an eigenvalue of multiplicity two of
M(m̃), with orthonormal eigenvectors given by

ẽ1(m̃) = e2, ẽ2(m̃) = e3 if |m̃1| = 1, (3.16)

and

ẽ1(m̃) =
1√

1− m̃2
1

e1 × m̃, ẽ2(m̃) =
1√

1− m̃2
1

(e1 × m̃)× m̃ if |m̃1| < 1. (3.17)

As before, ej , j = 1, 2, 3, are the Euclidean basis vectors. The system (3.14) takes the form

a|m|2ũ(m̃) = β(ω)ũ(m̃), α(m̃)β(ω) = 0.

Notice that if ω is a zero of β then necessarily ũ(m̃) is the zero vector. For such values of ω,
the above system is satisfied for any α(m̃), i.e. the non-trivial eigenvectors to (3.12) are parallel
to m̃. On the other hand, if β(ω) 6= 0, then α(m̃) = 0 and ω is an eigenvalue of (3.12) if and
only if it solves the equation β(ω) = a|m|2. In this case ũ(m̃) is an arbitrary element of R2 and
û(m) = C(m̃)⊤ũ(m̃) is an arbitrary vector of the (2-dimensional) eigenspace spanned by the
vectors ẽ1(m̃) and ẽ2(m̃). Finally, there are no non-trivial solutions û when β(ω) < 0.

3.3.2 Directional propagation (existence of “weak” band gaps)

If the inclusion Q0 is symmetric by a π/2 rotation around one of the three coordinate axis, say x1,
and by a π rotation around another axis, say x2, one has a = a1, b = a2 = a3 and β2(ω) = β3(ω).
Here, recalling |m̃| = 1, (3.15) takes the form

(λ− b)(λ− a(1 − m̃2
1)− bm̃2

1) = 0,

whence λ1(m̃) = a(1− m̃2
1) + bm̃2

1, λ2(m̃) = b. There are now two separate cases to consider.
Case 1). Assume that |m̃1| = 1, i.e. the vector m̃ is parallel to the axis of higher symmetry.

Here, M(m̃) = diag(0, b, b) and b is an eigenvalue of multiplicity two with the eigenspace spanned
by the vectors (3.16). The system (3.14) takes the form

bm2
1ũ(m̃) = β2(ω)ũ(m̃), α(m̃)β1(ω) = 0.

Here, if β2(ω) < 0, then necessarily ũ(m̃) = 0 and non-trivial solutions û(m) = α(m̃)m exist if
and only if β1(ω) = 0. On the other hand, if β1(ω) < 0, then necessarily α(m̃) = 0 and non-trivial
solutions û(m) = C(m̃)⊤ũ(m̃) exist if and only if β2(ω) > 0. The first situation only occurs at a
discrete set of values ω, while , unlike in the isotropic case, the second situation can give rise to
intervals of admissible ω, which we refer to as “weak band gaps.”

Case 2). Assume |m̃1| < 1, i.e. the vector m̃ is not parallel to the axis of higher symmetry.
Recall that the eigenvectors corresponding to λ1(m̃), λ2(m̃) are given by ẽ1(m̃), ẽ2(m̃) in (3.17).
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By setting Γ(ω) = diag(β1(ω)−β2(ω), 0, 0)+β2(ω)I it is easy to see that the system (3.14) takes
the form

|m|2λ1(m̃)ũ1(m̃) = β2(ω)ũ1(m̃),

(
β1(ω)− β2(ω)

)
m1

√
1−m2

1ũ2(m̃) = α
(
(β1(ω)− β2(ω))m

2
1 + β2(ω)

)
,

|m|2λ2(m̃)ũ2(m̃) =
(
β2(ω) +

(
β1(ω)−β2(ω))(1 −m2

1

))
ũ2(m̃)− α(β1(ω)− β2(ω))m1

√
1−m2

1,

(3.18)
If m̃1 = 0, i.e. the vector m̃ is perpendicular to the direction of higher symmetry, then the system
(3.18) fully decouples and reduces to

|m|2aũ1(m̃) = β2(ω)ũ1(m̃), |m|2bũ2(m̃) = β1(ω)ũ2(m̃), αβ2(ω) = 0.

Suppose, β1(ω) (resp. β2(ω)) is negative for some ω, then the above system implies that ũ2(m̃) = 0
(resp. ũ1(m̃) = 0). In this case, we see that propagation is restricted solely to the direction of
ẽ1(m̃) (resp. ẽ2(m̃)) which is orthogonal to the eigenvector(s) corresponding to the negative
eigenvalue of Γ(ω). In both situations weak band gaps are present.

Remark 3.1. Recently, there has been several works on the analysis of problems with “partial” or
“directional” wave propagation in the context of elasticity, where at some frequencies, propagation
occurs for some but not for all values of the wave vector: the analysis of the vector problems for
thin structures of critical thickness [8], the analysis of high-contrast [9], and partially high-contrast
[6] periodic elastic composites. To our knowledge, the effect we describe here is the first example
of a similar kind for Maxwell equations.

Remark 3.2. When the “size” T of the domain T increases to infinity, the spectrum of (2.4)–
(2.6) converges to a union of intervals (“bands”) separated by intervals of those values ω2 for
which the matrix Γ(ω) is negative-definite (“gaps”, or “lacunae”). As above, we say that ω2

belongs to a weak band gap (in the spectrum of (2.4)–(2.6)) if at least one eigenvalue of Γ(ω) is
positive-semidefinite and at least one eigenvalue of Γ(ω) is negative.

4 Two-scale asymptotic expansion of the eigenfunctions

Here we give the details of the recurrent procedure for the construction of the series (2.2).
Substituting the expansion (2.2) into (2.1) and equating coefficients in front of η−2, η−1, and

η0, we arrive the following sets of equations, where x ∈ T is a parameter:

curly curlyH
0(x, y) = 0, y ∈ Q1, (4.1)

curlyH
0 × n

∣∣
+
= 0, y ∈ ∂Q0, (4.2)

curly curlyH
1(x, y) = −(curly curlx + curlx curly )H

0(x, y), y ∈ Q1, (4.3)(
curlyH

1 × n+ curlxH
0 × n

) ∣∣
+
= 0, y ∈ ∂Q0, (4.4)

curly curlyH
2(x, y) =− (curly curlx + curlx curly )H

1(x, y)

− curlx curlxH
0(x, y) + ω2H0(x, y), y ∈ Q1,

(4.5)

(
curlyH

2 + curlxH
1
)
× n

∣∣
+
= curlyH

0 × n
∣∣
−
, y ∈ ∂Q0, (4.6)
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and

curly curlyH
0(x, y) = ω2H0(x, y), y ∈ Q0, (4.7)

H0
∣∣
−
= H0

∣∣
+
, y ∈ ∂Q0. (4.8)

Multiplying (4.1) byH0, integrating by parts overQ1, and using (4.2) shows that curlyH
0(x, y) =

0, y ∈ Q1. More precisely, for all x ∈ T we seek H0(x, ·) from the space

V :=
{
v ∈ [H1

#(Q)]3
∣∣ curly v = 0 in Q1

}
.

Before proceeding, we recall a characterisation of the space V (see [1]) that proves useful in the
analysis of the term H0.

Lemma 4.1 (Characterisation of V ).

v ∈ V ⇐⇒ v(y) = a+∇b(y) + c(y)

for some a ∈ R
3, b ∈ H2

#(Q), c ∈ [H1
0 (Q0)]

3.

Taking into account, via Lemma 4.1, that the leading-order term H0 is of the form

H0(x, y) = u(x) +∇yv(x, y) + z(x, y) (4.9)

and substituting (4.9) into the equations (4.3)–(4.4), we find that the coefficient H1 has the

representation H1(x, y) = N(y) curlu(x) + H̃1(x, y), up to the addition of an element of V . Here

the term H̃1(x, y) satisfies

curly
(
curly H̃

1(x, y) + curlx∇yv(x, y)
)
= 0, y ∈ Q1, (4.10)

(
curly H̃

1 + curlx∇yv
)
× n

∣∣
+
= 0, y ∈ ∂Q0, (4.11)

and N = N(y) is a Q-periodic matrix-valued function whose columns N r = N r(y), r = 1, 2, 3,
are solutions to the problems

curl
(
curlN r(y) + er

)
= 0, y ∈ Q1,

(
curlN r(y) + er

)
× n = 0, y ∈ ∂Q0, (4.12)

where er is the rth Euclidean basis vector. It is shown ([3], [5]) that (4.12) admits a unique
solution in V ⊥, the orthogonal complement to V in the space [H1

#(Q)]3.

Looking for H1(x, ·) ∈ [H1
#(Q)]3 and taking into account the identity curlx∇y = −curly∇x

together with (4.10)–(4.11), we infer that for all x ∈ T the function h(x, ·) := H̃1(x, ·)−∇xv(x, ·)
is a solution in [H1

#(Q)]3 to

curly curly h(x, y) = 0, y ∈ Q1, curly h(x, y)× n
∣∣
+
= 0, y ∈ ∂Q0.

In particular, the function h belongs to the space V . Therefore, one has

H1(x, y) = N(y)curlx u(x) +∇xv(x, y), (4.13)

up to the addition of an element of V . (As we discuss in Remark 5.1 below, one can specify
the divergence divyH

1(x, y). This, along with the condition that the y-average of H1 vanishes,
defines this additional element of V in a unique way.)
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Further, multiplying the equation (4.5) by an arbitrary test function φ ∈ V and integrating
over Q1 yields

∫

Q1

curly curlyH
2(x, y) · φ(y) dy =

∫

Q1

ω2H0(x, y) · φ(y) dy −

∫

Q1

curly curlxH
1(x, y) · φ(y) dy

−

(∫

Q1

curlx curlxH
0(x, y) · φ(y) + curlx curlyH

1(x, y) · φ(y) dy

)
. (4.14)

We integrate by parts in the left-hand side of (4.14) to determine that

∫

Q1

curly curlyH
2(x, y) · φ(y) dy =

∫

∂Q0

(
curlyH

2(x, y)× n
∣∣
+

)
· φ(y) dy. (4.15)

Now we perform integration by parts in the individual terms in the right-hand side of (4.14).

−

∫

Q1

curly curlxH
1(x, y)φ(y) dy = −

∫

∂Q0

(
curlxH

1(x, y)× n
∣∣
+

)
· φ(y) dy

by (4.6)
=

∫

∂Q0

{(
curlyH

2(x, y)× n
∣∣
+

)
· φ(y) +

(
curlyH

0(x, y)× n
∣∣
−

)
· φ(y)

}
dy

=

∫

∂Q0

(
curlyH

2(x, y)× n
∣∣
+

)
· φ(y) +

∫

Q0

curly curlyH
0(x, y) · φ(y) dy

−

∫

Q0

curlyH
0(x, y) · curly φ(y) dy

by (4.7)
=

∫

∂Q0

(
curlyH

2(x, y)× n
∣∣
+

)
· φ(y) +

∫

Q0

ω2H0(x, y) · φ(y) dy

−

∫

Q0

curlyH
0(x, y) · curly φ(y) dy (4.16)

Taking into account the representations (4.9) and (4.13), we find that

∫

Q1

curlx curlxH
0(x, y) · φ(y) + curlx curlyH

1(x, y) · φ(y) dy

=

∫

Q1

curlx

((
I +N(y)

)
curlx u(x) + curlx∇yv(x, y) + curly ∇xv(x, y)

)
· φ(y) dy

=

∫

Q1

curlx

((
I +N(y)

)
curlx u(x)

)
· φ(y) dy, (4.17)

where we again make use of the identity curlx∇y = −curly ∇x. Finally, equations (4.14)–(4.17)
imply

∫

Q1

curlx

((
I +N(y)

)
curlx u(x)

)
· φ(y) dy +

∫

Q0

curlyH
0(x, y) · curly φ(y) dy

=

∫

Q

ω2H0(x, y) · φ(y) dy ∀φ ∈ V (4.18)
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In what follows we derive the system (2.4)–(2.6) by considering different choices of the test
function φ in the identity (4.18).

Step 1. Choosing test functions φ ∈
[
C∞

0 (Q0)
]3

in (4.18) we find that

curly curlyH
0(x, y) = ω2H0(x, y) y ∈ Q0.

Using the representation (4.9) and the identity curly∇y = 0, we arrive at (2.6).
Step 2. Choosing φ = ∇yψ in (4.18), performing integration by parts, using the identity

divy curlx = divx curly and recalling (4.12) gives

∫

Q

ω2H0(x, y) · ∇yψ dy =

∫

Q1

curlx

((
I +N(y)

)
curlx u(x)

)
· ∇yψ(y) dy

=

∫

Q1

divy curlx

((
I +N(y)

)
curlx u(x)

)
· ψ(y) dy

=

∫

Q1

divx curly

((
I +N(y)

)
curlx u(x)

)
· ψ(y) dy = 0.

Therefore, we deduce that
divyH

0(x, y) = 0, y ∈ Q, (4.19)

and taking into account (4.9) we obtain the equation (2.5).
Step 3. Choosing φ(y) ≡ 1 in the identity(4.18) we find, using the representation (4.9) once

more, that (2.4) holds, where the matrix Ahom emerges as the result of integrating the expression
curlyN(y) + I with respect to y ∈ Q1.

In the next section we use the above formal construction of the series (2.2) to justify the two
claims of Theorem 2.1.

5 Proof of Theorem 2.1

For each η > 0, denote by Aη the operator in the space4 L2
#sol(T) defined in a standard way by

the bilinear form (cf. (2.1))

∫

T

ε−1
η

(
·
η

)
curlu · curl v, u, v ∈ [H1

#(T)]
3 ∩ L2

#sol(T) =: H.

For fixed ω in the spectrum of (2.4)-(2.5), let H0 be a corresponding eigenfunction. Consider

the (unique) solution H̃η ∈ H to the problem

(Aη + I)H̃η = (ω2 + 1)H0(·, ·
η ). (5.1)

Denote also

bη(u, v) :=

∫

T

ε−1
η

(
·
η

)
curlu · curl v +

∫

T

u · v, u, v ∈ [H1
#(T)]

3,

4We denote by L2
#sol(T) the closure of the set of smooth divergence-free vector fields on T with respect to the

L2(T)-norm.
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and (cf. (2.2))
H(2)(·, η) := H0

(
·, ·

η

)
+ ηH1

(
·, ·

η

)
+ η2H2

(
·, ·

η

)
, (5.2)

where Hj, j = 1, 2, are solution of the system of recurrence relations described in Section 4. The
existence of solutions H1, H2 is guaranteed by a result we established in [1, Lemma 3.4]. As
these solutions are unique up to the addition of an element from V , we shall choose them as in
Remark 5.1.

Proposition 5.1. There exists a constant Ĉ > 0 such that the estimate

bη

(
H̃η −H(2)(·, η), ϕ

)
≤ Ĉη

√
bη(ϕ, ϕ) (5.3)

holds for all ϕ ∈ [H1
#(T)]

3.

Proof. Using the definition of the function H̃η and the recurrence relations (4.1)–(4.8) yields

bη

(
H̃η −H(2)(·, η),ϕ

)
=

∫

T

ε−1
η

(
·
η

)
curl H̃η · curlϕ+

∫

T

H̃η · ϕ

−

∫

T

ε−1
η

(
·
η

)
curl

(
H0

(
·, ·

η

)
+ ηH1

(
·, ·

η

)
+ η2H2

(
·, ·

η )
)
· curlϕ

−

∫

T

(
H0

(
·, ·

η

)
+ ηH1

(
·, ·

η

)
+ η2H2

(
·, ·

η

))
· ϕ

=

∫

T

F 1(·, η) · φ+

∫

T

F 2(·, η) · ηcurl φ.

(5.4)

Here, F 1, F 2 are elements of L2(T) defined for a.e. x ∈ T by

F 1(x, η) = −η
(
χ0(y)curlxcurlyH

0(x, y)

+ χ1(y)
{
curlxcurlxH

1(x, y) + curlxcurlyH
2(x, y)

}
+H1(x, y) + ηH2(x, y)

)∣∣∣
y=

x
η

,

F 2(x, η) = −η
(
χ0(y)

{
curlxH

0(x, y) + curlyH
1(x, y) + η curlxH

1(x, y)

+ η curlyH
2(x, y) + η2 curlxH

2(x, y)
}
+ χ1(y)curlxH

2(x, y)
)∣∣∣∣

y=
x
η

.

(5.5)

Notice that the functions H0 = H0(x, y), H1 = H1(x, y), H2 = H2(x, y) all belong to the space
C∞

#

(
T, H1

#(Q)
)
. Indeed, this is seen to be true for H0 by Proposition 3.1; in the case of ω = αk

we choose w ∈ C∞
# (T). The assertions for H1 and H2 now follow from formula (4.13) for the

corrector H1(x, y), and the boundary-value problem (4.5)–(4.6) for the function H2(x, y). It then
follows from (5.5) that ||F 1(·, η)||L2(T) ≤ Cη, ||F 2(·, η)||L2(T) ≤ Cη, and by applying the Hölder
inequality to (5.4) we deduce that

bη

(
H̃η −H(2)(·, η), ϕ

)
≤ Cη

(∫

T

|ϕ|2 +

∫

T

|ηcurlϕ|2
)1/2

,

as required.
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The above proposition implies the following statement.

Theorem 5.1. There exists a constant C such that estimate
∥∥H̃η −H0(·, ·/η)

∥∥
L2(T)

≤ Cη holds

for all η.

Proof. Setting ϕ = H̃η −H(2)(·, η) in the estimate (5.3) yields

Ĉ2η2 ≥ bη

(
H̃η −H(2)(·, η), H̃η −H(2)(·, η)

)
≥

∥∥H̃η −H(2)(·, η)
∥∥2

L2(T)
.

The claim of the theorem now follows, by noting that in view of (5.2) we have

∥∥H(2)(·, η)−H0(·, ·/η)
∥∥
L2(T)

≤ C̃η

for some C̃ > 0, and hence

∥∥H̃η −H0(·, ·/η)
∥∥
L2(T)

≤
∥∥H̃η −H(2)(·, η)

∥∥
L2(T)

+
∥∥H(2)(·, η)−H0(·, ·/η)

∥∥
L2(T)

≤ (Ĉ + C̃)η,

as required.

The claims of Theorem 2.1 now follow from the estimate

∥∥((ω2 + 1)−1 − (Aη + I)−1
)
H0(·, ·/η)

∥∥
L2(T)

≤ (ω2 + 1)−1
∥∥H0(·, ·/η)− H̃η

∥∥
L2(T)

≤ Cη, (5.6)

where we used the definition (5.1) of the function H̃η and Theorem 5.1. Indeed, from [7, p. 109],
we infer that the quantities dist

(
(ω2 + 1)−1, Sp

(
(Aη + 1)−1

))
and dist

(
(ω2 + 1)−1H0(·, ·/η), Xη

)

are controlled above by the right-hand side of (5.6), which completes the proof of Theorem 2.1.

Remark 5.1. Note that H(2) is not solenoidal in general, but can be defined in such a way that it
is “close” to a solenoidal field, thanks to the equation (4.19) (equivalently, (2.5)) and the special
choice of the function H1 so that

divxH
0(x, y) + divyH

1(x, y) = 0 a.e. (x, y) ∈ T×Q.

The function H(2) thus defined is η-close to the eigenspace Xη in the norm of [H1
#(Q)]3.

Appendix: Symmetry of Ahom and Γ(ω) under rotations

Let a ∈ L∞(Q) have support contained in Q1. Consider the matrix

Ahom
pq :=

∫

Q

a
(
curlN q

p + δpq
)

p, q ∈ {1, 2, 3},

where N q is the unique solution to the problem (cf. [5], [1, Lemma 3.4] and (4.12) above for
a = χ1, the characteristic function of Q1)

curl
(
a[curlN q + eq]

)
= 0, N q ∈ {u ∈ [H1

#(Q)]3 : a curlu = 0}⊥.
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Here the superscript “⊥” denotes the orthogonal complement in [H1
#(Q)]3. Notice that if, for

fixed ζ ∈ R
3, we multiply each of the above equations by ζq then

Ahomζ =

∫

Q

a
(
curlNζ + ζ

)
, (5.7)

where the vector Nζ , whose components are N q
pζq, is the unique solution to the problem

curl
(
a[curlNζ + ζ]

)
= 0, Nζ ∈ {u ∈ [H1

#(Q)]3 : a curlu = 0}⊥. (5.8)

It is clear that the matrix representation of the bounded linear mapping ζ 7→
∫
Q
a
(
curlNζ + ζ

)

is equal to Ahom. The following property holds.

Proposition 5.2. Suppose that σ is a rotation such that σQ = Q and assume that

a(y) = σ−1a(σy)σ, y ∈ Q. (5.9)

Then , Ahom inherits the same symmetry, i.e. one has

Ahom = σ−1Ahomσ. (5.10)

In particular, Ahom
kl = Ahom

lk = 0, for all l 6= k.

Proof. For each u ∈ [H1
#(Q)]3 let w be the solution of the vector equation

(
curl curlw(y)

)
α
= σsαǫslmσmr

∂ul(y)

∂yr
, α = 1, 2, 3,

in the space
H :=

{
w ∈ [H1

#(Q)]3 : divw = 0, 〈w〉 = 0
}
.

It is clear that such a solution exists. We denote by û the vector field curlw. A direct calculation,
using the property σ−1 = σ⊤, yields

curly′u(σ−1y′) = σcurl û(σ−1y′). (5.11)

Therefore, for all ϕ ∈ [H1
#(Q)]3, the above equality and the assumption (5.9) imply

∫

Q

a(y′)curly′ u(σ−1y′) · curly′ ϕ(σ−1y′) dy′ =

∫

Q

a(σy)σcurl û(y) · σcurl ϕ̂(y) dy

=

∫

Q

a(y)curl û(y) · curl ϕ̂(y) dy.

Hence, a function u ∈ [H1
#(Q)]3 solves

∫

Q

a(y′)curly′ u(σ−1y′) · curly′ ϕ(σ−1y′) dy′ =

∫

Q

f(y′) · curly′ ϕ(σ−1y′) dy′ ∀ϕ ∈ [H1
#(Q)]3,

(5.12)
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if and only if û solves
∫

Q

a(y)curl û(y) · curl ϕ̂(y) dy =

∫

Q

σ−1f(σy) · curl ϕ̂(y) dy ∀ϕ̂ ∈ [H1
#(Q)]3. (5.13)

Let us now prove (5.10). For fixed ξ, η ∈ R
3 let Nξ be the unique solution to (5.8) and set

u(y) := Nξ(σy), y ∈ Q. By (5.7), assumption (5.9) and (5.11) we deduce that

Ahomξ · η =

∫

Q

a(y′)
(
curly′ Nξ(y

′) + ξ
)
· η dy′ =

∫

Q

a(y′)
(
curly′u(σ−1y′) + ξ

)
· η dy′

(5.11)
=

∫

Q

a(y′)
(
σcurlû(σ−1y′) + ξ

)
· η dy′

y′=σy
=

∫

Q

a(σy)
(
σcurl û(y) + ξ

)
· η dy

(5.9)
=

∫

Q

a(y)
(
curlû(y) + σ−1ξ

)
· σ−1η dy. (5.14)

Since Nξ(y
′) solves (5.8), u(σ−1y′) solves (5.12) for f(y′) = a(y′)ξ and therefore û solves (5.13)

where, by (5.9), σ−1f(σy) = σ−1a(σy)ξ = a(y)σ−1ξ. Hence, the solution Nσ−1ξ to (5.8), for
ζ = σ−1ξ, is the projection of û onto the space {u ∈ [H1

#(Q)]3 : a curlu = 0}⊥ and the expression

in (5.14) equals Ahomσ−1ξ · σ−1η. The assertion (5.10) follows, in view of the arbitrary choice
of ξ, η, and the equality σAhomσ−1 = σ−1Ahomσ which holds since σ is unitary and Ahom is
symmetric.

Corollary 5.1. If (5.9) holds for σ = σk, where σk is the rotation by π around the xk-axis, then
Ahom

kl = 0, for all l 6= k.

Proof. Indeed, say for k = 1 (5.10) takes the form


Ahom

11 Ahom
12 Ahom

13

Ahom
21 Ahom

22 Ahom
23

Ahom
31 Ahom

32 Ahom
33


 =



Ahom

11 −Ahom
12 −Ahom

13

−Ahom
21 Ahom

22 Ahom
23

−Ahom
31 Ahom

32 Ahom
33


 ,

and hence Ahom
12 = Ahom

21 = Ahom
13 = Ahom

31 = 0.

Similarly, direct calculation proves the following.

Corollary 5.2. If (5.9) holds for σ = σk, where σk is the rotation by π/2 around the xk-axis,
then Ahom

kl = 0, for all l 6= k and Ahom
ii = Ahom

jj , i, j 6= k.

Proposition 5.3. Suppose that the characteristic function χ0 of the set Q0 satisfies (5.9) with
a = χ0I. Then for all ω2 /∈ {0}∪{αk}

∞
k=1 the matrix Γ(ω), defined by (3.9), (3.3)–(3.6), satisfies

the property
Γ(ω) = σΓ(ω)σ−1 = σ−1Γ(ω)σ.

Proof. We make use of the representation (3.11) for Γ(ω) and of the equations (3.10) for the
functions φk. Multiplying (3.10) by ψ ∈ [C∞

0 (Q0)]
3 and integrating by parts yields

∫

Q0

curlφk(y)·curlψ(y) dy = αk

∫

Q0

∫

Q0

G(y−x) divφk(x) div ψ(y) dxdy+

∫

Q0

φk(y)·ψ(y) dy = 0.

(5.15)
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We claim that the functions σφk satisfy the identity (5.15) with Q0 replaced by σQ0 := {x ∈ Q :
σ−1x ∈ Q0}. Indeed, treating each of the terms in (5.15) separately, we obtain

∫

σQ0

σφk(y′) · σψ(y′) dy′ =

∫

σQ0

φk(y′) · ψ(y′) dy′
y′=σy
=

∫

Q0

φk(y) · ψ(y) dy,

∫

σQ0

curl(σφk)(y′) · curl(σψ)(y′) dy′
y′=σy
=

∫

Q0

curlφk(y) · curlψ(y) dy,

and
∫

σQ0

∫

σQ0

G(y′ − x′) div(σφk)(x′) div(σψ)(y′) dx′dy′

x′=σx,
y′=σy
=

∫

Q0

∫

Q0

G
(
σ(y − x)

)
div φk(x) divψ(y) dxdy

=

∫

Q0

∫

Q0

G
(
y − x) div φk(x) div ψ(y) dxdy,

where the invariance of the Green function G, under the rotation σ, holds due to the assumption.
Hence, φk are invariant under rotation by σ and using the formula (3.11) yields

Γ(ω) = ω2σσ−1 + ω4
∞∑

k=1

(∫
Q0
σφk

)
⊗
(∫

Q0
σφk

)

αk − ω2
= σΓ(ω)σ−1, ω2 /∈ {0} ∪ {αk}

∞
k=1,

as required.

By analogy with Corollary 5.1, Corollary 5.2 we obtain the following statement.

Corollary 5.3. If (5.9) holds for σ = σk, where σk is the rotation by π around the xk-axis, then
Γkl(ω) = 0 for all l 6= k, ω2 /∈ {0} ∪ {αk}

∞
k=1. Moreover, if σk is a rotation by π/2 around the

xk-axis, then Γii(ω) = Γjj(ω) for i, j 6= k.
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