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Abstract

The purpose of this note is to provide an overview of the containment prob-
lem for symbolic and ordinary powers of homogeneous ideals, related conjectures
and examples. We focus here on ideals with zero dimensional support. This is
an area of ongoing active research. We conclude the note with a list of potential
promising paths of further research.
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1 Introduction

Let I ⊂ R = K[x0, . . . , xN ] be a homogeneous ideal. Such an ideal determines
various sequences of associated ideals. The most natural one is that of ordinary
powers of I:

I0 = R ⊃ I1 = I ⊃ I2 ⊃ I3 ⊃ I4 ⊃ . . . .

If I = 〈f1, . . . , fn〉 is given explicitly in terms of generators, then the r-th ordinary
power of I is generated by products

fi1 · . . . · fir with i1, . . . , ir ∈ {1, . . . , n} .

Another important sequence of ideals associated to I is the sequence of symbolic
powers of I:

I(0) = R ⊃ I(1) = I ⊃ I(2) ⊃ I(3) ⊃ I(4) ⊃ . . . .

Recall that for m > 0 the m-th symbolic power of I is defined as

I(m) =
⋂

P∈Ass(I)

(ImRP ∩R) , (1)

where Ass(I) is the set of associated primes of I.
Contrary to ordinary powers, even if I is given explicitly by a set of generators

I = 〈f1, . . . , fn〉, it is very difficult in general to determine generators of I(m) for m >

2. On the other hand, if I is a radical ideal and V = V (I) is the reduced subscheme
in PN defined by I, then the symbolic power I(m) consists of all polynomials in
R vanishing to order at least m along V . This is a consequence of the famous
Nagata-Zariski Theorem, see [16, Theorem 3.14] for prime ideals and [28, Corollary
2.9] for radical ideals. Thus, in this case, symbolic powers have clear geometric
interpretation.

Research presented in this note is motivated by the following main question.

http://arxiv.org/abs/1601.01308v1


2

Problem 1.1 (The containment problem). Decide for which m and r there is the
containment

I(m) ⊂ Ir. (2)

Remark 1.2. Note that for the reverse containment i.e.

Ir ⊂ I(m)

the analogous question has a very simple answer. The containment holds if and only
if m 6 r [3, Lemma 8.4.1].

It came in a sense as a surprise that there does exist a uniform and simple stated
answer to the Containment Problem. It was discovered by Ein, Lazarsfeld and Smith
in characteristic zero, see [15] and by Hochster and Huneke in positive characteristic,
see [20]. Both papers builded upon ground breaking ideas of Swanson in [29].

Theorem 1.3 (Ein-Lazarsfeld-Smith, Hochster-Huneke). Let I ⊂ K[x0, . . . , xN ] be
a homogeneous ideal. Then the containment

I(m) ⊂ Ir

holds for all m > Nr.

The above Theorem is a powerful and elegant result. It is natural to wonder to
what extend the bound m > Nr is sharp. A striking fact is that there is not a single
example known (at least to the authors of the present note), where one really needs
m > Nr for the containment (2) to hold, i.e. the containment holds for lower values
of m. This has prompted Huneke to ask the following question addressing the first
non-trivial case of Theorem 1.3.

Problem 1.4 (Huneke). Let I be a saturated ideal of a reduced finite set of points
in P2. Does then the containment

I(3) ⊂ I2 (3)

hold?

Positive answer to Problem 1.4 obtained in an ample family of special cases
and additional experimental data led to the following more general question, see [3,
Conjecture 8.4.2], [6, Conjecture 1.1], [18, Conjecture 4.1.1], [4, Conjecture 3.2].

Problem 1.5 (Bocci, Harbourne, Huneke). Let I be a saturated ideal of a finite
set of reduced points in PN . Does the containment

I(m) ⊂ Ir

hold for m > Nr − (N − 1)?

This note gives an overview of verified cases and constructed counterexamples
which have been discovered recently. There is also a number of open questions in
this area of active current interest and ongoing investigations, see e.g. [24], [22], [26]
for recent contributions.
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2 Symbolic powers for ideals of points in projective spaces

Since in this note we focus on ideals supported on reduced or, sometimes more
generally, on fat points, we recall here briefly the main notions. In the particular
situation of points, symbolic powers can be defined in an easier and more accessible
way than provided in (1). Let Z = {P1, . . . , Ps} be a union of reduced points in PN .
For a fixed i ∈ {1, . . . , s} let I(Pi) denote the ideal of polynomials vanishing at Pi.
Then obviously the ideal of the set Z satisfies:

I(Z) = I(P1) ∩ . . . ∩ I(Ps).

The symbolic powers of I(Z) are given in the same way:

I(Z)(m) = I(P1)
m ∩ . . . ∩ I(Ps)

m (4)

for any m > 1. Note that any point P ∈ PN is a complete intersection, hence
I(P )(m) = I(P )m for all m > 1. Indeed since the powers of a complete intersection
ideal are arithmetically Cohen-Macaulay the claim follows from the Unmixedness
Theorem [16, Corollary 18.14]. So that the right hand side of (4) is the intersection
of symbolic powers of ideals of each component of Z.

The same holds in a slightly more general setting.

Definition 2.1 (Fat points scheme). A subscheme Z ⊂ PN is a fat points scheme
if its ideal I(Z) has the form

I(Z) = I(P1)
m1 ∩ . . . ∩ I(Ps)

ms

for points P1, . . . , Ps in the projective space PN and positive integers m1, . . . ,ms.
In this situation I(Z) is a called a fat points ideal.

For symbolic powers of a fat points ideal I(Z) = I(P1)
m1 ∩ . . .∩ I(Ps)

ms we have

I(Z)(m) = I(P1)
mm1 ∩ . . . ∩ I(Ps)

mms .

3 General statements motivated by Problem 1.5

To begin with note that the constant N appearing in the statement of Theorem 1.3
can not be lowered. A series of examples was constructed by Bocci and Harbourne
in [5]. The main idea to study the so called star configurations of points in PN goes
back to Ein.

Definition 3.1 (Star configuration of points). We say that Z ⊂ PN is a star con-
figuration of degree d (or a d-star for short) if Z consists of all intersection points
of d > N general hyperplanes in PN . By intersection points we mean the points
which belong to exactly N of given d hyperplanes.

The assumption general in the Definition means that any N of d given hyper-
planes meet in a single point and there is no point belonging to N + 1 or more
hyperplanes. Star configurations can be defined much more generally. They form an
interesting and combinatorially easy to describe class of examples occurring in vari-
ous situations in algebra and geometry. We refer to [17] for a very nice introduction
to this circle of ideas.

Now the result of Bocci and Harbourne is as follows, see [5, Theorem 2.4.3].
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Proposition 3.2. Let Z ⊂ PN be a d-star. Let I be the ideal of Z. Then for any
c < d−N+1

d
N there exists m and r such that

m

r
6 c and I(m) * Ir.

Since d can be taken arbitrarily large, we see that there is no constant lower than
N which would satisfy the statement of Theorem 1.3. Investigating into this problem
has prompted Harbourne to introduce a new interesting invariant, measuring in a
sense a discrepancy between symbolic and ordinary powers.

Definition 3.3 (Resurgence). Let I be a homogeneous ideal. The resurgence of I
is the real number

ρ(I) = sup
{m

r
: I(m) * Ir

}

.

This is a delicate invariant and has been computed only in few special cases.
One of them is

ρ(I) =
d−N + 1

d

for a d-star in PN , see [5, Theorem 2.4.3]. The importance of ρ(I) follows from the
fact that there is the containment

I(m) ⊂ Ir provided
m

r
> ρ(I). (5)

Of course the applicability of (5) is limited by the computability of ρ(I). There
are however results along these lines which in certain situations lead to interesting
consequences. Before stating sample results of this kind we need to introduce further
invariants.

Definition 3.4 (The initial degree). Let I = ⊕d>0Id be a homogeneous ideal in R.
Then the initial degree α(I) is defined as the least number d such that Id 6= 0. In
other words, α(I) is the least degree of a non-zero polynomial in I.

Alternatively, denoting by M = 〈x0, . . . , xN 〉 the irrelevant ideal of R, the initial
degree α(I) may thought of as the M -adic order of I, i.e. the largest t such that
I ⊂ M t.

The next invariant, the Castelnuovo-Mumford regularity reg(I) of I provides a
measure, in terms of the minimal free resolution, of how complicated the ideal I is.

Definition 3.5 (Castelnuovo-Mumford regularity). Let I ⊂ R be a homogeneous
ideal and let

0 −→ . . . −→ Fj −→ . . . −→ F0 −→ I −→ 0

be the minimal free resolution of I over R. Let fj be the maximal degree of a
generator in a minimal set of generators of Fj . Then

reg(I) = max {fj − j, j > 0} .

The following useful result is Lemma 2.3.4 in [5] and Lemma 2.1 in [4].

Proposition 3.6 (Postulation Containment Criterion). Let I be a homogeneous
(not necessarily saturated) ideal defining a 0-dimensional subscheme in PN . If the
inequality

r · reg(I) 6 α(I(m))

holds, then there is the containment

I(m) ⊂ Ir.
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Remark 3.7 (Computability of α(I)). Note that the initial degree of a symbolic
power of an ideal is not easy to compute in general. Suffices it to say that the famous
Nagata Conjecture predicts

α(I(m)) > m ·
√
s

for s > 10 general points in P2. Despite tremendous efforts this conjecture remains
open for more than half a century, see [7] for a nice overview and recent progress.

Turning back to Problem 1.5 we note that the constant N − 1 appearing there is
the most optimistic one, since again star configurations can be used in order to show
that the statement would fail with N in place of N − 1. On the other hand there is
number of cases where the question asked in Problem 1.5 has positive answer.

Theorem 3.8 (Evidence for Problem 1.5). The containment in Problem 1.5 holds

a) for arbitrary ideals in characteristic 2;

b) for monomial ideals in arbitrary characteristic;

c) for ideals of d-stars;

d) for ideals of general points in P2 and P3.

Proof. Claim a) follows from a private communication from Huneke to Harbourne
mentioned in [3, Example 8.4.4]. Claim b) is an application of the Postulation Con-
tainment Criterion as explained in [3, Example 8.4.5]. Part c) is again an application
of Proposition 3.6 based on numerical data provided in [3, Lemma 8.4.7]. Finally
claim d) is proved for points in P2 in [18, Proposition 6.10] (it follows also from [5,
Remark 4.3]) and for points in P3 in [11, Theorem 3].

The first counterexample to Problem 1.4 and hence also to Problem 1.5 was
announced in [14]. We report on it in details in the subsequent section. Now we
mention counterexamples to Problem 1.5 announced recently by Harbourne and Se-
celeanu in [19]. These are up to date the only counterexamples known in higher
dimensional projective spaces. Such examples are available only in positive charac-
teristic.

From now on let K be a field of odd characteristic p and let L be its subfield of
order p.

Counterexample 3.9. Let N = p+1
2 and let Z be the set of all but one L-points

in PN (K). Then for the ideal I = I(Z) there is

I(
p+3
2

) * I2.

Proof. The key observation is that whereas α(I2) = p2 + 1, there is in the ideal

I(
p+3
2

) a form of degree p2, see [19, Theorem 3.9] for details.

The second counterexample allows more flexibility in the choice of the ordinary
power.

Counterexample 3.10. We choose now the numbers p and N so that p ≡ 1 (
mod N) and p > (N − 1)2. Let again Z be the set of all but one L-points in PN (K).
Then for r = p−1

N
+ 1 there is

I(p) * Ir.

Proof. See [19, Theorem 3.10].
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We conclude this section recalling a homological containment criterion invented
recently by Seceleanu, see [27, Theorem 3.1]. The criterion involves local homology.
The underlying idea is quite simple, the containment I(m) ⊂ Ir induces a map
between local cohomology modules H0

M (R/Im) → H0
M (R/Ir).

Theorem 3.11 (Seceleanu). Let I ⊂ R be a homogeneous ideal. Consider the
associated exact sequence

0 → Ir/Im → R/Im
π→ R/Ir → 0.

Then the following conditions are equivalent:

i) there is the containment I(m) ⊂ Ir,

ii) the induced map H0
M (π) : H0

M(R/Im) → H0
M (R/Ir) is the zero map.

There is also the dual version involving the Ext functor. In fact this dual ap-
proach together with the minimal free resolutions of the involved ideals open door
to an effective application of Theorem 3.11. Even in the case of points in a plane
this is a non-trivial operation. Seceleanu developed additional arguments [27, The-
orem 3.3] in order to deal just with the case I

(3) ⊂ I
2. Her method was successfully

applied in order to verify the non-containment for the Klein configuration of points
and for the series of Fermat examples, see Section 4.

4 Specific statements related to Problem 1.4

The first counterexample to Problem 1.4 was announced in 2013 by Dumnicki, Tutaj-
Gasińska and the first author in [14]. Afterwards whole series of further counterex-
amples in all characteristics but 2 (see Theorem 3.8 a)) have been found. Strangely
enough all these counterexamples arise taking as the support of I all (or almost all)
intersection points of configurations of lines either defined by reflection groups or
distinguished in some other way. Such configurations are extremal also from the
combinatorial point of view, e.g. they exhibit an unusually high number of inter-
section points of high multiplicity. This is a surprising phenomenon not understood
yet.

Counterexample 4.1 (Dual Hesse configuration). Let ε be a primitive root of 1
of order 3. We consider the saturated and radical ideal I of the following set of 12
points in the complex projective plane P2:

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1),
P4 = (1 : 1 : 1), P5 = (1 : ε : ε2), P6 = (1 : ε2 : ε),
P7 = (ε : 1 : 1), P8 = (1 : ε : 1), P9 = (1 : 1 : ε),
P10 = (ε2 : 1 : 1), P11 = (1 : ε2 : 1), P12 = (1 : 1 : ε2).

Then
I(3) * I2.

Proof. See [14, Theorem 2.2].

The points listed in Counterexample 4.1 are all intersection points of an arrange-
ment of 9 lines given explicitly by equations

L1 : x− y = 0, L2 : y − z = 0, L3 : z − x = 0,
L4 : x− εy = 0, L5 : y − εz = 0, L6 : z − εx = 0,
L7 : x− ε2y = 0, L8 : y − ε2z = 0, L9 : z − ε2x = 0.
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The product of these 9 linear equations is an element in I(3) (since there are ex-
actly 3 lines passing through any of the points P1, . . . , P12 but this product is not
contained in I2. Up to projective change of coordinates there is just one configu-
ration of this kind, see [1] for this and much more. It is also well known that such
a configuration cannot exist in the real projective plane because it would violate
the celebrated Sylvester-Gallai Theorem. Nevertheless a real counterexample has
been discovered shortly after announcement of [14]. It is presented in [9]. Quite
expectedly this counterexample is related to constructions of real line configurations
with the maximal number of triple points.

Counterexample 4.2 (Böröczky configurations). It is convenient to identify the
real plane R2 with the set of complex numbers C in the usual way. Let n be an even
and positive integer. Let ξ = exp(2πi/n) be a primitive n–th root of unity and let
Pi = ξi for i = 0, . . . , n− 1 be vertices of a regular n–gon. For m,k ∈ {0, . . . , n− 1}
we denote by Lm,k the (real) line determined by the points Pm and Pk if m 6= k and
the tangent line to the unit circle at the point Pm if m = k.

The configuration of lines we are interested in is defined as the union of n lines

Ln =
{

Li,n
2
−2i, i = 0, . . . n− 1

}

,

where the indices are understood mod n. Let Zn be the set of all triple points in
the configuration Ln. Such a configuration, for n = 12 is visualized in Figure 1. The
19 points in the set Z12 are marked by dots.

Figure 1: Böröczky configuration of 12 lines

Let I be the saturated radical ideal defined by Z12. Then

I(3) * I2.

Proof. The main idea is again to show that the product

L1 · L2 · . . . · L9



8

of linear forms defining the lines Li is an element in I(3) which is not contained in
I2. See [9, Theorem 3].

Contrary to the dual Hesse configuration, the configuration of 12 lines outlined
above allows much more freedom. It has been noticed already in [12] that it can
be perturbed into a configuration of lines in the rational projective plane, see the
discussion on page 389 of [12]. The moduli space of all such configurations has
been studied in more detail by Lampa-Baczyńska and the second author with the
result that they are parameterized by a three-dimensional rational variety, see [25,
Theorem A]. It came as a surprise that the analogous configuration of 15 lines allows
only 1 parameter moving along an explicitly determined elliptic curve. In that case
there are no rational configurations possible, see [25, Theorem B].

Turning back to a more general setting, we observe first that Counterexample 4.1
is a special case of a whole series of configurations of lines leading to counterexamples
to Problem 1.4. This series has been studied (with a different motivation) by Urzua
in [30, Example II.6].

Counterexample 4.3 (Fermat configurations). Let n > 3 be an integer and let
K be a field of characteristic different from 2 containing n distinct roots of 1. The
polynomial

Fn(x, y, z) = (xn − yn)(yn − zn)(zn − xn)

splits completely into 3n linear forms. They define lines which intersect in 3 points
of multiplicity n and n2 points of multiplicity 3. If η is a primitive root of 1 of order
n, then the intersection points of these lines are Qa,b = (1 : ηa : ηb) for a, b = 1 . . . , n
and the three coordinate points P1 = (1 : 0 : 0), P2 = (0 : 1 : 0) and P3 = (0 : 0 : 1).
There are exactly n lines meeting in a coordinate point and exactly 3 lines passing
through every point Qa,b. Taking I as the radical ideal of the union of all points
Qa,b and Pi, it is easy to see that Fn ∈ I(3). It is also easy to identify I explicitly as

I = 〈x(yn − zn), y(zn − xn), z(xn − yn)〉.

It requires however some effort to show that Fn is not contained in I2 so that we
have

I(3) * I2.

Proof. This is Proposition 2.1 in [19]. An alternative proof is presented in [27,
Proposition 4.1].

Additional counterexamples are in a sense isolated and they come from reflection
groups acting on P2.

Counterexample 4.4 (Klein configuration). The configuration of bitangents of a
smooth quartic curve in P2 has been a classical object of study. In particular for the
Klein curve given by the equation

xy3 + yz3 + zx3 = 0

it is highly symmetric. This has been first discovered and studied by Klein in [23].
The Klein curve is the unique plane quartic curve with the group of automorphisms
of the maximal size of 168 elements, see [21] for a modern treatment. This group
is the PSL3(2) and it contains 21 involutions whose fixed lines form a configuration
of 21 lines whose all incidences are 21 points where the lines meet by 4 and 28
points incident each to 3 lines. This is the Klein configuration, one of dew known
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configurations with no simple intersection points, i.e. points incident to two lines
only. Taking I to be the ideal of all 49 intersection points mentioned above, we have

I(3) * I2.

Proof. See [27, Theorem 4.4] for an even stronger statement.

The next configuration arises also from involutions in a reflection group of order
360, see [31].

Counterexample 4.5 (Wiman configuration). The Wiman configuration consists
of 45 lines which intersect 120 triple, 45 quadruple and 36 quintuple points. Taking
as I the ideal of all these intersection points we have

I(3) * I2.

Proof. This claim has been so far verified only by computer. We used Singular [10].

Remark 4.6 (A link to the Bounded Negativity Conjecture). Interestingly the last
two counterexamples have appeared recently also in a seemingly unrelated topic of
bounding Harbourne constants on birational models of P2, see [2]. It would be de-
sirable to understand if there are some closer links between the Bounded Negativity
Conjecture and the Containment Problem.

Before we pass to counterexamples in finite characteristic we point out the fol-
lowing.

Remark 4.7. In characteristic 0 so far there are no counterexamples to Problem
1.5, apart of those for r = 2, m = 3 and N = 2.

The situation is quite different for points in projective planes in finite characteris-
tic. Shortly after Counterexample 4.1 has been found, Bocci, Cooper and Harbourne
pointed out in [4, Remark 3.11] that there is a similar example in characteristic 3.
Indeed the combinatorics of the two configurations is exactly the same. Nevertheless
there are discrepancies between other algebraic invariant, e.g. the resurgence, see
[12, Theorem 2.1 and Theorem 3.2].

Counterexample 4.8 (Lines in P2(F3)). Let Z consist of all but one points in
P2(F3). Then there are 12 points in Z, in each of which exactly 3 out of 9 lines
missing the removed point meet. Then the containment 3 fails for the ideal of Z.

Proof. This is of course a special case of Counterexample 3.9.

The next counterexample is a finite characteristic version of Counterexample 4.4.

Counterexample 4.9 (Conic in P2(F7)). It is well known that the Klein quartic
reduces mod 7 to a smooth (double) conic C in P2(F7). The bitangents of the
quartic correspond then to the secant lines of the conic. There are 28 of them.
There are 8 more tangent lines to the conic and 21 lines which do not meet C.
These 21 lines form again a configuration with 21 quadruple intersection points and
28 triple intersection points. Taking as Z the set of all these intersection points the
containment

I(3) ⊂ I2

fails for the ideal I of Z.
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5 Alternative approach

Problem 1.5 focuses on exponents on both sides of the containment

I(m) ⊂ Ir.

It is however possible to sharpen the assertions of Theorem 1.3 by making the ideal
on the right smaller in another way. This line of investigation was suggested in
[18]. This approach was motivated by the following conjecture due to Eisenbud and
Mazur.

Conjecture 5.1 (Eisenbud-Mazur). Let P ⊂ C[[x1, . . . , xN ]] be a prime ideal in the
ring of formal power series. Then

P (2) ⊂ M · P,

where M = 〈x1, . . . , xN 〉.
Thus the key idea in this path of investigation, paralleling Problem 1.1 is to

study the following question, see [18, Question 1.3].

Problem 5.2 (Harbourne, Huneke). Decide for which m, r and j there is the
containment

I(m) ⊂ M jIr.

For ideals defining fat points, Harbourne and Huneke formulated the following
bold statement, see [18, Conjecture 2.1].

Conjecture 5.3 (Harbourne-Huneke). Let I ⊂ K[x0, . . . , xN ] be a fat points ideal
and let r be a positive integer. Then the containment

I(m) ⊂ M r(N−1)Ir

holds for all m > rN .

Positive results towards this Conjecture have been obtained in [18, Proposition
3.3] for fat points ideals in P2 arising as symbolic powers of radical ideals generated
in a single degree. Particular examples of such ideals are star configurations of points
and general points whose number is a binomial coefficient.

Another classes of ideals supporting Conjecture 5.3 have been studied in [13,
Theorem B].

To the best of our knowledge there is no counterexample to Conjecture 5.3 known
at present.

6 A list of potential problems to think about

The article [4] contains a long list of conjectures, including Problem 1.5 and Conjec-
ture 5.3 discussed in the present note. Some of these conjectures require adjustments
since the counterexamples presented here show their failure as well. These conjec-
tures are also redundant in the sense that under some additional conditions some of
them are stronger than the others. The picture presented in [4] is a little bit messy.
For this reason, rather than repeating the conjectures and attempting to account
on their current state, we have decided to present here a short list of open problems
which are probably less challenging than Conjecture 5.3 on the one hand but also
more accessible on the other hand.
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It would be desirable to improve the Postulation Containment Criterion. The
left hand side in the condition in Proposition 3.6 is often used in order to bound
the regularity of the power Ir. It is natural to wonder if one can use this regularity
directly.

Question 6.1. Can one replace r reg(I) by reg(Ir) in Proposition 3.6?

The next question presents a similar approach based on another interesting in-
variant studied recently. Cutkosky, Herzog and Trung showed that the regularity of
ordinary powers of a homogeneous ideal is eventually linear. An analogous question
for asymptotic regularity of symbolic powers of ideals is far more involved. In the
case relevant here, i.e. in the case of ideals with zero-dimensional support it has been
studied recently by Cutkosky and Kurano in [8] in a slightly more general setting of
weighted projective spaces.

Definition 6.2 (Symbolic asymptotic regularity). Let I be a homogeneous ideal.
The real number

areg(I) = lim
m→∞

reg(I(m))

m

is the symbolic asymptotic regularity of I.

Cutkosky and Kurano showed that the limes in Definition 6.2 actually exists and
it is equal to the so called s-invariant of I, which in turn is the reciprocal of the
multi-point Seshadri constant of the reduced subscheme defined by I.

Question 6.3. Can one replace reg(I) by areg(I) in Proposition 3.6?

In the view of counterexamples presented in this note, an obvious attempt in
order to save as much as possible of Problem 1.5 is the following statement.

Question 6.4. Let I be a homogeneous radical ideal of a finite set of points in PN

with N > 3. Let r be a positive integer. Does then the containment

I(m) ⊂ Ir

hold for all m > Nr − 1?

Thus a more specific question replacing in a sense Problem 1.4 is the following.

Question 6.5. Let I be the radical ideal of a finite set of points in P3. Is then
always

I(5) ⊂ I2?

The next problem is motivated by Conjecture 5.1 even though it would not be a
simple consequence of the Conjecture, see [4, Question 2.5].

Question 6.6. Let I be an arbitrary homogeneous ideal in R. Is then

I(j+1) ⊂ MI(j)

for all j > 1?
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Universitá degli Studi di Padova in February 2015. We would like to thank the
organizers for invitation to participate in the workshop and for excellent working
conditions and stimulating atmosphere they have created. We were partially sup-
ported by National Science Centre, Poland, grant 2014/15/B/ST1/02197.



12

References

[1] Artebani, M., Dolgachev, I.: The Hesse pencil of plane cubic curves. L’Enseignement
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