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Extremal eternal multiplicative coalescent is encoded

by its Lévy-type processes

Vlada Limic∗
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Abstract

The multiplicative coalescent is a Markov process taking values in ordered l2.
It is a mean-field process in which any pair of blocks coalesces at rate proportional
to the product of their masses. In Aldous and Limic (1998) each extremal eternal
version (X(t),−∞ < t < ∞) of the multiplicative coalescent was described in
three different ways. One of these specifications matches the (marginal) law of
X(t) to that of the ordered excursion lengths above past minima of {LX(s) +
ts, s ≥ 0}, where LX is a certain Lévy-type process which (modulo shift and
scaling) has infinitesimal drift −s at time s.

Using a modification of the breadth-first-walk construction from Aldous (1997)
and Aldous and Limic (1998), and some new insight from the thesis by Uribe
(2007), this work settles an open problem (3) from Aldous (1997), in the more
general context of Aldous and Limic (1998). Informally speaking, X is entirely
encoded by LX, and contrary to Aldous’ original intuition, the evolution of time
for X does correspond to the linear increase in the constant part of the drift
of LX. In the “standard multiplicative coalescent” context of Aldous (1997),
this result was first announced by Armendáriz in 2001, and obtained in a recent
preprint by Broutin and Marckert, who simultaneously account for the process
of excess edge counts (or marks).

The argument presented here is based on elementary observations in compar-
ison to all the previously announced or obtained results. It may likely serve as
a stepping stone for obtaining more sophisticated asymptotic results for general
multiplicative coalescents and/or random graphs.
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1 Introduction

1.1 The multiplicative coalescent in 1997

Recall that themultiplicative coalescent takes values in the space of collections of blocks,
where each block has mass in (0,∞), and informally evolves according to the following
dynamics:

each pair of blocks of mass x and y merges at rate xy
into a single block of mass x+ y.

(1)

It is well-known that the multiplicative coalescent is strongly connected to the (Erdös-
Renyi) random graph, viewed in continuous time. More precisely, if xi is a positive
integer for each i, we can represent each initial block as a collection of xi different
particles of mass 1, which have already merged in some specified arbitrary way. For
each pair of particles {k, l} let ξk,l be an exponential (rate 1) random variable, and let
ξk,ls be independent over k, l. Let the graph evolve in continuous time according to
the following mechanism: at time ξk,l the particles k and l get connected by a (new)
edge. Two different connected components merge at the minimal connection time of
a pair of particles (k, l), where k is from one, and l from the other component. The
mass of any connected component equals its number of particles. Then the process of
component masses evolves according to (1).

For a given initial state with a finite number of blocks (but block masses not neces-
sarily integer-valued), it is easy to formalize (1), e.g. via a similar “graph-construction”,
in order to define a continuous-time finite-state Markov process. Furthermore, Aldous
[4] shows that one can extend the state space to include l2 configurations. More
precisely, if (l2ց, d) is the metric space of infinite sequences x = (x1, x2, . . .) with

x1 ≥ x2 ≥ . . . ≥ 0 and
∑

i x
2
i < ∞, where d(x,y) =

√∑
i(xi − yi)2, then the multi-

plicative coalescent is a Feller process on l2ց (see [4] Proposition 5, or Section 2.1 in [39]

for an alternative argument), evolving according to description (1). The focus in [4]
was on the existence and properties of the multiplicative coalescent, as well as on the
construction of a particular eternal version (X∗(t),−∞ < t < ∞), called the standard
multiplicative coalescent. The standard version arises as a limit of the classical random
graph process near the phase transition (each particle has initial mass n−2/3 and the
random graph is viewed at times n1/3 +O(1)). In particular, the marginal distribution
X∗(t) of X∗ was described in [4] as follows: if (W (s), 0 ≤ s < ∞) is standard Brownian
motion and

W t(s) = W (s)− 1
2
s2 + ts, s ≥ 0, (2)

and Bt is its “reflection above past minima”

Bt(s) = W t(s)− min
0≤s′≤s

W t(s′), s ≥ 0, (3)

then (see [4] Corollary 2) the ordered sequence of excursion (away from 0) lengths of
Bt has the same distribution as X∗(t). Note in particular that the total mass

∑
i X

∗
i (t)

is infinite.
The author’s thesis [5] was based on a related question: are there any other eternal

versions of the multiplicative coalescent, and, provided that the answer is positive,
what are they? Paper [5] completely described the entrance boundary of the multi-
plicative coalescent (or equivalently, the set of all of its extreme eternal laws). The
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extreme eternal laws or versions are conveniently characterized by the property that
their corresponding tail σ-fields at time −∞ are trivial. Any (other) eternal versions
must be a mixture of extreme ones, see e.g. [27] Section 10. Note that the word
“version” is used here in a non-classical (Markov process) sense.

1.2 Characterizations of eternal versions in 1998

The notation to be introduced next is inherited from [5]. We write l3ց for the space of

infinite sequences c = (c1, c2, . . .) with c1 ≥ c2 ≥ . . . ≥ 0 and
∑

i c
3
i < ∞. For c ∈ l3ց,

let (ξj, j ≥ 1) be independent with exponential (rate cj) distributions and consider

V c(s) =
∑

j

(
cj1(ξj≤s) − c2js

)
, s ≥ 0. (4)

We may regard V c as a Lévy-type process, where for each x only the first jump of size
x is kept (cf. Section 2.5 of [5], and Bertoin [13] for background on Lévy processes). It
is easy to see that

∑
i c

3
i < ∞ is precisely the condition for (4) to yield a well-defined

process (see also Section 2.1 of [5]).
Define the parameter space

I :=
(
(0,∞)× (−∞,∞)× l3ց

)
∪
(
{0} × (−∞,∞)× l3ց\ l2ց

)
.

Now modify (2,3) by defining, for each (κ, τ, c) ∈ I,

W̃ κ,τ(s) = κ1/2W (s) + τs− 1
2
κs2, s ≥ 0 (5)

W κ,τ,c(s) = W̃ κ,τ(s) + V c(s), s ≥ 0 (6)

Bκ,τ,c(s) = W κ,τ,c(s)− min
0≤s′≤s

W κ,τ,c(s′), s ≥ 0. (7)

So Bκ,τ,c(s) is again the reflected process with some set of (necessarily all finite, see
Theorem 1 below) excursions away from 0.

Denote by µ̂(y) the distribution of the constant process

X(t) = (y, 0, 0, 0, . . .), −∞ < t < ∞ (8)

where y ≥ 0 is arbitrary but fixed.
Let X(t) = (X1(t), X2(t), . . .) ∈ l2ց be the state of a particular eternal version of

multiplicative coalescent. Then Xj(t) is the mass of its j’th largest block at time t.
Write

S(t) = S2(t) =
∑

i

X2
i (t), and S3(t) =

∑

i

X3
i (t).

The main results of [5] are stated next.

Theorem 1 ([5], Theorems 2–4) (a) For each (κ, τ, c) ∈ I there exists an eternal
multiplicative coalescent X such that for each −∞ < t < ∞, X(t) is distributed as the
ordered sequence of excursion lengths of Bκ,t−τ,c.
(b) Denote by µ(κ, τ, c) the distribution of X from (a). The set of extreme eternal
multiplicative coalescent distributions is precisely
{µ(κ, τ, c) : (κ, τ, c) ∈ I} ∪ {µ̂(y) : 0 ≤ y < ∞}.
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(c) Let (κ, τ, c) ∈ I. An (extreme) eternal multiplicative coalescent X has distribution
µ(κ, τ, c) if and only if

|t|3S3(t) → κ+
∑

j c
3
j a.s. as t → −∞ (9)

t+
1

S(t)
→ τ a.s. as t → −∞ (10)

|t|Xj(t) → cj a.s. as t → −∞, ∀j ≥ 1. (11)

In terms of the above defined parametrization, the Aldous [4] standard (eternal)
multiplicative coalescent has distribution µ(1, 0, 0). The parameters τ and κ correspond
to time-centering and time/mass scaling respectively: if X has distribution µ(1, 0, c),

then X̃(t) = κ−1/3X(κ−2/3(t − τ)) has distribution µ(κ, τ, κ1/3c). Due to (11), the
components of c may be interpreted as the relative sizes of distinguished large blocks
in the t → −∞ limit.

1.3 The main result

The rest of this work will mostly ignore the constant eternal multiplicative coalescents.
For a given (κ, τ, c) ∈ I we can clearly write W κ,t−τ,c(s) = W κ,−τ,c(s) + ts, s ≥ 0. The
Lévy-type process W κ,−τ,c is particularly important for this work. As we will soon see,
W κ,−τ,c matches LX from the abstract, as soon as X has law µ(κ, τ, c).

As noted in [5] and in [4] beforehand, at the time there was no appealing intuitive
explanation of why excursions of a stochastic process would be relevant in describing
the marginal laws in Theorem 1(a). One purpose of this work is to offer a convincing
explanation (see Lemma 9 in Section 5 and Lemma 11 in Section 6). Furhermore, open
problem (3) of [4] asks about the existence of a two parameter (non-negative) process
(Bt(s), s ≥ 0, t ∈ R) such that the excursion (away from 0) lengths of (B ·(s), s ≥ 0)
evolve as X∗(·). The statement of this problem continues by offering an intuitive
explanation for why {reflected(W 1,0,0(s)+ ts), s ≥ 0, t ≥ 0} should not be the answer
to this problem. Aldous’ argument is more than superficially convincing, but the
striking reality is that the simplest of guesses is actually not too naive to be true.
Armendáriz [9] (as well as [10]) announced this result, and Broutin and Marckert [24]
recently derived it, while considering in addition the excess-edge data in agreement
with [4] (thus improving on the Armendáriz’ conjecture).

This is not the only surprise. Popular belief judges the breadth-first-walk construc-
tion, on which [4, 5] reside, as “inadequate” and the main reason for the just described
“confusion” in the statement of [4], open problem (3). One of the main points of this
work is to show the contrary. With a slight modification of the original breadth-first-
walk from [4, 5], joint with some important insight provided by Uribe in Chapter 4 of
his thesis [53], while studying and interpreting the so-called Armendáriz construction,
as well as with some easy consequences of the analysis made in [5], one can derive the
following result:

Theorem 2 Fix a Lévy-type process W κ,−τ,c, and for any t ∈ (−∞,∞) define

W κ,t−τ,c(s) := W κ,−τ,c(s) + ts, s ≥ 0.

Let Bκ,t−τ,c be defined as in (7). For each t, let X(t) = Xκ,τ,c(t) be the infinite vector
of ordered excursion lengths of Bκ,t−τ,c away from 0. Then (X(t), t ∈ (−∞,∞)) is a
càdlàg realization of µ(κ, τ, c).
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1.4 Further comments on the literature and work in progress

For almost two decades the only stochastic merging process widely studied by proba-
bilists was the (Kingman) coalescent [37, 38]. Starting with Aldous [3, 4], and Pitman
[46], Sagitov [49], and Donnelly and Kurtz [26], the main-stream probability research
on coalescents was much diversified.

The Kingman coalescent and, more generally, the mass-less (exchangeable) coa-
lescents of [46, 49, 26] mostly appear in connection to the mathematical population
genetics, as universal (robust) scaling limits of genealogical trees (see for example
[44, 50, 18, 51], or a survey [12]).
The standard multiplicative coalescent is the universal scaling limit of numerous stochas-
tic (typically combinatorial or graph-theoretic) homogeneous (or symmetric) merging-
like models [4, 1, 8, 19, 20, 21, 48, 52]. The “non-standard” eternal extremal laws from
[5] are also scaling limits of inhomogeneous random graphs and related processes under
appropriate assumptions [5, 22, 23].

The two nice graphical constructions for coalescents with masses were discovered
early on: by Aldous in [4] for the multiplicative case, and almost simultaneously by
Aldous and Pitman [6] for the additive case (here any pair of blocks of mass x and y
merges at rate x+ y). The analogue of [5] in the additive coalescent case is again due
to Aldous and Pitman [7]. No nice graphical construction for another (merging rate)
coalescent with masses seems to have been found since. For studies of stochastic coa-
lescents with general kernel see Evans and Pitman [28] and Fournier [30, 31]. Interest
for probabilistic study of related Smoluchowski’s equations (with general merging ker-
nels) was also incited by [3], see for example Norris [45], Jeon [35], then Fournier and
Laurençot [32, 33] and Bertoin [17] for more recent, and Merle and Normand [42, 43]
for even more recent developments. All of the above mentioned models are mean-field.
See for example [40, 11, 29] for studies of (mass-less) coalescent models in the presence
of spatial structure.

As already mentioned, Broutin and Marckert [24] obtain Theorem 2 in the standard
multiplicative coalescent case, via Prim’s algorithm construction invented for the pur-
pose of their study. Before them Bhamidi et al. [19, 20] proved f.d.d. convergence for
models similar to Erdös-Renyi random graph. For the standard additive coalescent,
analogous results were obtained rather early by Bertoin [14, 15] and Chassaing and
Louchard [25], and are rederived in [24], again via an appropriate Prim’s algorithm
representation.

In parallel with the here reported research, Martin and Rath [41] and Uribe [54]
study closely related models and questions. Their approaches seem to be different
from the one explained here. Gerónimo Uribe works on the generalization of the
construction from [24], links it to Armendáriz’ construction (cf. [53] Chapter 4, and
also Section 3 below), and obtains a version of Theorem 2. James Martin and Bálazs
Ráth study a coalescence-fragmentation model called the multiplicative coalescentwith
linear deletion (MCLD). In the absence of deletion (that is, fragmentation), their “tilt
(and shift) operator” representation of the MCLD yields another version of Theorem
2.

The arguments presented in the sequel are elementary in part due to direct appli-
cations of a non-trivial result from [5] in Section 6 (more precisely, Corollary 10). In
comparison, [24] also rely on the convergence results of [4] in the standard multiplica-
tive coalescent setting, as well as additional estimates proved in [1]. A detailed proof
of Proposition 5 is included for the sake of completeness. The argument leading to
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Lemma 11 could be shortened to a paragraph commenting on how this is a standard
consequence of Corollary 10 and Lemma 9.

The present approach is of independent interest even in the standard multiplicative
coalescent setting (where Section 5 would simplify further, since c = 0, and already
Lemma 8 from [4] would be sufficient for making conclusions in Section 6) and it may
prove useful in the long run for continued analysis of the multiplicative coalescents, as
well as various other processes in the multiplicative coalescent “domain of attraction”.

The reader is referred to Bertoin [16] and Pitman [47] for further pointers to liter-
ature.

The rest of the paper is organized as follows: Section 2 introduces the simultaneous
breadth-first walks and explains how they are linked to the (marginal) law of the mul-
tiplicative coalescent, and the original breadth-first walks of [4, 5]. Section 3 recalls
Uribe’s diagrams and their connection to the multiplicative coalescent. In Section
4 these two object are linked, and as a result an important conclusion is made in
Proposition 7: the simultaneous breath-first walks are now linked to the (full) law of
the multiplicative coalescent. All the processes considered in Sections 2–4 have finite
initial states. Section 5 serves to pass to the limit where the initial configuration is in
l2ց. The similarities to and differences from [5] are discussed along the way. Theorem

2 is proved in Section 6. Several questions are included in Section 7 (the reader is also
referred to the list of open problems given at the end of [4]).

Acknowledgements. The author did not engage in thinking about multiplicative
coalescents for at least fifteen years, and it was undoubtedly the joint effort of Nicolas
Fournier, Matthiew Merle, Justin Salez, Jean Bertoin and Gerónimo Uribe Bravo that
brought her interest back. Were it not for the spur of discussions with Nicolas, and
Matthiew and Justin in the Spring of 2014, the conversation with Jean would have not
taken place. Jean generously told the author of a somewhat unusual history of this
problem, and encouraged her to contact Gerónimo. Gerónimo gracefully provided her
with a copy of the relevant chapter of his thesis, along with several helpful remarks.
The author is immensely grateful to all these colleagues for their show of trust and
support at the moment where it was likely that her research could be stalled for an
unpredictably long period of time. She benefited in addition from several exchanges
with Gerónimo Uribe, and with Nicolas Broutin and Jean-François Marckert, that
accelerated the writing of this article.

2 Simultaneous breadth-first walks

This section revisits the Aldous’ breath-first walk construction of the multiplicative
coalescent started from a finite vector x from [4], with two important differences (or
modifications), which will be described along the way.

Recall that “breadth-first” refers here to the order in which the vertices of a given
connected graph (or one of its spanning trees) are explored. Such exploration process
starts at the root, visits all of its children (these vertices become the 1st generation),
then all the children of all the vertices from the 1st generation (these vertices become
the 2nd generation), then all the children of the 2nd generation, and keeps going until
all the vertices (of all the generations) are visited, or until forever (if the tree is infinite).

Refer to x = (x1, x2, x3 . . .) ∈ l2ց as finite, if for some i ∈ N we have xi = 0. Let

the length of x be the number len(x) of non-zero coordinates of x. Fix a finite initial
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configuration x ∈ l2ց. For each i ≤ len(x) let ξ have exponential (rate xi) distribution,

independently over i.
Given ξ, simultaneously for all q > 0, we construct the (modified) breadth-first walk

associated with X(q) started from X(0) = x at time 0. This simultaneity in q is a new
feature with respect to [4, 5].

The sequence (ξi)i≤len(x) will be used both for size-biased picking of the connected
components, and for finding the merger events between the blocks. Fix q > 0, and
consider the sequence (ξi/q)i≤len(x). Let us introduce the abbreviation ξqi := ξi/q. The
order statistics of (ξqi )i≤len(x) are (ξq(i))i≤len(x). Define

Zx,q(s) :=

len(x)∑

i=1

xi1(ξqi ≤ s) − s =

len(x)∑

i=1

x(i)1(ξq
(i)

≤ s) − s, s ≥ 0, q > 0. (12)

In words, Zx,q has a unit negative drift and successive positive jumps, which occur
precisely at times (ξq(i))i≤len(x), and where the ith successive jump is of magnitude x(i).

Here is the first important observation. For each q, the multiplicative coalescent
started from x and evaluated at time q can be constructed in parallel to Zx,q via a
breadth-first walk coupling, similar to the one from [4, 5]. The interval F q

1 := [0, ξq(1)] is

the first “load-free” period. Set J0 := {1, 2, . . . , len(x)}. At the time of the first jump
of Zx,q we record

π1 := i if and only if ξi = ξ(1), and J1 := J0 \ {π1},

so that π1 is the index of the first size-biased pick from (xi)
len(x)
i=1 using ξs (or equally,

ξqs). Furthermore, let us define for l ≤ len(x)

πl := i if and only if ξi = ξ(l), l ∈ {1, . . . , len(x)}, and Jl := Jl−1 \ {πl}.

In this way, (xπ1, xπ2 , . . . , xπlen(x)
) is the size-biased random ordering of the initial non-

trivial block masses. As already noted, the random permutation π does not depend on
q.

Let F q
s := σ{{{ξqi > u} : i ∈ J0}, u ≤ s}. Then F q = {Fq

s, s ≥ 0} is the
filtration generated by the arrivals of ξqs. Due to elementary properties of independent
exponentials, it is clear that the above defined process Zx,q is a continuous-time Markov
chain with respect to Fq. Indeed, given σ{Fq

s}, the (residual) clocks ξqi − s are again
independent exponentials, and moreover on the event {ξqi > s} we clearly have P (ξqi −
s > u|Fq

s) = e−xiqu = P (ξqi > u). Furthermore, ξq(1) is a finite stopping time with
respect to Fq and

P (ξqi − ξq(1) > u|Fq
ξ(1)

)1(i∈J1) = e−xiqu1(i∈J1) = P (ξqi > u)1(i∈J1). (13)

Let I0 = ∅ and I1 := (ξq(1), ξ
q
(1)+xπ1 ]. Note that the length of the interval I1 is the same

(positive) quantity xπ1 for all q > 0. During the time interval I1 the dynamics “listens
for the children of π1”. More precisely, if for some j we have ξqj ∈ I1, or equivalently,
if ξqj − ξq(1) ≤ xπ1 , we can interpret this as

edge j ↔ π1 appears before time q in the multiplicative coalescent.

Indeed, as argued above P (ξqj − ξq(1) > xπ1 |F
q
ξq
(1)
) = e−qxjxπ1 , and this is precisely the

multiplicative coalescent probability of the jth and the π1st block not merging before
time q.
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For any two reals a < b and an interval [c, d] where 0 ≤ c < d, define the concate-
nation

(a, b]⊕ [c, d] := (b+ c, b+ d].

Recall that I1 = (ξq(1), ξ
q
(1) + xπ1 ], and define N1 to be the number of ξqs that rung

during I1 (this is the size of the 1st generation in the exploration process). For any
l ≥ 2 define recursively: if Il−1 is defined

Iql ≡ Il :=

{
Il−1 ⊕ [0, xπl

], provided
ξ(l)
q

∈ Il−1

undefined, otherwise
, (14)

and if Il is defined in (14), let

N q
l ≡ Nl := the number of ξqs that rung during Il, (15)

and otherwise let Nl be (temporarily) undefined. Since ξqs decrease in q, the intervals Iq·
defined in this (coupling) construction do vary over q (their endpoints decrease in q), but
all of their lengths are constant in q. In fact, if defined, Il equals (ξ

q
(1), ξ

q
(1)+

∑l
m=1 xπm ].

We henceforth abuse the notation and mostly omit the superscript q when referring to
Is or Ns.

During each Il \ Il−1 the coupling dynamics “listens for the children of πl”, among
all the ξqs which have not been heard before (i.e. they did not ring during Il−1). If Il
is defined in (14), the set of children of πl in the above breadth-first order is precisely
JNl−1

\ JNl
, which will be empty if and only if Nl = Nl−1. The same memoryless

property of exponential random variables as used above (e.g. in (13)) ensures that

P (ξqk ∈ Il \ Il−1|F ξq
(1)

+xπ1+···xπl−1
)1(k∈JNl−1

) = (16)

P (k ∈ JNl−1
\ JNl

|F ξq
(1)

+xπ1+···xπl−1
)1(k∈JNl−1

) = e−qxkxπl1(k∈JNl−1
) a.s.

Due to independence of ξs, the residual clocks have again the (conditional) multi-
dimensional product law. So for each l, the set of children of πl equals in law to the
set of blocks which are connected by an edge to the πlth block in the multiplicative
coalescent at time q, given that they did not get connected by an edge (before time q)
to any of the previously recorded blocks π1, . . . , πl−1.

The above procedure may (and typically will) stop at some l1 ≤ len(x), due to ξq(l1)
not arriving in Il1−1. This will happen if and only if the whole connected component
of the π1st initial block (in the multiplicative coalescent, evaluated at time q) was
explored during Il1−1, and the πl1−1st initial block was its last visited “descendant”,
while the rest of the graph was not yet “seen” during s ∈ F q

1 ∪Il1−1. Indeed, if a1 = ξq(1)
and b1 = ξq(1) + xπ1 + . . .+ xπl1−1

, it is straight-forward to see that

Zx,q(s) > Zx,q(a1) = Zx,q(b1), ∀s ∈ (a1, b1). (17)

In words, the interval Cl(Il1−1) = [a1, b1] is an excursion of Zq,x above past minima
of length b1 − a1 = xπ1 + . . . + xπl1−1

, which is the total mass of the first (explored)
spanning tree in the breadth-first walk. Due to (13,16) and the related observations
made above, this (random) tree matches the spanning tree of the connected component
in the coupled multiplicative coalescent, evaluated at time q. This (first) spanning tree
is rooted at π1 (cf. Figures 1 and 2) for all q > 0. It will be clear from construction,
that the roots of subsequently explored spanning trees can (and inevitably do) change
at some q > 0.
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The next interval of time F q
2 := (ξq(1)+xπ1+ · · ·+xπl1−1

, ξq(l1)] is again “load-free” for

the breadth-first walk. Repeating the above exploration procedure starting from ξq(l)
amounts to defining Iql1 ≡ Il1 := (ξq(l1), ξ

q
(l1)

+ xπl1
] and listening for the children of πl1st

block during Il1 , and then running the recursion (14,15) for l ≥ l1 + 1 until it stops,
which occurs when all the vertices (blocks) of the second connected component are
explored. This explorative coupling construction continues until all the initial blocks
of positive mass are accounted for, or equivalently until ξq(len(x)). Clearly no ξ can ring

during Ilen(x) \ Ilen(x)−1 (which is open on the left), and Zx,q continues its evolution as
a deterministic process (line of slope −1) starting from the left endpoint of Ilen(x).

Figure 2 illustrates the just described coupling. Each excursion of Zx,q above past
minima corresponds uniquely to a connected component in the coupled multiplica-
tive coalescent evaluated at time q. It is clear from (14,15) that the order of blocks
visited within any given connected component is breadth-first. Note as well that the
connected components are explored in the size-biased order. Indeed, the fact that the
initial block of the next component to be explored is picked in a size-biased way, with
respect to their individual masses, induces size-biasing of connected components (again
with respect to mass) in the multiplicative coalescent at time q.

Let us fix some time q. The following figure (without the vertical dashed lines and
their labels) is a duplicate of [5], Figure 1.

ξq(2) − ξq(1)

ξq(3) − ξq(1) ξq(4) − ξq(1)

ξq(7) − ξq(6) +
∑5

i=1 xπi

Figure 1

In the current notation x = (1.1, 0.8, 0.5, 0.4, 0.4, 0.3, 0.2, 0, 0, . . .) so that len(x) =
7, and xπi

≡ v(i). For the breath-first walks in [4, 5] the leading block in each com-
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ponent does not correspond to a jump of the walk, while every non-leading block can
be uniquely matched to a jump of the walk. The time of this jump has exponential
(rate q · mass of the block) distribution, and its size equals the mass of the non-leading
block. All these exponential jumps are mutually independent. In particular, for the ith
block, provided it is not leading, we can use ξqi = ξi/q in the construction of Aldous’
breadth-first walk from [5]. The here added vertical dashed lines and labels illustrate
the link between the two breadth-first walk constructions (see also Figure 2 and the
explanations provided below it). In particular, the first jump of Aldous’ breadth-first
walk happens at time ξq(2) − ξq(1), the second one happens at time ξq(3) − ξq(1) and this
continues until the first component is exhausted. The next jump happens when the
next non-leading block is encountered.

From Figure 1 we can read off that π belongs to {(2, 4, 3, 7, 6, 5, 1), (2, 5, 3, 7, 6, 4, 1)}.
However, ξ(1) = ξ2, ξ(5) = ξ6 and ξ(6) = ξ5 (or ξ(6) = ξ4, depending on π) are not
observed. In the simultaneous breadth-first walks construction the ξq(1) (here ξ2), ξ(5)
(here ξ6) and ξ(6) also influence the walk. The graph of Zx,q which corresponds to the
same realization as the one illustrated by Figure 1 could be as follows:

s

b

b

b

1 2 3 4 5 6 7

ξq(1) ξq(5) ξq(6)

legend to F
q

1
, I

q

1
, I

q

2
\ I

q

1
, I

q

3
\ I

q

2
, I

q

4
\ I

q

3
, F

q

2
, I

q

5
, F

q

3
, I

q

6
, and I

q

7
\ I

q

6

Figure 2

The three “load-free” intervals F q
i , i = 1, 2, 3 are indicated in gray. The interval Iqi

is indicated in blue with marker i on top. The excursions of Zx,q above past minima
are the (closed) disjoint unions of blue intervals. Note that Iqi s has exactly the same
length as the segment marked by v(i) in Figure 1. Moreover, the following is true.

Lemma 3 Fix a finite initial configuration x and time q > 0. If F q
i , i ≥ 1 are all cut

from the abscissa, and the jumps which happen at the end points of F q
· are all ignored,

then (the graph of) Zx,q transformed in this way has the law of (the graph of) Aldous’
breadth-first walk, corresponding to (multiplicative coalescent) time q.

Most of the argument is included in the above made observations and explanations.
Figures 1 and 2 illustrate the claim. The details are left to the reader.

The above reasoning can be summarized as follows:

Proposition 4 Let x be finite, and fix q > 0. Let the breadth-first walk Zx,q encode
X(q) ∈ l2ց as follows: for each excursion (above past minima) of Zx,q record its length,

and let X(q) be the vector of thus obtained decreasingly ordered excursion lengths,
appended with infinitely many 0s. Then X(q) has the marginal law of a multiplicative
coalescent started from X(0) = x, and evaluated at time q.
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Since (Zx,q)q>0 exist on one and the same probability space, the process

X := (X(q), q > 0) and X(0) = x

is well-defined, and we refer to it temporarily as the multiplicative coalescent marginals
coupled to Zx,·.

Remarks. (a) Apart from simultaneity, the above construction differs from the one
in [4, 5] in one other significant way: all the ξs are used “equally” in the definition of
Zx,q for any given q here, while in [4, 5] for each q separately, the size-biased picking of
each leading vertex of a connected component to be explored was done (and encoded)
separately. In particular, no “load-free” intervals exist for the analogues of Z ·,· in
[4, 5] (see Figure 1). At the moment it may seem that the main (potential) gain of
the just described modified breadth-first construction is in “compactifying” the input
data (compare with [5] Section 2.3 or [24], Section 6.1 for alternatives). It will become
apparent in the sequel (see Sections 4 and 5) that this construction is quite natural, in
that stronger convergence results can be obtained from it with less effort.
(b) As q ց 0, the ξq diverge to ∞, but more importantly they diverge from each other,
so X(q) → x = X(0) almost surely. It is not difficult to see that for any q ≥ 0, X is
also almost surely right-continuous at q (see Section 4).
(c) A little thought is needed to realize that as q increases, the excursion families of
Zx,· are “nested”: with probability 1, if q1 < q2 and two blocks k, l are merged in X(q1),
they are also merged in X(q2). This fact is encouraging, but cannot ensure on its own
that the multiplicative coalescent marginals coupled to Zx,· is in fact a multiplicative
coalescent. Moreover, while the nesting is encouraging, the following observation will
likely increase the level of reader’s scepticism about X having the multiplicative co-
alescent law: if eq11 , eq12 and eq13 are three different excursions of Zx,q1 explored in the
increasing order of their indices, and if the initial blocks k, l,m are contained in the
connected components matched to eq11 , e

q1
2 , eq13 , respectively, then it is impossible that

k and m are merged in X(q2) without l being merged with k (and therefore with m)
in X(q2). If there is a simultaneous (for all q) scaling limit of (Zx,q,X(q)) (under well
chosen hypotheses), the just mentioned property persists in the limit. This observation
is perhaps the strongest intuitive argument pointing against the claim of Theorem 2.
On the other hand, analogous representations of the standard additive coalescent are
well-known (cf. [25, 14, 15]). One may be less surprised here, due to the “cutting the
CRT” dual (from [6]), and the well-known connection between the exploration process
of continuum trees and forests on the one hand, and Brownian excursions on the other
(cf. [2, 47, 16]). As Nicolas Broutin (personal communication) points out, any (binary)
fragmentation can be formally represented as a “stick-breaking” process, in which the
two broken pieces of any split block remain neighbors (in some arbitrary but fixed
way). The reversed “coalescent” will then have the above counterintuitive property
by definition. However, one is particularly fortunate if both of these processes (time-
reversals of each other) are Markov, and if in addition the “sticks” are the excursions
of a (generalized) random walk or a related process. (d) Let us denote by C the
operation on paths from Lemma 3. In [5] the non-trivial multiplicative coalescent
extremal entrance laws were obtained by taking limits of Aldous’ breadth-first walks
(see Section 5 below), and the limits of their excursions (nearly) above past minima. It
was shown that these excursions, considered as l2ց-valued random object, converge in

law to the excursions above past minima of the limiting “walk” (a member of the family
defined in (6)). Lemma 3 makes this latter (somewhat techical) step redundant in the
present setting. More precisely, if one can show for that under the same hypotheses as
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those in [5], (Zt+n1/3,x(n)
)n (see Section 5 for precise definitions) converges to the same

W κ,t−τ,c as their (C(Zt+n1/3,x(n)
))n, the conclusion about the ordered excursion lengths is

immediate. Indeed, the sequence of excursion above past minima of Zt+n1/3,x(n)
almost

surely matches the sequence of excursions (nearly) above past minima of C(Zt+n1/3,x(n)
),

for which Proposition 7 and 9 of [5] (including the results in [5], Section 2.6) apply
verbatim.

3 Uribe’s diagram

We recall here the construction from Chapter 4 of Uribe [53], in the notation analogous
to that of Section 2. In particular, x = (x1, x2, . . . , xn) is a finite-dimensional vector
with n ≥ 2, ξi is an exponential (rate xi) random variable, and ξs are mutually inde-
pendent. Denote by π the size-biased random reordering of x, which is determined by
ξs, so that ξπi

≡ ξ(i), ∀i (almost surely).
Define n different half-lines: for s ≥ 0

L′
1 : s 7→ ξ(1) − 0 · s,

L′
2 : s 7→ ξ(2) − xπ1s,

L′
3 : s 7→ ξ(3) − (xπ1 + xπ2)s,

. . . . . . . . .

. . . . . . . . .

L′
n : s 7→ ξ(n) − (xπ1 + xπ2 + . . .+ xπn−1)s,

Consider two integers k, j such that 1 ≤ j < k ≤ n. Since L′
k starts (a.s.) at a strictly

larger value than L′
j , and it has (absolute) slope strictly greater than L′

j , it is clear
that L′

k and L′
j intersect at some sk,j > 0. For each k = 2, . . . , n define

sk := min
j<k

sk,j, ℓk := {1 ≤ j < k : sk = sk,j}.

There are (almost surely) no ties among different sk. Uribe’s diagram consists of line
segments (see Figures 3 and 4)

L1 : s 7→ ξ(1) − 0 · s, s ∈ [0, s2 ∨ . . . ∨ sn],

L2 : s 7→ ξ(2) − xπ1s, s ∈ [0, s2],

L3 : s 7→ ξ(3) − (xπ1 + xπ2)s, s ∈ [0, s3],

. . . . . . . . .

. . . . . . . . .

Ln : s 7→ ξ(n) − (xπ1 + xπ2 + . . .+ xπn−1)s, s ∈ [0, sn].

Figure 3

The image of a realization of L in Figure 3 was
cropped directly from [53], Chapter 4, Figure 1.
A more detailed figure, which will correspond in
terms of the values of x, q and ξs to the images in
Figures 1 and 2 is provided in Section 4.

It is evident that Uribe’s diagram L is a
deterministic function of x and ξs, and when
needed we shall underline this fact by writing
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L(ξ1, ξ2, . . . , ξn;x). The diagram could be inter-
preted as a “genealogical tree”.

More precisely, let us match each point on the
diagram ∪n

i=1 ∪s∈[0,si] Li(s) to a subset of {1, 2, . . . , n} in the following way. For each i,
set Ti(0) := {πi}. Each Ti is piece-wise constant, and jumps according to the following
algorithm:

Ti(s) := Ti(s−) ∪ ∪n
j=i+1 (Tj(s−)δsj(s)δi(ℓj)), i ∈ {1, 2, . . . , n},

and Ti(s) := ∅, ∀s ≥ si, where δ is the Kronecker symbol, and where we use a
natural convention that a (sub)set A multiplied by 0 (resp. 1) always equals to ∅
(resp. A). In words, for each i, the contents of Ti are moved (without replacement)
to Tℓi at time si, and there is no other copying, cutting or pasting done. Define
T (s) := {T1(s), . . . , Tn(s)}, s ≥ 0, where the empty sets are ignored. Note that in this
way each s ≥ 0 is mapped to a partition T (s) of {1, 2, . . . , n}. The reader is referred
to an analogous look-down construction of [26], which has been since extensively used
in the setting of massless (usually called exchangeable) coalescents.

Clearly the partitions along each path of T are nested: if s1 < s2 and l and
k are in the same equivalence class of T (s1), they are (almost surely) in the same
equivalence class of T (s2). So T can also be regarded as a random coalescent on
the space of partitions of {1, 2, . . . , n}. Its initial state is the trivial partition θ0 :=
{{π1}, {π2}, . . . , {πn}} = {{1}, {2}, . . . , {n}}. Denote by Gt := σ{T (s), s ≤ t}, t ≥ 0,
so that G := (Gt)t≥0 is the filtration generated by T . The process T will be referred to
in the sequel as Uribe’s coalescent process.

Remark. The ξs are independent and continuous, and therefore (with probability
1) no two pairs of lines in L′ can meet simultaneously. Therefore T (viewed as path-
valued) takes value in the space of step functions, such that successive values on a
typical path are nested (sub)partitions of θ0, each having exactly one fewer equivalence
class than the prior one. In particular, Gt is generated by events of the following type:
for k ≥ 1

{T (0) = θ0, T (t1) = θ1, T (t2) = θ2, . . . , T (tk) = θk}, 0 < t1 < . . . < tk ≤ t,

where θj+1 is either equal to θj or to a “coarsening” of θj obtained by merging two
different equivalent classes in θj , 0 ≤ j ≤ k − 1. ✷

Let us now account for the masses: for any i and s ≥ 0 define Mi(s) :=
∑

l∈Ti(s)
xl,

with the convention that a sum over an empty set equals 0. In this way to each non-
trivial equivalence class of T (s) a positive mass is uniquely assigned, and the sum of
the masses

∑
i Mi(s) is the identity

∑n
i=1 xi, almost surely.

Suppose for a moment that n = 2. For Uribe’s diagram, there are two possibilities:
either π is the identity, or π is the transposition. In either case, the two initial equiva-
lence classes {1} and {2} merge at random time s2 which we denote by S. Note that
the event {S > s} is (almost surely) identical to the union of the following two disjoint
events {ξ2 > ξ1 + sx1} and {ξ1 > ξ2 + sx2}. Thus

P (S > s) =

∫ ∞

0

x1e
−x1ue−x2(u+sx1) du+

∫ ∞

0

x2e
−x2ue−x1(u+sx2) du, (18)

and the reader can easily verify that the RHS equals e−x1x2s. So if n = 2, the coalescent
time is distributed equally in the random graph and in Uribe’s coalescent.

Even with this hint in mind, the next result will likely seem at least counterintuitive
if not striking to an uninitiated reader.
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Proposition 5 (Uribe [53] interpreting Armendáriz [9, 10]) Uribe’s coalescent
process T has the random graph law. More precisely, any two equivalence classes in T
merge, independently of all the other merger events, at the rate equal to the product of
their masses.

Uribe [53] does not include an argument, or a reference to an existing literature. It
therefore seems interesting to include an argument here. It is true that the proof given
below is based on a sequence of elementary observations. Some care is however needed
in correctly setting up the conditioning (otherwise the statement of the proposition
would seem obvious from the start).

Proof of Proposition 5. The random graph on finitely many vertices evolves by
exponential jumps, and it changes states whenever, due to an arrival of a new edge
between two original blocks, the connectivity of the graph changes (in that one new
connected component is formed from two previous ones). The new edges that appear
but do not change the connectivity can (and will be) ignored for our purposes.

Now consider n ≥ 3. The minimal coalescence time in the random graph has
exponential distribution with rate

∑
i,j:1≤i<j≤n xixj . Let S := min{s2, s3, . . . , sn} be

the corresponding minimal coalescence time in Uribe’s coalescent. One can extend (18)
by noting that {S > s} = {T (s) = θ0} = {ξπ2 > ξπ1 + sxπ1, ξπ3 > ξπ2 + sxπ2 , . . . , ξπn >
ξπn−1 +sxπn−1} can be split into n! disjoint events according to the value of the random
permutation π. Fix τ a deterministic permutation and note that P (S > s, π = τ)
equals, similarly to (18),

∫ ∞

0

du1 xτ1e
−xτ1u1

∫ ∞

u1+sxτ1

du2 xτ2e
−xτ2u2

∫ ∞

u2+sxτ2

du3 xτ3e
−xτ3u3 · · ·

· · ·

∫ ∞

un−2+sxτn−2

dun−1 xτn−1e
−xτn−1un−1

∫ ∞

un−1+sxτn−1

dun xτne
−xτnun =

e−xτn−1xτns

∫ ∞

0

du1 xτ1e
−xτ1u1

∫ ∞

u1+sxτ1

du2 xτ2e
−xτ2u2

∫ ∞

u2+sxτ2

du3xτ3e
−xτ3u3

· · ·

∫ ∞

un−2+sxτn−2

dun−1 xτn−1e
−(xτn−1+xτn)un−1 =

e−xτn−1xτns
xτn−1

xτn−1 + xτn

e−xτn−2 (xτn−1+xτn)s

∫ ∞

0

du1 xτ1e
−xτ1u1 ·

∫ ∞

u1+sxτ1

du2 xτ2e
−xτ2u2

∫ ∞

u2+sxτ2

du3 xτ3e
−xτ3u3 · · ·

· · ·

∫ ∞

un−3+sxτn−3

dun−2 xτn−2e
−(xτn−2+xτn−1+xτn)un−2 = · · · (19)

We proceed inductively with integration in (19) to obtain that P (S > s, π = τ) equals

n−1∏

i=1

xτi∑n
j=i xτj

e−sxτi ·
∑n

j=i+1 xτj =

n−1∏

i=1

e−sxi·
∑n

j=i+1 xj

n−1∏

i=1

xτi∑n
j=i xτj

,

and this final quantity can be recognized as

e−s
∑

i,j:1≤i<j≤n xixjP (π = τ). (20)
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An immediate conclusion is that

S is independent of π in Uribe’s coalescent, and
S has the same law as its counterpart in the random graph.

(21)

The just obtained equivalence is a good start, but we need a stronger form of inde-
pendence in order to obtain the full equivalence in law. In view of this, let us consider
the family of residuals (ξi − s

∑
j:ξj<ξi

xj , i = 1, 2, . . . , n) on the event {S > s}. Note

that Lk(s) equals the ith residual time above if and only if πk = i or k = π−1(i). It
is natural to denote Lπ−1(i)(s) by ξi(s). The calculation leading to (20) can be only
slightly modified to yield that for vi > 0, i = 1, 2, . . . , n we have P (S > s, π = τ, ξi(s) =
dvi, i = 1, 2, . . . , n) = P (ξi = dvi + s

∑
j:τ−1(j)<τ−1(i) xj , i = 1, 2, . . . , n) =

n∏

i=1

(
xie

−xivi dvi · e
−s xi·

∑
j:τ−1(j)<τ−1(i) xj

)
.

But the product of the exponential terms is again P (S > s), so we see that given Gs

and on {S > s}, the residual random variables {ξi(s), i = 1, . . . , n} have conditional
joint distribution equal to the original distribution of {ξi(0) = ξi, i = 1, . . . , n}. The
order of indices induced by ξ(s)s is the same as that induced by ξs. So given Gs, and
knowing {S > s} = {T (s) = θ0}, the residual Uribe’s diagram (L(s + u), u ≥ 0),
where L = L(ξ1(0), ξ2(0), . . . , ξn(0);x), has the conditional law equal to that of Uribe’s
diagram L(ξ1(s), ξ2(s), . . . , ξn(s);x), which in this case equals the law of L (as argued
already, on {T (s) = θ0} the (ξi(s))i are again independent exponentials with respective
rates (xi)i). Therefore,

given Gs and on {T (s) = θ0}, the process (T (s+ u), u ≥ 0)
has the conditional law equal to (T (u), u ≥ 0).

(22)

The proof will be completed if we can verify an analogous statement for any possible
event in Gs. In fact it suffices to concentrate on the class of events from the remark
stated after the definition of G, and show that the laws of Uribe’s coalescent started
from θ0, and the random graph started from n blocks with respective sizes x1, . . . , xn,
agree on each event of the form given in that remark.

The next few paragraphs serve to argue an intermediate step, accounting for a single
merger recorded up to the present time. One should show that, in this special case,
the future depends on the past only through the present. Without loss of generality
we can pretend (or reindex the blocks so) that the first jump of T is from θ0 to θ12 :=
{{1, 2}, {3}, . . . , {n}}. Let S12 be the subset of permutations of {1, 2, . . . , n} defined by

τ ∈ S12 iff |τ−1(1)− τ−1(2)| = 1.

Consider the event {T (s) = θ12} = {T (0) = θ0, T (s) = θ12}. In the setting of the above
mentioned remark, one has t1 = s = t and θ1 = θ12. It is clear that {T (s) = θ12} ⊂
{π ∈ S12}, or equivalently, that {T (s) = θ12} = ∪τ∈S12{T (s) = θ1,2, π = τ}.

For τ ∈ S12, denote by τ ∗ a natural transposition of τ : τ ∗j = τj, ∀j such that
τj 6∈ {1, 2}, and τ ∗j = 3 − τj, if τj ∈ {1, 2}. Now suppose that τi = 1 = 3 − τi+1

for some i < n − 1 (the upper limit n − 1 for i is excluded here). Then on {T (s) =
θ12, π = τ} (resp. {T (s) = θ12, π = τ ∗}) there must exist u ≤ s such that ξ2− ξ1 = ux1

(resp. ξ1 − ξ2 = ux2) and in addition it must be true that ξτj+1
> ξτj + sxτj , for all
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j = 1, . . . , i− 1, i+2, . . . , n as well as ξτi+2
− ξ1 ∧ ξ2 > (xτi +xτi+1

)s = (xτ∗i
+xτ∗i+1

)s =
(x1 + x2)s. So, in analogy to (19), P (T (s) = θ12, π = τ) becomes

∫ ∞

0

du1 xτ1e
−xτ1u1

∫ ∞

u1+sxτ1

du2 xτ2e
−xτ2u2 · · ·

·

∫ ∞

ui−1+sxτi−1

dui x1 e
−x1ui

∫ ui+sx1

ui

dui+1 x2 e
−x2ui+1 ·

·

∫ ∞

ui+s(x1+x2)

xτi+2
e−xτi+2

ui+2 · · ·

∫ ∞

un−1+sxτn−1

dun xτne
−xτnun , (23)

and the symmetric quantity for P (T (s) = θ12, π = τ ∗) differs from the above expression
only in the middle row above as follows:

·

∫ ∞

ui−1+sxτi−1

dui x2 e
−x2ui

∫ ui+sx2

ui

dui+1 x1 e
−x1ui+1 ·

Adding the two integral expressions, and evaluating the integral, we get that P (T (s) =
θ12, π ∈ {τ, τ ∗}) equals

(1− e−sx1x2) · e−s
∑

j,k:1≤j<k≤n,(j,k) 6=(1,2) xjxk · P (π ∈ {τ, τ ∗}|π ∈ S12), (24)

due to the identity

P (π ∈ {τ, τ ∗}|π ∈ S12) =

i−1∏

j=1

xτj∑n
k=j xτj

·
x1 + x2

x1 + x2 +
∑n

j=i+2 xτj

·
n−1∏

j=i+2

xτj∑n
k=j xτj

. (25)

The assumption that i+ 1 < n implies the existence of the final integral in the second
line, and possibly extra terms in the third line of (23). In the special case i = n − 1,
the analogous formulae are somewhat simpler, but the conclusion (24) is the same (as
the reader can easily verify).

Define a map
′ : S12 7→ permutations of {12, 3, . . . , n}

as follows: for k ∈ {1, 2, . . . , n− 1} let

τ ′(k) :=





τ(k), k < min{τ−1(1), τ−1(2)},
12, k = min{τ−1(1), τ−1(2)},
τ(k + 1), k ≥ min{τ−1(1), τ−1(2)}+ 1.

In words, τ ′ is obtained from τ ∈ S12 by checking which of the two indices 1 or 2 occurs
first in τ , in renaming this image point 12, in deleting the next image point (which is
necessarily 1 or 2), and in preserving the image order set by τ otherwise. Note that π′

has the (conditional) law specified by (25). The identity in (24) can now be restated
as

{T (s) = θ12} and π′ are independent given π ∈ S12, and {T (s) = θ12}
has equal probability in the random graph and in Uribe’s coalescent.

(26)

In fact more is true, in analogy to the behavior already verified with respect to {T (s) =
θ0}. Define ξ12 := ξ1 ∧ ξ2 and consider the family of n − 1 residuals {(ξi(s) :=
ξi − s

∑
j:ξj<ξi

xj , i = 3, . . . , n), ξ12(s) := ξ12 − s
∑

j:ξj<ξ12
xj}. On {T (s) = θ12} the
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permutation of indices {12, 3, . . . , n} induced by ξ12(s), ξ3(s), . . ., ξn(s) is precisely
π′. Note that ξj < ξ12 if and only if π−1(j) < π−1(1) ∧ π−1(2), or if and only if
π′−1(j) < π′−1(12). Now let τ ∈ S12 be such that τ−1(1) = τ−1(2)− 1. Then P (T (s) =
θ12, π = τ, ξi(s) = dvi, i ∈ {12, 3, . . . , n}) = P (ξ1 = dv12 + s

∑
j:τ−1(j)<τ−1(1) xj , ξi =

dvi + s
∑

j:τ−1(j)<τ−1(i) xj , i ∈ {3, . . . , n}, ξ2 − ξ1 ≤ s x1), and this equals

x1e
−x1v12e−x1·s

∑
j:τ−1(j)<τ−1(1) xj ·

n∏

i=3

(
xie

−xivi · e−xi·s
∑

j:τ−1(j)<τ−1(i) xj

)
·

∫ v12+s(
∑

j:τ−1(j)<τ−1(1) xj+x1)

v12+s
∑

j:τ−1(j)<τ−1(1) xj

x2e
−x2udu dv12 dv3 · · · dvn =

x1e
−(x1+x2)v12

n∏

i=3

xie
−xivi dv12 dv3 · · · dvn · (1− e−sx1x2) ·

· exp



−s






n∑

i=3

∑

j:τ−1(j)<τ−1(i)

xixj


+ (x1 + x2) ·

∑

j:τ−1(j)<τ−1(1)

xj





 . (27)

The final exponential in (27) is easily seen to be equal to the exponential in (24).
An analogous expression can be written for P (T (s) = θ12, π = τ ∗, ξi(s) = dvi, i ∈
{12, 3, . . . , n}), and by symmetry considerations, the reader can easily see that the
only difference between the two products is the leading multiple which changes from
x1 to x2. The conclusion is that P (T (s) = θ12, π

′ = τ ′, ξi(s) = dvi, i ∈ {12, 3, . . . , n})
equals

(x1 + x2)e
−(x1+x2)v12

n∏

i=3

xie
−xivi dv12 dv3 · · · dvn · P (T (s) = θ12),

and that therefore, given Gs, and knowing {T (s) = θ12}, the residual Uribe’s diagram
(L(s + u), u ≥ 0), where L = L(ξ1(0), ξ2(0), . . . , ξn(0);x), has the conditional law
of L(ξ12(s), ξ3(s), . . . , ξn(s); (x1 + x2, x3, . . . , xn)), which is Uribe’s diagram generated
from n− 1-dimensional vector (x1 + x2, x3, . . . , xn) and its corresponding independent
exponentials ξ·(s)s.

Using (21), (22), (26), and the just made conclusion, a standard (inductive) nested
conditioning argument yields that for any k ∈ N, any 0 < t1 < . . . < tk < ∞, and
any sequence (θj)j where, for each j ≤ k − 1, θj+1 either equals θj or a single merger
coarsening of θj , it is necessarily true that the event

{T (0) = θ0, T (t1) = θ1, T (t2) = θ2, . . . , T (tk) = θk}

occurs with equal probability in Uribe’s coalescent and in the random graph. As already
argued, this is sufficient to conclude the full identity in law. ✷

Recall that, for i = 1, 2, . . . , n, Mi(s) is the mass of the equivalence class Ti(s),
provided that Ti(s) 6= ∅, and it is defined to be 0 otherwise. Now let Y(s) be a l2ց-

valued random variable, formed by listing the components of (M1(s),M2(s), . . . ,Mn(s))
in decreasing order, and appending infinitely many zeros (to obtain a vector in l2ց).

It is clear that Y = (Y(s), s ≥ 0) is adapted to G. Moreover Proposition 5 can be
restated as

Corollary 6 The process Y is a multiplicative coalescent started from the decreasing
ordering of (x1, x2, . . . , xn, 0, . . .).
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In the case where all the n initial masses are equal, a subset of the just derived
identities was already known to Gumbel [34]. It is well-known (see for example the
discussion in [53], Chapter 4 and the references therein) that the connectivity time of
the (classical) Erdös-Renyi random graph, is of the order (log n +G + o(1))/n, where
G has Gumbel’s law P (G ≤ g) = e−e−g

, g ∈ R.

4 Breadth-first walks meet Uribe’s diagram

In this section we will compare the simultaneous breadth-first random walks of Section
2 with Uribe’s diagram of Section 3. More precisely, a coupling of these random objects
will be realized on one and the same probability space, so that the multiplicative coa-
lescent marginals X coupled to Zx,· (see Section 2) can be matched to Y derived from
Uribe’s diagram (see Section 3).

As an immediate corollary we obtain

Proposition 7 Let x be finite. Then the multiplicative coalescent marginals X coupled
to Zx,· has the law of a multiplicative coalescent started from x.

Let x be finite, set n := len(x), and recall the construction from Section 2. Use
the same (ξ1, . . . , ξn) to form the corresponding Uribe diagram L(ξ1, ξ2, . . . , ξn;x). The
notation is slightly abused here since in Section 2 (resp. 3) vectors have infinite (resp. fi-
nite) length, but the correspondence between the two is clear, whenever there are only
finitely many blocks of non-trivial mass in the initial state.

Assume for a moment that x = (1.1, 0.8, 0.5, 0.4, 0.4, 0.3, 0.2), and let us pre-
tend that the realization from Figures 1 and 2 corresponds to the time parameter
q equal to 2. Let us assume in addition that π = τ := (2, 4, 3, 7, 6, 5, 1). This means
that (ξ(1), ξ(2), . . . , ξ(7)) = (ξ2, ξ4, ξ3, ξ7, ξ6, ξ5, ξ1), where the latter vector takes value
(0.2, 0.7, 1.4, 3.4, 4.6, 5.6, 6).

The corresponding Uribe’s diagram L(ξ,x) is shown in Figure 4 below. For any
time s, the partition T (s) can be read from the graph as it could be read from a
genealogical tree. Each of the “active” lines represents a different equivalence class.
The blue vertical dashed line marks time s = 2. In T (2) there are three equivalence
classes, matched to L1, L5 and L6, as shown in the figure. This partition is, of course,
the same as the one depicted on Figure 1 (recall that the same realization is being
illustrated in Figures 1, 2 and 4).

The coupling stated at the beginning of the section is realized in the most natural
way. Recall that both (Zx,q, q > 0) and L(ξ;x) (and therefore T and Y) are functions
of ξs and x. Let the finite family of independent exponential random variables ξ·, used
in the construction of Zx,· and L(ξ;x), be the same, almost surely.

As already noted (see Remark (c) at the end of Section 2), the partition structure
induced by the evolution of Zx,· gets coarser as q increases. In addition, only pairs of
neighboring blocks or families of blocks, with respect to the random order established
by π, can coalesce either in X or in T (that is, in Y). Note that, for each multiplicative
coalescent time q, the relation of being connected by a path of edges ↔ that occurred
before time q is an equivalence relation on the initial set of blocks. Hence it suffices
to show that, almost surely, for each q > 0 and i ∈ {1, 2, . . . , n − 1} it is true that
πi ↔ πj with respect to Zx,q (see Section 2) if and only if πi ∼ πj with respect to T
(see Section 3). At time q = 0 the just made claim is clearly correct, since there are
no edges ↔ in X, and the partition of T is trivial. Suppose that random time Q1 > 0
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is such that T (Q1−) = θ0 and T (Q1) contains {πi, πi+1}. This means that the lines L′
i

and L′
i+1 intersect at time Q1, and no other pair of lines intersects before time Q1. Or

equivalently, ξ(i+1) − ξ(i) = Q1xπi
and ξ(j+1) − ξ(j) > Q1xπj

for j 6= i. Or equivalently,

ξQ1

(i+1) − ξQ1

(i) = xπi
, and ξQ1

(j+1) − ξQ1

(j) > xπj
for j 6= i. A quick check of the construction

in Section 2 suffices to see that, on the above event, the edge πi ↔ πi+1 arrives at time
Q1 in X, and no edge arrives to X before time Q1.

s

T1(2) = {2, 4, 3, 7}

T5(2) = {6}

T6(2) = {5, 1}

{2}

{4}

{3}

{7}

{6}

{5}

{1}

Figure 4

At time Q1, the line L′
i+1 stops being active in Uribe’s diagram. The new neighbors

of {πi, πi+1} are πi+2 and πi−1. All the active lines above L′
i account for the new mass

xπi
+ xπi+1

of {πi, πi+1}, since this quantity is built into their slope (together with

19



masses corresponding to any other active lines underneath them). Similarly, Zx,q for
q > Q1 does not need to observe ξq(i+1) any longer, it suffices to attribute the cumulative

“listening length” xπi
+ xπi+1

to the breadth-first walk time ξq(i) at which the leading

particle of the component {πi, πi+1} is seen by the walk. Due to these two observations,
one can continue the comparison of the coalescence of the remaining blocks driven by
(T (q), q ≥ Q1) to that driven by (Zx,q, q ≥ Q1), and conclude by induction that in
both processes the sequence of pairs of blocks that coalesce, and their respective times
of coalescence, are identical, almost surely.
As already noted, Proposition 7 is a direct consequence. Note that in the sense of the
just produced coupling, the simultaneous breadth-first walks of Section 2 are equivalent
to Uribe’s diagram.

5 Scaling limits for simultaneous breadth-first walks

This section imitates the approach of Section 2.4 in [5]. It is interesting to note that
these scaling limits are simpler to derive here than they were for the original multipli-
cative coalescent encoding walks in [5].

Given x ∈ l2ց let

σr(x) :=
∑

i

xr
i , r = 1, 2, 3.

For each n ≥ 1 let x(n) be a finite vector (in the sense of Section 2). Let ((Zx(n),q(s), s ≥
0), q ≥ 0) and (X(n)(q), q ≥ 0) be the simultaneous breadth-first walks, and the mul-

tiplicative coalescent coupled to Zx
(n),· (see Section 2 and Proposition 7), respectively.

Suppose that for some κ ∈ [0,∞) and c ∈ l3ց, the following hypotheses are true:

σ3(x
(n))

(σ2(x(n)))3
→ κ+

∑

j

c3j , (28)

x
(n)
j

σ2(x(n))
→ cj, j ≥ 1, (29)

σ2(x
(n)) → 0, (30)

as n → ∞. It is easy to convince oneself (or see Lemma 8 of [5]) that for any (κ, 0, c) ∈
I there exists a finite vector valued sequence (x(n))n≥1 satisfying (28 – 30). In the
standard Aldous’ setting of [4], x(n) had length n, and all of its blocks had identical
mass 1/n2/3. If c 6= 0, it is then natural to introduce “large” dust blocks of mass of
order 1/n1/3.

As in [5], we furthermore pick an integer valued sequence (m(n))n≥1, which increases
to infinity sufficiently slowly so that

∣∣∣∣∣∣

m(n)∑

i=1

(x
(n)
i )2

(σ2(x(n)))2
−

m(n)∑

i=1

c2i

∣∣∣∣∣∣
→ 0 ,

∣∣∣∣∣∣

m(n)∑

i=1

(
x
(n)
i

σ2(x(n))
− ci

)3
∣∣∣∣∣∣
→ 0 , (31)

and σ2(x
(n))

m(n)∑

i=1

c2i → 0 . (32)
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Fix t ∈ R and let qn := 1
σ2(x(n))

+ t. Recall (12), and define

Zn := Zx
(n),qn,

Rn(s) :=

m(n)∑

i=1

(
x
(n)
i 1(ξqni ≤ s) −

(x
(n)
i )2

σ2(x(n))
s

)
, and Yn(s) := Zn(s)− Rn(s), s ≥ 0.

It is implicit in the notation that ξqni := ξ
(n)
i /qn, where ξ

(n)
i has exponential (rate x

(n)
i )

distribution, and where (ξ
(n)
i )i are independent over i, for each n.

Define Z̄n, R̄n, Ȳn to be respectively Zn, Rn, Yn multiplied by 1
σ2(x(n))

, so that Z̄n ≡

Ȳn+ R̄n. It should not be surprising that both the shift in the multiplicative coalescent
time and the spatial scaling applied to the walks are the same as in [5]. It is clear that,
for each n, Rn and Yn are independent (the former depends only of the first m(n) ξ(n)s,
and the latter only on all the other ξ(n)s).

Recall the definitions (5–7). The following result is a direct analogue of [5], Propo-
sition 9.

Proposition 8 If (κ, 0, c) ∈ I, and provided (28–30) are satisfied as n → ∞, then

(Ȳn, R̄n)
d
→ (W̃ κ,t, V c), as n → ∞,

where W̃ κ,t and V c are independent, and therefore Z̄n
d
→ W κ,t,c.

The rest of this section is devoted to the proof of the above proposition, and some of
its consequences. As already mentioned, the argument is a simplification of that given
in Section 2.4 of [5], for the main reason that the current Yn has a simpler explicit
form. From now on assume that t ∈ R is given in Proposition 8.

Note that the independence of Yn and Rn clearly implies that of Ȳn and R̄n. So
provided that each of the sequences converges in law, the joint convergence in law to the
product limit law fis a trivial consequence. Furthermore, the convergence of R̄n can be
verified in a standard way (for each k, the kth largest jump of R̄n converges to the kth
largest jump of V c, and the second-moment MG estimates are used to bound the tails),
as was already done in [5]. Indeed, a careful look at the pages 17–19 in [5] suffices to
see that the ξs corresponding to the leading blocks were “artificially reintegrated” into
consideration (see the last paragraph of [5], page 17) via the random family (ξ̃i)i which
has exactly the same law as the present (ξqni )i. Therefore, the sequence of processes
appearing on the left-hand side of [5], display (36) has the same law as the sequence
(R̄n)n, and we can simply restate that auxiliary result from [5] as

R̄n
d
→ V c(s), as n → ∞. (33)

It remains to study the convergence of (Ȳn)n. This sequence of processes differs
from the equally named sequence in [5]. Write σn

r for σr(x
(n)), r = 1, 2, 3 in the sequel.

An important observation is that

Ȳn(s) :=

len(x(n))∑

i=m(n)+1

x
(n)
i

σn
2

1(ξqni ≤ s) −
s

σn
2

+

m(n)∑

i=1

(x
(n)
i )2

(σn
2 )

2
s. (34)
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The infinitesimal drift and variance calculations are now straightforward. Let Fn
s :=

σ{Ȳn(u) : u ≤ s}, so that Fn := (Fn
s )s≥0 is the filtration generated by Ȳn(u). Using

(34) one can easily derive that E(dȲn(s)| F
n
s ) =




len(x(n))∑

i=m(n)+1

(x
(n)
i )2

σn
2

(
1

σn
2

+ t

)
1(ξqni > s) −

1

σn
2

+

m(n)∑

i=1

(x
(n)
i )2

(σn
2 )

2


 ds =




len(x(n))∑

i=m(n)+1

(x
(n)
i )2

σn
2

(
1

σn
2

+ t

)
(1− 1(ξqni ≤ s))−

1

σn
2

+

m(n)∑

i=1

(x
(n)
i )2

(σn
2 )

2


 ds =




len(x(n))∑

i=m(n)+1

(x
(n)
i )2

σn
2

(t− t1(ξqni ≤ s))−
(x

(n)
i )2

(σn
2 )

2
1(ξqni ≤ s))


 ds. (35)

Let us estimate the remaining three sums separately. In order to do so, note that
(31–32) clearly imply

len(x(n))∑

i=m(n)+1

(x
(n)
i )2

σn
2

→ 1, as n → ∞.

For the other two terms, use the approximation by the average. More precisely, the
mean of the (absolute value of the) second sum can be bounded above by

t

len(x(n))∑

i=m(n)+1

(x
(n)
i )3

σn
2

· s qn,

and due to (28,30), the last quantity becomes negligible as n → ∞. Finally note that
it is elementary that if ai,n ≥ 0, then

(
ai,n1(ξqni ≤s) − ai,nx

(n)
i qns, s ≥ 0

)

is a supermartingale with Doob-Meyer decomposition Mi,n(s) − a2i,n(s − ξqni )+, where

Mi,n is a martingale, and 〈Mi,n〉(s) = a2i,nx
(n)
i qn min(s, ξqni ) is its quadratic variation.

Now let ai,n :=
(x

(n)
i )2

(σn
2 )

2 , and note that due to (28,30,31)

len(x(n))∑

i=m(n)+1

ai,nx
(n)
i qn =

len(x(n))∑

i=m(n)+1

(x
(n)
i )3

(σn
2 )

2
qn → κ, as n → ∞, (36)

while
len(x(n))∑

i=m(n)+1

(ai,n)
2 =

len(x(n))∑

i=m(n)+1

(x
(n)
i )4

(σn
2 )

4
≤

x
(n)
m(n)σ

n
3

(σn
2 )

4
,

and
len(x(n))∑

i=m(n)+1

(ai,n)
2x

(n)
i qn =

len(x(n))∑

i=m(n)+1

(x
(n)
i )5

(σn
2 )

4
(t+ 1/σn

2 ) = O

(
(x

(n)
m(n))

2σn
3

(σn
2 )

5

)
,

both become negligible as n → ∞ due to (28, 31) and the fact that c ∈ l3ց.
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Combining the just made observations with the usual L2 (Doob) martingale esti-
mates, one can conclude from (35) that, for each fixed s,

E(dȲn(s)| F
n
s )

p
→ (t− κs) ds, as n → ∞. (37)

Recalling the representation (34), one can even more easily verify (via (36) given above)
that, for each fixed s,

E((dȲn(s))
2| Fn

s )
p
→ κ ds, as n → ∞. (38)

Since the largest jump of Ȳn is of size x
(n)
m(n)+1/σ

n
2 = on(1), the classical martingale

central limit theorem implies that

Ȳn
d
→ W̃ κ,t, as n → ∞,

and, as already argued, this concludes the proof of the proposition.
Remark. By the Cauchy-Schwarz inequality, (σn

2 )
2 ≤ σn

1σ
n
3 , and so (28,30) imply

that σn
1 → ∞ as n → ∞. While this fact was needed in the proof of the analogous [5],

Proposition 9, here it could slip by unnoticed. If κ > 0, it is easy to see that the limit
W κ,t,c of Z̄n has (countably) infinitely many excursions above past minima. If κ = 0
and c ∈ l3ց \ l2ց, the same was proved in [5], Proposition 14.

Using the Skorokhod representation theorem, we may assume that the convergence
stated in Proposition 8 holds in the almost sure sense. To state the next result (essential
for the conclusions to be made in Section 6), redefine qn(t) := t+ 1

σn
2
, for t ∈ R. Then

let Zt
n := Zx(n),qn(t) and Z̄t

n := Zt
n/σ

n
2 . The (almost sure version of) Proposition 8 says

that there exists a Brownian motion W and an independent jump process V c, such
that

Z̄t
n → W κ,t,c, almost surely, as n → ∞,

where the convergence of paths is considered in the Skorokhod J1 topology. Let

At := {ω : Z̄t
n(·)(ω) → W κ,t,c(·)(ω) in the Skorokhod J1 topology}.

Lemma 9 On the event At, for any z ∈ R

(Z̄z
n(s), s ≥ 0) → (W κ,t,c(s) + (z − t)s, s ≥ 0) ≡ W κ,z,c, as n → ∞,

in the Skorokhod J1 topology.

Proof. Recall the explicit form (12) of Z ·,· Observe the following identity:

Zz
n

(
s ·

qn(t)

qn(z)

)
= Zt

n(s) + s

(
1−

qn(t)

qn(z)

)
, ∀s ≥ 0.

Since clearly limn→∞
qn(t)
qn(z)

= 1, and moreover since

1

σn
2

(
1−

qn(t)

qn(z)

)
= z − t+Oz,t(σ

n
2 ) ,

the convergence stated in the lemma follows omega-by-omega on At.
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6 Conclusions

Here is an immediate consequence of Lemma 3 and [5], Proposition 7 and 9, which was
announced in Remark (d) of Section 2.

Corollary 10 For each fixed t, under the hypotheses of Proposition 8, the sequence
(X(n)(qn(t)))n converges in law (with respect to l2ց-metric) to the sequence of ordered

excursions of Bκ,t,c (away from 0) .

But in fact more is true in view of Lemma 9. From now on we take the families
(W κ,t,c, t ∈ R) and (Bκ,t,c, t ∈ R) as jointly defined, on a common probability space,
via a given pair (W,V c), where W is Brownian motion and V c is an independent jump
process from (4).

Let as denote by A the event At of full probability from Lemma 9. For each t ∈ R,
define Ξ(n)(t) to be the point process on [0,∞) × (0,∞) such that (x, y) is in Ξ(n)(t)
if and only if there is an excursion above past minima of Z̄t

n (see (17) and Figure
2), starting from x and ending at x + y. Similarly, let Ξ(∞)(t) be the point process
on [0,∞) × (0,∞) such that (x, y) is in Ξ(∞)(t) if and only if there is an excursion
away from 0 of Bκ,t,c, starting from x and ending at x + y. One can then apply
deterministic result stated as [4], Lemma 7 to conclude the following: on the event A
of full probability, for each t ∈ R, one has

lim
n→∞

Ξ(n)(t) = Ξ(∞)(t), (39)

in the sense of vague convergence of counting measures on [0,∞)×(0,∞) (see e.g. [36]).
As in [4, 5], write π for the “project onto the y-axis” defined on R

2, and “ord” for the
“decreasing ordering” map defined on infinite-length vectors, respectively. For a fixed
(think large) K < ∞, define in addition πK to be the “project the strip [0, K]× (0,∞)
onto the y-axis” analogue of π. Then one can recognize ord(π(Ξ(n)(t))) as X(n)(qn(t)),
and X(∞)(t) := ord(π(Ξ(∞)(t))) as the infinite vector of excursion lengths of Bκ,t,c.
Similarly πK(Ξ

(∞)(t)) (resp. πK(Ξ
(n)(t))) is the collection of all the excursions of Bκ,t,c

(resp. Z̄t
n), which start before time K.

We already know that the law of X(∞)(t) is that of the marginal of µ(κ, 0, c) at time
t (or equivalently, the marginal of µ(κ, t, c) at time 0). The vague convergence (39)
now easily implies that there exists a (random) order of πK(Ξ

(n)(t)), here temporarily
denoted by ordΞ(n),Ξ(∞), since it is induced by the similarity of the Ξs, such that

‖ordΞ(n),Ξ(∞)(πK(Ξ
(n)(t)))− ord(πK(Ξ

(∞)(t)))‖2 → 0, on the event A. (40)

In words, if considering only the starts before time K, it is possible to order the
excursions of Z̄t

n so that the corresponding infinite vector (obtained by appending
an infinite sequence of 0s to the elements of πK(Ξ

(n)(t))) matches the infinite vector
ord(πK(Ξ

(∞)(t))) in l1-norm up to an on(1) error term. Moreover, convergence in l1-
norm implies convergence in l2-norm.

Take z > t, another real number, and let ε > 0 be fixed but arbitrarily small.
From now on u will denote either t or z. In order to upgrade (40) to the convergence
of X(n)(qn(u)) to X(∞)(u) with respect to distance d(·, ·), one can make the following
observations. For x ∈ l2ց, let fm(x) := (x1, . . . , xm, 0, 0, . . .) be the “projection” onto

the first m components. Take some arbitrarily large integer k, and choose mk ∈ N such
that

P (d(X(∞)(u), fmk
(X(∞)(u))) > ε) <

1

2k
. (41)
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Since X(n)(qn(t))
d
→ X(∞)(t) with respect to d, for this k and possibly larger but still

finite mk we can have in addition

lim sup
n

P (d(X(n)(qn(u)), fmk
(X(n)(qn(u)))) > ε) <

1

2k
. (42)

In words, with an overwhelming probability, all the (random) infinite vectors under
consideration are well-approximated (in the l2-norm) by their first mk components.

Since π(Ξ(∞)(·)) is l2-valued, and since its elements are listed in size-biased order,
one can easily deduce that for the above mk, there exists some large time Kk :=
K(mk) < ∞, such that

P (fmk
(ord(πK(Ξ

(∞)(u)))) 6= fmk
(X(∞)(u))) <

1

2k
. (43)

In words, K is sufficiently large so that with high probability the largest mk elements
of π(Ξ(∞)(u)), all correspond to excursions that started before time K. Again due to

X(n)(qn(u))
d
→ X(∞)(u), the analogous

lim sup
n

P (fmk
(ord(πK(Ξ

(n)(qn(u))))) 6= fmk
(X(n)(qn(u)))) <

1

2k
(44)

is implied for some (possibly larger but) finite K = K(mk).
Apply the triangle inequality to bound d(X(n)(qn(u)),X

(∞)(u)) by the sum of
three terms: d(X(n)(qn(u)), fmk

(X(n)(qn(u)))), d(fmk
(X(n)(qn(u))), fmk

(X(∞)(u))), and
d(fmk

(X(∞)(u)),X(∞)(u)). The initial and the final term are controlled by (41–42),
while the middle term is controlled by (43–44) and (40), where one makes use of the
elementary inequality: for x,y ∈ l2,

d(ord(x), ord(y)) ≤
∑

i

(xi − yb(i)),

regardless of the choice of bijection b : N → N.
Remark. It is clear for example from (37–38) (think about redefining qn(t) as
1

σ2(x(n))
+ t− τ), that the parameter τ corresponds to the time-shift of the eternal mul-

tiplicative coalescent, and so the above conclusions automatically extend to the setting
where τ 6= 0. ✷

An immediate conclusion is

Lemma 11 If ((Z̄x(n),qn(t)(s), s ≥ −1/σn
2 ), t ∈ R) −→ ((W κ,t−τ,c(s), s ≥ 0) , t ∈

R), as n → ∞, in the sense of Lemma 9, and if X(∞)(t) ∈ l2ց is the vector of or-

dered excursion lengths of Bκ,t−τ,c, then
(i) for any t ∈ R

d(X(n)(qn(t)),X
(∞)(t))

p
→ 0, as n → ∞,

(ii) for any finite sequence of times t1 < t2, . . . < tm, one can find a subsequence (nj)j
such that almost surely

d(X(nj)(qnj
(tk)),X

(∞)(tk)) → 0, for all k = 1, . . . , m, as j → ∞.

Recalling that (X(n)(qn(s)), s ≥ −1/σn
2 ) has the law of the multiplicative coale-

scent (see Proposition 7), and applying the Feller property together with Lemma 11(i),
where one should identify X(∞) with X, will complete the proof of the claim about the
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distribution of X in Theorem 2. It is easy to see (using arguments analogous to those
given above) that the realization X(∞) ≡ X of each eternal version from Theorem 2 is
a càdlàg (rcll) process on an event of full probability.

Remark. Recall the COL operation of [5], Section 5. In particular, each ci > 0
is interpreted as the rate of Poisson coloring (per unit mass) by marks of the ith
“color”, applied to the standard Aldous’ multiplicative coalescent X∗. Once all the
color marks are deposited, any two blocks ofX∗ that share at least one mark of the same
color are instantaneously and simultaneously merged together. The jump in W κ,·−τ,c

at time ξi of size ci corresponds precisely to the effect of coloring by the ith color.
Moreover, one could argue that if W̃ κ,·−τ,0 and W̃ κ,·−τ,c are given in (6) using the same
Brownian motion W , then the excursions of the corresponding (Bκ,t−τ+‖c‖2,c, t ∈ R)
(suppose for simplicity that c ∈ l2ց) away from 0 are almost surely the result of

the above COL operation executed on the excursions of (Bκ,t−τ,0, t ∈ R). The fact
that, as time increases, each color “spreads” in this coupling (almost surely) only
over the “neighboring” blocks may again seem counterintuitive. The point is that
COL commutes with the multiplicative coalescent dynamics, and that therefore it can
be pushed to −∞. The infinitesimally small dust particles of X∗(−∞) are mutually
interchangeable. The ith color at time −∞ is represented as an additional dust particle,
of mass much superior to standard dust, but still negligible (a formal statement of this
is (11) or (29)). One can naturally couple the representation of the multiplicative coa-
lescent using simultaneous breadth-first walks (or Uribe’s diagram) started only from
standard dust as t → −∞, with the same representation of the multiplicative coa-
lescent started from the union of two types of dust as t → −∞. Proposition 8 and
Lemma 9 do this formally (their predecessor is [5], Proposition 41). In this coupling
every color gradually spreads only to neighboring blocks of those already marked by
it. ✷

7 A list of questions with some remarks

1. Fix c, κ and τ as in Theorem 2. The convergence of Lemma 11 implies that of
(X(n)(qn(t)), t ∈ R) to (X(∞)(t), t ∈ R) in the sense of f.d.d. as n → ∞. It seems
highly plausible that this could be extended to the convergence in law with respect to
the Skorokhod J1 topology on l2ց-valued path processes, using the well-known Aldous’

criterion for tightness, and bounds on the increase of the second-moment σ2(X
(n)(qn(·)))

over small intervals of time, as in [4, 5].
A more challenging/interesting project would be to try to strengthen the convergence
of Lemma 11(ii) to the full convergence in the almost sure sense. Having that, could
one prove that on some set of full probability we have

(X(n)(qn(t)), t ∈ R) → (X(∞)(t), t ∈ R)

with respect to the Skorokhod J1 distance on D((−∞,∞), l2ց)?

2. The author tried a “lazy” approach of comparing directly, for each fixed large n,
the current process Z̄n to the analogous Z̄n from [5], in order to be able to conclude
Proposition 8 without any additional effort. The absence of the load-free intervals for
Z̄n from [5] makes the direct (J1 distance) comparison of the paths of two pre-limit
processes difficult, unless one uses the extra information that they both converge to
the same limit in the Skorokhod J1 sense. Perhaps there is a trick, which could make
the direct comparison possible, so that the conclusion about the same distributional
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limit could be made in a handwaving manner?
3. Is there a direct connection between Prim’s algorithm of [24] and the simultaneous
breadth-first walks of Section 2? The upcoming work [54], joint with the observations
of Section 4, should provide a two-step connection between the two representations.
4. Theorem 2 enables one to construct a coupling X of the whole family (Xκ,τ,c :
(κ, τ, c) ∈ I) on one and the same probability space, using a single Brownian motion

W (in order to define W̃ ·,· as in (5)) and an independent countable family of i.i.d.
exponential (rate 1) random variables (in order to define V · as in (4)). Here it is natural
to follow the convention that if ci = 0 for some i, then the corresponding exponential
divided by ci is almost surely infinite, and can therefore be omitted from the sum in V c.
In particular V 0 is the zero process. The family of deterministic constant coalescents
µ̂(y), y ≥ 0 can clearly be included in the above coupling X . It is not hard to see that
on an event of full probability all the elements of X have càdlàg paths. Is it possible to
rephrase the questions asked in the final remarks (Section 6) of [5] in terms of the almost
sure distance on D((−∞,∞), l2ց) between the elements of X . In particular, does the

sequence of laws (µ(κm, τm, cm))m converge if and only if (Xκm,τm,cm)m converges in
D((−∞,∞), l2ց), and if and only if (Bκm,τm,cm)m converges in D((−∞,∞), [0,∞))?

Is X closed in D((−∞,∞), l2ց)? Which sequences (Xκm,τm,cm)m in X converge to the

zero process V 0?
5. The fragmentation/coalescence duality announced in the title of [10] has a chance
of being explored again in the more general context of Theorem 2. What are the
fragmentation rates of the process dual to each X of Theorem 2? Could the dual be
used to derive new properties of the multiplicative coalescent entrance boundary?
For example. take Xκ,τ,c(t), where Xκ,τ,c has distribution µ(κ, τ, c). Equivalently, let
Xκ,τ,c(t) be the vector of ordered excursion (away from 0) lengths of Bκ,τ,c. We know
that

L(Xκ,τ,c(t)) =

∫

I

L(X·,·,·(t))dν(·, ·, ·), (45)

where ν is the Dirac mass at (κ, τ, c). Can (45) hold for another (non-trivial) measure
on I? Equivalently, are already the marginal laws L(X·,·,·(t)) mutually singular, or
could Xκ1,τ1,c1(t) and Xκ2,τ2,c2(t) be absolutely continuous? In the latter case, what is
the corresponding Radon-Nikodým derivative?
6. The asymptotic behavior of the diagram L(ξ(n),x(n)) and its related “genealog-
ical tree”-analog T (see also Figures 3 and 4) of Section 3 could be related to the
previous question. Under hypotheses (28–30) on x(n), the sequence of corresponding
diagrams/trees should formally converge to a tree-like object that encodes the corre-
sponding limiting extremal eternal version of the multiplicative coalescent. Can this
be formalized? If so, does the limiting tree have anything in common with the ICRT
of [23]?
7. Could the definition of Uribe’s diagram be extended and usefully exploited in the
context of more general merging kernels?
8. Does there exist a non-standard augmented multiplicative coalescent, analogous to
the standard augmented multiplicative coalescent of Bhamidi et al? Is it the scaling-
limit for the coupled random graph and the corresponding excess-edge data count
process under hypotheses (28-30)?
9. Suppose that c 6= 0 and let the family (W κ,t−τ,c, Bκ,t−τ,c), t ∈ R be coupled as in
Theorem 2. The variance scale κ could be positive or 0. Using the multiplicative coale-
scent representation of Theorem 2 from the viewpoint of of the “coloring construction”
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(see [5], Section 5 and the final remark of Section 6) it is immediate that, almost surely,
simultaneously for all t ∈ R, no (positive) jump of V c arrives at the very beginning of
any excursion of Bκ,t−τ,c away from 0. In other words, no excursion of Bκ,·−τ,c away
from 0 ever starts with a jump. Is this obvious from the stochastic calculus point of
view, and why?
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