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Abstract

Small compression noises, despite being transparent to human eyes,
can adversely affect the results of many image restoration processes, if left
unaccounted for. Especially, compression noises are highly detrimental to
inverse operators of high-boosting (sharpening) nature, such as deblur-
ring and superresolution against a convolution kernel. By incorporating
the non-linear DCT quantization mechanism into the formulation for im-
age restoration, we propose a new sparsity-based convex programming
approach for joint compression noise removal and image restoration. Ex-
perimental results demonstrate significant performance gains of the new
approach over existing image restoration methods.

1 Introduction

Image restoration is to improve the quality of acquired image data in prepara-
tion for higher level vision tasks. It remains a very active research area because
the precision and success of many computer vision algorithms, such as regis-
tration, recognition, detection, classification, matting, retrieval, etc., depend on
the quality of the input image. But much to our surprise, in the very large exist-
ing body of research literature on image restoration, very little study has been
reported on how compression noises affect the performances of various image
restoration processes, such as deconvolution, superresolution, etc. All published
works of image restoration, except few papers explicitly on the topic of combat-
ing compression artifacts (a.k.a., soft decoding), assumed the input image data
to be uncompressed or mathematically losslessly compressed. This long-time
tradition is, unfortunately, an operational convenience in contrary to the real
world settings. In most practical scenarios, particularly those of consumer ap-
plications, the input images are compressed in discrete cosine transform (DCT)
domain with some loss of fidelity. For practical systems constrained by band-
width and storage economy, lossy compression is inevitable because mathemat-
ically invertible image coding typically achieves only roughly 2:1 compression
ratio,still leaving the image file size too large to handle.

Granted, after years of research, development and investment, international
compression standards such as JPEG, H.264, HEVC, etc., can offer very high
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reconstruction quality to the level of perceptual transparency; namely, naked
eyes cannot discern any difference between the original and the decompressed
images. But as demonstrated by this work, small compression noises, despite
being transparent to human eyes, can adversely affect the results of many image
restoration processes, if left unaccounted for. Especially, compression noises are
highly detrimental to inverse operators of high-boosting (sharpening) nature,
such as deblurring and superresolution against a convolution kernel.

The omission of compression noises in the design of image restoration algo-
rithms is seemingly due to the fact that the compression noises are much more
difficult to model than other degradation sources, e.g., motion blur and sen-
sor noises. The compression-induced quality degradation is more pronounced
for compound document images, which are characterized by the embedding
of graphics arts or texts into an acquired photograph, as exemplified by Fig-
ure 1. The non-linearity of quantization operations in image compression sys-
tems makes quantization noises image dependent, far from being white and
independent, as commonly assumed by most researchers in the field of image
restoration.

The contributions of this paper are two folds. First, we analyze the nature
of quantization noises in the DCT domain, in which most popular JPEG and
H.264/HEVC compression standards operate. In particular, we find that the
quantization errors of DCT coefficients exhibit complex behaviours after being
mapped back into the spatial domain. These behaviours are highly sensitive
to quantization precision, the amplitude and phase of the input image signal.
Second, we manage to incorporate the non-linear DCT quantization mechanism
into the inverse problem formulation for image restoration. Specifically, we pro-
pose a new sparsity-based convex programming approach for joint quantization
noise removal and restoration, verify the efficacy of the proposed approach for
the tasks of deblurring and super-resolving DCT-domain compressed images,
and demonstrate significant performance gains of the new approach over exist-
ing deblurring and superresolution methods.

2 Quantization Error in DCT Domain

The process of capturing, storing and displaying a digital image is far from per-
fect; it often introduces objectionable errors, such as motion blur, lens distortion,
moiré pattern, sensor noise, compression noise, etc., into the final reproduction
of a scene. Some errors are independent to and statistically distinct from signal.
For example, sensor noise can be modelled as random variables following an in-
dependent and identically distributed (i.i.d.) Gaussian distribution, while true
signal has repetitive patterns hence sparse in some basis [13, 6]. By exploiting
this statistical difference between signal and sensor noise, denoising techniques
can effectively separate signal and noise in a given noisy observation [8]. Com-
pression noises, on the other hand, are much more difficult to model than other
degradation sources, e.g., motion blur and sensor noises. The non-linearity
of quantization operations in image compression systems makes quantization
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(a) Original image

(b) Enhanced by CLAHE [16]

(c) Enhanced by the proposed technique

Figure 1: JPEG compression artifacts become highly objectionable after image
enhancement or image size magnification, or both. The second and third sub-
figures from left are regions up-scaled by bi-cubic interpolation and A+ [18],
respectively.
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(a) Original (b) JPEG (QF = 75) (c) JPEG (QF = 50) (d) JPEG (QF = 25)

Figure 2: JPEG compression noise is corrected with signal.

noises image dependent, far from being white and independent.
In main stream DCT-based compression systems, the encoding of signal x is

a three-step process. 1. The discrete cosine transform T is performed on signal
x; 2. the transformed signal T (x) is subject to quantization Q; 3. the quantized
version (Q ◦ T )(x) is coded by an entropy coder C, resulting the code stream
(C ◦ Q ◦ T )(x) for storage or transmission. The decoding process reverses the
above three-step encoding process and generates the decompressed signal

x̂ = (T−1 ◦Q−1 ◦ C−1)((C ◦Q ◦ T )(x)). (1)

In this closed loop, the entropy decoder C−1 and the inverse transform T−1 are
invertible operators, namely, C−1 ◦C = I, T−1 ◦ T = I, but the dequantization
operator Q−1 is not. The approximation error due to Q−1 ◦Q 6= I is aggravated
and complicated by the non-linearity of the quantization operation Q. In the
interest of gaining compression performance, the quantizer Q inclines to demote
or outright discard high-frequency DCT coefficients. Setting high frequency
components of x to zero causes periodic ringing artifacts in the reconstructed
signal x̂, which are easy to perceive as demonstrated in Figure 2. In this set
of JPEG-decompressed images, the ringing artifacts not only accompany sharp
edges in close proximity and they also agree with the image signal in orientation;
in other words, the quantization noises are correlated with the image signal.

Unlike other noise mechanisms in image or video restoration, compression
noises are not random in the sense that coding blocks of similar high-frequency
contents tend to have similar ringing artifacts. As a result, a particular artifact
pattern may occur repetitively in a pixel vicinity. Such signal-dependent noises
may resist the treatment of sparsity-based denoising techniques, because the
assumption that only the signal as self-similarity is no longer valid.

There is yet another complication in modeling and removing DCT quanti-
zation errors. That is, the same signal structure can, after through the loop
of compression C ◦ Q ◦ T and decompression T−1 ◦ Q−1 ◦ C−1, exhibit much
varied temporal or spatial patterns, with even immaterial changes in the phase
or amplitude of the input signal, and in compression quality factor (QF). This
high sensitivity and nonlinearity of error patterns are depicted graphically in
Figure 3. In this example, the reconstructed versions of the same one dimen-
sional (1D) unit pulse signal of minor linear-type alterations, such as shifting
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(a) Amplitude = 0.1, QF = 45.
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(b) Amplitude = 0.1, QF = 50.
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(c) Amplitude = 0.15, QF = 50.

Figure 3: DCT quantization noise appears drastically different with small
changes in QF, signal phase or amplitude.

(a) Original (b) JPEG (QF = 75) (c) JPEG (QF = 50) (d) JPEG (QF = 25)

Figure 4: Besides QF, JPEG compression noise is sensitive to the angle and
phase of the signal.
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and scaling, behave drastically differently. In two dimensional (2D) image, there
are more factors affecting quantization noise. Figure 4 shows the quantization
effects on image blocks of the same sharp edge but different phases and angles.
In each case, there are visible false lines parallel to the edge, however, the po-
sition, strength and sign of the compression noise vary with a small change in
angel or phase. Since there are so many factors affecting the quantization error,
using learning based techniques to build a map from noisy observation to true
signal for each scenario is impractical.

3 DCT Quantization Error Model

DCT based lossy compression techniques realize data volume reduction by trad-
ing off the accuracy of the DCT-domain representation of the input signal
through quantization. By the definition of DCT, the k-th DCT coefficient of
1D signal x0, . . . , xN−1 is,

Xk =

N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
. (2)

After quantization, the true value of Xk is commonly estimated as,

X̂k = bXk/qk + 0.5c · qk, (3)

where qk is quantization interval for the k-th DCT coefficient. In general, qk is
set to decrease with k, due to the fact that most energy of a signal is commonly
concentrated in low frequency components.

Using Fourier transform, DCT can be approximated in continuous domain
as follows,

Xk = N

N−1∑
n=0

1

N
xn cos

(
2π ·

n+ 1
2

N
· k

2

)
≈ N

∫ 1

0

f(t) cos

(
2πt

k

2

)
dt

= Re

[
N

2

∫ ∞
−∞

f(t)e−2πt
k
2 dt

]
= Re

[
N

2
F

(
k

2

)]
, (4)

where f is an integrable function such that
f(

n+ 1
2

N ) = xn,

f(t) = f(−t),
f(t) = 0, t > 1,

(5)

and F is the Fourier transform of f . By this equation, if sequence x0, . . . , xN−1
consists of equally spaced samples of function f and f satisfies Eq. (5), then a
DCT coefficient of the sequence is a sample of f in frequency domain.
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Figure 5: DCT coefficients of a decreasing linear sequence.

3.1 Quantization Effects on Linear Signal

Suppose input signal xr = {x0, . . . , xN−1} is a decreasing linear sequence, in
which the n-th element is,

xn = a ·
n+ 1

2

N
, 0 ≤ n ≤ N − 1. (6)

Then triangular function a · tri(t), where,

tri(t) =

{
1− |t| if |t| < 1

0 otherwise,
(7)

satisfies the conditions in Eq. (5), thus by Eq. (4), the k-th DCT coefficient of
the sequence can be approximated as,

Xk ≈ Re

[
N

2

∫ ∞
−∞

a · tri(t)e−i2πt k2 dt

]
=
aN

2
· sinc2

(
k

2

)
, (8)

where sinc(·) is the normalized sinc function defined as,

sinc(x) =
sin(πx)

πx
. (9)

This linear input signal xr is easy to model in temporal domain; its second
order derivative is zero everywhere hence sparse. It is comparable to a simple
gradient ramp in 2D digital image. However, as visualized in Fig. 5, this signal
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(a) Original (b) JPEG (QF = 10)

Figure 6: Quantization removes small AC components causing perceivable
blocking artifacts in a simple gradient ramp image.

is not sparse in DCT domain. By the approximation in Eq. (8), the k-th DCT
coefficient Xk is only zero for even positive integer k, thus, more than half
(bN/2c + 1 out of N) of the coefficients in DCT domain are non-zero. To
effectively compress this signal, some of the non-zero DCT coefficients need
to be quantized to zero. Suppose for some odd positive integer k0, the k0-th
quantized DCT coefficient is zero, then

Xk0 <
qk0
2
⇐⇒ aN

2
· sinc2

(
k0
2

)
<
qk0
2

⇐⇒ aN · 4

π2k20
< qk0

⇐⇒ a <
π2k20qk0

4N
. (10)

Since non-zero DCT coefficient Xk decreases with k while in general, quantiza-
tion interval qk increases with k, all the quantized DCT coefficients after the
k0-th one are zero as well. For example, if we use JPEG with QF = 25 to com-
press a horizontal gradient ramp, then by Eq. (10), quantized DCT coefficient
X1 is zero when a is less than about 4.8. In this case, each coding block be-
comes uniform after compression as its AC components in DCT domain are all
zeros. As shown in Fig. 6, it is not sufficient to reconstruct the gradient ramp
accurately in each block with only the DC component X0. More importantly,
due to Mach bands illusion, the discontinuity around coding block boundaries
is highly perceivable to human, greatly deteriorating the perceptual quality of
the compressed image.

3.2 Quantization Effects on Piecewise Constant Signal

Similar to linear signal, piecewise constant signal is another case which is simple
to model in temporal domain but complex in DCT domain. For instance, let
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input signal xs = {x0, . . . , xN−1} be a sequence of two steps, i.e.,

[a, a, . . . , a︸ ︷︷ ︸
m

, 0, 0, . . . , 0︸ ︷︷ ︸
N−m

], (11)

where a > 0 and 0 ≤ m ≤ N . This sequence is a discrete version of rectangular
function fs(t), where,

fs(t) = a · rect

(
t

2r

)

= a ·


0 if |t| > r
1
2 if |t| = r

1 if |t| < r,

(12)

and r = m/N . As fs(t) satisfies Eq. (5), the DCT of sequence xs can be
approximated as follows by Eq. (4),

Xk ≈ Re

[
N

2

∫ ∞
−∞

a · rect

(
t

2r

)
e−i2πt

k
2 dt

]
=
N

2
· 2ar · sinc

(
2r · k

2

)
= arN · sinc(rk). (13)

As sinc(rk) decreases with frequency k in general, if quantization intervals
are large enough, quantization effects can be approximated by cutting off high
frequency components. Suppose only the first b DCT coefficients are preserved
after quantization, then the restored sequence is

x̂t =

∫ b

−b

2

N
Xk e

i2πt k2 d
k

2

= a

∫ b

−b
r sinc(rk) ei2π

t
2k dk

= a · [Si(br − bt) + Si(br + bt)], (14)

where function Si(z) is sine integral defined as

Si(z) =

∫ z

0

sinc(t) dt. (15)

By aligning the sequence {x̂t | 0 ≤ t ≤ 1} to the location of the edge, we get the
following sequence such that y0 is the transition of two steps,

ŷt = x̂t+r = a[Si(−bt) + Si(2br + bt)]. (16)

As shown in Fig. 7, quantization noise in ŷt has a relatively fixed pattern
regardless of the phase. Therefore, if we align the signals by their phases, the
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Figure 7: A sharp edge causes similar quantization artifacts regardless of the
phase r.

noises become aligned as well. This correlation between signal and quantization
noise makes them much more difficult to distinguish.

If sequence xs is smoothed with a Gaussian kernel resulting sequence ys,
then ys is a discrete version of fg(t) = (fs ∗ g)(t), where,

g(t) =
1

σ
√

2π
e−

t2

2σ2 . (17)

By convolution theorem, the Fourier transform of function fg(t) is,

Fg

(
k

2

)
= Fs

(
k

2

)
·G
(
k

2

)
= 2ar · sinc(rk) · e−2π

2σ2k2/22 (18)

Thus the k-th DCT coefficient of the blurred sequence ys is approximately equal
to,

Yk ≈ arN · sinc(rk) · e−π
2σ2k2/2 (19)

For a given frequency k, the absolute quantization error is

εk = |vk · qk − Yk| . (20)

where vk = bYk/qk+0.5c. If the absolute quantization error εk of DCT coefficient
Yk is sufficiently small, say less than a constant Cε, it has little impact on the
quality of the compressed image; if εk is large, but the relative error εk/|Yk|
is small, it still contributes little to the artifacts of the compressed image, as
in this case, the quantized DCT coefficient is strong enough to hide the error
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(b) σ = 0.1

Figure 8: DCT coefficient Yk as a function of frequency k.

perceptually. Suppose that to hide the quantization artifacts from frequency k,
the relative error εk/|Yk| must be less than 1/3, i.e.,

ek
|Yk|

=

∣∣∣∣vk · qk − YkYk

∣∣∣∣ < 1

3
. (21)

This inequality is true if and only if |Yk| ≥ 3qk/4. Thus, when,

Cε ≤ |Yk| ≤
3

4
qk, (22)

quantization of DCT coefficient Yk results both large absolute error and relative
error.

Plotted in Fig. 8 is /glsdct coefficient Yk as a function of k. Each curve
represents a signal with a different phase r, and amplitude of the first step is
a = 50; and the quantization intervals are based on the quantization matrix of
JPEG with QF = 50. Regions where a coefficient can cause large absolute error
and relative quantization error are marked as gray. As demonstrated in Fig. 8a,
the strength and sign of a /glsdct coefficient and its quantization error depend
on various factors, e.g., phase r, smoothness σ and amplitude a. In Fig. 8b,
the sequence is smoothed by a Gaussian kernel with variance σ2. As a result,
the quantization errors of high frequency coefficients are small (not in the gray
regions) compare to the previous case, as those coefficients are close to zero.

4 Enhancement Model

Recent nonlocal self-similarity (NNS) based image denoising techniques, such as
BM3D [5], SAIST [7] and WNNM [8], have demonstrated their great strength in
reconstructing the original image x from an observation y = x+n contaminated
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by additive white Gaussian noise n. NNS refers to the fact that there are
many repeated local patterns across a natural image, and those nonlocal similar
patches to a given patch can help much the reconstruction of it [3]. For a
local patch yi of size m in image y, we can stack M of its similar patches
yi,j = Ri,jy across the image together into a matrix Y i ∈ <m×M , where Ri,j

is a matrix extracting the j-th similar patch of the local patch at location i for
1 ≤ i ≤ N, 1 ≤ j ≤ M . Then solving the following nuclear norm minimization
(NNM) problem yields a matrix X̂i consisting of noise reduced patches,

X̂i = argmin
Xi

‖Y i −Xi‖2F + λ‖Xi‖∗ (23)

Although this problem in non-convex, it is tractable by an efficient singular
value thresholding (SVT) algorithm [3]. The whole reconstructed image can be
then estimated by aggregating all the denoised patches as,

x̂ =

 N∑
i=1

M∑
j=1

Rᵀ
i,jRi,j

−1 N∑
i=1

M∑
j=1

Rᵀ
i,jx̂i,j (24)

Following this idea, we can formulate the restoration of DCT-domain com-
pressed image problem as a constrained nuclear norm minimization problem,

x̂ = argmin
x

N∑
i=1

‖Xi‖∗

s. t. |QTR̃iHx− γi| ≤ 0.5,
i = 1 . . . n

(25)

where H is a matrix modelling the degradation of image quality caused by
various image capturing conditions, R̃i is a matrix extracting the coding block
at location i, T is the DCT transform matrix, Q is a diagonal matrix storing
quantization table and vector γi is the DCT coefficient of the block at location
i.

Using hard-decoding technique, each block yi of y is obtained by inverse
DCT transform from coefficient vector γi as follow,

yi = R̃iy = (QT )−1γi, (26)

and the observed image y is a degraded version of image Hx contaminated
mainly by DCT-domain quantization noise. Existing sparsity based denoising
techniques designed for reducing additive white Gaussian noise generally use
‖x̂ − y‖2 as the fidelity term in their optimization frameworks and leave x̂
unconstrained. In the case of DCT-domain quantization noise, we have more
information about the noise: the true value of each DCT coefficient before scalar
quantization lies in a known interval,

Q−1(γi − 0.5) ≤ TR̃iHx < Q
−1(γi + 0.5) (27)
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This constrain confines the solution space of the optimization problem in Eq. (25),
preventing the sparsity objective function from over-smoothing the output im-
age.

To solve the problem in Eq. (25), we split it into two parts. The first part
is to find a sparse estimation ẑ of the original image from a given noisy version
x̂, i.e., for each patch group of image ẑ,

Ẑi = argmin
Zi

‖X̂i −Zi‖2F + λ‖Zi‖∗ (28)

The noisy version x̂ of the original image can be estimated directly using x̂ =
H−1y. Here we use H−1 to represent an inverse operator of H rather than
matrix inverse. Although many types of image degradation can be modelled
by a simple product of a degradation matrix H and the original image x, the
inverse problem is often iso-posed and requires complex non-linear algorithm to
find a good solution. Since the observed image y contains compression noise,
if operator H−1 exhibits high-boosting property, which is often the case for
unsharp and edge enhancement operators, H−1 could amplify the noise and
make an inaccurate estimation of the original image. Using sparsity prior, the
boosted noise can be greatly alleviated by the optimization problem in Eq. (28),
resulting a better estimation of the original image in vector ẑ.

The second part of the problem is to impose the DCT-domain constraint in
Eq. (25) on the noise reduced estimation ẑ from the first part using the following
optimization problem,

x̂′ = argmin
x

‖x− ẑ‖2
s. t. |QTR̃iHx− γi| ≤ 0.5,

i = 1 . . . n

(29)

This is a convex problem solvable by off-the-shelf convex optimization problem
solvers. However, if the input image is large, a general purpose solver is too
time-consuming for this problem. Instead, we can solve a similar but much
simpler problem as follows,

x̂′ = argmin
x

n∑
i=1

‖R̃iH(x− ẑ)‖2

s. t. |QTR̃iHx− γi| ≤ 0.5,
i = 1 . . . n

(30)

Compared with the original problem, the only difference of the reduced problem
is that the new problem measures the norm of the error in degraded image
domain rather than original image domain. Since the DCT tranform matrix T
is unitary,

‖R̃iH(x− ẑ)‖2 = ‖TR̃iH(x− ẑ)‖2
= ‖Tyi − TR̃iHẑ‖2, (31)
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where coding block yi = R̃iHx. On the other hand, the DCT coefficient
constraint in Eq. (27) is applied on each element of vector Tyi, thus, the opti-
mization problem has a closed-form solution,

ŷi = C0.5(R̃iHẑ,yi), (32)

where, the DCT-domain clipping operator Cβ(·, ·) is defined as

Cβ(α,ρ) = (QT )−1 min(max(QTα,QTρ− β)

,QTρ+ β). (33)

Aggregating these DCT blocks together, we get ŷ, an estimation in degraded
image domain with reduced compression noise, from which an approximate so-
lution x̂′ = H−1ŷ of the problem in Eq. (30) can be easily found. Compared
with image x̂, the initial inverse of the observed image y, x̂′ has lower level
of compression noise because of sparsity prior in Eq. (28) and still satisfies the
DCT domain constraints due to Eq. (30).

5 Algorithm

Algorithm 1 Image restoration from compressed image

Input: Compressed image y, contrast degradation matrix H

1: Estimate compression RMSE ε of y
2: Estimate threshold λ using ε . Eq. (43)
3: β = 0.2
4: x(0) = H−1y
5: for k = 1 to K do
6: for each patch xi in x(k−1) do
7: Find similar patch group Xi

8: [U ,Σ,V ] = SVD(Xi)
9: Zi = UTλ(Σ)V ᵀ . Eq. (38)

10: end for
11: Aggregate Zi to form image z(k) . Eq. (24)
12: if k = K then
13: β = 0.5
14: end if
15: Clip z(k) using threshold β to get y(k) . Eq. (32)
16: x(k) = H−1y(k)

17: λ = λ/2
18: end for

Output: Restored image x(K)

Based on the restoration model discussed in the previous section, our pur-
posed algorithm can be implemented as an iterative process alternatively finding

14
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Figure 9: Avoid collecting patches of the same phase.

a reconstructed original image and a compression noise reduced observation im-
age as in Algorithm 1. In this section, we address some of the technical issues
in the implementation of the algorithm.

5.1 Nonlocal Self-Similarity

NNS based techniques have achieved the state-of-the-art results in removing
Gaussian noise [8]. The NNS prior assumes that noise is independent to signal,
hence by comparing a group of similar patches, noise can be isolated from signal.
However, as we argued in previous sections, compression noise is not random
but correlated with the signal; similar patches have similar compression noise,
especially when they also have the same relative position to DCT coding blocks.
Moreover, patches with matched artifacts can be easily mistaken as being similar
using square error metric. Thus, collecting similar patches without taking their
contents or positions into consideration inevitably puts multiple instances of
the same quantization artifacts into a sample patch group; consequently, such
reoccurring noises cannot be separated from the true signal by the NNS prior
alone.

For example, as shown in Fig. 9, patches p0 and p2 are both located on
a 45◦ high-contrast edge, and their positions relative to coding blocks are the
same, hence they have matching ringing artifacts caused by the quantization of
the edge in DCT domain. In contrast, patch p1 on the same edge also suffers
from ringing artifacts but with a different pattern than those of p0 and p1 as a
result of being aligned differently to coding blocks than the other two. Due to
its distinct noise patterns, patch p1 is ranked lower in terms of the similarity to
p0, however, it is a better candidate for the sample patch group in combating
reoccurring artifacts. Therefore, when compiling the sample patch group for
patch p0, other patches of the same position in relative to coding blocks, like p2,
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should be avoided if p0 is around a high-contrast edge. A special case is that,
when the edge is horizontal or vertical, patches in the same row or column are
potentially distorted by the same artifacts, thus their similarity rating must be
reduced accordingly as well.

In addition to considering patch positions in choosing similar patches, the
measurement of patch similarity should be carefully designed to decouple noise
from signal. As discussed previously, compression noise in input image can mis-
lead the selection of similar patches. Thus, instead of comparing two patches
directly by their squared error, a denoised version of a patch can be used to mea-
sure similarity. A simple low-pass filtering can generate a good enough denoised
image effectively reducing the impact of compression noise to the measurement
of similarity. This technique is only used in the first iteration of a denosing al-
gorithm when the strength of noise is high. In the later iterations, input image
becomes less subject to compression noise and it is not necessary to clean up
the input image for a more robust measurement of similarity.

The above discussed techniques are designed to deal with patches with ring-
ing artifacts around strong edges. Patches in smooth areas are generally free
of ringing artifacts since their high frequency coefficients are near zero and the
corresponding quantization errors are negligible. However, these patches are not
immune to blocking artifacts. Due to the lack of other textures, the boundaries
of coding blocks are actually more discernible perceptually in those smooth areas
as demonstrated in Fig. 6. To prevent these blocking artifacts being matched
as similar patch features causing reoccurring artifacts in sample patch group,
the same strategy of choosing only unaligned patches as previous case can be
employed. For example, in Fig. 9, patch p3 is in a smooth area located across
two coding blocks; any patch in the same row as p3 is likely to have the identi-
cal blocking artifacts, hence it should not be considered in the patch group of
p3. Moreover, since natural images are smooth in general, patches in a small
windows of smooth area are similar to each other. Furthermore, since natural
images are smooth in general, patches in a small windows of smooth area are
similar to each other. Therefore, for a patch from a smooth area, patches in
close proximity are sufficient to build a good sample patch group. If the search
window is small enough, there are few patches perfectly aligned with the given
patch, hence reducing the risk of collecting too many patches with repeated
artifacts. In practice, we set the search windows to 60 × 60 for normal patch
and shrink the window to 10 × 10 when the variance of the given patch is less
than 3.

5.2 Singular Value Thresholding

Ideally, finding a low-rank reconstruction of patch group matrix Y i should be
formulated as an `0-norm minimization problem as follows,

X̂i = argmin
Xi

‖Y i −Xi‖2F + λ‖Xi‖0. (34)
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Since this problem is NP-hard [3], in practice, we approximate it with a nuclear
norm minimization problem as in Eq. (23), which has an efficient closed-form
solution,

X̂i = UDλ(Σ)V ᵀ, (35)

where U ,Σ,V represent the the singular value decomposition (SVD) of Y i and
Dλ(·) is a soft-thresholding operator,

Dλ(Σ)jj =

{
Σjj − λ Σjj > λ,

0 otherwise,
(36)

or simply Dλ(Σ)jj = max(Σjj − λ, 0).
Although this is a reasonable approximation employed by many applications

[3, 21, 7], it still has some weaknesses. One of its problems is that, in addition
to having a lower rank, the Frobenius norm of the optimal solution X̂i also
decreases with larger threshold λ, since,

‖X̂i‖2F = ‖UDλ(Σ)V ᵀ‖2F =

M∑
j=1

Dλ(Σ)2jj (37)

and Dλ(Σ)jj is a decreasing function to λ. In the context of image denoising,
when we try to increase the strength of the denoising algorithm by selecting
a large threshold λ, it inevitably decreases the second moment of the image
reducing the brightness and contrast of the output. Unlike white Gaussian
noise, DCT-domain quantization noise could contribute negatively to the second
moment of the image, especially when the quality factor is low, hence, image
denoising using NNM may pull the result further away from the statistics of the
original image.

An intuitive solution to this problem is to completely preserve all the singu-
lar values that are above the threshold λ, i.e., to replace the soft-thresholding
operator Dλ(·) with a hard-thresholding operator

Tλ(Σ)jj =

{
Σjj Σjj > λ,

0 otherwise.
(38)

Since Tλ(Σ)jj > 0 if and only if Tλ(Σ)jj > 0, the resulting matrices X̂i by
the two threshold operators have the exact same rank. Thus, the new operator
Tλ(·) does not change the low rank property of the solution, however, in this
case, the solution is closer to Y i statistically in terms of the second moment.

This method coincides with the idea of reweighted nuclear norm minimiza-
tion where large singular values are given smaller weight to achieve better low
rank approximation [10]. It can also be interpreted as a spacial case of weighted
nuclear norm minimization (WNNM) [8] as follows. If for σj(Xi), the j-th
singular value of Xi, we assign a weight wj ,

wj =

{
0 σj(Y i) > λ,

λ otherwise.
(39)
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Since the weights w1...M are in a non-descending order, by the theory of WNNM,
applying the hard-thresholding operator Tλ(·) on Σ yields an optimal solution
for optimization problem,

X̂i = argmin
Xi

‖Y i −Xi‖2F + ‖Xi‖w,∗ (40)

where ‖Xi‖w,∗ is the weighted sum of the singular values of matrix Xi.
Now, the question is how to set the parameter λ of the NNM problem making

it more effective against DCT-domain quantization noise. In the formulation of
Eq. (23), λ is a weight balancing the sparse and fidelity regularization terms.
If sparsity is given too much weight, it tends to over-smooth the image and
cause degradation in brightness and contrast as discussed previously; if the
weight is too small, noise remains visible. From the perspective of the solution
to the problem in Eq. (35), λ is a threshold eliminating small singular values
of matrix Y i = UΣV ᵀ, where row vector σjv

ᵀ
j in matrix ΣV ᵀ consists of

the coefficient of each patch in Y i with respect to the j-th basis vector in
sparse dictionary U [7]. Image denoising by sparse optimization is based on the
fact that signal is likely sparse under some basis while noise is i.i.d. under the
same basis. Furthermore, the energy of compression error generally is small in
comparison with the strength of signal, especially when the quantization factor
is set to a practical range. Thus, removing small coefficients, which originated
most likely from noise than signal, results an output closer to the true signal.
The mean square error (MSE) ε2 of compression can then be approximated by,

ε2 =
1

mM
‖Y i −Xi‖2F

≈ 1

mM
‖Y i − X̂i‖2F

=
1

mM
‖UΣV ᵀ −UTλ(Σ)V ᵀ‖2F

=
1

mM
‖Σ− Tλ(Σ)‖2F

=
1

mM

∑
j∈L

σ2
j (41)

where set L contains indices of singular values that are less than λ. For the
same input image, using a lower quality setting increases the compression noise
(i.e., ε2), which in turn increases the small singular values according to Eq. (41).
To compensate this, threshold λ must increase as well to keep the size of set
L unchanged so that the sparsity of the signal is preserved. Considering that
the compression error is i.i.d. on each basis vector, implying that small singular
values are of similar strength, threshold λ should be proportional to root mean
square error (RMSE) ε as,

ε2 ∝ 1

mM

∑
j∈L

λ2 (42)
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Therefore, with an empirical constant Cλ, threshold λ can be set as

λ = Cλε

√
mM

|L|
≈ Cλε

√
max(M,m), (43)

where we assume |L| ≈ min(M,m) due to the sparsity of the true signal. This
threshold selecting method requires the knowledge of the strength of the com-
pression error ε, which is commonly unknown to the decoder. If error ε is
indeed not provided by the encoder, various no-reference peak signal-to-noise
ratio (PSNR) estimation techniques [19, 9, 1] can be used to estimate ε with
sufficient accuracy for finding an appropriate threshold λ.

5.3 DCT Coefficient Constraint

Most iterative denoising techniques, such as [14, 7, 8], employ some regulariza-
tion mechanisms to add a portion of filtered noise back to the denoised image
in each iteration in order to reduce the loss of high frequency information as
the result of multiple rounds of smoothing operators. The idea of adding noise
back enables denoising techniques to remove large noise aggressively by over-
smoothing the image in the first few iterations without completely removing the
detail in the process. Then, during the following iterations, the image can be
refined gradually using smoothing operators of lower strength. Mainly designed
to deal with Gaussian noise, many of these above mentioned denoising tech-
niques implement this iterative regularization by simply adding the difference
between the observed noisy image and smoothed image back to the smoothed
image, and use the result as the input noisy image for the next iteration.

For our DCT quantization noise reduction algorithm, this noise feedback
method can be written as,

y
(k)
i = z

(k)
i + δ(yi − z

(k)
i )

= δyi + (1− δ)z(k)i

= T−1[δTyi + (1− δ)Tz(k)i ] (44)

where coding block yi is at location i in the observed image y as defined in

Eq. (32), coding block y
(k)
i is the denoised version of yi from the k-the iteration

of the algorithm, coding block z
(k)
i = R̃iHz

(k) is the smoothed block at location
i as in Eq. (30) and δ is a weight parameter adjusting the strength of noise
feedback. As shown in Eq. 44, in DCT domain, this noise feedback process finds

a weighted average between DCT coefficients Tz
(k)
i of the smoothed image and

coefficients Tyi of the noisy observation, adding image detail along with some
reduced noise back to the result.

Similarly, the clipping operator Cβ(α,ρ) introduced in the previous section
in Eq. (33) has the effect of blending the smoothed image α with DCT-domain
quantization error tainted observation image ρ as well. By design, the clipping
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operator finds an image that is close to image α and has all of its DCT coeffi-
cients lying within the given quantization intervals [QTρ − β,QTρ + β]. The
output image Cβ(α,ρ) is closer to α if threshold β is large, and it is closer to ρ if
β is small. Therefore, with adjustable strength using parameter β, the clipping
operator is also a suitable noise feedback function for our algorithm as follows,

y
(k)
i = Cβ(z

(k)
i ,yi). (45)

This formulation is the same as the solution to the DCT coefficient constraint
problem in Eq. (32) except for the threshold β. Since applying the clipping oper-
ator multiple times is equivalent to applying it once with the smallest threshold
β, i.e.,

Cβ(C0.5(z
(k)
i ,yi),yi) = Cmin(β,0.5)(z

(k)
i ,yi), (46)

we only need to use the clipping operator once with threshold β ≤ 0.5 to solve
the DCT coefficient constraint problem and add filtered noise back to the result.

By the theory of narrow quantization constraint set (NQCS), the DCT co-
efficient clipping threshold β should be sufficiently small in order to achieve
the optimal results in terms of PSNR [15]. For example, the authors of NQCS
demonstrated that fixing threshold β = 0.1 is good enough for various images;
several research papers on JPEG image deblocking and denoising reported that
setting β = 0.3 often yields best results [23, 11, 17]. The best choice of β de-
pends on the distributions of the DCT coefficients of the original image, quanti-
zation factors and characteristics of the smoothing technique. Although smaller
threshold β generates PSNR-plausible results, it often brings blocking and ring-
ing artifacts back to the result, deteriorating its perceptual visual quality.

To alleviate this problem, in the last iteration of our algorithm, instead of
solving the optimization problem in Eq. (30), whose solution is given in Eq. (32)
using the clipping operator, we solve a modified problem as follows,

y(k) = argmin
y

‖∇2(y −Hz(k))‖22

+α

n∑
i=1

‖R̃i(y −Hz(k))‖22

s. t. |QTR̃iy − γi| ≤ β,
i = 1 . . . n.

(47)

In addition to minimizing the difference between the smoothed image and out-
put image, the objective function of this modified problem also minimizes the
difference between their second order derivatives. This new regularization term
encourages adding filtered noise back to locations that are discontinuous in
the smoothed image, so that, artifacts are less noticeable in the output image
perceptually. The modified problem in Eq. (47) is solvable using augmented La-
grangian method, which is more expensive than the clipping operator in Eq. (32)
in terms of computational complexity. However, since our algorithm only solves
this problem once during the last iteration, this technique can improve the visual
quality of the output image without significantly increasing the overall cost.
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Figure 10: Several widely used test images.

Alternatively, we can obtain the goal of eliminating the visual artifacts by
adjusting DCT clipping threshold β and singular value threshold λ in the last
two iterations. The idea is that, if in the last iteration K, most of the DCT

coefficients of smoothed block z
(K)
i are already within the quantization intervals

[QTyi−0.5,QTyi+0.5], then artifacts cannot be reintroduced to the results by
the clipping operator in Eq. (32) with threshold β(K) = 0.5. To insure the con-
dition that most DCT coefficients satisfy the quantization interval constraints,
the strength of the smoothing operator must be reduced in the last iteration by
using a smaller singular value threshold λ(K). By Eqs. (41) and (43), the stan-
dard deviation of the difference between the noisy input image y and smoothed
image z(K) is,

‖y − z(K)‖2√
n

≈ λ(K)

Cλ
√

max(M,m)
, (48)

which is roughly proportional to threshold λ(K), thus, decreasing threshold λ(K)

also reduces the variance of y−z(K) in DCT domain and makes DCT coefficients
of image z(K) more likely stay within quantization interval. On the other hand,
the clipping threshold β(K−1) in the second last iteration should also be small
in order to make each DCT coefficient of the clipped image close to the centre
of quantization interval, limiting DCT coefficient overflow caused by the next
smoothing operator. However, if both thresholds β and λ are too small, it
weakens the effect of noise reduction. In practice, we find that setting clipping
threshold β(K−1) = 0.2 and singular value threshold λ(K) = λ(1)/4 works well
for most input images.

6 Experimental Results

To demonstrate the performance of the proposed technique, we first turn off the
image restoration part by setting degradation matrix H as an identity matrix,
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Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 30.64 +0.23 +0.92 +0.66 +0.12 +0.48 +1.45 +1.58
Parrot 32.37 +0.28 +0.75 −2.85 −0.17 +0.41 +1.36 +1.68
Hat 31.47 +0.22 +0.89 −2.56 +0.21 +0.45 +1.39 +1.53

Flower 30.10 +0.16 +0.99 −0.48 +0.12 +0.32 +1.49 +1.78
Monarch 28.32 +0.07 +1.32 +1.94 +1.56 +1.39 +2.64 +2.90
Leaves 28.90 +0.26 +1.70 +1.17 +0.70 +1.69 +3.14 +3.44
Barbara 30.41 +0.15 +1.36 +1.43 −1.19 +1.20 +2.81 +3.25
Boat 31.65 +0.34 +1.17 −0.94 −0.27 +0.60 +1.55 +1.84
House 33.72 +0.39 +0.95 −13.98 +0.10 +0.14 +1.70 +1.60
Bike 27.22 +0.08 +1.03 +1.21 +0.06 +0.87 +1.98 +2.27

Median 30.53 +0.22 +1.01 +0.09 +0.11 +0.54 +1.62 +1.81

Table 1: PSNR gains (dB) of different denoising algorithms at QF = 25.

Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 32.96 +0.05 +0.80 +0.85 −0.05 +0.06 +1.44 +1.70
Parrot 34.80 +0.10 +0.64 −0.49 −0.39 −0.11 +1.39 +1.63
Hat 33.64 +0.05 +0.89 +0.01 +0.01 −0.01 +1.60 +1.83

Flower 32.43 +0.02 +0.98 +0.46 +0.12 −0.20 +1.68 +2.08
Monarch 30.73 +0.00 +1.32 +1.99 +1.75 +1.33 +2.62 +3.12
Leaves 31.64 +0.04 +1.78 +0.45 +0.64 +1.58 +3.29 +3.86
Barbara 33.56 +0.05 +1.28 +1.68 −1.75 +0.56 +2.51 +2.98
Boat 34.42 +0.09 +1.20 +0.89 −0.64 −0.11 +1.52 +2.04
House 35.79 +0.13 +0.81 −10.87 −0.11 −0.69 +1.48 +1.52
Bike 29.95 +0.01 +1.10 +1.45 −0.15 +0.84 +2.21 +2.64

Median 33.26 +0.05 +1.04 +0.66 −0.08 +0.03 +1.64 +2.06

Table 2: PSNR gains (dB) of different denoising algorithms at QF = 50.

and compare the results with the state-of-the-art denoising and JPEG arti-
fact removal techniques. The comparison group is composed of the following
methods: one JPEG deblocking method: the ACR algorithm [22]; two denois-
ing methods: the BM3D algorithm [5] and WNNM algorithm [8]; and three
JPEG soft-decoding methods: the TV algorithm [2], DicTV [4] algorithm and
DTPD algorithm [12]. As the denoising approaches BM3D and WNNM are
not designed specifically for dealing with JPEG compression noise, they cannot
estimate the compression error from the input JPEG image but require an es-
timation of the error variance as a user input. To make a fair comparison, we
provide the true variance of the compression error to these methods as a known
parameter, so their performances should reflect their best results in removing
JPEG compression noise.

We select several widely used images in the literature as test images (thumb-
nailed in Figure 10). All images are 256× 256 in size. Tables 1, 2 and 3 list the
PSNR results of the compared algorithms on the test images compressed using
JPEG with QF set to 25, 50 and 80, respectively. As shown in the tables, the
proposed technique improves over the hard-decoded JPEG by around 2dB in
PSNR. It leads in PSNR gain in almost every test case and has more than 0.2dB
advantage over the second best method. As a reference, we also list objective

22



Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 36.59 +0.00 +0.57 +0.53 −0.69 −1.25 +1.22 +1.57
Parrot 38.31 +0.01 +0.46 +0.49 −0.99 −1.45 +1.07 +1.47
Hat 37.27 +0.02 +0.77 +0.96 −0.71 −1.41 +1.65 +2.14

Flower 36.20 +0.00 +0.98 +1.29 −0.57 −1.56 +1.71 +2.32
Monarch 34.73 −0.00 +1.22 +1.87 +1.01 +0.11 +2.33 +3.10
Leaves 35.92 −0.01 +1.74 +2.63 −0.30 −0.02 +3.10 +3.97
Barbara 37.61 +0.00 +0.89 +1.20 −2.59 −1.56 +1.69 +2.09
Boat 38.38 +0.01 +1.04 +1.21 −1.55 −2.29 +1.04 +1.77
House 39.11 +0.01 +0.87 +0.90 −0.88 −2.52 +1.70 +1.98
Bike 34.53 +0.00 +1.12 +1.63 −1.19 −0.52 +2.03 +2.70

Median 36.93 +0.00 +0.94 +1.21 −0.80 −1.43 +1.69 +2.12

Table 3: PSNR gains (dB) of different denoising algorithms at QF = 80.

Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 0.8835 +0.0097 +0.0231 +0.0177 +0.0041 +0.0050 +0.0260 +0.0310
Parrot 0.9060 +0.0114 +0.0186 −0.0141 +0.0063 +0.0032 +0.0193 +0.0243
Hat 0.8752 +0.0094 +0.0221 +0.0021 +0.0058 +0.0058 +0.0272 +0.0315

Flower 0.8816 +0.0080 +0.0271 +0.0123 +0.0040 +0.0045 +0.0306 +0.0382
Monarch 0.8969 +0.0069 +0.0425 +0.0453 +0.0396 +0.0371 +0.0514 +0.0536
Leaves 0.9234 +0.0112 +0.0386 +0.0431 +0.0302 +0.0362 +0.0472 +0.0487
Barbara 0.9033 +0.0079 +0.0245 +0.0210 −0.0255 +0.0078 +0.0348 +0.0395
Boat 0.8905 +0.0102 +0.0254 +0.0188 −0.0004 +0.0045 +0.0293 +0.0340
House 0.8741 +0.0060 +0.0110 −0.0431 +0.0006 +0.0024 +0.0168 +0.0166
Bike 0.8798 +0.0055 +0.0259 +0.0180 +0.0019 +0.0134 +0.0401 +0.0458

Median 0.8870 +0.0087 +0.0250 +0.0179 +0.0040 +0.0054 +0.0299 +0.0361

Table 4: SSIM gains of different denoising algorithms at QF = 25.

Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 0.9221 +0.0021 +0.0107 +0.0071 −0.0011 −0.0094 +0.0144 +0.0186
Parrot 0.9374 +0.0033 +0.0084 −0.0031 −0.0017 −0.0108 +0.0096 +0.0134
Hat 0.9182 +0.0032 +0.0142 +0.0070 −0.0025 −0.0095 +0.0200 +0.0236

Flower 0.9253 +0.0014 +0.0174 +0.0107 +0.0029 −0.0076 +0.0218 +0.0277
Monarch 0.9300 +0.0009 +0.0282 +0.0294 +0.0278 +0.0229 +0.0350 +0.0377
Leaves 0.9533 +0.0013 +0.0248 +0.0240 +0.0203 +0.0211 +0.0299 +0.0322
Barbara 0.9456 +0.0019 +0.0130 +0.0132 −0.0174 −0.0056 +0.0181 +0.0215
Boat 0.9319 +0.0029 +0.0165 +0.0145 −0.0017 −0.0069 +0.0189 +0.0237
House 0.9103 +0.0015 +0.0040 −0.0369 −0.0085 −0.0166 +0.0100 +0.0124
Bike 0.9280 +0.0008 +0.0162 +0.0130 +0.0022 +0.0005 +0.0276 +0.0321

Median 0.9290 +0.0017 +0.0152 +0.0118 −0.0014 −0.0072 +0.0194 +0.0237

Table 5: SSIM gains of different denoising algorithms at QF = 50.
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Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 0.9559 +0.0001 +0.0015 −0.0018 −0.0045 −0.0198 +0.0061 +0.0079
Parrot 0.9629 +0.0003 +0.0018 −0.0001 −0.0041 −0.0192 +0.0041 +0.0061
Hat 0.9580 +0.0010 +0.0053 +0.0031 −0.0060 −0.0214 +0.0109 +0.0131

Flower 0.9623 +0.0001 +0.0090 +0.0089 −0.0004 −0.0156 +0.0119 +0.0150
Monarch 0.9626 +0.0000 +0.0121 +0.0120 +0.0131 +0.0050 +0.0174 +0.0191
Leaves 0.9789 −0.0003 +0.0114 +0.0128 +0.0081 +0.0046 +0.0131 +0.0147
Barbara 0.9738 +0.0001 +0.0034 +0.0028 −0.0116 −0.0169 +0.0056 +0.0073
Boat 0.9659 +0.0002 +0.0066 +0.0065 −0.0053 −0.0204 +0.0069 +0.0101
House 0.9530 +0.0002 +0.0040 +0.0023 −0.0133 −0.0346 +0.0111 +0.0121
Bike 0.9679 +0.0000 +0.0087 +0.0086 −0.0011 −0.0118 +0.0130 +0.0156

Median 0.9627 +0.0001 +0.0060 +0.0048 −0.0043 −0.0180 +0.0110 +0.0126

Table 6: SSIM gains of different denoising algorithms at QF = 80.
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Figure 11: The median PSNR gain as a function of QF.

fidelity assessment results by more sophisticated image quality metric SSIM [20]
in Tables 4, 5 and 6 for different QF settings. As shown in the tables, the SSIM
results also confirm the superiority of the proposed algorithm over the tested
technologies.

Compared with other techniques, the proposed technique works consistently
well at vastly different QF settings. As demonstrated in Figures. 11 and 12, the
proposed technique is ahead of the competitions at all QF settings except when
QF = 5. Only in that case, the proposed technique does not perform as well
as DTPD in terms of median PSNR and SSIM gain. Although QF = 5 is often
used in JPEG denoising research to showcase the capability of a technique,
it has no practical value as compressing a down-scaled version of the input
image with slightly larger QF could easily yield better output image than using
QF = 5 directly. Furthermore, if we trade off time by increasing the number of
iterations K, the proposed technique can outperform DTPD in both PSNR and
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Figure 12: The median SSIM gain as a function of QF.

SSIM while still being faster than DTPD at QF = 5.
In addition to its superior performance in objective fidelity metric, the pro-

posed approach also obtains better perceptual quality of the denoised images.
As shown in Figures 13, 14 and 15 are some samples of the results from the
tested algorithms. The output images of the proposed approach shows no dis-
cernible blocking and ringing artifacts even at low QF settings. The proposed
approach preserves detail and edge structure visibly better than most of other
techniques.

Like all the tested techniques except BM3D whose main functions are im-
plemented in C++ and compiled to native code, the reference implementation
of the proposed technique is written in pure MATLAB language, rendering it
unfavourable in comparison of time cost with BM3D. Besides BM3D, the only
other method faster than the proposed technique in the comparison group is
ACR, which only reduces blocking artifacts and does not perform as well as
most of the compared techniques in terms of either PSNR or SSIM.

7 Conclusion

Due to the low pass nature of image compression, the high-frequency compo-
nents of a compressed image with sharp edges often carry large compression
error. While high-frequency compression noise is relatively indiscernible in the
original image as human visual system (HVS) is more sensitive to low-frequency
noise, image restoration operator with high-boosting property can amplify the
problem deteriorating the perceptive quality of restored image. By incorporat-
ing the non-linear DCT quantization mechanism into the formulation for image
restoration, we propose new sparsity-based convex programming approach for
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JPEG ACR BM3D WNNM

TV DicTV DTPD Proposed

Figure 13: Comparison of tested methods in visual quality at QF = 5.

JPEG ACR BM3D WNNM

TV DicTV DTPD Proposed

Figure 14: Comparison of tested methods in visual quality at QF = 15.

26



JPEG ACR BM3D WNNM

TV DicTV DTPD Proposed

Figure 15: Comparison of tested methods in visual quality at QF = 25.

joint quantization noise removal and restoration. Experimental results demon-
strate significant performance gains of the new approach over existing restora-
tion methods.
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