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M. D. Śpiewanowski,1, ∗ L. Gulyás,2 M. Horbatsch,1 and T. Kirchner1, †

1Department of Physics and Astronomy, York University, Toronto, Ontario, Canada M3J 1P3
2Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P.O. Box 51, H-4001 Debrecen, Hungary

(Dated: January 8, 2016)

Inner-shell vacancy production for the O8+-Li collision system at 1.5 MeV/amu is studied theo-
retically. The theory combines single-electron amplitudes for each electron in the system to extract
multielectron information about the collision process. Doubly-differential cross sections obtained in
this way are then compared with the recent experimental data by LaForge et al. [J. Phys. B 46,
031001 (2013)] yielding good resemblance, especially for low outgoing electron energy. A careful
analysis of the processes that contribute to inner-shell vacancy production shows that the improve-
ment of the results as compared to single-active-electron calculations can be attributed to the leading
role of two-electron excitation-ionization processes.

PACS numbers: 34.50.Fa

I. INTRODUCTION

Single, as well as multiple ionization processes of atoms
by fast bare ion impact have been of great interest for
decades [1] since they provide basic information about
mechanisms for few-body breakup processes. Experimen-
tally, the development of cold-target recoil-ion momen-
tum spectroscopy (COLTRIMS) [2] allows to study the
collision processes in great detail. Yet, due to the limi-
tations posed by the supersonic gas jet target technique,
the targets of interest are typically limited to rare gas
atoms and molecules [3].

In recent experiments, laser cooling in a magneto-
optical trap was combined with a reaction microscope
(MOTReMi) [4, 5] to study single and multiple ioniza-
tion of alkali metal atoms by ion impact. With this
new approach the first kinematically complete experi-
ment for single ionization of lithium was achieved and
experiments were performed for the H+-Li collision sys-
tem at 6 MeV/amu [6], the O8+-Li collision system at
1.5 MeV/amu [6, 7], and the Li2+-Li collision system at
2.29 MeV/amu [8]. This triggered theoretical efforts for
the interpretation of the experimental data [8–12].

The ’hydrogen-like’ structure of the lithium atom with
its large energy spacing between the K- and L-shells al-
lows for efficient laser cooling in a MOT and, hence, for
accurate studies of single-ionization processes. At the
level of the singly differential cross section (SDCS) outer-
shell ionization has proven to be nearly a single-electron
process with a marginal influence of the K-shell elec-
trons [11]. Yet, doubly differential cross sections (DD-
CSs) for outer-shell ionization show that the inner-shell
electrons do play a role in the process, e.g., via core po-
larization by the projectile [12]. In K-shell vacancy pro-
duction, on the other hand, the effects of the presence
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of all electrons are important already at the level of the
SDCS [11].

Here, we study cross sections differential in energy
of the outgoing electron and in the transverse momen-
tum transfer by applying a novel strategy of combining
single-electron amplitudes. In this way we incorporate
the multielectron nature of the collision process into the
theoretical model. We apply the two-center basis gen-
erator method (TC-BGM) [13] to calculate amplitudes
for electron transitions within the target atom, and com-
bine them with continuum distorted wave eikonal initial
state (CDW-EIS) [14] single-electron ionization ampli-
tudes. The combined amplitudes are then amended with
a phase factor that accounts for the nucleus-nucleus inter-
action, and are subsequently Fourier transformed in order
to obtain the DDCSs differential in the outgoing-electron
energy and in the transverse momentum transfer. When
compared with experimental data our results show im-
provements relative to previous attempts and lead to a
better understanding of the underlying processes that
take place during inner-shell vacancy production for this
collision system.

The paper is organized as follows. The novel method-
ology to extract multielectron information from single-
particle amplitudes is given in Sec. II. In Sec. III we
present DDCSs for the O8+-Li system at 1.5 MeV/amu
together with a careful analysis of the contributions that
constitute the overall DDCS. We draw conclusions in
Sec. IV. We use atomic units (~ = me = e = 4πε0 = 1)
throughout the paper unless stated otherwise.

II. METHODOLOGY

We use the framework of the semiclassical approxima-
tion, in which the projectile follows a straight-line tra-
jectory R = ρ+ vt with impact parameter vector ρ and
constant velocity v. The cross section differential in the
outgoing-electron energy Ee and in the transverse mo-
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mentum transfer η is given as

dσ

dEedη
= keη

1∫
−1

d(cos θe)

2π∫
0

dφe

2π∫
0

dφη|Rike(η)|2, (1)

with the transition matrix element Rike(η) for the tran-
sition from the initial state to a state that includes an
unbound electron with momentum ke

Rike(η) =
1

2π

∫
dρeiη·ρaike(ρ), (2)

and

aike(ρ) = eiδ(ρ)Aike(ρ). (3)

Here Aike(ρ) is the impact-parameter-dependent multi-
electron amplitude calculated without the influence of the
internuclear interaction with details given below. The
phase accumulated during the collision process due to
the projectile interaction with the target nucleus, δ(ρ), is
given by (see, e.g., Ref.[15])

δ(ρ) = −
∞∫
−∞

dtVNN(R(t)), (4)

with the nucleus-nucleus (NN) potential

VNN(R) =
ZPZT
R

. (5)

Within the independent-electron (IEL) model the full
three-electron Hamiltonian of the collision problem is re-
placed by a sum of single-particle operators

He(t) =

3∑
i=1

(
−1

2
∆i(t) + V

(
rit
)
− Zp
rip

)
. (6)

The last two terms in Eq. (6) describe the interaction
of the ith electron with the target and the projectile,
respectively; rit and rip are the distances between the ith
electron and the target and the projectile, respectively,
and Zp is the projectile charge.

The TDSE with the Hamiltonian given by Eq. (6) sep-
arates into a set of single-particle equations whose so-
lutions are used to calculate electronic transition am-
plitudes for the three-electron system in a completely
specified final state. In order to do so we assemble
the single-particle solutions to form a Slater determi-
nant (|ψ1s↑ψ1s↓ψ2s↑(ρ, t)〉), where the subscripts indi-
cate the initial single-electron states. We project it at
t = tf onto the three-electron final-state Slater determi-
nant (|α1↑α2↓α3↑〉), where αi (i = 1, 2, 3) are the final
states of interest [16]

Aα1↑α2↓α3↑(ρ) = 〈α1↑α2↓α3↑|ψ1s↑ψ1s↓ψ2s↑(ρ, tf )〉. (7)

The overall DDCS for the process of interest to this
work, namely, vacancy production in the inner shell (with

the detached electron having a well-defined momentum
ke) is obtained by plugging Eq. (7) into Eq. (3) and work-
ing through Eqs. (2) and (1) for every possible final state.
The result can be expressed as follows:

dσvac

dEedη
=
∑
f 6=1s

(
dσ1s↑f↓ke↑

dEedη
+

dσf↑1s↓ke↑

dEedη
+

dσ1s↑ke↓f↑

dEedη

)
.

(8)

Here
dσα1α2α3

dEedη
is the DDCS for the process with the final

state indicated by αi (i = 1, 2, 3) with the proper spin
projections, and the sum runs over the target bound-state
manifold. After some simplifications that are outlined in
the Appendix we arrive at

dσvac

dEedη
=

dσexcl

dEedη
+
∑

f 6=1s,2s

dσEI1
f

dEedη
+
∑
f 6=1s

dσEI2
f

dEedη

+
∑
f 6=1s

dσex
f

dEedη
+ ∆Ee,η, (9)

where we can distinguish the following processes and am-
plitudes associated with them:

(i) Exclusive ionization, where one 1s electron is re-
moved, whereas the two electrons that are left behind
remain unaffected

Aexcl =
√

2A1s→1sA1s→keA2s→2s; (10)

(ii) Excitation-ionization (EI1), with one-electron re-
moval from the inner shell, one-electron excitation from
the outer shell, and the residual inner-shell electron re-
maining unaffected

AEI1
f =

√
2A1s→1sA1s→keA2s→f ; (11)

(iii) Excitation-ionization (EI2), with one-electron re-
moval from the outer shell, one-electron excitation from
the inner shell, and the residual inner-shell electron re-
maining unaffected

AEI2
f =

√
2A1s→1sA1s→fA2s→ke . (12)

The last two terms on the right-hand side of Eq. (9),

correspond to exchange processes,
dσex
f

dEedη
, and an anti-

symmetry correction term ∆Ee,η, that contains all the
cross terms. The origin of these terms is explained in
the Appendix. They turn out to be negligibly small and,
henceforth, will be omitted [11].

(iv) Shake off. In addition to the above, we introduce
this correlated two-electron process that has proven to
be of importance for the creation of low-energy electrons
during inner-shell vacancy production [11]. One 1s elec-
tron is excited while the 2s electron is shaken off end-
ing up in the continuum, whereas the residual inner-shell
electron remains unaffected

Ashake
f =

√
2A1s→1sA1s→fA

overlap
2s . (13)
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Following [11] we employed the independent event (IEV)
model for the EI2 process where, in our calculation, ion-
ization takes place from the valence shell of the target in
the ground-state configuration, and the elastic scattering
and excitation processes take place after the inner elec-
trons rearrange to the Li+ ground-state configuration.

The amplitudes on the right-hand side of Eqs. (10)-

(13) are single-particle transition amplitudes and
√

2 ac-
counts for the indistinguishability of the electrons in the

K-shell (see Appendix). In Eq. (13) Aoverlap
2s is the over-

lap between the outer-shell electron orbital and a con-
tinuum state of a modified Hamiltonian with the proper
outgoing-electron energy [11].

Transition amplitudes for electron excitations for pro-
cesses (i)-(iv) are calculated using the two-center ba-
sis generator method (TC-BGM) [13]. The interactions
within the target atom [see Eq. (6)] have been approxi-
mated by the exchange-only optimized potential method
(OPM) of density functional theory [17]. Single-particle
TDSEs are solved using a basis that consists of 1s − 4f
target states, and 1s− 4f projectile states together with
71 BGM pseudostates [13]. Electron capture has been
shown to be very weak in this collision system [11], but
the projectile states are included nevertheless to ensure
consistency with the calculation of Ref. [11]. All basis
states are endowed with electron translation factors to
ensure Galilean invariance. Amplitudes for ionization,
on the other hand are obtained from CDW-EIS, due to
the difficulties posed by the extraction of these ampli-
tudes from TC-BGM. We note that the ionization prob-
abilities calculated from both methods are in very good
agreement (see Fig. 1 in Ref. [11]).

For the Fourier transform of Eq. (2) to be fully con-
verged one needs the three-electron amplitudes (10)-(13)
for impact parameters up to a few hundred atomic units.
Unlike the CDW-EIS, the TC-BGM calculations give re-
liable results only for a limited range of impact parame-
ters. It is, therefore, necessary to extrapolate the excita-
tion amplitudes from TC-BGM calculations, both their
moduli and phases, to avoid numerical issues within the
Fourier transform procedure. In Figs. 1 and 2 we depict
an example of the absolute value and phase, respectively,
of a transition amplitude from TC-BGM together with
a fit for a range of impact parameters. For the purpose
of this work such fits were carried out for each excitation
channel.

The sums in Eq. (9) run over the target bound-state
manifold. Due to the restricted basis in the TC-BGM
calculations we truncate these sums at n = 4, where n is
the principal quantum number. Even after the truncation
the procedure is still very demanding numerically with
the main challenge posed by the 2D Fourier transform
of three-electron amplitudes in Eq. (2) that has to be
calculated for each channel.

We note that in most of the previous calculations for
the lithium MOTReMI experiments the single-active-
electron (SAE) model was used. It is important to stress
that in the SAE one does not account for interactions of
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FIG. 1. (Color online) Modulus of the 1s → 2p0 single-
particle transition amplitude as a function of impact param-
eter. Solid line (magenta) - TC-BGM; dashed line (black) -
fit.
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FIG. 2. (Color online) Phase of the 1s → 2p0 single-particle
transition amplitude as a function of impact parameter. Solid
line (magenta) - TC-BGM; dashed line (black) - fit.

the projectile with the nucleus or the passive electrons in
the single-particle transition amplitude. Therefore, one
should amend it by a phase factor that incorporates a
potential, VNN, that accounts for these interactions, i.e.,
VNN = ZPZT

R + Vscr(R) + Vpol(R), where the last two
terms on the right-hand side are the screening potential
of the passive electrons and a polarization potential, re-
spectively, see, e.g., [12]. It has been shown that one
has to properly take into account the phase accumulated
via VNN for a complete understanding of the outer-shell
ionization process [12]. In our IEL model it would be
inconsistent to include screening and polarization terms
in VNN(R), since all electrons are active. Vscr(R) is in-
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FIG. 3. (Color online) DDCS for the 1.5 MeV/amu O8+-Li
collision system as a function of impact parameter for three
outgoing-electron energies: Ee = 2 eV (orange), 10 eV (blue),
20 eV (black). Solid lines - present overall results, dashed lines
- CDW-EIS in SAE approximation.

herently accounted for in this framework [15] while po-
larization would have to be modeled in terms of a time-
dependent effective potential in the single-particle Hamil-
tonian.

Finally, we note that a similar approach has been em-
ployed earlier to calculate SDCSs where, however, prob-
abilities, instead of amplitudes, for different transitions
have been combined. In that case it was not necessary
to carry out the 2D Fourier transform. The approach
allowed to explain SDCSs for the O8+-Li collision sys-
tem at 1.5 MeV/amu [11]. However, it did not agree
well with the experimental observations for the case of
Li2+-Li collisions at 2.29 MeV/amu [8].

III. RESULTS

The method just outlined gives access to calculating
DDCSs differential in the outgoing-electron energy Ee
and in the transverse momentum transfer η. This is not
possible when having transition probabilities as a start-
ing point (see Ref. [11]). The SDCSs can be calculated
by integrating the DDCSs of Eq. (1) over the transverse
momentum transfer for every Ee. To connect our work to
the previous findings we cross-checked our overall SDCS
results as well as results for the SDCSs for the contribut-
ing processes with those of [11] and concluded that the
agreement between the two approaches is very good (not
shown).

Now we turn our attention to the results for inner-
shell vacancy production obtained from the procedure
outlined in the previous section. We compare the results
of the present calculations with the SAE results from the
CDW-EIS model and with the experimental data.
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FIG. 4. (Color online) DDCS for the 1.5 MeV/amu O8+-Li
collision system as a function of impact parameter for three
outgoing-electron energies: Ee = 2 eV (orange), 10 eV (blue),
20 eV (black). Squares - experimental data from Ref. [6], solid
lines - present overall results.

The original experimental data from Ref. [6] are rela-
tive only. In Ref. [4] the SDCSs were normalized using
SAE CDW-EIS for the 2s ionization channel for which
the multielectron effects were found to be unimportant.
The SDCS is obtained by integrating the experimental
DDCS for the lowest Ee = 2 eV over the transverse mo-
mentum transfer. It is then normalized to match the
experimental value of the SDCS from Ref. [4]. This pro-
cedure fixes the normalization of all channels (in K-shell
ionization for Ee = 2, 10, 20 eV).

Finally, we carefully study the contributions to the
overall DDCS from the processes (i)-(iv) introduced in
the previous section.

A. DDCSs

In Fig. 3 we compare our overall results for electron
energies Ee = 2, 10, 20 eV (solid lines) with SAE CDW-
EIS results (dashed lines). When comparing with Ref. [6]
we note that our own SAE CDW-EIS results agree very
well in shape but we do not apply any arbitrary factors
to change the spacing between the curves for all three
energies.

The SDCS differential in the energy of the outgoing
electron was shown to have a very weak dependence on
the electron energy in the range of interest when calcu-
lated in the SAE model [11]. This trend is also seen in the
case of the DDCSs, i.e., the dashed lines are very close
to each other. The SAE CDW-EIS theory predicts that
for low transverse momentum transfers (which classically
correspond to large impact parameters, i.e., distant col-
lisions) it is more likely to produce low-energy electrons,
and for high transverse momentum transfers one obtains
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FIG. 5. (Color online) Partial contributions to the DDCS
for processes (i)-(iv), the overall DDCS, and SAE CDW-EIS
results for the O8+-Li system at 1.5 MeV/amu collision for
outgoing-electron energy Ee = 2 eV.

more high-energy electrons. The orange (2 eV) and blue
(10 eV) dashed curves cross at transverse momentum
transfer η ≈ 0.67 a.u., and the blue (10 eV) and black
(20 eV) dashed curves cross at around η ≈ 1.10 a.u..

After the multielectron processes have been incorpo-
rated the SDCS decreases much more rapidly with in-
creasing outgoing-electron energy [11]. At the level of
the DDCS this leads to the cross sections being more
separated from each other, as seen in Fig. 3 (solid lines).
Moreover, the lines never cross and tend to be parallel at
η > 2.5 a.u.. Hence, slow electrons are more likely to be
released than the fast ones for the whole range of η.

Our results are compared with the experimental data
in Fig. 4. The similarity in shape of the theoretical and
experimental results for Ee = 2 eV up to η ≈ 2.2 a.u. is
striking. The general trend of the theoretical curve lying
below the experimental points is attributed to the fact
that only a limited number of excitation channels have
been accounted for (up to n = 4). In the case of the SDCS
incorporation of all excitation channels in an approxi-
mate way increased the cross section by 20% [11]. This
fact, we believe, explains the small difference between
theory and experiment for low momentum transfers. An
analogous approximation on the level of amplitudes is
not possible without introducing arbitrary phases of ex-
citation amplitudes causing unpredictable changes in the
DDCSs. Therefore, we refrain from extrapolating the
excitation amplitudes for n > 4.

The sudden decrease of DDCSs at around η = 2 a.u. at
small electron energies seen in [6] is now deemed to be an
artifact caused by the limited experimental momentum
acceptance [18]. Therefore, we have removed the three
experimental points for Ee = 2 and 10 eV for the highest
transverse momentum transfer (cf. Fig. 4 and Fig. 3b
from [6]).
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FIG. 6. (Color online) Same as Fig. 5 but for outgoing-
electron energy Ee = 10 eV.

The agreement between theory and experiment is less
satisfying for the two higher outgoing-electron energies
(Ee = 10 and 20 eV). While the general trend of the
experimental results appears to be reproduced the ex-
tended plateaus between η = 0.25 a.u. to η = 0.75 a.u.
and η = 0.25 a.u. to η = 1.0 a.u. for Ee = 10 eV and
Ee = 20 eV, respectively, are not accounted for properly.
Instead of the aforementioned plateaus the theoretical re-
sults display narrower maxima followed by ’knees’ that
widen the distribution over the momentum transfer as
compared to the SAE CDW-EIS results.

We elaborate more on the origin of the maxima and
knees in the next subsection. For momentum transfers
between the maxima and knees there is a region for which
a large discrepancy between theory and experiment is
observed. Moreover, similarly to the case of the lowest
outgoing-electron energy the theory overestimates the ex-
perimental data for high momentum transfers, especially
for Ee = 10 eV. Nevertheless, there is significant im-
provement as compared to the SAE CDW-EIS results
allowing us to conclude that we qualitatively understand
the experimental data.

To elucidate the role of the multielectron processes for
this collision system we now turn to a discussion of each
process individually.

B. Contributions

Each process discussed in Sec. II has a different de-
pendence on the transverse momentum transfer η for dif-
ferent outgoing-electron energy Ee. This results in a dis-
tinct variation of the magnitude of the DDCS for different
Ee and in different shapes of each DDCS as seen in Figs. 3
and 4. The contributions are depicted in Figs. 5, 6, and 7
for Ee = 2, 10, and 20 eV, respectively.
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The DDCSs for processes with the inner-shell electron
detachment as the ionization channel, as well as the shake
process [(i),(ii), and (iv)] resemble the SAE results, i.e.,
they have narrow maxima at low values of the momen-
tum transfer and decrease rapidly with increasing η. The
EI2 DDCS, on the other hand, peaks at larger η and de-
creases less rapidly as η increases. This behavior is inher-
ited from the outer-shell ionization [see Figs. 1(c)-3(c)
of Ref. [12] for the valence-shell ionization DDCSs] by
combining the outer-shell ionization amplitude with am-
plitudes for inner-shell excitations and elastic scattering.
While all the processes from (i) to (iv) play an impor-
tant role in increasing the overall DDCS to match the
experimental values at low η, it is the EI2 process that
is responsible for the broadening of the DDCS such that
it agrees well with the experiment at Ee = 2 eV (Fig. 5).

As the energy of the outgoing electron Ee increases,
the partial DDCS shapes for all the aforementioned pro-
cesses, except the EI2 process, remain practically un-
changed and only the overall strength diminishes. In
particular the shake off process becomes negligible at
Ee = 20 eV. The DDCS for the EI2 process, on the other
hand, is clearly suppressed, changing the shape most no-
ticeably (see Figs. 5, 6, and 7): the maximum moves to
higher momentum transfers as Ee increases. This trend
allows us to explain the broadening of the experimen-
tal DDCS, as well as the appearance of knees described
in the previous subsection. Hence, it can be concluded
that the shift of the maximum in the EI2 DDCS with
increasing outgoing-electron energy is responsible for the
broadening of the overall DDCS. This feature improves
the agreement with the experimental data for most of the
transverse momentum transfer range.

Finally, we note that calculations for the H+-Li system
at 6 MeV/amu have shown that for weak perturbations
the role of multielectron processes becomes negligible. A
similar observation has been made for the Li2+-Li sys-
tem at 2.29 MeV/amu [8]. In the latter case multielec-
tron processes amounted to less than 10% of the over-
all SDCS whereas for the H+-Li system at 6 MeV/amu
these contributions are less than 1%. The cause of the
observed discrepancy between theory and experiment for
these systems remains unknown, but can perhaps be at-
tributed to electron correlations that are not accounted
for in our model.

IV. CONCLUSIONS

We presented a method to analyze multielectron pro-
cesses by combining TC-BGM results for excitation with
CDW-EIS results for ionization at the level of ampli-
tudes. This approach allowed us to explain the ex-
perimental DDCSs for the O8+-Li collision system at
1.5 MeV/amu. We attribute the leading role in broad-
ening the DDCSs as compared to SAE CDW-EIS results
to excitation-ionization processes, in particular, the EI2
process.
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FIG. 7. (Color online) Same as Fig. 5 but for outgoing-
electron energy Ee = 20 eV. The shake-off process has been
removed due the negligible influence on the overall DDCS.

Multielectron processes become less important as the
perturbation parameter (β = Zp/v) decreases. Hence,
it would be interesting to see experimental results for
systems with perturbation parameter between β = 1.03
for the O8+-Li collision system at 1.5 MeV/amu [6] and
β = 0.21 for Li2+-Li collisions at 2.29 MeV/amu [8]. This
would allow us to trace how the role of the multielectron
processes scales with the perturbation parameter.
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APPENDIX

We show the validity of Eq. (9) by exploiting the ap-
proach given by Eq. (7). The three-electron amplitude
for a given set of spin projections is written as

Aα1↑α2↓α3↑ =

∣∣∣∣∣∣
〈α1↑|ψ1s↑〉 0 〈α1↑|ψ2s↑〉

0 〈α2↓|ψ1s↓〉 0
〈α3↑|ψ1s↑〉 0 〈α3↑|ψ2s↑〉

∣∣∣∣∣∣ ,
(A1)

where we made use of the fact that due to the lack of
spin dependence of the Hamiltonian projections of the
final single-electron wave functions onto final states with
an opposite spin projection are zero and, henceforth, we
omit the spin projections for brevity with the exception
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of the subscripts in the amplitudes that follow to specify
the final-state configuration.

To sketch the steps to get from Eq. (8) to Eq. (9) we
write the amplitudes of interest as

A1s↑f↓ke↑ =

∣∣∣∣∣∣
〈1s|ψ1s〉 0 〈1s|ψ2s〉

0 〈f |ψ1s〉 0
〈ke|ψ1s〉 0 〈ke|ψ2s〉

∣∣∣∣∣∣
= 〈1s|ψ1s〉〈f |ψ1s〉〈ke|ψ2s〉 (A2)

−〈ke|ψ1s〉〈f |ψ1s〉〈1s|ψ2s〉,

Af↑1s↓ke↑ =

∣∣∣∣∣∣
〈f |ψ1s〉 0 〈f |ψ2s〉

0 〈1s|ψ1s〉 0
〈ke|ψ1s〉 0 〈ke|ψ2s〉

∣∣∣∣∣∣
= 〈f |ψ1s〉〈1s|ψ1s〉〈ke|ψ2s〉 (A3)

−〈ke|ψ1s〉〈1s|ψ1s〉〈f |ψ2s〉,

A1s↑ke↓f↑ =

∣∣∣∣∣∣
〈1s|ψ1s〉 0 〈1s|ψ2s〉

0 〈ke|ψ1s〉 0
〈f |ψ1s〉 0 〈f |ψ2s〉

∣∣∣∣∣∣
= 〈1s|ψ1s〉〈ke|ψ1s〉〈f |ψ2s〉 (A4)

−〈f |ψ1s〉〈ke|ψ1s〉〈1s|ψ2s〉.

Using Eqs. (A2)-(A4), we can express Eq. (8) via
Eqs. (1)-(3) as

dσvac

dEedη
=
∑
f 6=1s

dσ
1s→1s
1s→f
2s→ke

dEedη
+

dσ
1s→ke
1s→f
2s→1s

dEedη
+

dσ
1s→f
1s→1s
2s→ke

dEedη
+

dσ
1s→1s
1s→ke
2s→f

dEedη
+

dσ
1s→ke
1s→1s
2s→f

dEedη
+

dσ
1s→f
1s→ke
2s→1s

dEedη
+ ∆f

Ee,η

 (A5)

=
∑
f 6=1s

2
dσ

1s→1s
1s→f
2s→ke

dEedη
+ 2

dσ
1s→ke
1s→f
2s→1s

dEedη
+ 2

dσ
1s→1s
1s→ke
2s→f

dEedη
+ ∆f

Ee,η

 (A6)

=
dσexcl

dEedη
+
∑

f 6=1s,2s

dσEI1
f

dEedη
+
∑
f 6=1s

(
dσEI2

f

dEedη
+

dσex
f

dEedη
+ ∆f

Ee,η

)
, (A7)

where
dσ

1s→α1
1s→α2
2s→α3

dEedη
are the DDCSs for the transitions to the

|α1α2α3〉 final state and ∆f
Ee,η

consists of all the cross

terms. Finally, the factors of two in Eq. (A6) are incor-

porated into the respective amplitudes, resulting in
√

2
factors in Eqs. (10)-(12).
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