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Security Assessment of Electricity Distribution
Networks under DER Node Compromises

Devendra Shelar and Saurabh Amin

Abstract—This article focuses on the security assessment ofthe simultaneous compromise of multiple PV nodes on a
electricity distribution networks (DNs) with vulnerable dis- distribution feeder. It is well known that the active power
tributed energy resource (DER) nodes. The adversary model ¢ tailment and reactive power control are two desirable

is simultaneous compromise of DER nodes by strategic ma- bilities that hel intain th i | i
nipulation of generation set-points. The loss to the deferef capabiliues that can help maintain the operational regu

(DN operator) includes loss of voltage regulation and costfo mMents in DNs with large-scale penetration of DERs with
induced load control under supply-demand mismatch caused intermittent natured], [8], [9]. In this paper, we investigate

by the attack. A 3-stage Defender-Attacker-Defender (DAD) the specific ways in which these capabilities need to be built
game is formulated: in Stage 1, the defender chooses a seayri into the PV deployment designs, and show that properly

strategy to secure a subset of DER nodes; in Stage 2, the - . .
attacker compromises a set of vulnerable DERs and injects chosen security strategies can protect DNs against a class

false generation set-points; in Stage 3, the defender respds by ~ Of security attacks. _ _
controlling loads and uncompromised DERs. Solving this tiievel Our work is motivated by recent progress in three topics:

optimization problem is hard due to nonlinear power flows (T1) Interdiction and cascading failure analysis of power
and mixed-integer decision variables. To address this chiange, grids (especially, transmission networks)Of, [11]; (T2)

the problem is approximated by tractable formulations basel . .
on Iri)near powerpfpl)ows. The sgt of critical DER nodes and Cyber-physical security of networked control systerj [

the set-point manipulations characterizing the optimal atack [4], [5], [6], [1Z]; and (T3) Optimal power flow and optimal
strategy are characterized. An iterative greedy approach @ control of distribution networks with DERZ], [9], [13].

compute attacker-defender strategies for the original nofinear Existing work in (T1) employs state-of-the-art computa-
problem is proposed. These results provide guidelines for tjnna1 methods for solving large-scale, mixed integer pro-
optimal security investment and defender response in pre-rad . o . A
post-attack conditions, respectively. grams for |nte_rd|ct|c_)n/cascade analysis of transmissieid n
works assuming direct-current (DC) power flow models.
Since our focus is on security assessment of DNs, we also
. INTRODUCTION need to model reactive power demand, in addition to the

Integration of distributed energy resources (DERSs) such astive power flows. In this work, we consider standard
solar photovoltaic (PV) and solar thermal power generati@N model with constant power loads and PV, [[13],
with electricity distribution networks (DNs) is a major &b but we restrict our attention to tree networks. This enables
of smart grid developmentl]. Some reports estimate thatus to obtain structural results on optimal attack strategie
by 2050, solar PVs will contribute up t83.7 % of the (including the critical PV nodes and their setpoints). We
total electricity generation in the US. Large-scale deplept show that these structural results also provide guidelioes
of PVs can be utilized to improve grid reliability, reducenvestment in deploying IT security solutions, especiafly
dependence on bulk generators (especially, during peak deegraphically diverse DNs.
mand), and decrease network losses (at least, up to a certaifihe adversary model in this paper considers simultaneous
penetration level)J]. Harnessing these capabilities requirePV node compromises by false-data injection attacks. Thank
secure and reliable operation of cyber-physical companend the recent progress ifir2), similar models have been
such as smart inverters, DER controllers, and communitatiproposed for a range of cyber-physical systerjs|[F]. Our
network between DERs and remote control centers. Thusodel is motivated by the DER failure scenarios proposed by
reducing cyber-physical security risks is a crucial asméct power system security experts/]. These scenarios consider
the design and operation of DNS][ [4], [5], [6], [7]. This shutdown of PV systems when an external threat agent
article focuses on the problem of security assessment aaimpromises the DERs by a direct attack, or by manipulating
DNs under threats of DER node disruptions by a maliciodee power generation set-points sent from the control cente
adversary. to individual DER nodes/controllers; ségéy. L

We are specifically interested in limiting the loss of voltag In our model, the attacker’s objective is to impose loss of
regulation and supply-demand mismatch that can result fromltage regulation to the defender (i.e., network opejator

_ , and also induce him to exercise load control in order to
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fender response for a broad range of conditiéhé)( Thanks
to the structural results on optimal attack strategy, oaedy
approach has significantly better computational perfogaan
than standard techniques to solve bilevel optimizatiorbpro
lems (e.g., Benders decompositidri]). Finally, we provide
a characterization of the optimal security strategy forg8ta
o= sl 1 decision by the defender, albeit for symmetric DN$V,
Thm. 4.

Il. PROBLEM FORMULATION

A. Distribution network model

Fig. 1: lllustration of the DER failure scenario proposed We summarize the standard network model of radial elec-

in [14] on a modified IEEE 37-node network. tric distribution systems1[3)], [1€], [17], [9]. Consider a tree
network of nodes and distribution lings = (N v {0}, &),
where N denotes the set of all nodes except the substation

i labeled as nod®), and letN = |N|. Let V; € C denote

the problem of defender response via load control and t complex voltage at node and v; = |Vi|2 denote the

control of uncompromised PVs is similar to the recent ressulgquare of voltage magnitude. We assume that the magnitude

in (T3), i.e., convex relaxations of optimal power flow (OPF)¢ ¢\ \pstation voltagéV;| is constant. Lef; € C denote the

problem. current flowing from node to node;j on line (i, ) € &,

Our main contribution is analysis of a three-stage sequeghd ¢, := |1;|* the square of the magnitude of the current.
tial security game posed ill. In Stage 1, the defendera distribution line (i,j) € & has a complex impedance
invests in securing a subset of PV nodes but cannot ensyfe- ; +jz;, wherer; > 0 andz; > 0 denote the resistance
security of all nodes due to budget constraints; in Stage ghd inductance of the ling, j), respectively, angl = v/—1.

the resource-constrained attacker compromises a subset ofhe voltage regulation requirements of the DN under
vulnerable PV nodes and manipulates their set-points; idminalno attack conditions govern that:

Stage 3, the defender responds by regulating the supply-
demand mismatch. This defender-attacker-defender (DAD) V ieN, v <v <7, 1)
game models both strategic investment decisions (Stage 1) — 9

: : ; iguherer, = |V,> and; = |V;|" are thesoft lower and
and operation of DN during attacker-defender interactiol v, = 15 Vi = Vi - _
(Stages 2-3). Solving the DAD game is a hard problem d{@Per bounds for maintaining voltage quality at node
to nonlinear power flow, PV constraints, and mixed-integ@fdd't'ona"y' voltage magnitudes undalt conditions satisfy:

decision variables. V oieN, p<wu<m, @)

In Sec. Il we provide tractable approximations of the -
sub-game induced for a fixed defender security strategy, i\yhere andz are thehard voltage safety bounds for any
the attacker-defender interaction in Stages 2-3;®em. 1. nodal voltage, an® < p < minen v; < maxien 7; < 7.
These approximations can be efficiently solved, and hold1) Load modelWWe consider constant power load$8].
under the assumption of no reverse power flows, smakt sc; = pc; + jgc; denote the power consumed by a
impedances, and small line losses. Next we show structuled at nodei, where pc; and gc; are the real and re-
results for the master-problem (i.e., optimal attack foedix active components. Lefc}°™ := pcl®™ + jqcp°™ denote
defender response), and the sub-problem (i.e., optimal diee nominal power demanded by a node where pc}°™
fender response for fixed attack). For the master-probleamd qc;°™ are the real and reactive componentssafo™.
we derive the false set-points that the attacker will intrdJnder our assumptions, for all € N, pc; < pcf°™ and
duce in any compromised PVTiim. 2, and also propose g¢; < qci°™, i.e., the actual power consumed at each node
computational methods to solve for attack vectors, i.e., A¥ upper bounded by the nominal demand:
nodes whose compromise will cause maximum loss to the
defender (Proposition3 and 4). For the sub-problem, we
utilize the convex relaxations of OPF to compute optimal 2)PV model!
defender response for a fixed attadleinma 3, and under :
a restricted set of conditions, provide a range of new s
points for the uncompromised PV®rpop. ). These results

Igad to a greedy approach, which efficie_ntly computes the e inverter, which is a given constagt;. We denote the PV
t|m§1I at_tack and defender responsgédgorithm 3). We prove fet—point bysp; = Re(sp,) + jIm(sp,), whereRe(sp,) and
optimality of the greedy approach for DNs with identica

reSiStance'to_'r_eaCtance _rati('fh@. 9, and show that the 1ye yse the term PV to denote the complete PV-inverter asgembl
approach efficiently obtains optimal attack strategy and datached to a node of DN.

V ieN, sc¢ <sciom. (3)

Let sg; = pg; + jgg; denote the power

%enerated by the PV connected to nedeherepg; andqg;
enote the active and reactive power, respectively. Fallgw
13, [9], sg; is bounded by the apparent power capability of
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Im(sp,) are the real and reactive components. The power
generated at each node is constrained as follows:

V ieN, sg <sp, €S, 4)

whereS; = {sp, € C | Re(sp;) = 0 and |sp;| < 5p,}.

The set of configurable set-points is denoted 8y :=

[ Licar Si- Fig. 2: Precedence description of the nodes for a tree nktwor
We denote the net power consumed at nod®/ s; == Here,j <; k, e =; k, b < k, P; = {a,g,j}, Pi n P; = {a}.

sc; — sg;. In our model, a DN can be fully specified by

the tuple(g, |Vy|, z, sc™*™ 3p), wherez,sc™™ Sp are row

vectors of appropriate dimensions, and are assumed to b&or any given node € , let P; be the path from the root

constant. node to node. Thus,P; is an ordered set of nodes starting
3) Power flow equationghe 3-phase balanced nonlineafrom the root node and ending at nodeexcluding the root
power flow (NPF) on lingi, j) € £ is given by [L5]: node; sed-ig. 2 We say that nodg¢ is anancestorof nodek
(j < k), or equivalentlyk is a successor of iff P; < Ps.
85 = Dik(iwyee Sk 8¢5 = 895 + 25 (52) Wwe define theelative ordering<;, with respect to a “pivot”
vj = vi — 2Re(%;8;) + |z ¢; (5b) nodei as follows:
0 = ﬂ’ (5¢) - j precedest (5 <; k) iff P, nP; < PinPy.

Vi

- j strictly precedes: (j <; k) iff P, nPj < P; 0 P
whereS; = P; + jQ, denotes the complex power flowing - j is at thesame precedence levask (j =; k) iff

from nodei to node;j on line (i, j) € £, andz is the complex P; nP; =P; 0 Py.

conjugate ofz; (5a)is the power conservation equatigbp) We define the common path impedance between any two
relates the voltage drop and the power flows; gbd) is the nodesi,j € N as the sum of impedances of the lines in the
current-voltage-power relationship. For the NPF mo@g] intersection of path$; andP;, i.e., Z;; = Zkepmpj 2k

we define a state as follows: and denote the resistive (real) and inductive (imaginary)
components o¥Z;; by R;; and X;;, respectively.

Finally, we define some useful terminology for the tree
wherex e R2+N x C3N, and v, ¢, sc, sg, and S are row networkg. Let H denote the height of, and let\;, denote
vectors of appropriate dimensions. L&t denote the set of e set of nodes on level for h = 1,2,.--, H. For any
all statesx that satisfy(2), (3), (4) and the NPF mode(5), nodei € N, h; denotes the level of nodg C; the set of

and define the set of all states witio reverse power flows children nodes of nodg A; the set of nodes in the subtree
as follows: rooted at node; A} the set of nodes in the subtree rooted

Yoo S o at nodei until level h;, wherej € A;; Ny, the set of leaf
{xe 7] J nodes, i.e. Nz == {jeN | P ke N s.t.(j,k) € £}.

X = [V, £, sc, sq, S] ,

The linear power flow (LPF) approximation @) is:

a 8 - ~ C. Defender-Attacker-Defender security game

S; = Zk:(j k)ee Sk + 5¢j — 59, (6a) ) )

o S We consider a 3-stage sequential game between a defender
vj = i — 2Re(z;5)) (6b) (network operator) and an attacker (external threat agent)

gj _ | ,sj.|2v (6C) - Stage 1: The defender chooses a security strategy

i

u € Up to secure a subset of PVs;

wherezx = [,7,275%7@@] is a state of the LPF model, and - Stage 2: The attacker chooses from the set of PVs

analogous to the NPF model, define the set of LPF states  that were not secured by the defender in Stage 1, and

with no reverse power flows a%. manipulates their set-points according to a strategy
¥ = [sp®, 0] € Ups(u);

- Stage 3: The defender responds by choosing the set-
points of the uncompromised PVs and, if possible,
All vectors are row vectors, unless otherwise stated. For impose load control at one or more nodes according

two vectorsc andd, ¢ © d denotes their Hadamard product.  to a strategy
Let K; == ;—; be the resistance-to-reactanfg) ratio for ¢ = [spd,7] € B(u,v).

line (i,j) € &, and letK and K denote the minimum and  In this Stackelberg gam&iz and®(u, 1) denote the set of

maximum of theK;s over all(i, j) € £. We say that PVs at defender actions in Stage 1 and 3, respectively; &ng(u)

nodes;j andk are homogeneous with respect to each otherdenotes the set of attacker strategies in Stage 2. Formally,
their set-point configurations as well as their apparentggowthe defender-attacker-defend&AD] game is as follows:

capabilities are identical, i.esp, = sp, andsp. = §p,. ) . .

Similarly, two loads at nodes and k are homojgeneouks if DAD] £ := mittue; maxyew,, mingea Lx(u, 9, 9)) (7)

nom __ g.nom
SCj = S8Cg .

B. Notation and definitions
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st x(u,v,9) €X (8a) Stage 1 [Security InvestmeniThe set of defender actions
se(u,,6) = 7 Osc"™ (80) S p
59,1, 8) = u @ sp* + (1x — ) Up = {ue 0.7 | flully < BY

O[6Osp* + (1y —6) @sp], (8¢c) where B < |N] denotes a security budget. Since, secur-

ing control-center's communication to every PV node in a

ol ographically diverse DN might be costly/impractical, we
ose that the maximum number of nodes the defender

can secure iB. A defender’s choica: € Up implies that

a PV at node is secure ifu; = 1 (i.e. PV at node cannot

be compromised), and vulnerable to attackugf— 0. Let

where(8b) specifies that thactual power consumedat nodei

is equal to the power demand scaled by the correspond

load control parametey; € [, 1] chosen by the defender.
The constraint(8c) models the net effect of defender

choiceu; in Stage 1, the attacker choi¢e?, ¢;) in Stage 2,

g
and the defender choiegp{ in Stage 3 on thectual power No() = {i € Nus — 1} and Ay (u) = AN, () denote

generatedat nodei. Thus, (8c) is the adversary modebf the set of secure and vulnerable nodes for a defender choice
[DAD] game: the PVi is compromisedf and only if it 3 '

was not secured by the defender & 0) and was targeted “
by the attacker& = 1). Specifically, ifi is compromised,
sp; = sp?, wheresp? = Re(sp?) +jIm(sp?) is the false set-
point)ch(r)]sen by the att?cker (different frocrjn the nominal setd S(u) = HieNv(U) Si % HjeNs(u){O + 0}
point). The set-points of non-compromised PVs are governe )
by the defender, i.e., if PV is not compromisedp, = spy. Dar(w) = {8 € {0, 13" | 6 < 1y —w, |19l < M},
Note that our adversary model assumes that the PV's powgid M < |N,| is the maximum number of PVs that
output,sg, quickly attain the set-points specified {8c), i.e., the attacker can compromise. This limit accounts for the
the model does not consider dynamic set-point track%ng attacker’s resource constraints (and/or restrict his émfbe
The loss function ifDAD] is defined as follows: based on his knowledge of PV vulnerabilities). The attacker
o simultaneouslgompromises a subset of vulnerable PV nodes
Lix(u,,)) = Lvr () + Leo() + Lee(x), - (9) by introducing incorrect set-points (see the adversaryehod
whereLyr denotes the cost due to loss of voltage regulatio(gc)), and increase the lods(see(9)). The attacker’s choice
Lic the cost of load control (i.e., the loss due to partiallis denoted byy := [spa,g] € Uy (u), wheresp?* denotes
satisfied demand),.r, the total line losses. These costs arghe vector of incorrect set-points chosen by the attacket, a

Stage 2 [Attack]tet U/ (u) == S(u) x Dy(u) denotes
the set of attacker actions for a defender’s chaicevhere

defined as follows: 0 € Dy denotes the attack vector that indicates the subset of
. PVs compromised. A PV at nodas compromised ib; = 1,
L = |W — 10 . . ’
VR(X) _ Vo V)+H°°mm (10) and not compromised if; = 0.
Lic(x) = [ICO (1 =7) Ope™™[|; (10b) Stage 3 [Defender Responskpt 7. > 0 denote the
LiL(x) = [r O£, (10c) maximum permissible fraction of load control at nagend

where W,C € RY. Here, W; is the weight assigned to define the set of Stage 3 defender actions:

violation of voltage bound(; is the cost of shedding unit d(u,p) =S x T,

load at node, andr denotes the vector of resistances. Note

that Lyg is the maximum of the weighted non-negativevhere" := HZEN[’Y’ 1]. The defender chooses new set-
difference between the lower bound and nodal voltage pointssp of non-compromised PVs, and load control param-
squarey;. Since the defender’s primary concern during thetersy; to reduce the losk. The defender action is modeled
contingencies created by the attacker is to lilitr and as a vectorp := [sp?,~y] € ®(u,v), wheresp? (resp.~)
Lrc, the weightsW; and C; are chosen such thdtyy, is denotes the vector e (resp.v;).

relatively small compared thyg andLyc.

Admittedly, the loss functiof9) does not consider the cost
of PV control and the cost of energy spillaged]. However,
our formulation is aimed toward security assessment ofln general,[DAD] is a non-convex, non-linear, tri-level
DNs where the DER ownerparticipate in VAR control, optimization problem with mixed-integer decision varizdl
perhaps in return of a pre-specified compensation by thknce, it is a computationally hard problem. Our goals are:

operator/defender Alternatively, the DERs mayrbquired (i) to provide structural |nS|ghts about the optlmal ateerck

e.g. sudden supply-demand mismatch. We now describe each

stage in more detail: 3Note that when we say a node is secure, we mean that the P\t abtiha
is not prone to compromise by the attacker. From a practiesipoint, the
2Note that, under this adversary model, the impact of PV comjse is defender can secure a PV node by investing in node secultitfigsts such
different than the impact of a natural event, e.g. cloud gostering which  as installing intrusion prevention/detection systemsS(IBS) [L2]. These
pg = 0. The reactive power contribution may be non-negative dudn security solutions are complementary to the device handetéchnologies
natural event; however, as we show i€, a compromised PV always that can secure the PV-inverter assembly. Our focus is ouarige@gainst
contributes reactive power equal to the negative of appa@mer capability an external threat agent interested in simultaneously comiging multiple
to the DN. PVs. Thus, we restrict our attention to node security smhsti

D. Assumptions
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(i) to approximate the non-linear (hard) problem by formu- Sub-problem Master Problem
lating computationally tractable variants based on linear (Fixed 4) e vop. 3
power flow models. Prop. 2/ Cor. 1 Prop. 4/ Algo. 1
To address these goals we make the following assumptions: :}0 3’/ Fixed
Algorithm 2 Stages 2 and 3
(A0)o Voltage quality: In no attack (nominal) conditions,
the voltage quality boundgl) are satisfied by bottx” and Fig. 3: Outline of Technical Results il

X.

(A0), Safety: Safety bound$2) are always satisfied, i.e.,
V (u,,0) eUp x ¥ x &,V x(u,),p) € X, ply < v <
aly.

(A0)z No reverse power flows: Power flows from the where (%) := Lygr(R) + Lrc(X), andL(¥) := Lygr(X) +
substation node towards the downstream nodes,d.¢:,0. 1, (x) are the loss functions fdDAD] and[DAD], respec-
This implies thaty X € &, v < »ly; similarly, for NPF  iyely. Note that the loss functiors andT. do not have the
model. _ _ line losses term. The optimal loksof [DAD] and[DAD] are

(A0)3 Small impedance: All power flows are in the per genoted by’ andZ, respectively. Our results @ill-I\V show
unit (p.u) system, i.e.po = 1 andV (i,j) € €, |Sj| < 1. that[DAD] (resp.[DAD]) help provide under (resp. over)
Furthermore, the resistances and reactances are small, .8 pproximation of[DAD]; and the derivation of structural
properties of optimal strategies in bofPAD] and [DAD]
is analogous to one another.
and the common path resistances and reactances are alste will, henceforth, abuse the notation, and dsand ®
smaller than 1, i.e.R; <landX; <1VieN. to denotel »,(u) and ®(u, 1), respectively.

(A0)4 Small line losses: The line losses are very small
compared to the power flows, i.ef,x € X, 2O < €9,
whereeg is a small positive numbef.

(A0)(-(A0); are standard assumptionsi0), assumes In this sectiqn, we consider the ;ub—game (Stages 2 and 3)
that the PV penetration level is such that the net demaiitfluced by a fixed defender security strategin Stage 1:
is always positive. In real-world DNs, boths andx;s are w . :
typically around 0.01(A0)3. Also, residential load power [AD] L% i= maXey MiNgeo L(x(u,%,¢)) st (8)
factors ¢<i/|sc;|) are in range of 0.88—0.95. For these Value%\nalogous to the variants diDAD], [@] and [D\AT)],
one can show thaty ~ 0.05 (A0)4. We will denote(AO0)y- \\a define two variants of the sub-garfeD]: [AD] (resp.
(AQ)4 by (AD). H . . [K/D]Lv/vith X (resp.X) in (8a). The optimal losses q@]

Now, lete := (1 —¢y)~ — 1, and consider another linear d[AD] are denoted by and /), respectivel
power flow model (which we call the-LPF model): and| S . ' P -

For simplicity andwithout loss of generalitywe focus on

§j = Zk:(j,k)eé‘ §k + (1 +€)(s¢; — svgj) (11a) case foru = 0; i.e., no node is secured by the defender in

- i~ Stage 1. With further abuse of notation, for a strategy pofil
Vi_22Re(Zij) (11b) (0,4, ¢), we denotex(0, 1, $) by x(¢, ¢) as the solution of
7 = | Dj-| 7 (11c) NPF model. Similarly, redefing(y, ¢) andx(v, ¢). We also

! drop the superscript from £%, £* and £*.

and¥% = [D,stc, Svgj] is a state ofc-LPF model, and  Following the computational approach in the literature to

solve (bilevel) interdiction problemd.()], [20], we define the

st X(u, 1, ¢) € X, (8b), (8¢)

2 2
» L ok
V(z,j)ef,rj<@<1, IJ<@<1,

Ill. ATTACKER-DEFENDERSUB-GAME

Vj

X is the set of all stateX with no reverse power flows a q .
(analogously defined ag’ and X). Note that fore = 0, master-problem AD]* (resp. sub-problemAD]) for fixed

(11) becomeg6). ¢ € ® (resp. fixedy € ¥):
We will consider two variants of thEDAD] game(7)-(8): [AD]* v*(¢) € argmax,cq L(x(t),0) St (8),

[D/A\D] 2 = minueuB MaXyew ), Inin¢€<p i()?(u,d), (b)) [AD]d ¢* (’L/J) € argmind)e@ L(X(’L/J, ¢)) S.t. (8)
R Similarly, define master- and sub- probler’ﬁg\ﬁ]a and
st X(u,¢,¢) € X, (8D), (8¢) [AD]? (resp.[AD]* and[AD]?) for the variantd AD] (resp.
[AD)). | |
[DAD] £ = mingew, maxyey,, Miges L(R(u, ¥, ) Sec. lll-Afocuses on bounding the optimal loss férD]

with the losses ir{ﬁ] and [Kﬁ]. We focus on the master-

and sub- problems iglll-B and 8§llI-C, respectively. This
e _ _ ~_leads to an iterative approach Elll-D to solve the sub-
Equivalently, ¢p is an upper bound on the maximum ratio of

the magnitudes of line losses and the power flows, i®, = games[AD], [AD]* [AD].Fig. 3prOVideS an outline of these
max(; jee, p;£0,Q; 0 max (Tili/P;, ©iti/Q;). results.
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A. Upper and Lower Bounds ofi Now, for anyj € M\NL,
Theorem 1. Let (¢*, ¢*), (¢*, 6*) and ()%, ¢*) be optimal L, e (5a) L,
solutions to[ AD], [AD] and [AD], respectively; and denote 2t < eS; =" o] Timee Sk + 55+ 2it5]
the optimal losses by, £, L, respectively. Then, 52l < 79[ Ykgmyee Skt 55]-
2 Addin S i on both the sides:
E E E + 2H+4 (14) Z g Z kS+ SJ é ) [Z S ]
(5 k+8‘+2"<j (i E+Sil.
To proveThm. 1, we first prove a preliminary result that ZFUMEET" 7 7 79 = 1-eo Lok heE !
relatesx (v, @), X(¢, ¢), andx(v, ¢): S;
Proposition 1. For a fixed strategy profiléi), ¢) e Inductive step: By inductive hypothesis (IH) 0,
R 3 R (IH)
S<S<8, vzv=p I<t<l Sj < —(1 - )Hl |Pk|+2[2k(]kegsk+‘9]]
Hence, = W (. |P]| = |Pi| — 1).
Lvr(X) < Lvr(x) < Lvr(X) -
Lio(X) = Lro(x) = Lue(X) ¢ = L(X) <L(x) <L(X). (150  FromLemma 2 for any (i, ) € &,
Lin(X) < Lin(x) < Lon(x) R R . (164) «
o , . 85< T < e = (1498 =7 S, (20)
Prop. limplies that any attack that increase in [AD] (1—e0)™ 0
(relati\Le/to the no attack case), also increa8es [AD] and For nodal voltages,
L in [AD], respectively. The converse need not be true, i.e., (5b) B )
an attack that increase® in [AD] (resp.£ in [AD]) need vi =" vi—2Re(%;5;) + [2[; {;
not increasel in [AD] (resp. L in [AD]). Similarly, any > v; — 2Re(%;5;)
defender responsg that reduces (resp.L), also reduceg (20
(resp.£). Again, the .converse statements do not apply here. > v — 2Re(zJS ). (21)
in [ZZroof. The relationshipss' < S and? > » are proved Applying (21) recursively from the nodg till root node:
ili 18d
The rest of the proof oProp. 1utilizes two lemmas. v =12 s R (stk) ( o ) 7.

Lemma 1. Consider a frxec(w qS) € ¥ x ®. The following

holds: sc — §¢ = 8¢, sg — 5y — 5¢, and Thus,S; < S; < 55 andy; > v, > ;. Furthermore,

~ < (AD)y | A +
S=(1+¢8 (16a) S;<8 <8 = |5 <Is;P<|$;
I\//—I/QlN:(l-i-E)(/V\—VolN) (16b) . |Sl'l| < |51'I|2 < |§|2 . Z<€<Z
. Sj = Zken, 5k + 2kl (17a) Finally, (15) immediately follows from(9), (10), and (14).
v (Za.]) €& a
Sj = 2lkea, Sk (17b) u
Proof of Theorem1:
N Re(7 18 For anyx e X,
Zj =10 =2 Re(Zjksk) ) (18a) (5¢) v, (P24Q2) (AO)1,(AD)3 CORRNN
Vi =vo —2(1 +€) Yyen Re(Zjrsr)  (18b) Lre(x) = (.Z) com S ks TS
V N R A 1,])€ — (2,7)€
ieN vy =1y — QZker Re(z,Sk). (18c) (22)
U = vo — 2 Yep, Re(Z:5k). (18d) Hence,
o Y Tk Tk Tk
Proof: Recursively apply the power flow modé€k), (6), £= ]:(}f(w*’ qj*(w*))) o e
and(11), from the root node to leaf nodes. [ > L™, 07 (%)) (by optimality of ™)
> L(x(v*, ¢* (p* by P itionl
Lemma 2. For a fixed (4, ¢) € U x B, (>22)(x(1/1 " (¥™))) (by Propositionl)
5 >'L % Yk % BN
VoGg)eE S< S ag  C MEOIDTam
(=) (x(*, 0" (%)) — £ (by optimality of 6*)
Proof: uN -
We apply induction from leaf nodes to the root noBase =L- 2p+4
case:For any leaf node: € y, Similarly, one can show > L. [ ]
(A0)4 17a) Thm. Limplies that the value of the sub-garf®eD] with
2kl < €Sk =" eo(sk + zlr) NPF can be lower (resp. upper) bounded by the value of

17D) _ & AD resp. A AD]). Our subsequent results show that both
. €0Sk ( ) 6Osk
S T 1-e [AD] and [AD] admrt computationally efficient solutions.
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B. Optimal defender response under fixed attacker strategye can construct another attacker stratéxjyz [S, sp”] that
) can further maximizé&,, such thaRe(sp?*) = 0, holding all

We consider the sub-problefAD]4, i.e., the problem €Ise equal,i.eq =4,V j e N, Im(spj) = Im(spj*),V j €
of computing optimal defender respongé(v) for a fixed N :j # i, Re(spj) = Re(???*)' _
attackt. The proofs for this subsection are in Appendix.  Let (sp*, () be the decision variables frAD]*, as for
The following Lemma shows th#AD]¢ is a Second-Order fixed ¢, the other decision variable®, Q,v can then be

Cone Program (SOCP), and hence, can be solved efficienfWitten as affine functions dfsp®, ¢) from (5). Let (sp**, £¥)
(resp.(sp*, £)) be the solution tgAD]* wheny = ¢* (resp.

Lemma 3. Let Xcpr := conv(X), i.e., Xcpr is the set of _, _ D).

statesx satisfying(2)-(4), (5a), (5b), and the relaxation of | ot £ € RY such that, for any(i, j) € £, f;(sp*,€) ==

(5c) P e o s ;
For a fixed+ € ¥, the problem of minimizind.(x(v, ¢)) vi ;LEt F* = Fp™ %), ff = f(sp7, £%), and f =

subject tox € Xcpr, (8b), (8c) is a SOCP. Its optimal /(5" 6)- o _ ,

solution, ¢** (1), is also optimal forAD]". Since(sp**, £*) and (sp", ¢) are solutions tdAD]*, they

i i satisfy (5¢). Hence, f* = ¢*, andf = (. Furthermore, it

For fixed ¢ (attack) and fixed load control parametefa, pe checked that’ > f*. We want to show thaf >
~ (e.g. when changingy is not allowed), the following /. Assume thatf > f. Then,f > f*. Hence,L(X) >
proposition provides a range of optimal defender set-goi s ¥ * ¥ s
$%* andsp? for LPF ande-LPF models, respectivel Noterﬂ(X ). (becauseLyr (&) > Lyr(x"), Lic(X) = Luc(x*),
p andsp - ANd _ » F'esp y- Lir(X) > Lip(x)). However, this is a contradiction, as it
that, if v is fixed, Lrc(X) is also fixed. Then, the defender;|5tes the optimality ofp®*. By similar logic, we can show
set-points can be chosen by usingr (x) as a loss function, yhaiv i e A Im(sp2*) = —5p,.
instead ofL(x). Similar argument holds fok(x). We now prove thaff > f’, with the help of an illustrative

Proposition 2. Consider[AD]4 with fixed~ € T. Thenvie diagram (se€ig. 4).

N y
6 =0 = !sApf*’ =5p;,, <£8p% € [arccot K,arccot KJ. y="t

Furthermore, if the DN has identicd)x = K ratio, then (0,1----------- ., <

5 =0 = |pf*| =5p,, LD =arccot K.  (23) ”(’J;/:z;)’”g'f’”) y§: Je(ep0) 6
Similar results hold fo{ADJY. | ‘ ) = f(Re(sp™), 0)

(e
C. Optimal attack under fixed defender respomse 0.0 :
' (1,0)

Now, we focus on the master problepAD]?, i.e., the

problem of computing optimal attack for a fixed defendqfig' 4: lllustrative diagram showing ho#changes withsp?
response. The following Theorem characterizes the optimal

attacker set-p_oint be denotqd;’f‘ = Re(sp{™) +jIm(sp™), Note that from (5), one can show that for any,
whené =1 (i.e. PV at node is targeted by the attacker). F(Re(sp" ) > f(Re(sp™, £)). Now, consider the;, k)i

Theorem 2. Consider[AD]? for a fixedd € Dy, (i.e., the entry of Jacobiary(¢).
PVs compromised by the attacker are specified land the

vi (220, Pi42Qi20,Qs)  (P24QDoe v
2

only decision variables ifAD]* are sp®). Then o0, fj = - =
VieNstd =1, spi* =0-—jsp,. (24) (42)
— — . 2 <A3) 2r+2x A4Rpr+4 Xk
Same holds for bothAD]* and [AD]®. L0 < ayfy < Btnd o (R T =
Proof: If §; = 1, thenpg; = py; = Re(sp;) = (A3)
Re(sp{") por = P Rebw — 0SS < (et E)Cht ) <1
= 0<0,f; <1l

We first prove the simpler case f{)ﬁ]a. From (6), one
can check that as functions py;, P is strictly decreasing, At ¢ =0, f > 0, and each entry of Jacobialy(/) is
Q is constant, and is strictly increasing. Hencd, (), ¢;) positive and smaller than 1. Hencg,intersects the hyper-
is strictly increasing irpg, (becausd.ygr is non-decreasing planey = ¢, exactly once. Furthermorg‘i(I{Ne(sT):‘,E)) >
as v is decreasinglLic is constant). Hence, to minimize f(Re(sp**,¢)). Hence, we can conclude that= f > f’ >

the lossL, the attacker chooseRe(sp;™) = 0. Similarly, — f* = ¢*. [ |
Im(spf*) = 0. Similarly, we can show that ifAD]?, Fig. 5 shows the optimal attacker set-poipt!* for §; =
sp™* = 0. 1, and the defender set-points for the PVs §gr= 0.

Now, we prove the case fofAD]* by contradiction.  Thanks toThm. 2 sc and sg are determined by and ¢
Suppose that there exisise N s.t. Re(sp?*) > 0. Then (since optimakp®* is given by(24)). Thus, for given(d, ¢),



Range of De t(ndcr
Set-points sp** (resp. sp™)
for [AD] (resp. [AD])
when (67 = 0)

Ksp,; T/

( Ksp, P, )

Re(sp;)
(0, —8p;) =: sp{* (when 87 = 1)
Optimal attacker set-point

for [AD], [AD], and [AD]

Fig. 5: Optimal attacker set-point§ifm. 2 and range for
optimal defender set-point®{op. 2J.

loss function can be denoted &gx(|0—jsp,d],¢)); and
[AD] can be restated as follows:

L = s.t.

(8), (24)
Same holds fo[@] (resp. [Kﬁ]) and[ﬁ] (resp. [Kﬁ]a)

maxsep,, Minges L(x(, P))
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Algorithm 1 Optimal Attack for Fixed Defender Response

1: 6*(¢p) < OPTIMAL ATTACK FORFIXED RESPONSE®)

2: procedure OPTIMAL ATTACK FORFIXED RESPONSHK()

3: Compute state vector for no attagko, ¢) € X

4 for ;€ N do

5: 5 — GETPIVOTNODEOPTIMAL ATTACK(i, sp 4), and
calculateAy; (7;) using Lemmad

6: Calculate new voltage valug — 0; — A, (7;)
7 end for
8: k « argmax,. Wi(y, — 7;)

9. return § < &* (Pick 5% which maximally violateg(1))
. end procedure

: procedure GETPIVOTNODEOPTIMAL ATTACK (4, Spd)
(J,Nyi,m') — OPTIMALATTACKHELPEP(Z sp9)
Randomly choosél/ — m' nodes from\,: to form A
return &¢ € Dy such thatl, = 1 <« k: eJuN’

. end procedure

Proposition 3. For a fixed¢ € @, let s be the optimal attack
vector computed byjlgorithm 1 Then5 is also an optimal
solution of[AD] Same holds fo[AD]

Proof:

~

Let A;(¥;) (resp.As(7;)) be the change in nodal voltage Note that for fixed¢ € @, maximizing L(6A, @) (resp.

at nodez caused due to compromise of PV at ngdéesp.
compromise of PVs due to attack vectr Similarly, define

A;(7;) and As(7;). The following Lemma is proved in the

Appendlx

Lemma 4. If ¢ is fixed, then

ViieN Aj() = 2Re(Z”(sp? +J5D;)) (25a)
& A7) = 2(1 + )Re(Zi; (sp + j55;)) (25b)
As(Dr) = S50 Ay(D0) (26a)

Vo< Dy { Ds() = 25,21 D () (26b)

~

L(5 ¢)) is equivalent to maximizingLygr(J,¢) (resp.
LVR((S ¢)). Let 6* be the optimal solution tcﬁAD]

Case (i).Lyr (0%, ¢) = 0. ThenAlgorithm 1 computes*
trivially, because) = Lvr(0*,¢) = Lvr(d,¢)) = 0. Hence,
Lvr(3,9)) = LVRA((S* ¢) = 0.

Case (ii). Lvr(6*,¢) > 0. Let ;(6, ¢) denote the nodal
voltage at nodg after the attack. Since 5 = ok, for some
pivot nodek e N (seeAlgorithm 1), Sk maximally violates
(1) over all 5, ie.,

VZ'EN, Vi —Vk(5 ¢) v, _Vz(él (b)?

where &' is the optimal pivot node attack as computed by

(28)

For a fixedg € @, let D, (¢) be the set of optimal attack Algorithm 1 for nodes, i.e.,

vectors that maximize LPF voltage bounds violation at atpivo VieN,VdeDy

node, sayi. Formally,
Dis(¢) = argmax W; (v, — 0;) S.L.R(8,6) € X, (8b), (8¢)
5€D g
(27)
Let 25}‘;4
Di,. Similarly, defineDi, (¢), Di,(4), andd’.

Using Lemma 4 Algorithm 1 computes optimalg* to
maximize Lyg for a fixed defender actiop € & [17]. In

each iteration, the Algorithm selects one node as a pivoenod

For a pivot node, say, a set of target node is determined
by selecting)l/ nodes with largest\;(7;) (seeAlgorithm 5

= uenDY;, and é® € DY, denote any vector in

. Furthermore, since

(29)

Leti = argmax;cn Wj (v, —7; (5%, ¢))+
LVR(é*a ¢) > 0

Lyvr(6%,¢) = W;(y; — 0:(6*, ¢)) (30)
" Lyr(X(3,9)) = Lvr(X(6", )
“ _ 28 N
10 o Wy = 550 0))s o) Wil — 2457, 0)
(30)

> Wiy, — 0:(6%, 9)) Lvr(X(0*,9)).

in Appendix). ApplyingLemma 4 the final nodal voltage at Furthermore, for a fixed Lic(x (4,¢)) = LLc(R(0*, 9)).

the current pivot nodeéis given byw; — Az, (;). The attack

strategy that maximizekyg is the set* corresponding to a

Hence, L(X(5,¢)) = L(R(5%, ¢)). u

We now show that the effect of PV compromise at either

pivot nodek that admits maximum voltage bound violatio’odej or k& on the nodei depends upon the locations of

when PVs specified byk are compromised.
The following proposition shows thatlgorithm 1 is op-
timal for DNs with identicall /x ratio.

nodes;j and & relative to node. The following Proposition
states that if nodg is upstream to nodé relative to the
pivot nodei (j <; k), then the PV compromise at node
impacts ony; more than the PV compromise on nofleand
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if j =; k, then the effect of PV compromise atk on 7; is GivensApAd € §, it can be checked thatlgorithm 2, in fact,
identical. computesDy, (sp”), and D%, (sD*) = U;cn Dis (D7) is the

Proposition 4. [17] Consider[@]a. Let nodes, j,k e N set of c_andldate optimal attack vectors. S ads
. : d q — _ Algorithm 2 computes the set of attack3},(sp”*), and
where i is the pivot nodesp = spy, andsp; = sp;. If

. ) . ~ ~ iterates over each € D%, (sp?*). In each iteration, since
<; k (resp.j =; k), thenA:(7;) < Ar(v;) (resp.A;(7;) = ' M =

]Ak(ﬁ-)§. P-J ) i(73) k(21) (resp.2; (7%) spd = ¥ is fixed, the sub-problefAD]< reduces to an LP
Same holds true fofAD]®. over the variabley. Let7*(d) be the solution to the LP. Then,

o _ ~¢*() = [9™,5%©)] is the optimal solution to{AD]".
Prop. 4 |mpl|es_that, broadly speaking, compromlsmq:hoosing5* — argmax;_g« L(;E(S, (g*(g)))’ Algorithm 2
downstream PVs is advantageous to the attacker than com- ] SPm T
promising the upstream PVs. The following illustrative exa COMPUtes the solution to bey*, ¢*(d%)) to the problem
ple suggests that compromising PVs by means of clusteregt]- Similarly, we can us@lgorithm 2to solve[AD] under
attacks are more beneficial to the attacker than distributetf)-
attacks. —
Examplel. Consider the[@]a with M = 2 instantiated Algorithm 2 Solution to[AD] for DNs with identical /x

on the DN inFig. 2 Assume that all loads and PVs are 1: (6%,¢*, L) < GREEDY-ONE-SHOT()
homogeneous, all lines have equal impedances, ies 2 procedure Q*REEDYLQNE-SHPIQ .
N, sc; = sca,sp? _ Spﬁ,@i = 8D,. % = Za. By Prop. 2 3: L=0,6*=0,7% =1, sp°™ as inProp. 2

. i . odk
the outputs of all the PVs are fixed and identical to eachg: IZ_Se*t DMU_ G%‘;'VOTNODEOPT'MALATTACKSET(Z’Sp )
other. : M = UjeN ZM - o

6: For eachy € D}, computey* () by solving[AD] as an

Let @« = 2(Re(Zu(sca — spd))), and 3 = . ~e A% A
. a LP . Let d) = * A
2(Re(z,(Re(spd) + j(Im(spl) + 55,)))). Thenw values _ — "' ?:d;r(gn)lax Sﬁp@((’;l%)))sw*))
for different attack vectors are given in TableThe optimal ’ 5ep, "7 R9), 5P

attack compromises nodésndm, which is a cluster attack. g retum §*, 6* = $*(5%), £ = L(R(3*, %))
9: end procedure

Attacked Nod T vs ” .
i e i Tk 10: procedure GETPIVOTNODEOPTIMAL ATTACK SET(i, sp®
{g } 023 98 013 28 020 48 ’ . d p
1, M v — o« — V| — « — V| — o« — - .
%m}} v 72?732 v 7121%;12 v 733‘“3? 11: (J’Ng“mi) — OPTlMALATTA(:AKHELPEF@, sp“)
, m v — « — V| — « — V| — « — - J—
oo S+ S Bt B B 04 12: ,return DI,” — {0 € /DM|6k = ,1 iff & € Jou
{d, k) vo —23a —48 | vo—13a =28 | v —20a — 78 N, whereN' € N: and [N'| = M —m'}

13: end procedure

TABLE I: v vs Different Attack Combinations

Consequently, our results (se&/§ on security strategy in Theorem 3. Under (A0), (A1), let (9,¢) be a solution
Stage 1 show that the defender should utilize his securi@mputed byAlgorithm 2 Then (4, ¢) is also an optimal

—

strategy to deter cluster attacks. solution to [AD] Similar result holds fOI{A ]

[ Proof: Under(Al), spd = $p?* is fixed Prop. 9. Then,

D. A greedy approach for solvingAD], [AD] and [AD] for any~ € T, by Lemma 5and Prop. 3 the optimal attack
We now utilize results for sub- and master-problems @ belongs to the seﬁj&(s@d*). Algorithm 2 iterates over

solve [AD]. Consider the following assumption: the attack vector$ e D;“M, computesy*(d) by solving an

(A1) DN has identical x = K ratio, i.e.,¥ j € N, K; = LP, and calculates the lodg(, $*(5))). Finally, it returns

K. In this subsection, we first present an algorithm to solfe solution corresponding to the maximum loss. Similarly,

[AD] and[AD] under(A1). Then we propose its extension, a|gorithm 2 also computes the optimal solution foxD]. m

greedy iterative approach, for solviigD] under the general . s < ds

Proposition 5. Under (A0), (A1), D%,(sp°") = D%, (sp™™).

case.
Under (A1), the optimal defender set-point$** and Proof: Under (A1), the PV set-points are as specified
$p?* are as specified biyrop. 2 and hence fixed. For fixed by prop. 2 Hence, SApd* = Svpd*, Furthermore,¥ j €

optimal sp** (resp.sp™), we can solve the problefAD] A7 A;(7;) = (1+¢)A, (7). Hence, the sequence of partitions

(resp.[AD]) by using Benders Cut metho@(]. However, of the nodes for every pivot node is the same in both the LPF

we present a computationally faster algorithiigorithm 2 and thee-LPF model. Henceﬁ;@(gpd*) = 15;;[(35‘1*), m

that computes attacker’s candidate optimal attack ve@gfs e, now, describe an iterative greedy approach to compute

(resp.Dj,) usingLemma 4 the solution to[AD] that uses the optimal attacker strategy

Lemma 5. Under (A0), (AL), for any two fixedy',4? € T, for fixed defender response (ret@igorithm 1),

D ([SApd*ﬁl]) _ ﬁﬂ([ﬁ)d*ﬁﬂ)- Algorithm 3 |n|t|al|zes¢c_ to the optimal dgfend_er response
M " under no attack. In the first step of the iterative approach,

Proof: The computation oD}, (¢) depends om\;(7;) the attacker assumes some defender response be fixed,
values which depend only omp?, and not on4y (see and computes the optimal attack strate@y¢.) using the
Lemma 3. B greedyAlgorithm 1. Then in the second step, the defender
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computes a new defense strategy optimal for fixed §. security strategies undéA?2), which help show that? is
by solving the SOCP, and updates the defender responsantfre secure than'.
L(x(d, ¢c)) > L(x(6*, ¢*)), then the current best solution
(6%, ¢*) is updated tqd., ¢.). Then in the next iteration, the
attacker uses this new defender response to update hik attac
strategy, and so on and so forth. If this has already been
discovered in some previous iteration, the algorithm termi
nates successfully, with*, * as the required optimal attack _ N . N
. . . (@) Security strategy u'. (b) Security strategy u-.
plan, and the corresponding optimal defense. The algorithm /1)~ (35 6,7, 10, 11}. Na(u?) = {2,4,5,6, 12, 14}.
terminates unsuccessfully if the number of iterations exse
a maximum limit. @ Vanerable nodes Yo

® Secure nodes c ---

Algorithm 3 Iterative Algorithm for Greedy Approach
1: (6%, ¢*, L) «— GREEDY-ITERATIVE()

2: procedure GREEDY-I TERATIVE IR A LS s A R
3: Let 6% «— 0,L*¥ « 0,6 <« O,iter «— 0,T : ) ’

&, be, ¢, T . : (c) A possible security strategy on a tree DN.

4. Ford = é. computes™ by solving SOCHAD]" (Lem. 3) Fig. 6: Different defender security strategies.

5. e — ¢¥, LT — L(X(4,0%))

6 for iter < 0,1, ..., maxIter do . . ) i

7: §c < OPTIMAL ATTACKFORFIXED RESPONSE¢.) Algorithm 4 computes an optimal security strategyAD]

8: _ // If 8. previously found, successfully terminate  under(A0)-(A2). It initially assigns all nodes to be vulnera-

o if 5. € T then return 6%, ¢* ble. Then, PV nodes are secured sequentially in a bottom-up
10: Jector else™ =T u{d} // Store the current best attack yonner towards the root node. If the security budget is not
11- Computeé. by solving SOCHAD]" Lem. 3 adgquate to secure a full Ievel,.the nodes in that level are
12: if L(X(dc,¢c)) > L* then uniformly secured and the remaining nodes are not secured.
13: 0F — b, 0% — o, LF — L(X(6, o* ~ .

14- end if 9 ¢ (%(%,¢7)) Theorem 4. AssumgA0), (Al), (A2). Letu* be the security
15.  end for // Maximum Iteration Limit reached Strategy computed bylgorithm 4 Furthermore, withu =
16:  Returns®, ¢*, £* // Return the last best solution u*, let (¢¥*, ¢*) be the solution computed byigorithm 2
17: end procedure // Algo terminates unsuccessfully Then, (a*, |*, (b*ﬂs/an optimal solution tgDAD]. Similar

result holds for[DAD].
Note that in each iteration, the size ®f increases by 1, Consider any security strategye Uz such that

hence, the algorithm is bound to terminate after exhausting
; o Jur uwa .. 1 0 ... UN 31
all possible attack vectors. U=l L o - G

Prop. 5and Thm. 3 can be applied for any € Up, since ~ )
if the DN has identical /x ratio, sp? are also fixed. Constructi from u as follows:

17=[|1$| Ilgl I%I I%I |UWN|]7 (32)
IV. SECURING DERS TO WORSTFCASE ATTACKS - o
WU =u; YV i€ N\{a,b}. Similarly, letd € Das(u)

i.e
In this section, we consider the defender problem of Opté'uch thats, — 0,6, — 1; and construc from 6 as in (32)
mal security investment in Stage 1. For simplicity, we riestr o - thatgl-lz 5_’ bv z',ej\/\{a b}. Note that,3 e Dy (@)
our attention to DNs that satisfy the following assumption: N ek ’ MAT

(A2) Symmetric Network. For every: € N, for any two Algorithm 4 Optimal security strategy
nodesj, k € C;, A; andA;, are symmetrically identical about

1: 4% < OPTIMAL SECURIRTYSTRATEGY()

y i R o nom __ nom _
nodei. That is,z; = zy, |Cj| = [Cil, s = sp™", vy = 3. procedure OPTIMAL SECURIRTYSTRATEGY()
Vi, Wi = W, _and C; = Cp. However, all the PVs are 3. 5, « 0,h « H, @ « 0 // Initialize all nodes to
homogeneous, i.ev, j, k € N, 5p; = 5p;. vulnerable nodes

For eachh € [1,2,..., H], letan < Y, ||
Let h' — argmaXperi, . Hja,>M N
LetVhe[h,...,H|,Yie Ny, G; < 1.

Let B be a fixed security budget. Let u € Up, u # 1,
be two security strategies. Strategyis more securethan
strategyu (denoted byu < u) under NPF (resp. LPF), if f ;

L£* < L7 (resp.L* < L£%). Finally, we ask what is the best nodléit é\ghiegeﬁ/ff“ be a set of uniformly chosen — a4
security strategy.*, such that foru = w*, £* is minimized. g. For eachi e N7, i; « 1

Fig. 6shows two possible security strategigs(Fig. 69 and o return 4

u? (Fig. 6b). If we compareu' andw?, while transitioning 10: end procedure

from ! to strategyu?, 3 secure nodes in, subtree go up
a level each, while 3 secure nodesAp subtree go down a In the following sequence of propositions, we compare the
level each. Then, betweert andu?, which strategy is more security strategies: and % under various conditions. (See
secure? In this section, we provide insights about optimatoofs of the proposition§, 7, and8 in the Appendix.)

Noa s
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Proposition 6. AssumeA0), (Al), (A2). Letu € Up (resp. Let us revisit the security strategi@$ and«? in Fig. 6.

u € Ug) be as in(31) (resp.(32)). If b e A,, thenu < . which one is better? Firstly, we use symmetric{§2) to
argue that securing nodes 2, 4, 5 is equivalent to securing
nodes 3, 6, 7. Them\s subtree ofu? has more distributed
secured nodes than, in u!. Hence, strategy 2 is better.
Thm. 4 will, of course, give the optimal security strategy
u* in which nodesN;(a*) = {8,9,10, 12,13, 14}, or other
homomorphic strategies af*.

Starting with any strategy’ € Ug, Prop. 6can be applied
recursively to obtain a more secure strategy U : v’ < u,
which has the property that if a nodes secure, then all its
successor nodes (i.e. all nodes in subtkgeare also secured
by the defender, i.e.,

VieN,uj=1 = VjelA, uj=1 (33) We state without proof the following Proposition:
Proposition 7. AssumeA0), (Al), (A2). Letu € Up (resp. Proposition 9. 1) Under (A0), (Al), (A2), any attack
U € Up) be as in(31) (resp.(32)). Let A, = {(4,5) e N x vector in D3, can be considered as a hAomomorphic
N | ui = 1,u; = 0,h; = hj + 1}. If u satisfies(33), and transformation of an element of a subset®f;, which
(a,b) € argmax; jyca, |Pi 0 Pjl, thenu < . is at most of sizeN, | < N.
Again, starting with any strategy’ € /g, we can apply 2) Under (AQ), (A1), if V 4,j,k € N such thatsp; > 0

= N.

Prop. 7recursively to obtain a more secure strategy Up : andsp, > 0, A;(v;) # Ag(v;), then ’DE\‘}
u’ < u, in which, if a node is secure, then all nodes in lower
levels are also secured by the defender, i.e.,

Vi,jEN, (Ui=1andhj>hi)2uj'=1 (34)

Due to Thm. 4andProp. 9 we can compute the optimal
solution for[DAD], in O(poly(N)). Same holds fofDAD].

Thus,Prop. 7is a generalization ofProp. 6 V. COMPUTATIONAL STUDY

. We describe a set of computational experiments to evaluate
Proposition 8. AssumgA0), (A1), (A2). Letu € Up be such e herformance of the iterative Greedy Approach (GA) in
that u satisfies(34). Let h' = argmin qen;,:u,—1) 1+ I the  soping [AD]: see Algorithm3. (We again assume = 0.)
secure/ n_odes on levél are uniformly d|s'Fr|buted over the e compare the optimal attack strategies and optimal de-
level 7/, i.e., [C; " N| € {T\T + 1}, V j € Nu, Where fenqer set-points obtained from GA with the corresponding
T € Z., thenu is an optimal security strategy, i.%, 4 €  go|ytions obtained by conducting an exhaustive search (or
Up, u < u. Brute Force(BF)), and by implementing the Benders Cut
Prop. 8implies that there exists an optimal security strated§pC) algorithm. We refer the reader td(], [20, for the
in which there is a top-most level with PV nodes that ar8C algorithm adopted heteThe abbreviations BC-LPF and
uniformly chosen for security investment. BC-NPF denote the solutions obtained by applying optimal

Proof of Thm. 4 Letu*! € Up be any optimal security attack strategies fromiAD] to LPF and NPF, respectively.
strategy. From*!, by sequentially applyingrop. 6 Prop. 7  Importantly the experiments illustrate the impact of dttats
andProp. § we can obtain an optimal security strategi? resource {/) and defender’s load control capabilifyon the
that satisfie$33), (34), and has the top-most level with secur@ptimal value o AD]. The code for this computational study
nodes having uniformly distributed secured nodes. can be obtained by contacting the authors.

Now, let 4* be the output ofAlgorithm 4. Since in ~ Network DescriptionOur prototypical DN is a modi-
Algorithm 4, nodes are secured from the leaf nodes to tfied IEEE 37-node network; seeig. 1. We consider two
root node level-by-levelzi* also satisfies(33) and (34). variants of this network: homogeneous and heterogeneous.
The Algorithm 4 also secures the top-most level with securdomogeneous Network ¢') has 14 homogeneous PVs
nodes with uniformly distributed secured nod@g, is the Wwith randomly assigned node locations, loads with equal
same as:/*2 upto a homomorphic transformation. nominal demand, and lines with identidak ratio. Tablell

Finally, we argue that und€r0)-(A2), @* can be com- (in appendix) lists the parameter values @f. Heteroge-
bined with previous results to obtain full solution [@AD]. neous Network G) has same topology a§’, but has
Under (A1), the defender set-points are fixed. Singeand heterogeneous PVs (chosen at random from 3 different PV
sp™* are both fixed, we can compute the set of candida@@parent power capabilities), heterogeneous loads, agd i
optimal attack vectord* by considering only vulnerable with different’ /x ratios. The location of PV nodes, the total
PVs. Then for a fixedd ¢ D%, the sub-problen{AD]¢ nomingl generatio_n _capacity, and the tota_ll nominal demand
reduces to an LP im. Hence, Algorithm2 solves for i GH is roughly smllar to the corresponding values &@f.

(%%, $*), the optimal solution of[AD] for u = @, by PV output vs M. Fig. 7 compares the PV outputq) of .
iterating overd e ﬁ?;{_ The strategy profile(a*,zZ*, @*), uncompromised EVs that form part of defender response in
thus obtained, is an optimal solution to for DNs that satis@l and g for different M. When M = 0 (no attack),

(AD), (Al)_’_(AZ)' Slm”arly' we can SONQDAD]' u 5In the BC-implementation ofZ[0)], the inner sub-problem is in LP. To
Propositions6 and 7 capture the attacker preference fogyny Bc to [AD], the non-linearity due tg4) is addressed by fixing the

the downstream PVs, whereas Pr@pcapture the attacker set-points according tBrop. 2 In our implementation, we choos&sp®™* =

preference for cluster attacks. Hence, the optimal sacuritrctan Koy, whereKopg == Z00)EE 7T s the ratio of sum of resistances

(i,5)e€ Tj

strategy has distributed secured nodes. over all the lines to the sum of réactances over all the lines.
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there are no voltage violations, and the defender minimize 1200fcgr oBF
. .GA w_ 2500+ GA
Lpr by producing moreng > qg. For M > 0, the voltage g o, o p{ B UBC NPF
. . . X ~
bounds are violated. To limiL.yr, the defender responds _ suj<ctpr m/j»“ % 2000<BC LPR
by increasinggg; and the output of uncompromised PVs lie 3 en L ”"@”@@ﬁ@{gjg = 1500
in a neighborhood of) = arccot'/x. For the case ofj” Sap WyER ;?er . §1ooo
(Fig. 7D, the set-points of the uncompromised PVs are mor: B,.a'*a g " 500 A
spread out for voltage regulation over differdnk ratios oo o nodeed or*ﬁ’a“&(
(Prop. 3. In Fig. 7b the three semi-circles correspond to 0 5 10 0 5 10
the uncompromised PVs with different apparent power ca i M
pabilities. These observations on defender responseatelid (@) Lvr vs M, ~=10.5 (b) Lyr vs M, ~y=0.7
Prop. 2 OBF = 10007 5E A688688688
1500 GA .GA LI
CBC NP 800\-BCNPE | C
2  |9BCLPH 2 |*BCLPH
» ®
0.03 PV output range 0.03 JrI:’I\/_o[;nputrangs & 1000 ] 600]
0.025|Tw=3 0,025 N2 Sl ] \
xM=6 ) XM=6 P = S / LT
; 0.0210M=7 3- 0.0210M=7 L o 500 200 ;?[ 1:2 C
g c v / C
£ 0015 » o005 e ssssasssssses ol !
z £ ’ seflossgposoapnas
7 o 0t SO 0 5y W 0 Sy ®
4 o T
0005 : 00050 /- - =
i arccot% ﬂ;ﬁ,r/(mt; () LLcvs M, v=05 (d)Lpcvs M, y=0.7
0 : 0L U
0 °‘°1pgmpu°-°2 003 0 °-°1pg mpuo.oz 008 Fig. 8: Lyr andLyc vs M for G!. The results ofG” are
) N more or less similar to those of.
(a) Homogeneous network (b) Heterogeneous network

Fig. 7: Reactive Power Vs Real Power Output of PVs.
Lirc, hence, the defender imposes load control on these

GA vs. BC-NPF, BC-LPF and BF. Fig. 8 compares results downstream loads to reduce th&r + Lic. In contrast,
obtained fromBC-NPF GA, and BF on G!. We consider controlling the loads outside this subset, incredsgs more
two cases with the maximum controllable load percenta$fegan the decrease ibyg. Hence, the defender satisfies the
~ =50 % and~ = 70 %. For each case, we vay/ from 0 demand at these loads fully. Hendg,c increases until load
to |V, | = 14; and also varyW/c ratios to capture the effect control capability in the subset of beneficial downstream
of different weights on the termsyr andLy.c. loads to the defender is fully exhausted. The size of this

In our study,W/c = 2 roughly corresponds to the maxi-Subset depends on th&/c ratio. The higher the ratio, the
mumW /c ratio for which the defender does not exercise lod@rger the size of the subset of the loads beneficial to the
control, because the cost of doing load control is too higdefender. Hence, the value aff, at which theLyc cost
i.e., at optimum defender responsg’, = 1. In contrast, Curve flattens out, increases as thg- ratio increases.
W/c = 18 roughly corresponds to the minimuHi/c ratio The cost curve fol.yg also shows interesting behavior
for which the defender exercises maximum load control (i.8s the number of compromised PV nodes increases ga
v* = 7). We also consider an intermediate raf/c = 10. and 8h). The marginal increase ihyg for every additional
L vs. M. Both Lyg and L. are zero when there is noPV compromised reduces ag increases. This observation
attack. As M increases, one or bothyr and Lc start can be explained by the fact that the attacker prefers to
increasing. This indicates that as more PVs are compromisé@mpromise downstream nodes over upstream dheg( 9.
the defender incur&yvr, and in addition, he imposes loadinitially, the attacker is able to rapidly increakéby compro-
control to better regulate the DN. Indeed, after the false s&nising more beneficial downstream nodes. However, as the
points (THmM.2) are used to compromise PVs, the net loadownstream nodes are eventually exhausted, the attacker ha
in the DN increases. Without load control, the voltages & target the relatively less beneficial upstream nodescélen
some nodes drop below the lower bounds, increagipg. the reduction in marginal increase b{/r.
Hence, the defender exercises load control, and changes thia Lyr plots, for smallM, W/c = 2 curves are lower
set-points of uncompromised PVs such thatz + Lic is than theW/c = 10 curves which in turn are lower than the
minimized. W/c = 18 curves. But, for largeM, this order reverses.

Perhaps the more interesting observation is thatVas The M where these lines cross each other decreases, as the
increasesL ¢ first increases rapidly but then flattens outy increases. The reason is for some intermediate valué of
This can be explained as follows. Depending on th¢g the defender exhausts the load control completely, and then
ratio, there is a subset of downstream loads that are bealefithe L increases at rates in the same order of increa%ing
in terms of the value that defender can obtain by controllinglues. Finally, fory = 0.7, the M where defender exhausts
them. That is, if the loads belonging to this subset atbe load control completely is smaller than thatjin= 0.5.
controlled, the decrease ihyr outweighs the increase in The Greedy Approach (GA) is better than Benders Cut
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(BC) method because GA calculates the exact impact the PV [ Parameters| Values . |
compromises will have on a pivot node. BC overestimates ;;Jfﬁ (0‘33;5 IS‘VZ‘)’,&)
the impact of PV compromises that are not the ancestors Qo™ 15 kvar
to the pivot nodes. Therefore, the feasible region probed ‘s*pi‘ 11.55 kVA

i on i i i Vo 1RV
by BC at every iteration is larger than the feasible region - S o T

probed in the corresponding iteration of GA. Hence, althoug
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This sequence is used to compute the optimal attacks thaiw, arccot K < arccot(Xii/r;;) < arccot K. Hence,

maximize voltage bounds violation at node 0 g X
< | ; > arccot

V jeN, 0p7; oo — (36

J 0:Vi {> 0 if#, < arccotK (36)

Algorithm 5 Helper procedures

1: procedure OhPTIMNALATTACKHELPEF(i, spY) Suppose, for contradictiofly ¢ [arccot K, arccot K. Hold-
2: For eachj € N computeA;(7;) usingLemma 4 _
3 Create a sequence of Se{wz}])v . such that |ng all else equal, fop; = 91, let u( ;) andLyg(6;) be the
N NIV 1< gk N, N NG = » and Lyg. From (36), for any 6; € [arccot K, arccot K|,
) Ui A, 7> "Ne =0 p(0;) > D(f¥). Since,Lyg > Ly > 0, Lyr(f:) <

i) if 1<I<N, ],ke/\/,thenA U; Ax(7;), and : .
i) if 1<1<m<N, jle Nk e(/\}m thgr(1 A)j(ﬁz—) LVR(H*) violating the optimality of;*. Furthermore, under

Aw (D7) identical F x ratio, K = K = K, which implies; =
4 Let, for j e [1,..., N],m} — |N}|, M} == 31} mj. arccot K. m
5. Letg' «— argmin N] Mism I Proof of Lemma 4 Let A;(sp;) denote the change in
6 I 711’ Ny = M = M, the set—pomgof PV qur itis cgmpgmlsed. By Theo_reﬁq
7. return J, Ny, m’ A(sp;) = spd — (0—jsp;) = sp +sp,; and by linearity in
8: end procedure (18a)

Aj(vi) = 2Re(ZijAj(sp;)) = 2Re(Zij(sp§ + j5D;)).-
Proof of Lemma 3 (A0); implies that a feasible i i ) ) o
solution exists for[AD]?. Since, ¥ Xcpr, a feasible A.galln, by invoking the linearity if18a) (26a) follows.
solutionX € Xcpr also exists for[AD] Let (3, 2) denote Similarly, one can show25b) and (26b). u

the decision variables fc{rAD] Note that, for a fixed), X PV P_roof of Prop_. 4:d Frolm E?a) when =|.1,di.et., thg
is an affine |n(¢ é) and can be computed usiri§a) and j is compromised, only the power supplied at ngde
(5h). changes.

Now, L is convex ing (because thd.yy is a max_imu_m LA () = 2Re(Zijsp? +J5p;)-
over affine functions, and bothyc and Ly, are affine in _ _ )
(¢,0). Also, @ is a convex x compact set. Further, for a fixed Due to linearity, the first part oProp. 4holds true. Now,
L is strictly increasing i’ (becauseLyr is non-decreasing
in £ as? is affine decreasing ify Lic does not change Wlth
Ly, is strictly increasing ir¢). From Thm. 1 [L§], (¢*,£*) Con o d
can be computed using a SOCP. To argue t#fasatisfy B (1) = 2Re(%’” (Sp{iﬂ_Spj)) R
(5c), assume for contradiction that (i,j) € £,s.t.0% > < 2Re(Zik(spy +J5Dy)) = Ax(¥i)
‘5*‘2/1,* Then, construc{¢™, E’) such thatY j e N : j #  Similarly, we can prove the case for=; k
g/ _ g* andé/ ’S*’z/y* Since¥ (j,k) € &, ’Sk‘% Under thee-LPF model,A; () = 2(1+¢)Re(Zi; (sp§ +]5p,)).-
The rest of the proof follows similarly. ]
Proof of Prop. & Let (6%, ¢*) and (6%, ¢*), denote

j<ik - ’PiijC’PimPk - Zij<Zik-

is strlctly decreasing irf;, V (j,k) € € : Z’k > ‘5*‘2/,7* >

3,|*/7. Hence, one can further minimize the loss functiog, optimal solutions O[AD] with u = @ (resp.u = @).
by choosmg a new feasible solutign*, E’) thus violating (A1) — spd* is fixed Prop. J. Hence,¢* depends only
the optimality of(¢* é*) B oné*, and notu. Then, let¢* 6) denote optimal defender
Proof of Prop. 2 response t@. We want to shOV\Eu L.
Let (d;, ;) denotesp in the polar coordinates, i.ed; = Case 5* =0. Then 5 € Dpy(u). Thus,
’sAp?‘ ,0; = Zspy. L' = LER®@,6*,¢*(0*) = L(R(w,d%¢*(5*)) <

ﬁ(ﬁ(u,d*,¢*(5*))), where the inequality follows by
optimality of §*.
YV GN, ﬁj = I//\; + 2dZ(R” cosb; + Xij sinﬁi), (35) Case 5: =1 Eet § € DM(U) 0 = 0,55 = 1,Vi e
' ~ ~ M\{a,b},0; = 6F. Then,§ € Dy(u). Sinceb € A,,
where 7} = - 22 ke hej Re(Zjis) — 2Re(Zijscj). Vie N, a < b Hence byProp. 4V i € NV, Ab(ul)
Note that?’, does not depend ofil;, 0;). Ao (7;). Then, by Lemmad, for fixed ¢, As(V) = A, (D).
It is clear from(35) that; is greater ifg; € [0,7/2] than Hence,£% = L(X(d, 0%, ¢*(6*))) < L(X(4, 3*7(;5*( )))
if 6; € [-7/2,0]. Furthermore, the impedances are positiquj@(u’& *(8))) < i()A((u,(S*,gb*((s*))) — [*. Here, the
Hence,V j,da,V; = 2(Rijcosf; + Xijsin6;) > 0. Hence, first (resp. last) inequality follows due to optimality ¢f (5*)
da;Lvr > 0. But, from (4), d; < sp;. Hence,d} = Sp;. (resp.s*). Hence,u < . [ ]
Further,dy, ; = 2d;(—R;; sin6; + X;; cos 0;). Proof of Prop. 7. Letc = AGIAX e, 7y D be the
0 i 6 el t(Ris lowest common ancestor efandb. Leti’,i" € C. : a€ Ay
L [0, arccot(Fis/x.;)) andb e A;. FromThm. 3 we know that the optimal attack
O, Vj =0 if 6; = arccot(fis/xi;)) 0* will be a pivot node attack’ for some node, saye N.
<0 if 6; € (arccot(Rii/x,;)), /2] Let N/ = Ay U Ao

For&; = 0, sp; = $p". Then from(18a)
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Casei e N'. Now u; = 1V j e Ay\AY U {a} by maxi-
mality of [P, n Py|. Similarly,u; = 0V j € A% U {b}. Thus,
V j e Ay s.t.u; = 0 there exists a separate nokes A;»
such thatj andk are homomorphic, and, = 0 (seeFig. 69.
Hence, the subtred;, is more vulnerable than the subtree
Ay, and it will be more beneficial for the attacker to target
a pivot node inA;». Now, i € Ay, andV i € Ayv, a <; b.
We obtain, byProp. 4 A, (7;) < Ay (D;).
Casei ¢ N'. Thena =; b, and byProp. 4 A,(7;) =
Ay (D). A
We now want to show that" < £". The rest of the proof
follows along the same lines as the prooffabp. 6
[ |
Proof of Prop. 8 Similar to the proof ofProp. 7 =
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