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Security Assessment of Electricity Distribution
Networks under DER Node Compromises

Devendra Shelar and Saurabh Amin

Abstract—This article focuses on the security assessment of
electricity distribution networks (DNs) with vulnerable d is-
tributed energy resource (DER) nodes. The adversary model
is simultaneous compromise of DER nodes by strategic ma-
nipulation of generation set-points. The loss to the defender
(DN operator) includes loss of voltage regulation and cost of
induced load control under supply-demand mismatch caused
by the attack. A 3-stage Defender-Attacker-Defender (DAD)
game is formulated: in Stage 1, the defender chooses a security
strategy to secure a subset of DER nodes; in Stage 2, the
attacker compromises a set of vulnerable DERs and injects
false generation set-points; in Stage 3, the defender responds by
controlling loads and uncompromised DERs. Solving this trilevel
optimization problem is hard due to nonlinear power flows
and mixed-integer decision variables. To address this challenge,
the problem is approximated by tractable formulations based
on linear power flows. The set of critical DER nodes and
the set-point manipulations characterizing the optimal attack
strategy are characterized. An iterative greedy approach to
compute attacker-defender strategies for the original nonlinear
problem is proposed. These results provide guidelines for
optimal security investment and defender response in pre- and
post-attack conditions, respectively.

I. I NTRODUCTION

Integration of distributed energy resources (DERs) such as
solar photovoltaic (PV) and solar thermal power generation
with electricity distribution networks (DNs) is a major aspect
of smart grid development [1]. Some reports estimate that,
by 2050, solar PVs will contribute up to23.7 % of the
total electricity generation in the US. Large-scale deployment
of PVs can be utilized to improve grid reliability, reduce
dependence on bulk generators (especially, during peak de-
mand), and decrease network losses (at least, up to a certain
penetration level) [2]. Harnessing these capabilities requires
secure and reliable operation of cyber-physical components
such as smart inverters, DER controllers, and communication
network between DERs and remote control centers. Thus,
reducing cyber-physical security risks is a crucial aspectof
the design and operation of DNs [3], [4], [5], [6], [7]. This
article focuses on the problem of security assessment of
DNs under threats of DER node disruptions by a malicious
adversary.

We are specifically interested in limiting the loss of voltage
regulation and supply-demand mismatch that can result from
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the simultaneous compromise of multiple PV nodes on a
distribution feeder. It is well known that the active power
curtailment and reactive power control are two desirable
capabilities that can help maintain the operational require-
ments in DNs with large-scale penetration of DERs with
intermittent nature [2], [8], [9]. In this paper, we investigate
the specific ways in which these capabilities need to be built
into the PV deployment designs, and show that properly
chosen security strategies can protect DNs against a class
of security attacks.

Our work is motivated by recent progress in three topics:
(T1) Interdiction and cascading failure analysis of power
grids (especially, transmission networks) [10], [11]; (T2)
Cyber-physical security of networked control systems [3],
[4], [5], [6], [12]; and (T3) Optimal power flow and optimal
control of distribution networks with DERs [2], [9], [13].

Existing work in (T1) employs state-of-the-art computa-
tional methods for solving large-scale, mixed integer pro-
grams for interdiction/cascade analysis of transmission net-
works assuming direct-current (DC) power flow models.
Since our focus is on security assessment of DNs, we also
need to model reactive power demand, in addition to the
active power flows. In this work, we consider standard
DN model with constant power loads and PVs [9], [13],
but we restrict our attention to tree networks. This enables
us to obtain structural results on optimal attack strategies
(including the critical PV nodes and their setpoints). We
show that these structural results also provide guidelinesfor
investment in deploying IT security solutions, especiallyin
geographically diverse DNs.

The adversary model in this paper considers simultaneous
PV node compromises by false-data injection attacks. Thanks
to the recent progress in(T2), similar models have been
proposed for a range of cyber-physical systems [4], [5]. Our
model is motivated by the DER failure scenarios proposed by
power system security experts [14]. These scenarios consider
shutdown of PV systems when an external threat agent
compromises the DERs by a direct attack, or by manipulating
the power generation set-points sent from the control center
to individual DER nodes/controllers; seeFig. 1.

In our model, the attacker’s objective is to impose loss of
voltage regulation to the defender (i.e., network operator),
and also induce him to exercise load control in order to
reduce the supply-demand mismatch immediately after the
attack. The defender’s primary concern in post-attack condi-
tions is to reduce the costs due to loss of voltage regulation
and load control. Hence, in our model, the line losses are
assigned relatively lesser weight. For a fixed attack, solving
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Fig. 1: Illustration of the DER failure scenario proposed
in [14] on a modified IEEE 37-node network.

the problem of defender response via load control and the
control of uncompromised PVs is similar to the recent results
in (T3), i.e., convex relaxations of optimal power flow (OPF)
problem.

Our main contribution is analysis of a three-stage sequen-
tial security game posed in§II. In Stage 1, the defender
invests in securing a subset of PV nodes but cannot ensure
security of all nodes due to budget constraints; in Stage 2,
the resource-constrained attacker compromises a subset of
vulnerable PV nodes and manipulates their set-points; in
Stage 3, the defender responds by regulating the supply-
demand mismatch. This defender-attacker-defender (DAD)
game models both strategic investment decisions (Stage 1)
and operation of DN during attacker-defender interaction
(Stages 2-3). Solving the DAD game is a hard problem due
to nonlinear power flow, PV constraints, and mixed-integer
decision variables.

In Sec. III, we provide tractable approximations of the
sub-game induced for a fixed defender security strategy, i.e.,
the attacker-defender interaction in Stages 2-3; seeThm. 1.
These approximations can be efficiently solved, and hold
under the assumption of no reverse power flows, small
impedances, and small line losses. Next we show structural
results for the master-problem (i.e., optimal attack for fixed
defender response), and the sub-problem (i.e., optimal de-
fender response for fixed attack). For the master-problem,
we derive the false set-points that the attacker will intro-
duce in any compromised PV (Thm. 2), and also propose
computational methods to solve for attack vectors, i.e., PV
nodes whose compromise will cause maximum loss to the
defender (Propositions3 and 4). For the sub-problem, we
utilize the convex relaxations of OPF to compute optimal
defender response for a fixed attack (Lemma 3), and under
a restricted set of conditions, provide a range of new set-
points for the uncompromised PVs (Prop. 2). These results
lead to a greedy approach, which efficiently computes the op-
timal attack and defender response (Algorithm 3). We prove
optimality of the greedy approach for DNs with identical
resistance-to-reactance ratio (Thm. 3), and show that the
approach efficiently obtains optimal attack strategy and de-

fender response for a broad range of conditions (§V). Thanks
to the structural results on optimal attack strategy, our greedy
approach has significantly better computational performance
than standard techniques to solve bilevel optimization prob-
lems (e.g., Benders decomposition [11]). Finally, we provide
a characterization of the optimal security strategy for Stage
1 decision by the defender, albeit for symmetric DNs (§IV,
Thm. 4).

II. PROBLEM FORMULATION

A. Distribution network model

We summarize the standard network model of radial elec-
tric distribution systems [15], [16], [17], [9]. Consider a tree
network of nodes and distribution linesG “ pN Y t0u, Eq,
whereN denotes the set of all nodes except the substation
(labeled as node0), and letN :“ |N |. Let Vi P C denote
the complex voltage at nodei, and νi :“ |Vi|

2 denote the
square of voltage magnitude. We assume that the magnitude
of substation voltage|V0| is constant. LetIj P C denote the
current flowing from nodei to nodej on line pi, jq P E ,
and ℓj :“ |Ij |

2 the square of the magnitude of the current.
A distribution line pi, jq P E has a complex impedance
zj “ rj` jxj , whererj ą 0 andxj ą 0 denote the resistance
and inductance of the linepi, jq, respectively, andj “ ?´1.

The voltage regulation requirements of the DN under
nominalno attack conditions govern that:

@ i P N , νi ď νi ď νi, (1)

where νi “ |V i|
2 and νi “ ∣

∣V i
∣

∣

2
are thesoft lower and

upper bounds for maintaining voltage quality at nodei.
Additionally, voltage magnitudes underall conditions satisfy:

@ i P N , µ ď νi ď µ, (2)

whereµ andµ are thehard voltage safety bounds for any
nodal voltage, and0 ă µ ă miniPN νi ď maxiPN νi ă µ.

1) Load model:We consider constant power loads [18].
Let sci :“ pci ` jqci denote the power consumed by a
load at nodei, where pci and qci are the real and re-
active components. Letscnomi :“ pcnomi ` jqcnomi denote
the nominal power demanded by a nodei, where pcnomi

and qcnomi are the real and reactive components ofscnomi .
Under our assumptions, for alli P N , pci ď pcnomi and
qci ď qcnomi , i.e., the actual power consumed at each node
is upper bounded by the nominal demand:

@ i P N , sci ď scnomi . (3)

2) PV model:1 Let sgi :“ pgi ` jqgi denote the power
generated by the PV connected to nodei, wherepgi andqgi
denote the active and reactive power, respectively. Following
[13], [9], sgi is bounded by the apparent power capability of
the inverter, which is a given constantspi. We denote the PV
set-point byspi “ Repspiq ` jImpspiq, whereRepspiq and

1We use the term PV to denote the complete PV-inverter assembly
attached to a node of DN.
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Impspiq are the real and reactive components. The power
generated at each node is constrained as follows:

@ i P N , sgi ď spi P Si, (4)

whereSi :“ tspi P C | Repspiq ě 0 and |spi| ď spiu.
The set of configurable set-points is denoted byS :“ś
iPN Si.
We denote the net power consumed at nodei by si :“

sci ´ sgi. In our model, a DN can be fully specified by
the tuplexG, |V0| , z, scnom, spy, wherez, scnom, sp are row
vectors of appropriate dimensions, and are assumed to be
constant.

3) Power flow equations:The 3-phase balanced nonlinear
power flow (NPF) on linepi, jq P E is given by [15]:

Sj “ ř
k:pj,kqPE Sk ` scj ´ sgj ` zjℓj (5a)

νj “ νi ´ 2Repz̄jSjq ` |zj |
2
ℓj (5b)

ℓj “ |Sj|
2

νi
, (5c)

whereSj “ Pj ` jQj denotes the complex power flowing
from nodei to nodej on linepi, jq P E , andz̄ is the complex
conjugate ofz; (5a) is the power conservation equation;(5b)
relates the voltage drop and the power flows; and(5c) is the
current-voltage-power relationship. For the NPF model(5),
we define a state as follows:

x :“ “
ν, ℓ, sc, sg, S

‰
,

where x P R2N
` ˆ C3N , and ν, ℓ, sc, sg, and S are row

vectors of appropriate dimensions. LetF denote the set of
all statesx that satisfy(2), (3), (4) and the NPF model(5),
and define the set of all states withno reverse power flows
as follows:

X :“ tx P F |S ě 0u.
The linear power flow (LPF) approximation of(5) is:

pSj “ ř
k:pj,kqPE

pSk ` pscj ´ psgj (6a)

pνj “ pνi ´ 2Repz̄j pSjq (6b)

pℓj “ | pSj|
2

pνi , (6c)

wherepx :“ rpν, pℓ, psc, psg, pSs is a state of the LPF model, and
analogous to the NPF model, define the set of LPF statespx
with no reverse power flows aspX .

B. Notation and definitions

All vectors are row vectors, unless otherwise stated. For
two vectorsc andd, c d d denotes their Hadamard product.

Let Kj :“ rj
xj

be the resistance-to-reactance (r{x) ratio for

line pi, jq P E , and letK andK denote the minimum and
maximum of theKjs over allpi, jq P E . We say that PVs at
nodesj andk are homogeneous with respect to each other if
their set-point configurations as well as their apparent power
capabilities are identical, i.e.,spj “ spk and spj “ spk.
Similarly, two loads at nodesj and k are homogeneous if
scnomj “ scnomk .

0 a b c i m

e d k

g j

Fig. 2: Precedence description of the nodes for a tree network.
Here,j ăi k, e “i k, b ă k, Pj “ ta, g, ju, Pi X Pj “ tau.

For any given nodei P N , let Pi be the path from the root
node to nodei. Thus,Pi is an ordered set of nodes starting
from the root node and ending at nodei, excluding the root
node; seeFig. 2. We say that nodej is anancestorof nodek
(j ă k), or equivalently,k is a successor ofj iff Pj Ă Pk.
We define therelative orderingĺi, with respect to a “pivot”
nodei as follows:

- j precedesk (j ĺi k) iff Pi X Pj Ď Pi X Pk.
- j strictly precedesk (j ăi k) iff Pi X Pj Ă Pi X Pk.
- j is at thesame precedence levelask (j “i k) iff
Pi X Pj “ Pi X Pk.

We define the common path impedance between any two
nodesi, j P N as the sum of impedances of the lines in the
intersection of pathsPi andPj , i.e., Zij :“ ř

kPPiXPj
zk,

and denote the resistive (real) and inductive (imaginary)
components ofZij by Rij andXij , respectively.

Finally, we define some useful terminology for the tree
networkG. LetH denote the height ofG, and letNh denote
the set of nodes on levelh for h “ 1, 2, ¨ ¨ ¨ , H . For any
node i P N , hi denotes the level of nodei; Ci the set of
children nodes of nodei; Λi the set of nodes in the subtree
rooted at nodei; Λji the set of nodes in the subtree rooted
at nodei until level hj , wherej P Λi; NL the set of leaf
nodes, i.e.,NL :“ tj P N | E k P N s.t. pj, kq P Eu.

C. Defender-Attacker-Defender security game

We consider a 3-stage sequential game between a defender
(network operator) and an attacker (external threat agent).

- Stage 1: The defender chooses a security strategy
u P UB to secure a subset of PVs;

- Stage 2: The attacker chooses from the set of PVs
that were not secured by the defender in Stage 1, and
manipulates their set-points according to a strategy
ψ :“ “

spa, δ
‰ P ΨM puq;

- Stage 3: The defender responds by choosing the set-
points of the uncompromised PVs and, if possible,
impose load control at one or more nodes according
to a strategy
φ :“ “

spd, γ
‰ P Φpu, ψq.

In this Stackelberg game,UB andΦpu, ψq denote the set of
defender actions in Stage 1 and 3, respectively; andΨM puq
denotes the set of attacker strategies in Stage 2. Formally,
the defender-attacker-defenderrDADs game is as follows:

rDADs L :“ minuPUB
maxψPΨM

minφPΦ Lpxpu, ψ, φqq (7)



4 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS

s.t. xpu, ψ, φq P X (8a)

scpu, ψ, φq “ γ d scnom (8b)

sgpu, ψ, φq “ ud spd ` p1N ´ uq
d rδ d spa ` p1N ´ δq d spds, (8c)

where(8b)specifies that theactual power consumedat nodei
is equal to the power demand scaled by the corresponding
load control parameterγi P rγ

i
, 1s chosen by the defender.

The constraint(8c) models the net effect of defender
choiceui in Stage 1, the attacker choicepspai , δiq in Stage 2,
and the defender choicespdi in Stage 3 on theactual power
generatedat nodei. Thus, (8c) is the adversary modelof
rDADs game: the PVi is compromisedif and only if it
was not secured by the defender (ui “ 0) and was targeted
by the attacker (δi “ 1). Specifically, if i is compromised,
spi “ spai , wherespai “ Repspa

i q` jImpspai q is the false set-
point chosen by the attacker (different from the nominal set-
point). The set-points of non-compromised PVs are governed
by the defender, i.e., if PVi is not compromisedspi “ spdi .
Note that our adversary model assumes that the PV’s power
output,sg, quickly attain the set-points specified by(8c), i.e.,
the model does not consider dynamic set-point tracking.2

The loss function inrDADs is defined as follows:

Lpxpu, ψ, φqq :“ LVRpxq ` LLCpxq ` LLLpxq, (9)

whereLVR denotes the cost due to loss of voltage regulation;
LLC the cost of load control (i.e., the loss due to partially
satisfied demand);LLL the total line losses. These costs are
defined as follows:

LVRpxq :“ ‖W d pν ´ νq`‖8 (10a)

LLCpxq :“ ‖C d p1 ´ γq d pcnom‖
1

(10b)

LLLpxq :“ ‖r d ℓ‖
1
, (10c)

where W,C P RN` . Here, Wi is the weight assigned to
violation of voltage bound,Ci is the cost of shedding unit
load at nodei, andr denotes the vector of resistances. Note
that LVR is the maximum of the weighted non-negative
difference between the lower boundνi and nodal voltage
squareνi. Since the defender’s primary concern during the
contingencies created by the attacker is to limitLVR and
LLC, the weightsWi and Ci are chosen such thatLLL is
relatively small compared toLVR andLLC.

Admittedly, the loss function(9) does not consider the cost
of PV control and the cost of energy spillage [19]. However,
our formulation is aimed toward security assessment of
DNs where the DER ownersparticipate in VAR control,
perhaps in return of a pre-specified compensation by the
operator/defender. Alternatively, the DERs may berequired
to contribute reactive power during contingency scenarios;
e.g. sudden supply-demand mismatch. We now describe each
stage in more detail:

2Note that, under this adversary model, the impact of PV compromise is
different than the impact of a natural event, e.g. cloud cover, during which
pg “ 0. The reactive power contribution may be non-negative during a
natural event; however, as we show in §III-C , a compromised PV always
contributes reactive power equal to the negative of apparent power capability
to the DN.

Stage 1 [Security Investment]:The set of defender actions
is:

UB :“ tu P t0, 1uN | ‖u‖
0

ď Bu,
whereB ď |N | denotes a security budget. Since, secur-
ing control-center’s communication to every PV node in a
geographically diverse DN might be costly/impractical, we
impose that the maximum number of nodes the defender
can secure isB. A defender’s choiceu P UB implies that
a PV at nodei is secure ifui “ 1 (i.e. PV at nodei cannot
be compromised), and vulnerable to attack ifui “ 0. Let
Nspuq :“ ti P N |ui “ 1u andNvpuq :“ N zNspuq denote
the set of secure and vulnerable nodes, for a defender choice
u. 3

Stage 2 [Attack]:Let ΨM puq :“ Spuq ˆ DM puq denotes
the set of attacker actions for a defender’s choiceu, where

Spuq :“ ś
iPNvpuq Si ˆ ś

jPNspuqt0 ` 0ju
DM puq :“ tδ P t0, 1uN | δ ď 1N ´ u, ‖δ‖

0
ď Mu,

and M ď |Nv| is the maximum number of PVs that
the attacker can compromise. This limit accounts for the
attacker’s resource constraints (and/or restrict his influence
based on his knowledge of PV vulnerabilities). The attacker
simultaneouslycompromises a subset of vulnerable PV nodes
by introducing incorrect set-points (see the adversary model
(8c)), and increase the lossL (see(9)). The attacker’s choice
is denoted byψ :“ “

spa, δ
‰ P ΨM puq, wherespa denotes

the vector of incorrect set-points chosen by the attacker, and
δ P DM denotes the attack vector that indicates the subset of
PVs compromised. A PV at nodei is compromised ifδi “ 1,
and not compromised ifδi “ 0.

Stage 3 [Defender Response]:Let γ
i

ě 0 denote the
maximum permissible fraction of load control at nodei, and
define the set of Stage 3 defender actions:

Φpu, ψq :“ S ˆ Γ,

where Γ :“ ś
iPN rγ

i
, 1s. The defender chooses new set-

pointsspd of non-compromised PVs, and load control param-
etersγi to reduce the lossL. The defender action is modeled
as a vectorφ :“ “

spd, γ
‰ P Φpu, ψq, where spd (resp.γ)

denotes the vector ofspdi (resp.γi).

D. Assumptions

In general,rDADs is a non-convex, non-linear, tri-level
optimization problem with mixed-integer decision variables.
Hence, it is a computationally hard problem. Our goals are:

(i) to provide structural insights about the optimal attacker
and defender strategies of therDADs game;

3Note that when we say a node is secure, we mean that the PV at that node
is not prone to compromise by the attacker. From a practical viewpoint, the
defender can secure a PV node by investing in node security solutions such
as installing intrusion prevention/detection systems (IPS/IDS) [12]. These
security solutions are complementary to the device hardening technologies
that can secure the PV-inverter assembly. Our focus is on security against
an external threat agent interested in simultaneously compromising multiple
PVs. Thus, we restrict our attention to node security solutions.
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(ii) to approximate the non-linear (hard) problem by formu-
lating computationally tractable variants based on linear
power flow models.

To address these goals we make the following assumptions:

pA0q0 Voltage quality: In no attack (nominal) conditions,
the voltage quality bounds(1) are satisfied by bothX and
pX .

pA0q1 Safety: Safety bounds(2) are always satisfied, i.e.,
@ pu, ψ, φq P UB ˆ Ψ ˆ Φ, @ xpu, ψ, φq P X , µ1N ď ν ď
µ1N .

pA0q2 No reverse power flows: Power flows from the
substation node towards the downstream nodes, i.e.,pS ě 0.
This implies that@ px P pX , pν ď ν01N ; similarly, for NPF
model.

pA0q3 Small impedance: All power flows are in the per
unit (p.u.) system, i.e.,ν0 “ 1 and @ pi, jq P E , |Sj | ă 1.
Furthermore, the resistances and reactances are small, i.e.,

@ pi, jq P E , rj ď µ2

4µ`8
ă 1, xj ď µ2

4µ`8
ă 1,

and the common path resistances and reactances are also
smaller than 1, i.e.,Rii ď 1 andXii ď 1 @ i P N .

pA0q4 Small line losses: The line losses are very small
compared to the power flows, i.e.,@ x P X , z d ℓ ď ǫ0S,
whereǫ0 is a small positive number.4

pA0q0-pA0q1 are standard assumptions.pA0q2 assumes
that the PV penetration level is such that the net demand
is always positive. In real-world DNs, bothrjs andxjs are
typically around 0.01pA0q3. Also, residential load power
factors (pcj{|scj |) are in range of 0.88-0.95. For these values,
one can show thatǫ0 « 0.05 pA0q4. We will denotepA0q0-
pA0q4 by (A0) .

Now, let ǫ :“ p1 ´ ǫ0q´H ´ 1, and consider another linear
power flow model (which we call theǫ-LPF model):

qSj “ ř
k:pj,kqPE

qSk ` p1 ` ǫqp qscj ´ qsgjq (11a)

qνj “ qνi ´ 2Repz̄j qSjq (11b)

qℓj “ | qSj|
2

qνi , (11c)

and qx :“
”

qν, qℓ, qsc, qsg, qS
ı

is a state ofǫ-LPF model, and
qX is the set of all statesqx with no reverse power flows

(analogously defined asX and pX ). Note that forǫ “ 0,
(11) becomes(6).

We will consider two variants of therDADs game(7)-(8):

r zDADs pL :“ minuPUB
maxψPΨM

minφPΦ
pLppxpu, ψ, φqq

s.t. pxpu, ψ, φq P pX , p8bq, p8cq

r ~DADs qL :“ minuPUB
maxψPΨM

minφPΦ
qLppxpu, ψ, φqq

4Equivalently, ǫ0 is an upper bound on the maximum ratio of
the magnitudes of line losses and the power flows, i.e.,ǫ0 “
maxpi,jqPE,Pj‰0,Qj‰0 max

`
rjℓj{Pj , xjℓj{Qj

˘
.

Sub-problem
(Fixed ψ)
Lemma 3
Prop. 2/ Cor. 1

Master Problem
(Fixed φ)
Thm. 2/ Prop. 3
Prop. 4/ Algo. 1

Theorem 3
Algorithm 2

Fixed u
Stages 2 and 3

Fig. 3: Outline of Technical Results in§III

s.t. qxpu, ψ, φq P qX , p8bq, p8cq
where pLppxq :“ LVRppxq ` LLCppxq, and qLpqxq :“ LVRpqxq `
LLCpqxq are the loss functions forr zDADs andr ~DADs, respec-
tively. Note that the loss functionspL and qL do not have the
line losses term. The optimal lossL of r zDADs andr ~DADs are
denoted bypL and qL, respectively. Our results in§III-IV show
that r zDADs (resp. r ~DADs) help provide under (resp. over)
approximation ofrDADs; and the derivation of structural
properties of optimal strategies in bothr zDADs and r ~DADs
is analogous to one another.

We will, henceforth, abuse the notation, and useΨ andΦ
to denoteΨM puq andΦpu, ψq, respectively.

III. A TTACKER-DEFENDERSUB-GAME

In this section, we consider the sub-game (Stages 2 and 3)
induced by a fixed defender security strategyu in Stage 1:

rADs Lu :“ maxψPΨ minφPΦ Lpxpu, ψ, φqq s.t. p8q

Analogous to the variants ofrDADs, r zDADs and r ~DADs,
we define two variants of the sub-gamerADs: ryADs (resp.
r}ADs) with pX (resp. qX ) in (8a). The optimal losses ofryADs
and r}ADs are denoted bypLu and qLu), respectively.

For simplicity andwithout loss of generality, we focus on
case foru “ 0; i.e., no node is secured by the defender in
Stage 1. With further abuse of notation, for a strategy profile
p0, ψ, φq, we denotexp0, ψ, φq by xpψ, φq as the solution of
NPF model. Similarly, redefinepxpψ, φq andqxpψ, φq. We also
drop the superscriptu from Lu, pLu and qLu.

Following the computational approach in the literature to
solve (bilevel) interdiction problems [10], [20], we define the
master-problemrADsa (resp. sub-problemrADsd) for fixed
φ P Φ (resp. fixedψ P Ψ):

rADsa ψ˚pφq P argmaxψPΨ Lpxpψ, φqq s.t. p8q,
rADsd φ˚pψq P argminφPΦ Lpxpψ, φqq s.t. p8q.

Similarly, define master- and sub- problemsryADsa and
ryADsd (resp.r}ADsa andr}ADsd) for the variantsryADs (resp.
r}ADs).

Sec. III-A focuses on bounding the optimal loss forrADs
with the losses inryADs and r}ADs. We focus on the master-
and sub- problems in§III-B and §III-C, respectively. This
leads to an iterative approach in§III-D to solve the sub-
gamesrADs, ryADs, r}ADs. Fig. 3provides an outline of these
results.
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A. Upper and Lower Bounds onL

Theorem 1. Let pψ˚, φ˚q, p pψ˚, pφ˚q andp qψ˚, qφ˚q be optimal
solutions torADs, ryADs and r}ADs, respectively; and denote
the optimal losses byL, pL, qL, respectively. Then,

pL ď L ď qL ` µN

2µ`4
. (14)

To proveThm. 1, we first prove a preliminary result that
relatesxpψ, φq, pxpψ, φq, andqxpψ, φq:
Proposition 1. For a fixed strategy profilepψ, φq P Ψ ˆ Φ,

pS ď S ď qS, pν ě ν ě qν, pℓ ď ℓ ď qℓ.
Hence,

LVRppxq ď LVRpxq ď LVRpqxq

LLCppxq “ LLCpxq “ LLCpqxq

LLLppxq ď LLLppxq ď LLLpqxq

,
/.
/-

ùñ Lppxq ď Lpxq ď Lpqxq. (15)

Prop. 1implies that any attackψ that increasespL in ryADs
(relative to the no attack case), also increasesL in rADs and
qL in r}ADs, respectively. The converse need not be true, i.e.,
an attack that increasesL in rADs (resp. qL in r}ADs) need
not increasepL in ryADs (resp.L in rADs). Similarly, any
defender responseφ that reducesqL (resp.L), also reducesL
(resp. pL). Again, the converse statements do not apply here.

Proof: The relationshipspS ď S and pν ě ν are proved
in [21].

The rest of the proof ofProp. 1utilizes two lemmas.

Lemma 1. Consider a fixedpψ, φq P Ψ ˆ Φ. The following
holds: sc “ psc “ qsc, sg “ psg “ qsg, and

qS “ p1 ` ǫq pS (16a)

qν ´ ν01N “ p1 ` ǫqppν ´ ν01N q (16b)

@ pi, jq P E

#
Sj “ ř

kPΛj
sk ` zkℓk (17a)

pSj “ ř
kPΛj

sk (17b)

@ j P N

$
’’’’&
’’’’%

pνj “ ν0 ´ 2
ř
kPN RepZ̄jkskq (18a)

qνj “ ν0 ´ 2p1 ` ǫq ř
kPN RepZ̄jkskq (18b)

pνj “ ν0 ´ 2
ř
kPPj

Repz̄k pSkq. (18c)

qνj “ ν0 ´ 2
ř
kPPj

Repz̄k qSkq. (18d)

Proof: Recursively apply the power flow models(5), (6),
and(11), from the root node to leaf nodes.

Lemma 2. For a fixedpψ, φq P Ψ ˆ Φ,

@ pi, jq P E , Sj ď pSj

p1´ǫ0qH´|Pj |`1
. (19)

Proof:
We apply induction from leaf nodes to the root node.Base

case:For any leaf nodek P NL,

zkℓk
pA0q4ď ǫ0Sk

p17aq“ ǫ0psk ` zkℓkq

6 zkℓk ď ǫ0sk
1´ǫ0

p17bq“ ǫ0 pSk

1´ǫ0
.

Now, for anyj P N zNL,

zjℓj
pA0q4ď ǫ0Sj

p5aq“ ǫ0
“ ř

k:pj,kqPE Sk ` sj ` zjℓj
‰

6 zjℓj ď ǫ0
1´ǫ0

“ ř
k:pj,kqPE Sk ` sj

‰
.

Adding
ř
Sk ` sj on both the sides:

ř
k:pj,kqPE Sk ` sj ` zjℓjlooooooooooooooomooooooooooooooon

Sj

ď 1

1´ǫ0

“ ř
k:pj,kqPE Sk ` sj

‰
.

Inductive step: By inductive hypothesis (IH) onCj ,

Sj
(IH)ď 1

p1´ǫ0qH´|Pk|`2

“ ř
k:pj,kqPE

pSk ` sj
‰

“ pSj

p1´ǫ0qH´|Pj |`1
p7 |Pj | “ |Pk| ´ 1q.

From Lemma 2, for any pi, jq P E ,

Sj ď pSj

p1´ǫ0qH´|Pj |`1
ď pSj

p1´ǫ0qH “ p1`ǫq pSj
p16aq“ qSj . (20)

For nodal voltages,

νj
p5bq“ νi ´ 2Repz̄jSjq ` |z|2j ℓj

ě νi ´ 2Repz̄jSjq
p20q

ě νi ´ 2Repz̄j qSjq. (21)

Applying (21) recursively from the nodej till root node:

νj ě ν0 ´ 2
ř
kPPj

Repz̄k qSkq p18dq“ qνj .

Thus, pSj ď Sj ď qSj and pνj ě νj ě qνj . Furthermore,

pSj ď Sj ď qSj
pA0q2ùñ

∣

∣

∣

pSj
∣

∣

∣

2

ď |Sj |
2 ď

∣

∣

∣

qSj
∣

∣

∣

2

ùñ | pSj|
2

pνj ď |Sj |
2

νj
ď | qS|2

qνj ùñ pℓ ď ℓ ď qℓ.
Finally, (15) immediately follows from(9), (10), and (14).

Proof of Theorem1:
For anyx P X ,

LLLpxq
p5cq
“

ř
pi,jqPE

rjpP2

j `Q2

j q

νi

pA0q1,pA0q3
ď 2

µ

ř
pi,jqPE

rj
pA0q3

ď
µN

2µ`4

(22)

Hence,
qL “ qLpqxp qψ˚

, qφ˚p qψ˚qqq

ě qLpqxpψ˚
, qφ˚pψ˚qqq pby optimality of qψ˚q

ě qLpxpψ˚
, qφ˚pψ˚qqq pby Proposition1q

p22q
ě Lpxpψ˚

, qφ˚pψ˚qqq ´
µN

2µ`4

ě Lpxpψ˚
, φ

˚pψ˚qqq ´
µN

2µ`4
pby optimality ofφ˚q

“ L ´
µN

2µ`4
.

Similarly, one can showL ě pL.
Thm. 1 implies that the value of the sub-gamerADs with

NPF can be lower (resp. upper) bounded by the value of
ryADs (resp. r}ADs). Our subsequent results show that both
ryADs and r}ADs admit computationally efficient solutions.
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B. Optimal defender response under fixed attacker strategy
ψ

We consider the sub-problemrADsd, i.e., the problem
of computing optimal defender responseφ˚pψq for a fixed
attackψ. The proofs for this subsection are in Appendix.

The following Lemma shows thatrADsd is a Second-Order
Cone Program (SOCP), and hence, can be solved efficiently.

Lemma 3. Let XCPF :“ convpX q, i.e., XCPF is the set of
statesx satisfying(2)-(4), (5a), (5b), and the relaxation of
(5c):

For a fixedψ P Ψ, the problem of minimizingLpxpψ, φqq
subject to x P XCPF, (8b), (8c) is a SOCP. Its optimal
solution,φ˚˚pψq, is also optimal forrADsd.

For fixed ψ (attack) and fixed load control parameter
γ (e.g. when changingγ is not allowed), the following
proposition provides a range of optimal defender set-points
pspd˚ and qspd˚ for LPF andǫ-LPF models, respectively. Note
that, if γ is fixed,LLCppxq is also fixed. Then, the defender
set-points can be chosen by usingLVRppxq as a loss function,
instead ofpLppxq. Similar argument holds forqLpqxq.
Proposition 2. ConsiderryADsd with fixedγ P Γ. Then@i P
N ,

δi “ 0 ùñ
∣

∣ pspd˚
i

∣

∣ “ spi, = pspd˚
i P rarccotK, arccotKs.

Furthermore, if the DN has identicalr{x ” K ratio, then

δi “ 0 ùñ
∣

∣ pspd˚
i

∣

∣ “ spi, = pspd˚
i “ arccotK. (23)

Similar results hold forr}ADsd.

C. Optimal attack under fixed defender responseφ

Now, we focus on the master problemrADsa, i.e., the
problem of computing optimal attack for a fixed defender
responseφ. The following Theorem characterizes the optimal
attacker set-point be denotedspa˚

i “ Repspa˚
i q`jImpspa˚

i q,
whenδ˚

i “ 1 (i.e. PV at nodei is targeted by the attacker).

Theorem 2. ConsiderrADsa for a fixedδ P DM (i.e., the
PVs compromised by the attacker are specified byδ and the
only decision variables inrADsa are spa). Then

@ i P N s.t. δi “ 1, spa˚
i “ 0 ´ jspi. (24)

Same holds for bothryADsa and r}ADsa.
Proof: If δi “ 1, then pgi “ xpgi “ Repspiq “

Repspa˚
i q.

We first prove the simpler case forryADsa. From (6), one
can check that as functions ofxpgi, pP is strictly decreasing,
pQ is constant, andpν is strictly increasing. Hence,pLpψ, φf q
is strictly increasing inxpgi (becauseLVR is non-decreasing
as pν is decreasing;LLC is constant). Hence, to minimize
the lossL, the attacker choosesRep pspa˚

i q “ 0. Similarly,
Imp pspa˚

i q “ 0. Similarly, we can show that inr}ADsa,
qspa˚ “ 0.

Now, we prove the case forrADsa by contradiction.
Suppose that there existsi P N s.t.Repspa˚

i q ą 0. Then

we can construct another attacker strategyrψ˚ “ rrδ, rspas that
can further maximizeL, such thatRepspa˚

i q “ 0, holding all
else equal, i.e.,rδ “ δ,@ j P N , Imp rspaj q “ Impspa˚

j q,@ j P
N : j ‰ i, Rep rspajq “ Repspa˚

j q.
Let pspa, ℓq be the decision variables forrADsa, as for

fixed φ, the other decision variablesP,Q, ν can then be
written as affine functions ofpspa, ℓq from (5). Let pspa˚, ℓ˚q
(resp.p rspa, rℓq) be the solution torADsa whenψ “ ψ˚ (resp.
ψ “ rψ).

Let f P RN` such that, for anypi, jq P E , fjpspa, ℓq :“
P 2

j `Q2

j

νi
. Let f˚ “ fpspa˚, ℓ˚q, f 1 “ fp rspa, ℓ˚q, and rf “

fp rspa, rℓq.
Sincepspa˚, ℓ˚q andp rspa, rℓq are solutions torADsa, they

satisfy (5c). Hence,f˚ “ ℓ˚, and rf “ rℓ. Furthermore, it
can be checked thatf 1 ą f˚. We want to show thatrf ą
f 1. Assume thatrf ą f 1. Then, rf ą f˚. Hence,Lprxq ą
Lpx˚q, (because,LVRprxq ą LVRpx˚q, LLCprxq “ LLCpx˚q,
LLLprxq ą LLLpxq). However, this is a contradiction, as it
violates the optimality ofspa˚. By similar logic, we can show
that @ i P N , Impspa˚

i q “ ´spi.
We now prove thatrf ą f 1, with the help of an illustrative

diagram (seeFig. 4).

ℓ

y

y = f (Re(spa∗), ℓ)

y = f (Re(s̃pai ), ℓ)

y = ℓ

(f ∗, ℓ∗)

(f̃ , ℓ̃)

(0,1)

(0,0) (1,0)

(f ′, ℓ∗)

Fig. 4: Illustrative diagram showing howℓ changes withspa

Note that from (5), one can show that for anyℓ,
fpRep rspa, ℓqq ą fpRepspa˚, ℓqq. Now, consider thepj, kqth
entry of JacobianJf pℓq.

Bℓkfj “ νi

`
2PjBℓk

Pj`2QjBℓk
Qj

˘
ν2

i

´ pP 2

j `Q2

jqBℓk
νi

ν2

i

6 0
pA2q

ď Bℓkfj
pA3qă p2rk`2xkq

νi
` p4Rikrk`4Xikxkq

ν2

i

ùñ 0 ď Bℓkfj
pA3qă prk ` xkqp2{µ ` 4{µ2q ď 1

ùñ 0 ď Bℓkfj ă 1.

At ℓ “ 0, f ą 0, and each entry of JacobianJf pℓq is
positive and smaller than 1. Hence,f intersects the hyper-
plane y “ ℓ, exactly once. Furthermore,fpRep rspa

, ℓqq ą
fpRepspa˚, ℓqq. Hence, we can conclude thatrℓ “ rf ą f 1 ą
f˚ “ ℓ˚.

Fig. 5 shows the optimal attacker set-pointspa˚
i for δ˚

i “
1, and the defender set-points for the PVs forδ˚

j “ 0.
Thanks toThm. 2, sc and sg are determined byδ andφ

(since optimalspa˚ is given by(24)). Thus, for givenpδ, φq,
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(0,−spi) =: sp
a∗
i (when δ∗i = 1)

Re(spi)

spi

Im(spi)

Optimal attacker set-point

for [AD], [ÂD], and [ǍD]

Range of Defender

Set-points ŝpd∗ (resp. špd∗)

for [ÂD] (resp. [ǍD])

when (δ∗i = 0)


 Kspi√

K2+1
, spi√

K2+1





 Kspi√

K
2
+1
, spi√

K
2
+1




Fig. 5: Optimal attacker set-points (Thm. 2) and range for
optimal defender set-points (Prop. 2).

loss function can be denoted asLpxp“
0 ´ jsp, δ

‰
, φqq; and

rADs can be restated as follows:

L “ maxδPDM
minφPΦ Lpxpδ, φqq s.t. p8q, p24q

Same holds forryADs (resp.r}ADs) andryADsa (resp.r}ADsa).
Let ∆jppνiq (resp.∆δppνiq) be the change in nodal voltage

at nodei caused due to compromise of PV at nodej (resp.
compromise of PVs due to attack vectorδ). Similarly, define
∆jpqνiq and∆δpqνiq. The following Lemma is proved in the
Appendix.

Lemma 4. If φ is fixed, then

@ i, j P N

#
∆jppνiq “ 2RepZ̄ijpspdj ` jspjqq (25a)

∆jpqνiq “ 2p1 ` ǫqRepZ̄ijpspdj ` jspjqq (25b)

@ δ Ď DM

#
∆δppνiq “ ř

j:δj“1
∆jppνiq (26a)

∆δpqνiq “ ř
j:δj“1

∆jpqνiq (26b)

For a fixedφ P Φ, let pDi
M pφq be the set of optimal attack

vectors that maximize LPF voltage bounds violation at a pivot
node, sayi. Formally,

pDi
M pφq :“ argmax

δPDM

Wipνi ´ pνiq s.t. pxpδ, φq P pX , p8bq, p8cq
(27)

Let pD˚
M

:“ YiPN
pDi
M , and pδi P pDi

M denote any vector in
pDi
M . Similarly, define qDi

M pφq, qD˚
M pφq, andqδi.

Using Lemma 4, Algorithm 1 computes optimalpδ˚ to
maximizeLVR for a fixed defender actionφ P Φ [17]. In
each iteration, the Algorithm selects one node as a pivot node.
For a pivot node, sayi, a set of target nodespδi is determined
by selectingM nodes with largest∆jppνiq (seeAlgorithm 5
in Appendix). ApplyingLemma 4, the final nodal voltage at
the current pivot nodei is given bypνi ´∆pδippνiq. The attack
strategy that maximizesLVR is the setpδk corresponding to a
pivot nodek that admits maximum voltage bound violation
when PVs specified bypδk are compromised.

The following proposition shows thatAlgorithm 1 is op-
timal for DNs with identicalr{x ratio.

Algorithm 1 Optimal Attack for Fixed Defender Response

1: pδ˚pφq ÐOPTIMAL ATTACKFORFIXEDRESPONSE(φ)
2: procedure OPTIMAL ATTACKFORFIXEDRESPONSE(φ)
3: Compute state vector for no attackpxp0, φq P pX
4: for i P N do
5: pδi Ð GETPIVOTNODEOPTIMAL ATTACKpi, spdq, and

calculate∆pδippνiq using Lemma.4
6: Calculate new voltage valuepν 1

i Ð pνi ´ ∆pδippνiq
7: end for
8: k Ð argmaxiPN Wipνi ´ pν 1

iq
9: return pδ Ð pδk (Pick pδk which maximally violates(1))

10: end procedure
11: procedure GETPIVOTNODEOPTIMAL ATTACK(i, spd)
12: pJ,Ngi ,m

1q Ð OPTIMAL ATTACKHELPER(i, spd)
13: Randomly chooseM ´m1 nodes fromNgi to form N 1

14: return pδi P DM such thatpδik “ 1 ðñ k P J Y N 1

15: end procedure

Proposition 3. For a fixedφ P Φ, let pδ be the optimal attack
vector computed byAlgorithm 1. Thenpδ is also an optimal
solution ofryADsa. Same holds forr}ADsa.

Proof:
Note that for fixedφ P Φ, maximizing pLppδ, φq (resp.

qLppδ, φq) is equivalent to maximizingLVRppδ, φq (resp.
LVRpqδ, φq). Let pδ˚ be the optimal solution toryADsa.

Case (i).LVRppδ˚, φq “ 0. ThenAlgorithm 1 computespδ˚

trivially, because0 “ LVRppδ˚, φq ě LVRppδ, φqq ě 0. Hence,
LVRppδ, φqq “ LVRppδ˚, φq “ 0.

Case (ii).LVRppδ˚, φq ą 0. Let pνjpδ, φq denote the nodal
voltage at nodej after the attackδ. Since,pδ “ pδk , for some
pivot nodek P N (seeAlgorithm 1), pδk maximally violates
(1) over all pδi, i.e.,

@ i P N , νk ´ pνkppδk, φq ě νi ´ pνippδi, φq, (28)

where pδi is the optimal pivot node attack as computed by
Algorithm 1 for nodei, i.e.,

@ i P N , @ δ P DM νi ´ pνippδi, φq ě νi ´ pνipδ, φq. (29)

Let i “ argmaxjPN Wjpνj´pνjppδ˚, φqq`. Furthermore, since
LVRppδ˚, φq ą 0,

LVRppδ˚, φq “ Wipνi ´ pνippδ˚, φqq (30)

6 LVRppxppδ, φqq “ LVRppxppδk, φqq
p10aq“ maxjPN Wjpνj ´ pνjppδk, φqq`

p28q
ě Wipνi ´ pνippδi, φqq

p29q
ě Wipνi ´ pνippδ˚, φqq p30q“ LVRppxppδ˚, φqq.

Furthermore, for a fixedφ LLCppxppδ, φqq “ LLCppxppδ˚, φqq.
Hence, pLppxppδ, φqq ě pLppxppδ˚, φqq.

We now show that the effect of PV compromise at either
node j or k on the nodei depends upon the locations of
nodesj andk relative to nodei. The following Proposition
states that if nodej is upstream to nodek relative to the
pivot nodei (j ăi k), then the PV compromise at nodek
impacts onpνi more than the PV compromise on nodej; and
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if j “i k, then the effect of PV compromise atj, k on pνi is
identical.

Proposition 4. [17] ConsiderryADsa. Let nodesi, j, k P N
where i is the pivot node,spdj “ spdk, and spj “ spk. If
j ăi k (resp.j “i k), then∆jppνiq ă ∆kppνiq (resp.∆jppνiq “
∆kppνiq).

Same holds true forr}ADsa.

Prop. 4 implies that, broadly speaking, compromising
downstream PVs is advantageous to the attacker than com-
promising the upstream PVs. The following illustrative exam-
ple suggests that compromising PVs by means of clustered
attacks are more beneficial to the attacker than distributed
attacks.

Example1. Consider theryADsa with M “ 2 instantiated
on the DN in Fig. 2. Assume that all loads and PVs are
homogeneous, all lines have equal impedances, i.e.,@i P
N , sci “ sca, sp

d
i “ spda, spi “ spa, zi “ za. By Prop. 2,

the outputs of all the PVs are fixed and identical to each
other.

Let α “ 2pRepz̄apsca ´ spdaqqq, and β “
2pRepz̄apRepspdaq ` jpImpspdaq ` spaqqqq. Then ν values
for different attack vectors are given in TableI. The optimal
attack compromises nodesi andm, which is a cluster attack.

Attacked Nodes νm νj νk
H ν0 ´ 23α ν0 ´ 13α ν0 ´ 40α

ti, mu ν0 ´ 23α ´ 9β ν0 ´ 13α ´ 2β ν0 ´ 20α ´ 4β

tj, mu ν0 ´ 23α ´ 6β ν0 ´ 13α ´ 4β ν0 ´ 20α ´ 3β

tk, mu ν0 ´ 23α ´ 7β ν0 ´ 13α ´ 2β ν0 ´ 20α ´ 6β

tg, ju ν0 ´ 23α ´ 2β ν0 ´ 13α ´ 5β ν0 ´ 20α ´ 2β

td, ku ν0 ´ 23α ´ 4β ν0 ´ 13α ´ 2β ν0 ´ 20α ´ 7β

TABLE I: ν vs Different Attack Combinations

Consequently, our results (see §IV) on security strategy in
Stage 1 show that the defender should utilize his security
strategy to deter cluster attacks.

D. A greedy approach for solvingryADs, r}ADs and rADs
We now utilize results for sub- and master-problems to

solve rADs. Consider the following assumption:
(A1) DN has identicalr{x ” K ratio, i.e., @ j P N ,Kj “
K. In this subsection, we first present an algorithm to solve
ryADs andr}ADs under(A1). Then we propose its extension, a
greedy iterative approach, for solvingrADs under the general
case.

Under (A1), the optimal defender set-pointspspd˚ and
qspd˚ are as specified byProp. 2, and hence fixed. For fixed
optimal pspd˚ (resp. qspd˚), we can solve the problemryADs
(resp.r}ADs) by using Benders Cut method [20]. However,
we present a computationally faster algorithm,Algorithm 2
that computes attacker’s candidate optimal attack vectorspD˚

M

(resp. qD˚
M ) usingLemma 4.

Lemma 5. Under (A0), (A1), for any two fixedpγ1, pγ2 P Γ,
pD˚
M p“

pspd˚, pγ1
‰q “ pD˚

M p“
pspd˚, pγ2

‰q.
Proof: The computation ofpD˚

M pφq depends on∆jppνiq
values which depend only onspd, and not on pγ (see
Lemma 4).

Given pspd P S, it can be checked thatAlgorithm 2, in fact,
computespDi

M p pspdq, and pD˚
M p pspdq “ Ť

iPN
pDi
M p pspdq is the

set of candidate optimal attack vectors.
Algorithm 2 computes the set of attackspD˚

M p pspd˚q, and
iterates over eachpδ P pD˚

M p pspd˚q. In each iteration, since
spd “ pspd˚ is fixed, the sub-problemryADsd reduces to an LP
over the variableγ. Let pγ˚ppδq be the solution to the LP. Then,
pφ˚ppδq “ “

pspd˚, pγ˚ppδq
‰

is the optimal solution toryADsd.
Choosingpδ˚ “ argmaxpδP pD˚

M

Lppxppδ, pφ˚ppδqqq, Algorithm 2

computes the solution to beppδ˚, pφ˚ppδ˚qq to the problem
ryADs. Similarly, we can useAlgorithm 2to solver}ADs under
(A1).

Algorithm 2 Solution toryADs for DNs with identicalr{x
1: ppδ˚, pφ˚, pLq Ð GREEDY-ONE-SHOT()
2: procedure GREEDY-ONE-SHOT()
3: pL “ 0, pδ˚ “ 0, pγ˚ “ 1, pspd˚ as inProp. 2
4: Let pDi

M “ GETPIVOTNODEOPTIMAL ATTACKSETpi, pspd˚q
5: pD˚

M “
Ť

iPN
pDi
M

6: For eachpδ P pD˚
M , computepγ˚ppδq by solvingryADsd as an

LP in γ. Let pφ˚ppδq “ pspd˚, pγ˚pδqqq

7: Let pδ˚ :“ argmax
pδP pD˚

M

pLppxppδ, pγ˚ppδq, pspd˚qq

8: return pδ˚, pφ˚ “ pφ˚ppδ˚q, pL “ pLppxppδ˚, pφ˚qq
9: end procedure

10: procedure GETPIVOTNODEOPTIMAL ATTACKSET(i, spd)
11: pJ,Ngi ,m

1q Ð OPTIMAL ATTACKHELPER(i, spd)
12: return Di

M Ð tpδ P DM |pδk “ 1 iff k P J Y
N 1, whereN 1 Ď Ngi and |N 1| “ M ´ m1u

13: end procedure

Theorem 3. Under (A0), (A1), let ppδ, pφq be a solution
computed byAlgorithm 2. Then ppδ, pφq is also an optimal
solution toryADs. Similar result holds forr}ADs.

Proof: Under(A1), spd “ pspd˚ is fixed (Prop. 2). Then,
for any γ P Γ, by Lemma 5andProp. 3, the optimal attack
pδ˚ belongs to the setpD˚

M p pspd˚q. Algorithm 2 iterates over
the attack vectorsδ P pD˚

M , computespγ˚pδq by solving an
LP, and calculates the losspLppxpδ, pφ˚pδqqq. Finally, it returns
the solution corresponding to the maximum loss. Similarly,
Algorithm 2 also computes the optimal solution forr}ADs.
Proposition 5. Under (A0), (A1), pD˚

M p pspd˚q “ qD˚
M p qspd˚q.

Proof: Under (A1), the PV set-points are as specified
by Prop. 2. Hence, pspd˚ “ qspd˚. Furthermore,@ j P
N ,∆jpqνiq “ p1`ǫq∆jppνiq. Hence, the sequence of partitions
of the nodes for every pivot node is the same in both the LPF
and theǫ-LPF model. Hence,pD˚

M p pspd˚q “ qD˚
M p qspd˚q.

We, now, describe an iterative greedy approach to compute
the solution torADs that uses the optimal attacker strategy
for fixed defender response (referAlgorithm 1).

Algorithm 3 initializesφc to the optimal defender response
under no attack. In the first step of the iterative approach,
the attacker assumes some defender responseφc to be fixed,
and computes the optimal attack strategyδcpφcq using the
greedyAlgorithm 1. Then in the second step, the defender
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computes a new defense strategyφc optimal for fixed δc
by solving the SOCP, and updates the defender response. If
Lpxpδc, φcqq ą Lpxpδ˚, φ˚qq, then the current best solution
pδ˚, φ˚q is updated topδc, φcq. Then in the next iteration, the
attacker uses this new defender response to update his attack
strategy, and so on and so forth. If thisδc has already been
discovered in some previous iteration, the algorithm termi-
nates successfully, withδ˚, φ˚ as the required optimal attack
plan, and the corresponding optimal defense. The algorithm
terminates unsuccessfully if the number of iterations exceeds
a maximum limit.

Algorithm 3 Iterative Algorithm for Greedy Approach
1: pδ˚, φ˚,Lq Ð GREEDY-ITERATIVE()
2: procedure GREEDY-ITERATIVE
3: Let δ˚ Ð 0,L˚ Ð 0, δc Ð 0, iter Ð 0,Υ Ð

H, φc, φ
˚,Υ

4: For δ “ δc computeφ˚ by solving SOCPrADsd (Lem. 3)
5: φc Ð φ˚,L˚ Ð Lprxpδ, φ˚qq
6: for iter Ð 0, 1, . . . ,maxIter do
7: δc Ð OPTIMAL ATTACKFORFIXEDRESPONSE(φc)
8: {{ If δc previously found, successfully terminate
9: if δc P Υ then return δ˚, φ˚

10: else Υ “ Υ Y tδcu {{ Store the current best attack
vector

11: Computeφc by solving SOCPrADsd Lem. 3
12: if Lprxpδc, φcqq ą L˚ then
13: δ˚ Ð δc, φ

˚ Ð φc,L
˚ Ð Lprxpδ, φ˚qq

14: end if
15: end for {{ Maximum Iteration Limit reached
16: Returnδ˚, φ˚,L˚ {{ Return the last best solution
17: end procedure {{ Algo terminates unsuccessfully

Note that in each iteration, the size ofΥ increases by 1,
hence, the algorithm is bound to terminate after exhausting
all possible attack vectors.

Prop. 5andThm. 3 can be applied for anyu P UB, since
if the DN has identicalr{x ratio, spd are also fixed.

IV. SECURING DERS TO WORST-CASE ATTACKS

In this section, we consider the defender problem of opti-
mal security investment in Stage 1. For simplicity, we restrict
our attention to DNs that satisfy the following assumption:
(A2) Symmetric Network. For every i P N , for any two
nodesj, k P Ci, Λj andΛk are symmetrically identical about
nodei. That is,zj “ zk, |Cj | “ |Ck|, scnomj “ scnomk , νj “
νk, Wj “ Wk, andCj “ Ck. However, all the PVs are
homogeneous, i.e.,@ j, k P N , spj “ spk.

Let B be a fixed security budget. Letu, ru P UB, u ‰ ru,
be two security strategies. Strategyu is more securethan
strategyru (denoted byu ď ru) under NPF (resp. LPF), if
Lu ď Lru (resp. pLu ď pLru). Finally, we ask what is the best
security strategyu˚, such that foru “ u˚, Lu is minimized.
Fig. 6shows two possible security strategiesu1 (Fig. 6a) and
u2 (Fig. 6b). If we compareu1 andu2, while transitioning
from u1 to strategyu2, 3 secure nodes inΛ2 subtree go up
a level each, while 3 secure nodes inΛ3 subtree go down a
level each. Then, betweenu1 andu2, which strategy is more
secure? In this section, we provide insights about optimal

security strategies under(A2), which help show thatu2 is
more secure thanu1.

0

1

3

4 5 6 7

8 9 10 11 12 13 14 15

2

4

(a) Security strategy u1.
Nspu1q “ t3, 5, 6, 7, 10, 11u.

0

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(b) Security strategy u2.
Nspu2q “ t2, 4, 5, 6, 12, 14u.

b

a

i
′

i
′′

d

c

0
Vulnerable nodes

Secure nodes

(c) A possible security strategy on a tree DN.

Fig. 6: Different defender security strategies.

Algorithm 4 computes an optimal security strategyr zDADs
under(A0)-(A2). It initially assigns all nodes to be vulnera-
ble. Then, PV nodes are secured sequentially in a bottom-up
manner towards the root node. If the security budget is not
adequate to secure a full level, the nodes in that level are
uniformly secured and the remaining nodes are not secured.

Theorem 4. Assume(A0), (A1), (A2). Let pu˚ be the security
strategy computed byAlgorithm 4. Furthermore, withu “
pu˚, let p pψ˚, pφ˚q be the solution computed byAlgorithm 2.
Then,ppu˚, pψ˚, pφ˚q is an optimal solution tor zDADs. Similar
result holds forr ~DADs.
Consider any security strategyu P UB such that

u “

„
u1

1

u2

2

. . . 1
a

. . . 0
b

. . . uN

N


. (31)

Constructru from u as follows:

ru “

„
u1

1

u2

2

. . . 0
a

. . . 1
b

. . . uN

N


, (32)

i.e., rui “ ui @ i P N zta, bu. Similarly, let δ P DM puq
such thatδa “ 0, δb “ 1; and constructrδ from δ as in (32)
such thatrδi “ δi @ i P N zta, bu. Note that,rδ P DM pruq.

Algorithm 4 Optimal security strategy
1: pu˚ ÐOPTIMAL SECURIRTYSTRATEGY()
2: procedure OPTIMAL SECURIRTYSTRATEGY()
3: ns Ð 0, h Ð H , pu Ð 0 {{ Initialize all nodes to

vulnerable nodes
4: For eachh P r1, 2, . . . ,Hs, let αh Ð

řH

j“h |Nj |
5: Let h1 Ð argmaxhPr1,...,Hs:αhěM h

6: Let @ h P rh1, . . . , Hs,@ i P Nh, pui Ð 1.
7: Let N 1

h1 Ď Nh1 be a set of uniformly chosenM ´ αh1`1

nodes on levelh1.
8: For eachi P N 1

h1 , pui Ð 1
9: return pu

10: end procedure

In the following sequence of propositions, we compare the
security strategiesu and ru under various conditions. (See
proofs of the propositions6, 7, and8 in the Appendix.)
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Proposition 6. Assume(A0), (A1), (A2). Let u P UB (resp.
ru P UB) be as in(31) (resp.(32)). If b P Λa, thenu ď ru.

Starting with any strategyu1 P UB , Prop. 6can be applied
recursively to obtain a more secure strategyu P UB : u1 ď u,
which has the property that if a nodei is secure, then all its
successor nodes (i.e. all nodes in subtreeΛi) are also secured
by the defender, i.e.,

@ i P N , ui “ 1 ùñ @ j P Λi, uj “ 1 (33)

Proposition 7. Assume(A0), (A1), (A2). Let u P UB (resp.
ru P UB) be as in(31) (resp.(32)). Let Au “ tpi, jq P N ˆ
N | ui “ 1, uj “ 0, hi ě hj ` 1u. If u satisfies(33), and
pa, bq P argmaxpi,jqPAu

|Pi X Pj |, thenu ď ru.

Again, starting with any strategyu1 P UB, we can apply
Prop. 7recursively to obtain a more secure strategyu P UB :
u1 ď u, in which, if a node is secure, then all nodes in lower
levels are also secured by the defender, i.e.,

@ i, j P N , pui “ 1 andhj ą hiq ùñ uj “ 1 (34)

Thus,Prop. 7is a generalization ofProp. 6.

Proposition 8. Assume(A0), (A1), (A2). Letu P UB be such
that u satisfies(34). Let h1 “ argminpD aPNh:ua“1q h. If the
secure nodes on levelh1 are uniformly distributed over the
level h1, i.e., |Cj X Ns| P tT, T ` 1u, @ j P Nh1 , where
T P Z`, thenu is an optimal security strategy, i.e.,@ ru P
UB, ru ď u.

Prop. 8implies that there exists an optimal security strategy
in which there is a top-most level with PV nodes that are
uniformly chosen for security investment.

Proof of Thm. 4: Let u˚1 P UB be any optimal security
strategy. Fromu˚1, by sequentially applyingProp. 6, Prop. 7,
andProp. 8, we can obtain an optimal security strategyu˚2

that satisfies(33), (34), and has the top-most level with secure
nodes having uniformly distributed secured nodes.

Now, let pu˚ be the output ofAlgorithm 4. Since in
Algorithm 4, nodes are secured from the leaf nodes to the
root node level-by-level,pu˚ also satisfies(33) and (34).
The Algorithm 4 also secures the top-most level with secure
nodes with uniformly distributed secured nodes,pu˚ is the
same asu˚2 upto a homomorphic transformation.

Finally, we argue that under(A0)-(A2), pu˚ can be com-
bined with previous results to obtain full solution ofr zDADs.
Under (A1), the defender set-points are fixed. Since,pu and
pspd˚ are both fixed, we can compute the set of candidate
optimal attack vectorspD˚

M , by considering only vulnerable
PVs. Then for a fixedδ P pD˚

M , the sub-problemryADsd
reduces to an LP inγ. Hence, Algorithm2 solves for
p pψ˚, pφ˚q, the optimal solution ofryADs for u “ pu, by
iterating overδ P pD˚

M . The strategy profileppu˚, pψ˚, pφ˚q,
thus obtained, is an optimal solution to for DNs that satisfy
(A0), (A1), (A2). Similarly, we can solver ~DADs.

Propositions6 and 7 capture the attacker preference for
the downstream PVs, whereas Prop.8 capture the attacker
preference for cluster attacks. Hence, the optimal security
strategy has distributed secured nodes.

Let us revisit the security strategiesu1 andu2 in Fig. 6:
which one is better? Firstly, we use symmetricity(A2) to
argue that securing nodes 2, 4, 5 is equivalent to securing
nodes 3, 6, 7. Then,Λ3 subtree ofu2 has more distributed
secured nodes thanΛ2 in u1. Hence, strategy 2 is better.
Thm. 4 will, of course, give the optimal security strategy
pu˚ in which nodesNsppu˚q “ t8, 9, 10, 12, 13, 14u, or other
homomorphic strategies ofpu˚.

We state without proof the following Proposition:

Proposition 9. 1) Under (A0), (A1), (A2), any attack
vector in pD˚

M , can be considered as a homomorphic
transformation of an element of a subset ofpD˚

M which
is at most of size|Nv| ď N .

2) Under (A0), (A1), if @ i, j, k P N such thatspj ą 0

and spk ą 0, ∆jppνiq ‰ ∆kppνiq, then
∣

∣

∣

pD˚
M

∣

∣

∣
“ N .

Due to Thm. 4 and Prop. 9, we can compute the optimal
solution forr zDADs, in OppolypNqq. Same holds forr ~DADs.

V. COMPUTATIONAL STUDY

We describe a set of computational experiments to evaluate
the performance of the iterative Greedy Approach (GA) in
solving rADs; see Algorithm3. (We again assumeu “ 0.)
We compare the optimal attack strategies and optimal de-
fender set-points obtained from GA with the corresponding
solutions obtained by conducting an exhaustive search (or
Brute Force(BF)), and by implementing the Benders Cut
(BC) algorithm. We refer the reader to [10], [20], for the
BC algorithm adopted here5. The abbreviations BC-LPF and
BC-NPF denote the solutions obtained by applying optimal
attack strategies fromryADs to LPF and NPF, respectively.
Importantly the experiments illustrate the impact of attacker’s
resource (M ) and defender’s load control capabilityγ on the
optimal value ofrADs. The code for this computational study
can be obtained by contacting the authors.

Network Description:Our prototypical DN is a modi-
fied IEEE 37-node network; seeFig. 1. We consider two
variants of this network: homogeneous and heterogeneous.
Homogeneous Network (GI ) has 14 homogeneous PVs
with randomly assigned node locations, loads with equal
nominal demand, and lines with identicalr{x ratio. TableII
(in appendix) lists the parameter values ofGI . Heteroge-
neous Network (GH ) has same topology asGI , but has
heterogeneous PVs (chosen at random from 3 different PV
apparent power capabilities), heterogeneous loads, and lines
with different r{x ratios. The location of PV nodes, the total
nominal generation capacity, and the total nominal demand
in GH is roughly similar to the corresponding values forGI .
PV output vs M. Fig. 7 compares the PV output (sg) of
uncompromised PVs that form part of defender response in
GI and GH for different M . When M “ 0 (no attack),

5In the BC-implementation of [20], the inner sub-problem is in LP. To
apply BC toryADs, the non-linearity due to(4) is addressed by fixing the
set-points according toProp. 2. In our implementation, we choose=xspd˚ “

arctanKavg, whereKavg :“

ř
pi,jqPE

rjř
pi,jqPE

xj
is the ratio of sum of resistances

over all the lines to the sum of reactances over all the lines.
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there are no voltage violations, and the defender minimizes
LLL by producing morepg ą qg. For M ą 0, the voltage
bounds are violated. To limitLVR, the defender responds
by increasingqg; and the output of uncompromised PVs lie
in a neighborhood ofθ “ arccot r{x. For the case ofGH

(Fig. 7b), the set-points of the uncompromised PVs are more
spread out for voltage regulation over differentr{x ratios
(Prop. 2). In Fig. 7b the three semi-circles correspond to
the uncompromised PVs with different apparent power ca-
pabilities. These observations on defender response validate
Prop. 2.
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Fig. 7: Reactive Power Vs Real Power Output of PVs.

GA vs. BC-NPF, BC-LPF and BF. Fig. 8 compares results
obtained fromBC-NPF, GA, and BF on GI . We consider
two cases with the maximum controllable load percentage
γ “ 50 % andγ “ 70 %. For each case, we varyM from 0
to |Nv| “ 14; and also varyW{C ratios to capture the effect
of different weights on the termsLVR andLLC.

In our study,W{C “ 2 roughly corresponds to the maxi-
mumW{C ratio for which the defender does not exercise load
control, because the cost of doing load control is too high,
i.e., at optimum defender response,γ˚ “ 1N . In contrast,
W{C “ 18 roughly corresponds to the minimumW{C ratio
for which the defender exercises maximum load control (i.e.
γ˚ “ γ). We also consider an intermediate ratio,W{C “ 10.
L vs. M. Both LVR and LLC are zero when there is no
attack. AsM increases, one or bothLVR and LLC start
increasing. This indicates that as more PVs are compromised,
the defender incursLVR, and in addition, he imposes load
control to better regulate the DN. Indeed, after the false set-
points (THm.2) are used to compromise PVs, the net load
in the DN increases. Without load control, the voltages at
some nodes drop below the lower bounds, increasingLVR.
Hence, the defender exercises load control, and changes the
set-points of uncompromised PVs such thatLVR ` LLC is
minimized.

Perhaps the more interesting observation is that asM

increases,LLC first increases rapidly but then flattens out.
This can be explained as follows. Depending on theW{C
ratio, there is a subset of downstream loads that are beneficial
in terms of the value that defender can obtain by controlling
them. That is, if the loads belonging to this subset are
controlled, the decrease inLVR outweighs the increase in
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Fig. 8: LVR andLLC vs M for GI . The results ofGH are
more or less similar to those ofGI .

LLC, hence, the defender imposes load control on these
downstream loads to reduce theLVR ` LLC. In contrast,
controlling the loads outside this subset, increasesLLC more
than the decrease inLVR. Hence, the defender satisfies the
demand at these loads fully. Hence,LLC increases until load
control capability in the subset of beneficial downstream
loads to the defender is fully exhausted. The size of this
subset depends on theW{C ratio. The higher the ratio, the
larger the size of the subset of the loads beneficial to the
defender. Hence, the value ofM , at which theLLC cost
curve flattens out, increases as theW{C ratio increases.

The cost curve forLVR also shows interesting behavior
as the number of compromised PV nodes increases (Fig. 8a
and8b). The marginal increase inLVR for every additional
PV compromised reduces asM increases. This observation
can be explained by the fact that the attacker prefers to
compromise downstream nodes over upstream ones (Prop. 4).
Initially, the attacker is able to rapidly increaseL by compro-
mising more beneficial downstream nodes. However, as the
downstream nodes are eventually exhausted, the attacker has
to target the relatively less beneficial upstream nodes. Hence,
the reduction in marginal increase ofLVR.

In LVR plots, for smallM , W{C “ 2 curves are lower
than theW{C “ 10 curves which in turn are lower than the
W{C “ 18 curves. But, for largerM , this order reverses.
TheM where these lines cross each other decreases, as the
γ increases. The reason is for some intermediate value ofM ,
the defender exhausts the load control completely, and then
theL increases at rates in the same order of increasingW{C
values. Finally, forγ “ 0.7, theM where defender exhausts
the load control completely is smaller than that inγ “ 0.5.

The Greedy Approach (GA) is better than Benders Cut
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(BC) method because GA calculates the exact impact the PV
compromises will have on a pivot node. BC overestimates
the impact of PV compromises that are not the ancestors
to the pivot nodes. Therefore, the feasible region probed
by BC at every iteration is larger than the feasible region
probed in the corresponding iteration of GA. Hence, although
GA converges to a solution in 2-3 iterations, BC in most
cases does not converge to the optimal solution even in 200
iterations.

VI. CONCLUDING REMARKS

We focused on the security assessment of tree-like DNs for
an adversary model in which multiple DERs (in this case, PV
nodes) are compromised. The adversary can be a threat agent,
who can compromise the operation of DERs, or a malicious
insider in the control center. We considered a composite loss
function that primarily accounts for the attacker’s impacton
voltage regulation and induced load control. The security
assessment problem is formulated as a three-stage Defender-
Attacker-Defender (rDADs) sequential game. Our main tech-
nical contributions include: (i) Approximating therDADs
game that has nonlinear power flow model and mixed-integer
decision variables with tractable formulations based on linear
power flow; and (ii) characterization of structural properties
of security investments in Stage 1 and the optimal attack in
Stage 2 (i.e., the choice of DER node locations and the choice
of false set-points).

Future work includes: (a) Extending Theorems 1 and 2
to cases where reverse power flows are permissible (e.g.,
when the DN is not under heavy loading conditions and the
attacker can cause DER generation to exceed the demand);
(b) Designing greedy algorithm to solve [AD] and proving
optimality guarantees of Theorems 3 and 4 for DNs with
heterogeneousr{x ratio, and heterogeneous PVs or loads.
Finally, we believe that the ideas proposed in this paper are
also applicable to security assessment of water DNs under
threats that can cause multiple sources to be compromised
and lead to sudden loss in hydraulic head and/or loss of
supply to consumers.
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This sequence is used to compute the optimal attacks that
maximize voltage bounds violation at nodei.

Algorithm 5 Helper procedures

1: procedure OPTIMAL ATTACKHELPER(i, pspd)
2: For eachj P N compute∆jppνiq usingLemma 4
3: Create a sequence of setstN i

j uNj“1 such that

i) N “
ŤN

j“1
N i

j , @ 1 ď j, k,ď N, N i
j X N i

k “ H

ii) if 1 ď l ď N, j, k P N i
l , then∆jppνiq “ ∆kppνiq, and

iii) if 1 ď l ă m ď N, j P N i
l , k P N i

m, then∆jppνiq ą
∆kppνiq.

4: Let, for j P r1, . . . , Ns, mi
j Ð

∣

∣N i
j

∣

∣, M i
j :“

řj´1

k“1
mi

k.
5: Let gi Ð argminjPr1,...,Ns,Mi

j
ěM j.

6: J Ð
Ťgi´1

j“1
, Ngi , m

1 “ M ´M i
gi´1

7: return J , Ngi , m
1

8: end procedure

Proof of Lemma 3: pA0q1 implies that a feasible
solution exists forrADsd. Since, X Ă XCPF, a feasible
solution rx P XCPF also exists forrĄADsd. Let prφ, rℓq denote
the decision variables forrĄADsd. Note that, for a fixedψ, rx
is an affine inprφ, rℓq, and can be computed using(5a) and
(5b).

Now, L is convex in rφ (because theLVR is a maximum
over affine functions, and bothLLC and LLL are affine in
prφ, rℓq. Also,Φ is a convex compact set. Further, for a fixedφ,
L is strictly increasing inrℓ (because,LVR is non-decreasing
in rℓ asrν is affine decreasing inrℓ; LLC does not change withrℓ;
LLL is strictly increasing inℓ). From Thm. 1 [18], prφ˚, rℓ˚q
can be computed using a SOCP. To argue thatrℓ˚ satisfy
(5c), assume for contradiction thatD pi, jq P E , s.t. rℓ˚

j ą
∣

∣

∣

rS˚
j

∣

∣

∣

2{rν˚
i

. Then, constructpφ˚, rℓ1q such that@ j P N : j ‰
i, rℓ1

j “ rℓ˚
j , and rℓ1

i “ ∣

∣

∣

rS˚
j

∣

∣

∣

2{rν˚
i

. Since@ pj, kq P E ,
∣

∣

∣

rSk

∣

∣

∣

2{rνj

is strictly decreasing inrℓi, @ pj, kq P E : rℓ1
k ě ∣

∣

∣

rS˚
k

∣

∣

∣

2{rν˚
j

ą
∣

∣

∣

rS1
k

∣

∣

∣

2{rν1
j. Hence, one can further minimize the loss function

by choosing a new feasible solutionpφ˚, rℓ1q, thus violating
the optimality ofprφ˚, rℓ˚q.

Proof of Prop. 2:
Let pdi, θiq denote pspdi in the polar coordinates, i.e.,di “

∣

∣

∣
pspdi

∣

∣

∣
, θi “ = pspdi .

For δi “ 0, pspi “ pspdi . Then from(18a),

@ j P N , pνj “ pν1
j ` 2dipRij cos θi `Xij sin θiq, (35)

where pν1
j “ ν0 ´ 2

ř
kPN ,k‰j RepZ̄jkskq ´ 2RepZ̄ijscjq.

Note thatpν1
j does not depend onpdi, θiq.

It is clear from(35) that pνj is greater ifθi P r0, π{2s than
if θi P r´π{2, 0s. Furthermore, the impedances are positive.
Hence,@ j, Bdipνj “ 2pRij cos θi ` Xij sin θiq ą 0. Hence,
BdiLVR ą 0. But, from (4), di ď spi. Hence,d˚

i “ spi.
Further,Bθipνj “ 2dip´Rij sin θi `Xij cos θiq.

Bθipνj

$
’&
’%

ą 0 if θi P r0, arccotpRij{Xijqq
“ 0 if θi “ arccotpRij{Xijqq
ă 0 if θi P parccotpRij{Xijqq, π{2s

Now, arccotK ď arccotpXij{Rijq ď arccotK. Hence,

@ j P N , Bθipνj
#

ă 0 if θi ą arccotK

ą 0 if θi ă arccotK
(36)

Suppose, for contradiction,θ˚
i R rarccotK, arccotKs. Hold-

ing all else equal, forθi “ rθi, let pνprθiq andLVRprθiq be the
pν and LVR. From (36), for any rθi P rarccotK, arccotKs,
pνprθiq ą pνprθ˚

i q. Since, LVR ą LLL ě 0, LVRprθiq ă
LVRprθ˚

i q, violating the optimality ofrθ˚
i . Furthermore, under

identical r{x ratio, K “ K “ K, which implies θi “
arccotK.

Proof of Lemma 4: Let ∆jpspjq denote the change in
the set-point of PVj after it is compromised. By Theorem2,
∆pspjq “ spdj ´ p0´ jspjq “ spd ` jspj ; and by linearity in
(18a),

∆jpνiq “ 2RepZ̄ij∆jpspjqq “ 2RepZ̄ijpspdj ` jspjqq.
Again, by invoking the linearity in(18a), (26a) follows.
Similarly, one can show(25b) and(26b).

Proof of Prop. 4: From (18a), whenδj “ 1, i.e., the
PV j is compromised, only the power supplied at nodej
changes.

6 ∆jppνiq “ 2RepZ̄ijspdj ` jspjq.
Due to linearity, the first part ofProp. 4holds true. Now,

j ăi k ùñ Pi X Pj Ă Pi X Pk ùñ Zij ă Zik.

6 ∆jppνiq “ 2RepZ̄ijpspd

j ` jspjqq

ă 2RepZ̄ikpspd

k ` jspkqq “ ∆kppνiq
Similarly, we can prove the case forj “i k.

Under theǫ-LPF model,∆jpqνiq “ 2p1`ǫqRepZ̄ijpspd

j ` jspjqq.
The rest of the proof follows similarly.

Proof of Prop. 6: Let pδ˚, φ˚q and prδ˚, rφ˚q, denote
the optimal solutions ofryADs with u “ pu (resp.u “ ru).
(A1) ùñ spd˚ is fixed (Prop. 2). Hence,φ˚ depends only
on δ˚, and notu. Then, letφ˚pδq denote optimal defender
response toδ. We want to showpLru ď pLu.

Case rδ˚
a “ 0. Then rδ˚ P DM puq. Thus,

pLru “ pLppxpru, rδ˚, φ˚prδ˚qqq “ pLppxpu, rδ˚, φ˚prδ˚qqq ď
pLppxpu, δ˚, φ˚pδ˚qqq, where the inequality follows by
optimality of δ˚.

Case rδ˚
a “ 1. Let δ P DM puq : δa “ 0, δb “ 1,@i P

N zta, bu, δi “ rδ˚
i . Then, δ P DM puq. Since b P Λa,

@ i P N , a ĺi b. Hence, byProp. 4, @ i P N , ∆bppνiq ě
∆appνiq. Then, by Lemma4, for fixed φ, ∆δppνq ě ∆rδ˚ ppνq.
Hence, pLru “ pLppxpru, rδ˚, φ˚prδ˚qqq ď pLppxpru, rδ˚, φ˚pδqqq ď
pLppxpu, δ, φ˚pδqqq ď pLppxpu, δ˚, φ˚pδ˚qqq “ pLu. Here, the
first (resp. last) inequality follows due to optimality ofφ˚prδ˚q
(resp.δ˚). Hence,u ď ru.

Proof of Prop. 7: Let c “ argmaxpiPPaXPbq hi, be the
lowest common ancestor ofa andb. Let i1, i2 P Cc : a P Λi1

andb P Λi2 . FromThm. 3, we know that the optimal attack
δ˚ will be a pivot node attackpδi for some node, sayi P N .
Let N 1 “ Λi1 Y Λi2 .
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Case i P N 1. Now uj “ 1 @ j P Λi1 zΛai1 Y tau by maxi-
mality of |Pa X Pb|. Similarly,uj “ 0 @ j P Λdi2 Ytbu. Thus,
@ j P Λi1 s.t. uj “ 0 there exists a separate nodek P Λi2

such thatj andk are homomorphic, anduk “ 0 (seeFig. 6c).
Hence, the subtreeΛi2 is more vulnerable than the subtree
Λi1 , and it will be more beneficial for the attacker to target
a pivot node inΛi2 . Now, i P Λi2 , and @ i P Λi2 , a ăi b.
We obtain, byProp. 4, ∆appνiq ă ∆bppνiq.

Case i R N 1. Then a “i b, and byProp. 4, ∆appνiq “
∆bppνiq.

We now want to show thatpLru ď pLu. The rest of the proof
follows along the same lines as the proof ofProp. 6.

Proof of Prop. 8: Similar to the proof ofProp. 7.


