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This paper presents a nonequilibrium thermodynamic model for the relaxation of a local, isolated
system in nonequilibrium using the principle of steepest entropy ascent (SEA), which can be
expressed as a variational principle in thermodynamic state space. The model is able to arrive
at the Onsager relations for such a system. Since no assumption of local equilibrium is made, the
conjugate fluxes and forces, which result, are intrinsic to the subspaces of the system’s state space
and are defined using the concepts of hypoequilibrium state and nonequilibrium intensive properties,
which describe the non-mutual equilibrium status between subspaces of the thermodynamic state
space. The Onsager relations are shown to be a thermodynamic kinematic feature of the system
independent of the specific details of the micro-mechanical dynamics. Two kinds of relaxation
processes are studied with different constraints (i.e., conservation laws) corresponding to heat and
mass diffusion. Linear behavior in the near-equilibrium region as well as nonlinear behavior in the
far-from-equilibrium region are discussed. Thermodynamic relations in the equilibrium and near-
equilibrium realm, including the Gibbs relation, the Clausius inequality, and the Onsager relations,
are generalized to the far-from-equilibrium realm. The variational principle in the space spanned by
the intrinsic conjugate fluxes and forces is expressed via the quadratic dissipation potential. As an
application, the model is applied to the heat and mass diffusion of a system represented by a single
particle ensemble, which can also be applied to a simple system of many particles. Phenomenological
transport coefficients are also derived in near-equilibrium realm.

I. INTRODUCTION

The study of nonequilibrium relaxation processes
including chemical kinetics, mass diffusion, and heat
diffusion is typically accomplished using approaches
based on microscopic mechanics or thermodynamics.
With the former, system state space is spanned by
microstates and the governing equation is based on
the dynamics of classical mechanics (e.g., molecule
dynamics [1] or kinetic theory [2]), quantum me-
chanics (e.g., nonequilibrium Green’s functions [3] or
the quantum Boltzmann equation, i.e., the Uehling-
Unlenbeck-Boltzmann equation [4–6]) or a stochastic
process (e.g., Monte Carlo simulation of the Ising model
[7]). These approaches provide complete information
of the microscopic process such as individual particle
collisions or quantum state scattering. However, the
large amount of very detailed information required
inevitably results in large computational burdens, which
limit the applicability of these approaches.
Approaches based on thermodynamics, on the other

hand, are not similarly burdened and are able to generally
capture the features of the relaxation process is of interest
via, for example, the Onsager relation. Approaches
of this type include nonequilibrium thermodynamics
[8, 9], linear response functions and the fluctuation-
dissipation theorem [10], stochastic thermodynamics
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[11], extended irreversible thermodynamics [12], etc.
The thermodynamic features captured can be regarded
as a coarse graining of the microscopic dynamics or
as a pattern in ensemble evolution [13, 14], which
computationally is more efficient. However, most
of these approaches have limited or no applicability
in the far-from-equilibrium realm, since the local or
near-equilibrium assumption is needed or analytical
solutions are only available at steady state. In
addition, their governing equations are phenomenological
or stochastic in nature and, thus, do not have a first-
principle basis. To address these issues and push the
application of thermodynamic principles further into
the nonequilibrium realm, it is of great importance to
find a general and simple description of nonequilibrium
state corresponding to a thermodynamic pattern of the
microscopic description, to fundamentally define the
macroscopic properties of any thermodynamic state (i.e.,
extensive or intensive properties for both equilibrium
and nonequilibrium states), and to use a thermodynamic
governing equation based on first principles.
Steepest-entropy-ascent quantum thermodynamics

(SEAQT), which is a first-principle, thermodynamic-
ensemble based approach, addresses all of the issues
raised above, providing a governing equation able to
describe the nonequilibrium process from an entropy
generation viewpoint. The description of system
state is based on the density operator of quantum
mechanics or probability distribution in state space
of classical mechanics. The macroscopic properties
of entropy, energy, and particle number, which are
well defined for any state of any system [15], are
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used to develop the governing equation and describe
system state evolution. Recently, this description has
been simplified via the concept of hypoequilibrium
state [16], which captures the global features of the
microscopic description for the relaxation process.
In addition, the concept of nonequilibrium intensive
properties introduced in [16] based on the concept of
hypoequilibrium state enables a complete description of
the nonequilibrium evolution of state when combined
with the set of nonequilibrium extensive properties.
Unlike the intensive property definitions of other
nonequilibrium thermodynamic approaches (definitions
which require local-equilibrium, near-equilibrium,
or steady state assumption or a phenomenological
basis), the definitions in the SEAQT framework are
fundamental and available to all nonequilibrium states
and are especially suitable for the description of the
evolution in state of relaxation processes. Both of these
concepts enables the generalization of many equilibrium
(or near-equilibrium) thermodynamic relations such as
the Gibb’s relation, the Clausius inequality, and the
Onsager relations into the far-from-equilibrium realm.
To describe the SEAQT framework, the paper starts

with a derivation in Secs. II.A and B of the SEAQT
relaxation dynamics starting from the geometry of
system state space. Some useful mathematical features
of the relaxation process are then presented in Sec. II.C,
enabling the definition of the concepts of hypoequilibrium
state and nonequilibrium intensive properties. As
an alternative to the geometric derivation from state
space, the relaxation dynamics of SEAQT can also be
derived using a variational principle in system state
space as is done in Sec. II.D. Section III then follows
with a discussion of mass diffusion in a local, isolated
system in nonequilibrium. Subsequently, the transport
equations, the Gibbs relation, and the Onsager relations
are generalized for the nonequilibrium relaxation process,
and the dissipation potential is given to complete the link
from the variational principle in system state space to
that for the conjugate fluxes and/or forces [9]. Section
IV discusses the process of heat diffusion by choosing
a set of system constraints different from those used
for mass diffusion. In Sec. V, the SEAQT model is
applied to the study of the heat and mass diffusion
of a simple system consisting of ideal gas (hydrogen),
which can be represented by a single-particle ensemble.
Linear behavior in the near-equilibrium realm provides
the phenomenological transport equations, and higher-
order, nonlinear behavior in the near-equilibrium realm
is also studied. Finally, section VI concludes the paper
with some final comments.

II. THEORY: SEA-QT EQUATION OF MOTION

The basic framework of SEAQT is introduced in this
section. This framework describes the relaxation process
of a local, isolated system in nonequilibrium based on

thermodynamic concepts. To begin with, the equation
of motion for such a system is derived in Sec. II.A from
the geometric principle of steepest entropy ascent. This
is followed in Sec. II.B by a discussion of the kinetics
and dynamics of the relaxation process, which enable the
study of the thermodynamic trajectory regardless of the
details of the microscopic interactions. A description of
nonequilibrium state and its evolution for the relaxation
process is then given in Sec. II.C using the concepts
of hypoequilibrium state and nonequilibrium intensive
properties. Finally, in Sec. II.D, a presentation of the
variational principle of steepest entropy ascent is used
to derive the SEAQT equation of motion for the local
system.

A. SEAQT equation of motion for an isolated

system

Based on the discussion by Grmela [13, 14, 17] and
Beretta [18, 19], the general form of a nonequilibrium
framework is a combination of both irreversible relax-
ation and reversible symplectic dynamics. If written in
the generalized form of the Ginzburg-Landau equation
[13, 19], the equation of motion takes the following form:

d

dt
γ(t) = XH

γ(t) + Y H
γ(t) (1)

where γ(t) represents the state evolution trajectory,
XH

γ(t) and Y H
γ(t) are functions of the system state γ(t)

and represent the reversible symplectic dynamics and
irreversible relaxation dynamics, respectively. In the
SEAQT framework, the system state is represented by
the density operator ρ̂, XH

γ(t) follows the Schrödinger

equation, and Y H
γ(t) is derived from the SEA principle.

Thus,

dρ̂

dt
=

1

i~
[ρ̂, Ĥ] +

1

τ(ρ̂)
D̂(ρ̂) (2)

where D̂ is the dissipation operator determined via a
constrained gradient in Hilbert space. A metric tensor
must be specified in the derivation of this dissipation
term, since it describes the geometric features of the
Hilbert space [18]. τ is the relaxation time, which
represents the speed of system evolution in Hilbert space.
In the application here to the modeling of heat and

mass diffusion, the system is restricted to the class
of dilute-Boltzmann-gas states in which the particles
have no quantum correlation between eigenstates, and
are independently distributed [20]. Such states can be
represented by a single-particle density operator that
is diagonal in the basis of the single-particle energy
eigenstates. The Hilbert space metric chosen here is
the Fisher-Rao metric, which is uniform in different
dimensions of Hilbert space. Under these conditions, the
symplectic Schödinger term in the equation of motion
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vanishes. Thus, the focus is this paper is on the
irreversible relaxation process only.
A group of energy eigenlevels {ǫi, i = 1, 2, ...} is

determined from the system Hamiltonian. The state
of the system can then be represented by a probability
distribution among the energy eigenlevels {pi, i =
1, 2, ...}, which is the diagonal terms of the density
operator. Using the Fisher-Rao metric of the probability
space {pi, i = 1, 2, ...}, one can define the distance
in probability space, which can be used as the state
distance. Equivalently, the square root of the probability
distribution {xi, i = 1, 2, ...} can be used to represent the
system state with the result that the Fisher-Rao metric
of the probability space becomes the Euclidean metric in
square root of the probability space of {xi, i = 1, 2, ...}.
The later representation is used in the paper. Both are
expressed as follows:

State: {pi, i = 1, 2, ...},

Distance: dl =
1

2

√

∑

i

pi(
d ln pi
dθ

)2dθ (3)

State: {xi, i = 1, 2, ...},

Distance: dl =

√

∑

i

(dxi)2 (4)

where dl is the distance between p(θ + dθ) and p(θ) or
x(θ+ dθ) and x(θ), and θ is a continuous parameter. An
extensive property of the system can then be defined as
a function of the state {xi} such that

I =
∑

i

x2
i (5)

E = 〈e〉 =
∑

i

ǫix
2
i (6)

S = 〈s〉 =
∑

i

−x2
i ln(x

2
i ) (7)

where 〈. . . 〉 means the ensemble average. The von
Neumann formula for entropy is used, because as
shown in [21], it has all the properties required by
thermodynamics. The gradient of a given property in
state space is then expressed by

gI =
∑

i

∂I

∂xi
êi =

∑

i

2xiêi (8)

gE =
∑

i

∂E

∂xi
êi =

∑

i

2ǫixiêi (9)

gS =
∑

i

∂S

∂xi
êi =

∑

i

[−2xi − 2xi ln(x
2
i )]êi (10)

where êi is the unit vector for each dimension.
Furthermore, for an isolated system, the system satisfies
the conservation laws for probability and energy, i.e.,

I =
∑

i

x2
i = 1, E =

∑

i

ǫix
2
i = constant (11)

The principle of SEA upon which the equation of
motion is based is defined as the system state evolving
along the direction that at any instant of time has the
largest entropy gradient consistent with the conservation
constraints. The equation of motion is given by

dx

dt
=

1

τ(x)
gS⊥L(gI ,gE) (12)

where τ , which is a function of system state, is the
relaxation time which describes the speed at which the
state evolves in state space in the direction of steepest
entropy ascent. L(gI , gE) is the manifold spanned by gI

and gE , and gS⊥L(gI ,gE) is the perpendicular component
of the gradient of the entropy to the hyper-surface that
conserves the probability and energy. It takes the form
of a ratio of Gram determinants expressed as

gS⊥L(gI ,gE) =

∣

∣

∣

∣

∣

∣

gS gI gE

(gS , gI) (gI , gI) (gE , gI)
(gS , gE) (gI , gE) (gE , gE)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(gI , gI) (gE , gI)
(gI , gE) (gE , gE)

∣

∣

∣

∣

(13)

where (. . . , . . . ) denotes the scalar product of two vectors
in state space. The explicit form of Eq. (13) for {pj} is,
thus, [20]

dpj
dt

=
1

τ

∣

∣

∣

∣

∣

∣

−pj ln pj pj ǫjpj
〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 〈e〉
〈e〉 〈e2〉

∣

∣

∣

∣

(14)

where

〈e2〉 =
∑

i

ǫ2ix
2
i , 〈es〉 =

∑

i

−ǫix
2
i ln(x

2
i ) (15)

The state representation and the equation of motion can
be simplified by combining degenerate energy eigenlevels
[16]. The system is defined by a group of different
energy eigenlevels {ǫi, i = 1, 2, ...} and their degeneracy
{ni, i = 1, 2, ...}. The state of the system is described by
a probability distribution among the energy eigenlevels
{pi, i = 1, 2, ...} or square root of the probability {xi, i =
1, 2, ...}. As a result, the equation of motion changes to

dpj
dt

=
1

τ

∣

∣

∣

∣

∣

∣

−pj ln
pj

nj
pj ǫjpj

〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 〈e〉
〈e〉 〈e2〉

∣

∣

∣

∣

(16)

where the properties are defined by

〈e〉 =
∑

i

ǫix
2
i , 〈s〉 =

∑

i

−x2
i ln(

x2
i

ni
)

〈e2〉 =
∑

i

ǫ2ix
2
i , 〈es〉 =

∑

i

−ǫix
2
i ln(

x2
i

ni
) (17)
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B. Nonequilibrium evolution: Kinetics and

Dynamics

In general, the equation of motion for a system with a
given group of conservation laws has the form:

dpj
dt

=
1

τ(p)
Dj(p) (18)

whereDj(p) is calculated from the conservation laws and
the principle of steepest entropy ascent [22]. Specifically,
it takes the form of Eq. (14) for an isolate system yielding
to mass and energy conservation.
Since for a given initial state of the system, the

nonequilibrium thermodynamic path of state evolution
is uniquely solved from this equation, Eq. (18), the path
can be used to define a new parameter τ̃ given by

dτ̃ =
1

τ(p(t))
dt, or τ̃ =

∫

path

1

τ(p(t′))
dt′ = τ̃ (t)

(19)
where τ̃ is called the dimensionless time. With this time,
the independent variable for the equation of motion can
be changed so that

dpj
dτ̃

= Dj(p) (20)

The solution of this equation is written as:

pj = pj(τ̃ ) (21)

Independent of how the relaxation time τ depends on
the real time t and the state, the equation of motion can
always be transformed to Eq. (20) with the parameter
change defined by Eq. (19). Furthermore, the evolution
of system state will follow the same function [Eq. (21)]
in τ̃ . Physically, this means that the system follows
the same trajectory in state space. By using this
transformation, the kinetics and dynamics of the system
are separated. The former is found via Eqs. (20) and
(21) and result in the trajectory in state space based on
the parameter τ̃ or a constant relaxation time τ . The
dynamics are found via Eq. (18) and the functional
dependence τ = τ(p) [Eq. (19)] and result in the
trajectory in state space based on the real time t.
In the discussion on mass diffusion (Sec. III) and heat

diffusion (Sec. IV), it is shown that the kinetics (or its
associated trajectory) of the nonequilibrium relaxation
results in a generalized Gibbs relation and the Onsager
relations in the far-from-equilibrium realm and in linear
phenomenological equations in the near-equilibrium
realm, which are independent of the dynamics. The
kinetics appears as a system feature or pattern of the
thermodynamics in the sense of the GENERIC [13, 14,
17], which is an ensemble or group feature. Information
about the mechanical details (e.g., how the particles
interact in the system mechanically) can be included
in the dynamics (e.g., by how τ is chosen) when the
state evolution in time t is studied. The focus of this

paper, however, is on the thermodynamic features of the
nonequilibrium relaxation so that τ is set equal to 1.
More discussion on how τ is chosen using the mechanics
and on the dynamics of nonequilibrium is left for a future
paper.

C. Nonequilibrium state and state evolution

description: Hypoequilibrium

The solution of the SEA-QT equation of motion
exhibits some good properties, which allows for a
complete description of nonequilibrium state and the
general definition of nonequilibrium temperature. More
discussion is presented in reference [16], and an example
is provided below. The energy eigenlevels of the system
{ǫi, i = 1, 2, 3...} with degeneracy {ni, i = 1, 2, 3...} can
be divided into to M sets {ǫKi } (degeneracy {nK

i }) with
i = 1, 2, 3, ..., K = 1, 2, ...,M , so that the state space of
the system (the Hilbert space) H can be represented by
the sum of M subspaces HK , with K = 1, 2, ...,M , i.e.,

H =
M
⊕

K=1

HK (22)

To be complete, M can be infinite. The system state
can be represented by the distributions in M subspace
energy eigenlevels {pKi ,K = 1, ...,M}. If the probability
distribution in one subspace, for example, the Kth
subspace yields to the canonical distribution of parameter
βK , the temperature of the Kth subspace is defined to
be TK = 1/βK . Given a way to divide the energy
eigenlevels, if the system probability distributions in the
M subspaces are all canonical distribution, the state
of the system is called a Mth-order hypoequilibrium
state [16], which can be described uniquely by the
total probability in each subspace ({pK =

∑

pKi ,K =
1, ...,M}) and the temperature of each of the subspaces
({TK ,K = 1, ...,M}). If the initial state of the system is
a Mth-order hypoequilibrium state then

pKi (t = 0) =
pKnK

i

ZK(βK)
e−βKǫKi , i = 1, 2, 3, ... (23)

where kb is the Boltzmann constant, ZK(βK) is the
partition function of subspace K at temperature TK . A
more general form to represent any nonequilibrium state
is given in [22] using the language of quantum mechanics.
Li and von Spakovsky [16] have proven that the system
retains a Mth-order hypoequilibrium state throughout
the nonequilibrium relaxation process if it initial starts
out in such a state. The solution to Eq. (18), thus,
becomes

pKi (t) =
pK(t)

ZK(βK(t))
nK
i e−βK(t)ǫKi , i = 1, 2, 3, ... (24)

As a result, each subspace has temperature defined
throughout the entire nonequilibrium relaxation process.
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This result applies to an isolate system with probability
and energy conservation. For a system with a different set
of conservation laws, a similar relation exists. However,
the general proof is left for a future paper. The proof for
a system with heat diffusion only is given in the Appendix
A.

D. Local variational principle in thermodynamic

state space

According to Beretta [20], the equation of motion can
be derived from a local variational principle, which can be
regarded as the variational form of the steepest entropy
ascent principle, i.e.,

Maximize: Ṡ(ẋ) = (ẋ,gS) subject to

Ė = (ẋ,gE) = 0, İ = (ẋ,gI) = 0, (ẋ, ẋ) = ξ(x)

with δẋ 6= 0, δx = 0 (25)

The third constraint on ẋ indicates that only the
direction of ẋ is of interest. This variational principle
is in microscopic state space, which contrasts with the
variational principle in the space spanned by conjugate
fluxes and forces presented later for the Onsager
relations.

III. THEORY: DIFFUSION IN A

NONEQUILIBRIUM SYSTEM

In the next two sections, Secs. III and IV, two
interactions are studied with the SEAQT framework.
The theory for mass diffusion in a local, isolated system
in nonequilibrium is presented in this section, Sec. III.
The Gibbs relation, the entropy generation for a non-
quasi-equilibrium process, and the Onsager relations are
derived based on the concept of hypoequilibrium state
and intensive properties. The variational principle using
conjugate forces is given at the end of Sec. III.

A. Equation of motion for mass diffusion

The mass (or probability) diffusion across energy
eigenlevels (or across subspaces) can be studied for an
isolated system in nonequilibrium. Using Eq. (14),
one energy eigenlevel in the Kth subspace yields to the
following equation of motion:

dpKj
dt

=
1

τ
(−pKj ln

pKj
nK
j

− pKj
A2

A1
+ ǫjp

K
j

A3

A1
) (26)

where

A1 =

∣

∣

∣

∣

1 〈e〉
〈e〉 〈e2〉

∣

∣

∣

∣

, A2 =

∣

∣

∣

∣

〈s〉 〈e〉
〈es〉 〈e2〉

∣

∣

∣

∣

, A3 =

∣

∣

∣

∣

〈s〉 1
〈es〉 〈e〉

∣

∣

∣

∣

(27)

Summation over all energy eigenlevels in the
Kthsubspace yields the evolution of the probability
in the Kth subspace, represented by pK , namely,

dpK

dt
=

1

τ
(−pK ln pK + pK〈s̃〉K − pK

A2

A1
+ pK〈ẽ〉K A3

A1
)

(28)
where 〈 ˜. . .〉K is the specific property in theKth subspace.
To calculate the specific property, the probability
distribution in the Kth subspace is found from

pK ≡
∑

j

pKj , p̃Kj ≡
pKj
pK

(29)

where pK is the particle number in the Kth subspace.
The specific property in the Kth subspace is then
expressed as

〈ẽ〉K ≡
∑

j

ǫKj p̃Kj (30)

〈s̃〉K ≡ −
∑

j

p̃Kj ln
p̃Kj
nK
j

(31)

B. Particle number and temperature evolution

when the initial state is a hypoequilibrium state

If the system is in a Mth-order hypoequilibrium state,
the probability evolution yields Eq. (24). For simplicity,
the following definition is made:

αK = lnZK − ln pK (32)

With this definition, the probability evolution of one
energy eigenlevel is given by

pKi (t) =
pK(t)

ZK(βK(t))
nK
i e−βK(t)ǫKi

= nK
i e−αK(t)−βK(t)ǫKi (33)

αK and βK are nonequilibrium intensive properties of the
Kth subspace, corresponding to the extensive properties
pK and EK ≡ pk〈ẽ〉K . Furthermore, by defining

α =
A2

A1
, β = −A3

A1
(34)

the particle number and energy evolution of the Kth
subspace can be acquired from Eq. (26), i.e.,

dpK

dt
=

1

τ
pK(αK − α) +

1

τ
pK〈ẽ〉K(βK − β) (35)

d〈e〉K
dt

=
1

τ
pK〈ẽ〉K(αK − α) +

1

τ
pK〈ẽ2〉K(βK − β)(36)

From Eqs. (24) and (26), the intensive properties αK

and βK obey the evolutions (see Appendix B for the
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derivation)

dαK

dt
= − 1

τ
(αK − α) (37)

dβK

dt
= − 1

τ
(βK − β) (38)

The authors prove that α and β have the physical
meaning of intensive properties from measurements of
a nonequilibrium state [23]. At stable equilibrium, the
intensive properties in any subsystem obey the following
relations:

α(t = teq) = αK(t = teq) = αeq (39)

β(t = teq) = βK(t = teq) = βeq (40)

C. Gibbs relation, entropy generation for a

non-quasi-equilibrium process, and the Onsager

relations in the nonlinear realm

Differential changes of the extensive properties in the
Kth subspace are written as

dEK =
∑

i

d(ǫKj pKj ) (41)

dSK =
∑

i

d

dt
(−pKj ln

pKj
nK
j

) =
∑

i

(− ln
pKj
nK
j

− 1)
dpKj
dt

(42)

where EK and SK ≡ pK〈s̃〉K are the energy and entropy
in the Kth subspace, respectively.
When a system is in a Mth-order hypoequilibrium

state and undergoes a pure relaxation process, a relation
for property evolution in one subspace is acquired by
using relation of Eq. (33), namely,

dSK

dt
=
∑

(ǫKj βK+αK−1)
dpKj
dt

= βK dEK

dt
+(αK−1)

dpK

dt
(43)

The proof of this relation for one subspace applies to
any differential changes (not only the time derivative).
Thus, a generalization of the Gibbs relation to the Kth
subspace of a system in nonequilibrium, is expressed by

dSK = βKdEK + (αK − 1)dpK (44)

Thus, from the Gibbs relation at stable equilibrium
written as

dS =
1

T
dE − µ

T
dN (45)

the physical meaning of βK and αK is shown to be

βK =

(

∂SK

∂EK

)

pK

=
1

T k
(46)

αK − 1 =

(

∂SK

∂pK

)

EK

= −µK

T k
, µK =

(

∂EK

∂pK

)

SK

(47)

where TK is subspace temperature and µK is subspace
chemical potential with respect to subspace probability

pK . The total differential entropy change for the system,
which for a pure nonequilibrium relaxation process
corresponds to the entropy generation, is

dS =
∑

K

dSK =
∑

K

βKdEK +
∑

K

(αK − 1)dpK

=
∑

K

(βK − β)dEK +
∑

K

(αK − α)dpK (48)

where both energy (
∑

EK = 0) and probability (
∑

pK =
0) conservations have been applied. The Casimer
condition holds and JK

E = dEK/dt and JK
p = dpK/dt are

defined to be the internal fluxes of energy and probability
inside the system, while XK

p = βK−β and XK
E = αK−α

are the conjugate forces. The result is

σ(J,X) =
dS

dt
=
∑

K

XK
E JK

E +
∑

K

XK
p JK

p (49)

The Onsager relations are then acquired from Eqs. (35)
and (36) in the form of J = ΛX, where Λ is a symmetric
and positive definite operator. Thus,

JK
p =

1

τ
pKXK

p +
1

τ
EKXK

E (50)

JK
E =

1

τ
EKXK

p +
1

τ
〈e2〉KXK

E (51)

The quadratic dissipation potential using force represen-
tation [9, 24] is written as

Ξ(X,X) =
1

2
〈X,ΛX〉 = 1

2τ

∑

K

[pK(αK − α)2

+2EK(αK − α)(βK − β) + 〈e2〉K(βK − β)2] (52)

Using force representation, the variational principle is
given by

δ[σ(J,X) − Ξ(X,X)]J = 0, J = const, δJ = 0, δX 6= 0

(53)

where the σ(J,X) and Ξ(X,X) are given by Eqs. (49)
and (52). Furthermore, even though the following
constraints apply to the fluxes:

∑

K

JK
p = 0,

∑

K

JK
E = 0 (54)

The reciprocity seen in Eqs. (50) and (51) is
completely consistent with the Onsager theory since
according to Gyarmati [9], the validity of Onsager’s

reciprocal relations is not influenced by a linear

homogeneous dependence valid amongst the fluxes. Thus,
the physical interpretation given here is fully consistent
with other investigations [23] and does not require a
reformulation in terms of independent fluxes even though
this could be done. In addition, it is from the gradient
dynamics of the nonequilibrium relaxation process that
the entropy generation, the Onsager relations, and
the quadratic dissipation potential of a local, isolated
system in nonequilibrium have been derived using the
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geometric principle of SEA as well as the concepts
of hypoequilibrium state and nonequilibrium intensive
properties. Alternatively, the variational principle of
SEA in system state space can be used to arrive at these
relations as is done in [22] using the language of quantum
mechanics. Of course, these relations also correspond
to the variational principle in the space spanned by
conjugate forces and fluxes [9].

IV. THEORY: HEAT DIFFUSION IN A

NONEQUILIBRIUM SYSTEM

A local, isolated system in nonequilibrium with heat
diffusion only is considered in this section. This
requires a model with a different set of constraints (i.e.,
the probability redistribution is only allowed in each
subspace) then when only heat diffusion is considered.
The entropy change of the system and subspaces due to
heat diffusion for non-quasi-equilibrium process is given
and the relationship between the SEAQT equation of
motion and the phenomenological diffusion equation is
presented.

A. Equation of motion for heat diffusion

Different from previous forms of the equation of
motion, that for pure heat diffusion yields to a different
set of conservation equations. If the system is separated
into M subspaces with energy flow but no probability
flow across the subspaces, there are M + 1 conservation
laws. System probability conservation is replaced by
that for M individual subspaces. In Appendix A, it is
proven that the concept of hypoequilibrium state and
nonequilibrium temperature are also well defined under
these new constraints given by

IK =
∑

i

(xK
i )2 = pK , K = 1, 2, ...M (55)

E =
∑

i

ǫix
2
i = constant (56)

For simplicity, a second-order hypoequilibrium state is
studied first. The system is separated into 2 subspaces
(subspace a and subspace b) so that the equation of
motion takes the form

dpaj
dt

=
1

τ

∣

∣

∣

∣

∣

∣

∣

∣

paj s
a
j paj 0 ǫaj p

a
j

〈s〉a pa 0 〈e〉a
〈s〉b 0 pb 〈e〉b
〈es〉 〈e〉a 〈e〉b 〈e2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pa 0 〈e〉a
0 pb 〈e〉b

〈e〉a 〈e〉b 〈e2〉

∣

∣

∣

∣

∣

∣

(57)

where the contribution of each subspace to the total
property is defined by

〈s〉 = 〈s〉a + 〈s〉b, 〈s〉a =
∑

pai s
a
i , 〈s〉b =

∑

pbis
b
i(58)

〈e〉 = 〈e〉a + 〈s〉b, 〈e〉a =
∑

pai ǫ
a
i , 〈e〉b =

∑

pbi ǫ
b
i(59)

where

s
a(b)
j = − ln

p
a(b)
j

n
a(b)
j

= s̃
a(b)
j − ln pa(b), s̃

a(b)
j ≡ − ln

p̃
a(b)
j

n
a(b)
j

(60)
By defining

B1 =

∣

∣

∣

∣

∣

∣

pa 0 〈e〉a
0 pb 〈e〉b

〈e〉a 〈e〉b 〈e2〉

∣

∣

∣

∣

∣

∣

, Ba
2 =

∣

∣

∣

∣

∣

∣

〈s〉a 0 〈e〉a
〈s〉b pb 〈e〉b
〈es〉 〈e〉b 〈e2〉

∣

∣

∣

∣

∣

∣

Bb
2 =

∣

∣

∣

∣

∣

∣

〈s〉b 0 〈e〉b
〈s〉a pa 〈e〉a
〈es〉 〈e〉a 〈e2〉

∣

∣

∣

∣

∣

∣

, B3 =

∣

∣

∣

∣

∣

∣

〈s〉a pa 0
〈s〉b 0 pb

〈es〉 〈e〉a 〈e〉b

∣

∣

∣

∣

∣

∣

(61)

Eq. (57) can be simplified to

dpaj
dt

=
1

τ
(paj s

a
j − paj

Ba
2

B1
− ǫaj p

a
j

B3

B1
) (62)

Moreover, the equation of motion for the probability
distribution in one subspace can also be written in terms
of the normalized probability by dividing both sides of
Eq. (62) by pa so that

dp̃aj
dt

=
1

τ
(p̃aj s

a
j − p̃aj

Ba
2

B1
− ǫaj p̃

a
j

B3

B1
) (63)

Furthermore, if the system is in a second-order
hypoequilibrium initially so that each subspace has a
canonical distribution, Eq. (63) can be simplified further
to arrive at the form

dp̃aj
dt

=
1

τ
p̃aj [(s̃

a
j − 〈s̃〉a)− β(ǫaj − 〈ẽ〉a)] (64)

where s̃aj is defined by Eq. (60) and 〈s̃〉a and 〈ẽ〉a are
defined by Eqs. (30) and (31). The parameter β is given

β≡ B3

B1
=

paÃa
1β

a + pbÃb
1β

b

paÃa
1 + pbÃb

1

(65)

B1= papb(paÃa
1 + pbÃb

1) (66)

B3= papb(paβaÃa
1 + pbβbÃb

1) (67)

is a weighted average of the inverse temperatures of the
subsystems relative to the mole fractions and the energy
fluctuation (or nondimensional specific heat at constant
volume) of the subspaces written as

Ã
a(b)
1 = 〈ẽ2〉a(b) − (〈ẽ〉a(b))2 = −∂〈ẽ〉a(b)

∂βa(b)
=

C
a(b)
V

(βa(b))2
(68)

C
a(b)
V ≡ 1

kb

∂〈ẽ〉a(b)
∂T a(b)

(69)
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For the more general case of a Mth-order hypoequilib-
rium state and the system separated into M subspaces,
equation (63) remains the same but with

β ≡ B3

B1
=

∑M
K pKÃK

1 βK

∑M
K pKÃK

1

(70)

A given interaction type (e.g., heat diffusion) results
in a given relaxation time τ (see Sec. II.B), while the
ratio B3/B1 provides an average temperature based on
subspace mole fractions and energy fluctuations. At
stable equilibrium, β = βeq. Now, if one subspace R
is attached to a reservoir, the evolution of the other
subspaces behave according to the equation of motion,
Eq. (63), with βR constant. For example, only part
of the energy eigenlevels can absorb energy from the
environment. Mathematically, if subspace R yields to
one of two conditions,

∀K 6= R,CR
V ≫ CK

V , pR ≫ pK (71)

the relation β = βR holds and subspace K(6= R) yields
to the equation of motion.

dp̃Kj
dt

=
1

τ
p̃Kj [(− ln

p̃Kj
nK
j

− 〈s̃〉K)− βR(ǫKj − 〈ẽ〉K)] (72)

Note that in this equation, the only parameter related to
subspace R is the reservoir temperature βR. The energy
eigenstructure of subspace R plays no role!

B. Property of heat diffusion:

non-quasi-equilibrium process and second law of

thermodynamics

Based on Eq. (62), the total entropy and energy
evolution in one subspace can be determined via

dSK

dt
=

d〈s〉K
dt

= pK
d〈s̃〉K
dt

=
1

τ
pK(βK − β)βKÃK

1 (73)

dEK

dt
=

d〈e〉K
dt

= pK
d〈ẽ〉K
dt

=
1

τ
pK(βK − β)ÃK

1 (74)

Dividing Eq. (73) by (74) yields

dSK

dEK
=

dSK

dt
/
dEK

dt
= βK (75)

The equation is a generalized form of the differential
entropy transfer due to heat diffusion using the
nonequilibrium temperature for each subspace, i.e.,

dSK = βKdEK =
δQK

T
(76)

Moreover, Eq. (76) can applied to all kinds of
thermodynamic processes, and is not limited to quasi-
equilibrium processes. This argument comes from
the universal definition of nonequilibrium temperature
provided in this paper.

V. MODEL: COMPOSITE SYSTEM IN A

NONEQUILIBRIUM STATE

Interacting systems can form a composite nonequi-
librium system with the interaction resulting in the
nonequilibrium relaxation process for the composite.
Using the SEA equation of motion, the state evolution of
the composite system can be determined. Proper division
of this composite allows the subspaces to be viewed as
the interacting subsystems within the composite. The
behavior of each subsystem, thus, can be studied by
an analysis of the state evolution of each subspace.
In particular, if two individual subsystems involved in
an interaction both have canonical state distributions,
and each subsystems energy eigenvectors span one
subspace, the composite system is in a secondorder
hypoequilibrium state. On the other hand, if each
individual subsystem’s state cannot be described by a
canonical distribution, a higher-order hypoequilibrium
state will be required.
In the following section, (Sec. V.A), the SEAQT

framework using single particle energy eigenlevels is
applied to the study of a simple system. Section V.B
then explains the process of subspace division followed
in Sec. V.C by a comparison with the phenomenological
equations for mass and heat diffusion. In Sec. V.D, the
physical details of the system used are described. Finally,
in Sec. V.E, the coupling of mass and heat diffusion is
modeled and discussed.

A. Multi-particle classical simple system

Theoretically and in general, the SEAQT equation of
motion is applicable to multi-particle systems provided
energy eigenstructure of the system is known [23].
However, for a multi-particle classical simple system,
the energy eigenstructure of a single particle and its
associated equation of motion can be used to study the
system, since all of the particles (or particle groups)
have the same energy eigenlevels {ǫi, i = 1, 2, 3, ...}
and degeneracy {ni, i = 1, 2, 3, ...}. Thus, the system
state can be represented by the particle number (or
particle group number) at each energy eigenlevel {mi, i =
1, 2, 3, ...}. The mole fraction of particles at the ith
energy eigenlevel is given by yi = mi/

∑

mi. The
extensive property constraints of the system are then

M =
∑

i

mi = constant (77)

E =
∑

i

ǫimi = constant (78)

S =
∑

i

−mi ln
yi
ni

(79)

Dividing the constraints by the total particle number
∑

mi, the system state can be represented by the mole
fractions {yi, i = 1, 2, 3, ...}, which is equivalent to the
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single-particle probability distribution {pi, i = 1, 2, 3, ...}.
For an isolated system the constraints become

I =
∑

i

yi =
∑

i

pi = constant (80)

〈e〉 = E

M
=
∑

i

ǫiyi =
∑

i

ǫipi = constant (81)

〈s〉 = S

M
=
∑

i

−yi ln
yi
ni

=
∑

i

−pi ln
pi
ni

(82)

〈. . . 〉 represents an average specific property. The
constraints and equation of motion reduce to the single-
particle case (Eqs. (5) to (7) and (14)) when yi = pi, i =
1, 2, 3, ....
In general, a systems energy eigenstructure and

extensive properties are a function of the total particle
number of each constituent. This is also true of its
specific properties in the presence of a mass interaction
or chemical reaction if the system is partitioned and
not simple [25], since partitioning influences each
partition’s energy eigenstructure. Thus, for mass
diffusion, the framework outlined here requires an
invariant eigenstructure and as a consequence the simple
system assumption. With this assumption, particle
number no longer influences the specific properties. This
same assumption, however, is not required in the case of
heat diffusion since the total number of particles for each
system partition (i.e., subsystem) does not change.

B. Interacting systems

It is assumed that a group of observable operators
F̂ commuting with the Hamiltonian operator Ĥ exists.
The degenerate energy eigenlevels of the system can be
distinguished by eigenvalues of the observations of F̂ ,
which have values F1, F2, · · · , FM , so that the system
energy eigenlevels can be separated into M sets {ǫKi , i =
1, 2, 3, ...} with degeneracy {nK

i , i = 1, 2, 3...}, where
K = 1, · · · ,M . In each set, every energy eigenlevel
represents an eigenstate common to both F̂ and Ĥ with
the same eigenvalue of F̂ . Eigenstates in each of the sets
can be spanned into a subspace of the system state space
and can be designed as a subsystem.
Practically, by choosing the observable operator, the

system can be view as an composite system whose
subsystems can be properly arranged to study specific
phenomena. For the kinetics of a chemical reaction, F
can be chosen to be an observable operator of species,
whose eigenvalues are “Reactant” and “Product”. In
heat and mass diffusion, the observable operator F is
chosen to be the relative location to a partition, with
eigenvalue of “left” (left of the partition) and “right”
(right of the partition). The partition allows mass
and heat diffusion (see Fig. 1).To be more precise, it
is assumed that the de Brogli wavelength λ is much
smaller than the distance ∆L between the center of the

FIG. 1. For mass diffusion, mass flow and energy flow are
both allowed across the partition. For heat diffusion, only
energy flow is allowed.

subsystem on the “left” and that on the “right”. This
wavelength represents the classical limit, i.e.,

pv =
√

2mkbT , λ =
h

pv
=

h√
2mkbT

, ∆L ≫ λ (83)

where pv is the expectation value of the particle
momentum for a system at temperature T .

C. Phenomenological transport equation

With the assumption that the two subspaces of
the system are two subsystems at two positions, the
phenomenological transport equations of mass and heat
diffusion can be derived.

1. Mass diffusion

Using Eq. (28), the equations of motion for two
subspaces are written as

d ln pa

dt
= − 1

τ
ln pa +

1

τ
(〈s̃〉a − A2

A1
+ 〈ẽ〉aA3

A1
) (84)

d ln pb

dt
= − 1

τ
ln pb +

1

τ
(〈s̃〉b − A2

A1
+ 〈ẽ〉bA3

A1
) (85)

When the two subspaces of the system have the same
eigenstructure and temperature, subtracting Eq. (85)
from Eq. (84) yields

d

dt
(ln pa − ln pb) = − 1

τ
(ln pa − ln pb) (86)

Substituting the subspace probability (or mole fraction),
Eq. (87) into Eq. (86) results in

pa =
na

na + nb
pb =

nb

na + nb
(87)

d

dt
(ln

na

nb
) = − 1

τ
(ln

na

nb
) (88)

If the global mass distribution is continuous, and position
A and position B are close enough,

na = nb +∆n (89)
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which transforms Eq. (88) into

d

dt
(
∆n

nb
) = − 1

τ

∆n

nb
(90)

Ja(b) ≡ 1

2A

d

dt
(na − nb) = −na − nb

2τA
= − δx

2τA

dn

dx
(91)

where the approximation ln(1 + x) ≃ x for small
x has been used and higher-order terms dropped to
arrive at Eq. (90). In Eq. (91), δx is the distance
between two positions, A is the cross-sectional area of
the interacting surface, and Ja(b) is the flow of particle
number equal to (dna/dt)/A or (−dnb/dt)/A (hence the
division by 2 in Eq. (91)). Eq. (91) recovers Fick’s
law with the diffusion coefficient (diffusivity) given by
D = δx

2τA . The specific form of D is directly related to
the form of τ , which contains the detailed mechanical
information. The phenomenological linear equation can
be derived without the form of τ , which is a pure
thermodynamic feature or pattern of the nonequilibrium
relaxation process. In addition to results such as these
for the near-equilibrium realm, thermodynamic features
or patterns in the far-from-equilibrium realm can also be
studied using Eqs. (35) and (36) provided the initial state
is a hypoequilibrium state. For the case when it is not,
Eq. (14) can directly be used as is done, for example, in
[16].

2. Heat diffusion

For system in which the only interaction is that of heat
diffusion, Eq. (76) captures the energy flow between two
subsystems, i.e.,

Q̇ = J
a(b)
E = −κ′δxA

dT

dx
=

1

τ
pa(βa − β)Ãa

1

=
1

τ

papbÃa
1Ã

b
1

paÃa
1 + pbÃb

1

(βa − βb) (92)

where Q̇ is the rate of energy transferred, J
a(b)
E is

the heat flux, A is the cross-sectional area of the
interacting surface, T a and T b are temperature of the two
subsystems, and Eq. (65) has been substituted for β. Eq.
(92) recovers Fouriers law of heat diffusion (conduction).
The thermal conductivity per unit length κ′ and thermal
conductivity κ are expressed as:

κ′ =
1

τ

papbβaβbÃa
1Ã

b
1

paÃa
1 + pbÃb

1

1

A
, κ = κ′δx (93)

In the near-equilibrium region with the same constituent
in the two subsystems,

pa = pb =
1

2
, Ca

V = Cb
V = CV (94)

and the thermal conductivity per unit length and the
thermal conductivity are expressed in terms of the energy

fluctuation (or nondimensional specific heat at constant
volume) of the subspaces, i.e.,

κ′ =
1

2τ
CV

1

A
, κ =

1

2τ

δx
A
CV (95)

The above formulation is applicable for any kind
of interaction resulting in a flow of energy only.
Furthermore, if the heat and mass diffusion are affected
via the same kind of micro-mechanical interactions such
as the collision of particles, it can be assumed that the
same τ is applicable when the system is in the near-
equilibrium region near to the same stable equilibrium
point. In this case, κ = CV D. This last result is the
same as that found from classical transport theory and
is a direct consequence of the thermodynamic features of
the system minus any direct knowledge of the details of
the micro-mechanical interactions taking place.

D. Mass and heat diffusion of hydrogen

To model the mass and heat diffusion for a specific
case, a composite system of hydrogen is set up with two
subspaces corresponding to subsystems on two sides of a
partition. The energy eigenlevels of the two subsystems
together form the energy eigenlevels for the composite
system as a whole. Denoting the state space of the
subsystem on the “left” by Ha and that on the “right”
by Hb, the composite system state space H takes the
form

H = Ha ⊕Hb (96)

The available energy eigenvalues for one subspace (“left”
or “right”) are constructed from the energy eigenvalues
of each degree of freedom for translation and rotation,
i.e., from

ǫa(b) = ǫt,H2 + ǫr,H2 (97)

The translational energy eigenvalue ǫt uses the form of
the infinite potential well, while the rotational energy
eigenvalue ǫr uses the form of the rigid motor. These are
expressed as follow:

ǫt(nx, ny, nz) =
~
2

8m

(

n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)

(98)

ǫr(j,m) =
j(j + 1)~2

2I
(99)

where nx, ny, and nz are the quantum numbers for
the translational degrees of freedom, j and m are the
quantum numbers for the rotational degrees of freedom,
I is the moment of inertia and Lx, Ly, and Lz are
chosen based on mean-free-path of the particles in
each subsystems (e.g., the dimension of subsystem is
used for an ideal gas). The vibrational energy are
not included since the temperature in the study is
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below its characteristic temperature. For more discuss
on the vibrational energy, reader is refereed to [16].
The disassociated energy is not included by selection
of the proper energy reference. Each combination
of quantum numbers and position corresponds to one
energy eigenlevel in the subspaces (or subsystems). The
composite system energy eigenlevels are formed by all the
available energy eigenlevels of the “left” and the “right”.
A second-order hypoequilibrium state with the sub-

space division of “left” and “right” is chosen to be the
initial condition, which means that two subsystems are
in local equilibrium states. The non-quasi-equilibrium
process of mass and heat diffusion is studied using Eqs.
(26) and (62). For the case when the subsystems are not
in states of local equilibrium, the two subspaces can be
divided further. For example, if the “left” subsystem
is a Mth-order hypoequilibrium state, this subspace,
subspace a, can be divided into M subspaces according
to the initial condition. However, the evolution of each
subspace, regardless of whether or not the subsystem is
in a state of local equilibrium, yields to the same form of
the equations of motion, Eqs. (26) and (62). For the case
considered here, the initial condition is given by (23), i.e.,
by

p
a(b)
i (t = 0) =

pa(b)n
a(b)
i

Za(b)(βa(b))
e−βa(b)ǫ

a(b)
i (100)

The time evolution is acquired by solving Eqs. (26) and
(62). For a more general initial condition, such as that for
an infinite-order hypoequilibrium state, the equation of
motion can be solved using the density of states method
developed in [16].
The specific properties of the individual subsystems at

a given temperature and volume are given

Za(b)(βa(b), V ) = ZtZr = V (
m

2π~2βa(b)
)

3
2

2I

βa(b)~2

= CZV (βa(b))−5/2 (101)

〈ẽ〉a(b)(βa(b)) =
5

2
kbT

a(b) =
5

2βa(b)
=

CV

βa(b)
(102)

〈s̃〉a(b)(βa(b), V ) = βa(b)〈ẽ〉a(b) + lnZa(b)

= −5

2
lnβa(b) + lnV + Cs

= −CV lnβa(b) + lnV + Cs (103)

where CZ and Cs are constants determined from Eqs.
(101) to (103).

E. Mass and heat diffusion coupling

For mass diffusion with no temperature difference, as
shown in Eq. (38), the temperature difference remains
zero, and only the particle number difference changes
and Eq. (35) reverts to the linear transport equation
in the near-equilibrium realm. The more complex case

occurs when mass diffusion takes place in the presence
of a temperature difference is of interest in which case
coupling effects may be present.
The mass flow between two subsystems is determined

by subtracting the probability evolution of one [Eq. (35)]
from the other with the result that.

2Jb→a
p =

dpa

dt
− dpa

dt
=

1

τ
pa(αa − α) +

1

τ
pa〈ẽ〉a(βa − β)

− 1

τ
pb(αb − α) − 1

τ
pb〈ẽ〉b(βb − β) (104)

The coupling effects come from the differences in both
of the nonequilibrium intensive properties α and β.
To study the effect of temperature on the probability
(mass) flow, the two subsystems start from the same
initial probability (pa = pb = peq = 0.5) but different
temperatures. For the case of a perfect gas (i.e., ideal gas
with constant specific heats), the final stable equilibrium
temperature T eq is an average of the initial temperatures
of the two subsystems, namely,

T eq = (T a + T b)/2, ξ ≡ ∆T/T eq

T a = T eq +∆T, T b = T eq −∆T, (105)

Thus, Eq. (104) can be simplified to

Jb→a
p =

1

2τ
peq[(〈s̃〉a − 〈s̃〉b)− β(〈ẽ〉a − 〈ẽ〉b)] (106)

where 〈s̃〉a(b) and 〈ẽ〉a(b) are the specific entropy and
energy of subsystem a(b) defined by Eqs. (30) and (31).
Substituting Eqs. (102) and (103) yields

Jb→a
p =

1

2τ
peq[CV (ln

1

βa
− ln

1

βb
)− β(

CV

βa
− CV

βb
)]

=
CV p

eq

2τ
[(lnT a − lnT b)− 1

T
(Ta − Tb)] (107)

where T = 1/(kbβ) and the relation T/T eq = 1 + ξ2 +
O(ξ4) holds when pa = pb. The mass (probability) flux
due to a temperature difference is then written as

Jb→a
p =

dpa

dt

CV p
eq

τ
[
∆T

T eq
+

∆T 3

(T eq)3
− ∆T

T
]

=
4

3

CV p
eq

τ
(
∆T

T eq
)3 +O(λ5) (108)

and the temperature evolution, Eq. (38), reduces to

dT a

dt
= − 1

τ
∆T (109)

In the near-equilibrium region where only small
temperature differences exist (ξ ≪ 1), higher-order
nonlinear temperature difference effects, which influence
the probability (mass) flux, are negligible and can, thus,
be ignored. For this case, the temperature evolution
equation [Eq. (109)] and the probability (mass) evolution
equation [Eq. (108)] due to a temperature difference
are effectively decoupled. In far-from-equilibrium
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FIG. 2. Thermodynamic trajectories on a temperature-
particle number diagram. The initial probabilities for the
two subsystems are the same, while the initial temperature of
subsystem b is 1500K, while that for subsystem a is 300 K,
500 K, 800 K and 1100 K, respectively.

realm, however, higher-order temperature difference
nonlinearities may be significant in which case coupling
effects become important. In Fig. 2, the thermodynamic
trajectories of three different cases for which the initial
probabilities for the two subsystems are the same are
plotted on a temperature-particle number diagram. For
each case, the trajectory consists of two lines, one for
each subsystem, with each point on each line representing
an intermediate state for a given subsystem. The two
subsystems start from opposite ends of the two colored
lines and evolve towards the common end of the lines,
which is the state of stable equilibrium for the system.
As can be seen in the figure, when the temperature
difference is small, the maximum of the concentration
difference through the evolution approaches zero very
quickly. Since the lowest order terms of Eq. (108)
and (109) have different signs, the nonlinear effects of
temperature drive the probability (mass) flux towards
the higher temperature subsystem. This phenomena
can be explained from an entropy generation standpoint.
The higher temperature subsystem has a higher specific
entropy so that the probability (mass) flux towards it
results in entropy generation for the system. On the other
hand, the temperature evolution is explained by the fact
that the heat diffusion towards the lower temperature
subsystem increases the specific entropy in the lower
temperature subsystem, which in turn results in entropy
generation for the system.

When probability (mass) and temperature differences
exist at the same time, it is the combined effect (i.e.,
the coupling) from the probability and the temperature,
which determines the probability flow, since the lower
order terms of Eqs. (91) and (108) have opposite signs.
In Fig. 3, the trajectory for Case 1 shows a competition
effect between the probability and temperature, while the
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FIG. 3. (color online)Thermodynamic trajectories on a
temperature-particle number diagram for three cases. Case
1: pa = 0.8, pb = 0.2,T a = 1500 K, T b = 300 K (dashed-
dotted line); Case 2: pa = 0.8, pb = 0.2, T a = 900 K,
T b = 900 K (solid line); and Case 3: pa = 0.2, pb = 0.8,
T a = 1500 K, T b = 300 K (dashed line). The red lines are the
trajectory of subsystem a, and the blue lines are the trajectory
of subsystem b.
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FIG. 4. (color online) Entropy evolution and entropy
generation in dimensionless time of the three cases of Fig.
4.3. Case 1: pa = 0.8, pb = 0.2,T a = 1500 K, T b = 300 K
(dashed-dotted line); Case 2: pa = 0.8, pb = 0.2, T a = 900
K, T b = 900 K (solid line); and Case 3: pa = 0.2, pb = 0.8,
T a = 1500 K, T b = 300 K (dashed line). The black lines are
the entropy evolutions relative to the vertical axis on the left,
and the red lines are the entropy generation rates relative to
the vertical axis on the right.

trajectory of Case 3 shows a cooperation effect. Both of
these can be explained via the effects discussed relative
to Fig. 2. in addition, as a validation, Fig. 4 provides
the entropy generation rate for the three cases along with
the entropy trajectories. All exhibit monotonic increases
in the entropy over time. Comparing to the diffusion
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case (Case 2) without temperature difference, the case
for which the temperature effect is competitive (Case 1)
results in a greater variation in the entropy generation
rate, while the case for which the temperature effect is
cooperative results in a much steeper drop in the entropy
generation rate.

VI. CONCLUSION

This paper investigates the relaxation process of
local, isolated systems in nonequilibrium using the
SEAQT framework. The mass and heat diffusion
inside the system, which are the mass and energy
redistribution among the system subspaces (or equiv-
alent, energy eigenlevels), are described by defining
conjugate forces and conjugate fluxes using the concepts
of hypoequilibrium state and nonequilibrium intensive
properties. These thermodynamic features or patterns
of the nonequilibrium relaxation process are used to
generalize the Gibbs relation, the Clausius inequality,
and the Onsager relations to the far-from-equilibrium
realm and for quasi-nonequilibrium processes. The
variational principle in the spaces spanned by conjugate
forces and conjugate fluxes is derived from the variational
principle in system state space (i.e., from the principle
of steepest entropy ascent). As an application, the
mass diffusion of a simple system consisting of hydrogen
is studied. The study results in decoupled mass
and energy transport equations and their associated
phenomenological coefficients in the near-equilibrium
realm. In far-from-equilibrium realm, the coupling
phenomena and the nonlinear effects for mass and energy
transport are derived.

From this investigation it is evident that the
introduction of the concepts of hypoequilibrium state
and nonequilibrium intensive properties into the SEAQT
framework provides a novel and fundamental vantage
point from which to describe nonequilibrium states
and their evolution during a relaxation process. In
addition to the study presented here, additional work
using the density of states method developed in [16],
has permitted the wide application of the SEAQT
framework to the study of nonequilibrium, systems
in which complex, coupled reaction diffusion pathways
are modeled and compared with experiment [26, 27].
chemical reaction, mass and heat diffusion. As a
complement to the present paper, [23] continues our
study of the non-quasi-equilibrium process of two
interacting systems and completes the discussion of
Onsager type of investigation of the relaxation process
with both fluxes inside a nonequilibrium system and
those across different systems. All of these studies show
SEAQT to be a powerful approach applicable to the
study of nonequilibrium phenomena across all temporal
and spatial scales.

Appendix A: Hypoequilibrium for heat diffusion

In this appendix, it is proven that for a system with
heat diffusion only, if the initial state is given by Eq.
(23), the system evolution is also given by Eq. (24),
and the nonequilibrium temperature is well-defined. The
proof follows the same process as in [16] for a system with
probability and energy conservations. To show this, Eq.
(62) is reformulated such that

d

dt
ln

paj
na
j

=
1

τ
(− ln

paj
na
j

− Ba
2

B1
+ ǫaj

B3

B1
) (A1)

where it is noted that d(lnna
j )/dt is zero and that

B1, Ba
2 , and B3 are the same for all chosen energy

eigenlevels paj from subspace a and only a function of
the entire probability distribution at a given instant of
time. Subtracting the equations of motion for the ith
and Kth energy eigenlevels results in

d

dt
(ln

paj
na
j

− ln
pak
na
k

) = − 1

τ
(ln

paj
na
j

− ln
pak
na
k

) +
1

τ

B3

B1
(ǫaj − ǫak)

(A2)
Defining a new variable

Wjk =
1

ǫaj − ǫak
(ln

paj
na
j

− ln
pak
na
k

) (A3)

the time evolution of Wjk yields to the ordinary
differential equation

dx

dt
= − 1

τ
x+

1

τ

B3

B1
(A4)

If paj and pak are in the same subsystem for which the
initial probability distribution is a canonical one, i.e., if

paj (t = 0) = αana
j e

−ǫajβ
a

, pak(t = 0) = αana
ke

−ǫakβ
a

(A5)
then

Wjk(t = 0) =
1

ǫaj − ǫak
(ln

paj
na
j

− ln
pak
na
k

) = −βa (A6)

For ∀paj , pak in the same subsystem a, the time evolution
of Wjk yields to the same ordinary differential equation
(ODE) with the same initial value, namely,

dx

dt
= − 1

τ
x+

1

τ

B3

B1
, x = Wjk(t = 0) = −βa (A7)

so that the solution of Wjk is the same Wjk(t) = βa(t).
Therefore, the probability distribution in this subsystem
maintains the canonical distribution with the parameter
βa(t) given by

paj (t) = αa(t)nje
−ǫajβ

a(t) (A8)

In addition, the temperature of the subsystem at time t
is defined by

T a(t) =
1

kbβa(t)
(A9)
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Thus, for a system in a nonequilibrium state, the
hypoequilibrium temperature for each subsystem is
defined. This temperature can be the same or different
from that of any other subsystem. If a system is in a
Mth-order hypoequilibrium state, it remains at least of
order M throughout as well as after the evolution, and
the probability distribution of each subsystem remains
canonical.

Appendix B: Evolution of intensive properties

In this appendix, the evolutions of intensive properties
are given for the system with probability and energy
conservations. Eq. (26) is reformulated such that

d

dt
ln

pKj
nK
j

=
1

τ
(− ln

pKj
nK
j

− A2

A1
+ ǫaj

A3

A1
) (B1)

Using Eqs. (33) and (34) yields

d

dt
(−αK(t)−βK(t)ǫKi ) =

1

τ
(αK(t)+βK(t)ǫKi −α− ǫKj β)

(B2)

Subtracting the equations of motion for the ith and jth
energy eigenlevels results in

d

dt
(−βK(t)ǫKi + βK(t)ǫKj ) =

1

τ
(βK(t)ǫKi − βK(t)ǫKj )

− 1

τ
β(ǫKi − ǫKj ) (B3)

If i 6= j, dividing both sides by (ǫKi − ǫKj ) results in the

evolution for βK , namely,

dβK

dt
= − 1

τ
(βK − β) (B4)

Finally, subtracting Eq. (B4) from (B2) gives the
evolution for αK , i.e.,

dαK

dt
= − 1

τ
(αK − α) (B5)
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[24] Miroslav Grmela, Václav Klika, and Michal Pavelka,
“Reductions and extensions in mesoscopic dynamics,”
Phys. Rev. E 92, 032111 (2015).

[25] Elias P Gyftopoulos and Gian Paolo Beretta, Thermo-

dynamics: foundations and applications (Courier Corpo-
ration, 2005).

[26] Guanchen Li and Michael R. von Spakovsky, “Study of
the transient behavior and microstructure degradation of
a SOFC cathode using an oxygen reduction model based
on steepest-entropy-ascent quantum thermodynamics,”
in ASME 2015 International Mechanical Engineering

Congress and Exposition (American Society of Mechani-
cal Engineers, 2015) no. IMECE2015-53726.

[27] Guanchen Li, Michael R. von Spakovsky, Fengyu Shen,
and Kathy Lu, “Multiscale transient and steady state
study of the influence of microstructure degradation
and chromium oxide poisoning on SOFC cathode
performance,” (submitted for publication).

http://dx.doi.org/10.1103/PhysRevE.55.3851
http://dx.doi.org/http://dx.doi.org/10.1016/S0034-4877(09)90024-6
http://dx.doi.org/ 10.1103/PhysRevE.92.032111

