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Abstract

The aim of this paper is to provide some theoretical understanding of
Bayesian non-negative matrix factorization methods, along with prac-
tical implementations. We provide a sharp oracle inequality for a quasi-
Bayesian estimator, also known as the exponentially weighted aggre-
gate (Dalalyan and Tsybakov, 2008). This result holds for a very gen-
eral class of prior distributions and shows how the prior affects the
rate of convergence. We then discuss possible algorithms. A natural
choice in Bayesian statistics is the Gibbs sampler, used for example in
Salakhutdinov and Mnih (2008). This algorithm is asymptotically ex-
act, yet it suffers from the fact that the convergence might be very slow
on large datasets. When faced with massive datasets, a more efficient
path is to use approximate methods based on optimisation algorithms:
we here describe a blockwise gradient descent which is a Bayesian ver-
sion of the algorithm in Xu et al. (2012). Here again, the general form
of the algorithm helps to understand the role of the prior, and some
priors will clearly lead to more efficient (i.e., faster) implementations.
We end the paper with a short simulation study and an application
to finance. These numerical studies support our claim that the recon-
struction of the matrix is usually not very sensitive to the choice of the
hyperparameters whereas rank identification is.
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1 Introduction
Non-negative matrix factorization (NMF) is a set of algorithms in high-
dimensional data analysis which aims at factorizing a large matrix Y , say
m1 ×m2, with nonnegative entries, as a product of two matrices of smaller
dimension: Y ' UV T where U is m1 ×K , V is m2 ×K , K ¿ m1 ∧ m2 and
both U and V have non-negative entries. Interpreting the columns Y·, j of
Y as (non-negative) signals, NMF amounts to decompose each signal as a
combination of the “elementary” signals U·,1, . . . ,U·,K :

Y·, j '
K∑
`=1

Vj,`U·,`.

Since the seminal paper from Lee and Seung (1999), NMF was successfully
applied to such various fields as image processing and face classification
(Guillamet and Vitria, 2002), separation of sources in audio and video pro-
cessing (Ozerov and Févotte, 2010), collaborative filtering and recommender
systems on the web (Koren et al., 2009), document clustering (Xu et al., 2003;
Shahnaz et al., 2006), medical image processing (Allen et al., 2014) or topic
extraction in texts (Paisley et al., 2015). Many algorithms were proposed,
e.g. in Lee and Seung (2001) and Arora et al. (2012). Among the most pop-
ular family of algorithms, let us mention variants of gradient descent (Lin,
2007; Guan et al., 2012), linear programming (Recht et al., 2012), alterna-
tive direction algorithm (Xu et al., 2012) or block coordinate descent (Xu and
Yin, 2013). While all these algorithm usually provide an interpretable set of
elementary signals U , the non-unicity of the decomposition Y 'UV T makes
it hard to understand from a theoretical point of view. Some progress in this
direction was made by Donoho and Stodden (2003).

From a statistical perspective, most of the algorithms mentioned above can
be interpreted as the minimization of a penalized least-square criterion. Yet
Bayesian methods for (general) matrix factorization were recently proposed
(Corander and Villani, 2004; Lim and Teh, 2007; Salakhutdinov and Mnih,
2008; Lawrence and Urtasun, 2009; Zhou et al., 2010). Theoretical guaran-
tees on the statistical performance of these methods were proved by Alquier
(2013), Mai and Alquier (2015) and Suzuki (2015). The algorithms used are
essentially the Gibbs sampler (Salakhutdinov and Mnih, 2008) and varia-
tional Bayes methods (Lim and Teh, 2007): we refer the reader to Alquier
et al. (2014) for a comprehensive survey and a simulation study. Finally, one
of the first attempts in Bayesian NMF can be found in Paisley et al. (2015).

The aim of this paper is to provide some theoretical and experimental facts
that should help understand the performance of Bayesian NMF. First, we
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prove a sharp oracle inequality on the reconstruction of the matrix Y by a
quasi-Bayesian estimator, in the sense that the likelihood is not necessarily
assumed to be true. The use of Bayesian estimation in this context is advo-
cated in the Bayesian literature (Bissiri et al., 2013). It is also well known in
machine learning theory as the PAC-Bayesian approach (Shawe-Taylor and
Williamson, 1997; McAllester, 1998; Catoni, 2003, 2004, 2007; Guedj and
Alquier, 2013; Guedj and Robbiano, 2015; Giulini, 2015, among many other
references). We actually use PAC-Bayesian theoretical tools from Dalalyan
and Tsybakov (2008) to prove our oracle inequality.

We then review different approaches to implement the quasi-Bayesian esti-
mators: the Gibbs sampler and optimization algorithms. The Gibbs sampler
was used successfully for quasi-Bayesian estimators by Guedj and Alquier
(2013) in high-dimensional regression and Guedj and Robbiano (2015) for
the ranking problem. Optimization topics in the Bayesian literature include
variational Bayes algorithms (Jordan et al., 1999; MacKay, 2002; Bishop,
2006) and were actually used for Bayesian NMF in Paisley et al. (2015). It
is worth noting that the PAC-Bayesian approach provides sound theoretical
foundations for this family of algorithms (Alquier et al., 2015). A different
perspective is at work in this paper, we use efficient optimization algorithms
to approximate the maximum a posteriori (MAP). The MAP is theoretically
very efficient in some high-dimensional problems (see Abramovich and La-
hav, 2015, in the context of additive regression). Its main computational ad-
vantage in the Bayesian NMF framework is its tractable form which allows
to use for example alternating direction method of multipliers (ADMM) as in
Boyd et al. (2011) or block coordinate descent (Bertsekas, 1999). We imple-
ment a blockwise gradient descent which can be interpreted as a Bayesian
version of the algorithm presented in the aforecited Xu et al. (2012). Finally,
we present numerical experiments on synthetic data, which are not meant
to be exhaustive but rather serve to assess the behavior of Bayesian NMF
and more specifically the impact of hyperparameters in the prior on the re-
construction of Y .

The paper is organized as follows. Notation for the Bayesian NMF model and
the definition of our quasi-Bayesian estimator are given in Section 2. The
oracle inequality is given in Section 3, its proof is postponed to Appendix A.
We then discuss two algorithms: the Gibbs sampler and the blockwise gra-
dient descent in Section 4. Section 5 contains our numerical experiments on
synthetic data, and an application to assets prices is presented in Section 6.
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2 Notation
For any p× q matrix A we denote by A i, j its (i, j)-th entry, A i,· its i-th row
and A·, j its j-th column. For any p× q matrix B we define

〈A,B〉F =Tr(AB>)=
p∑

i=1

q∑
j=1

A i, jBi, j.

We define the Frobenius norm ‖A‖F of A by ‖A‖2
F = 〈A, A〉F . We let A−i,·

denote the matrix A where the i-th column is removed. In the same way, for
a vector v ∈ Rp, v−i ∈ Rp−1 is the vector v with its i-th coordinate removed.
We let Diag(v) denote the p× p diagonal matrix given by [Diag(v)]i,i = vi.

2.1 Model
The object of interest is an m1 ×m2 target matrix M possibly polluted with
some noise E. So we actually observe

Y = M+E, (1)

and we assume that E is random with E(E) = 0. The objective is to factor-
ize M under the assumption that is has non-negative entries and can be
reasonnably well approximated by a matrix UV T where U is m1 ×K , V is
m2 ×K for some K ¿ m1 ∧m2 and both U and V have non-negative entries.
Our theoretical analysis requires the following assumption on E.

C1. The entries Ei, j of E are i.i.d. with E(εi, j)= 0. With the notation

m(x)= E
[
εi, j1(εi, j≤x)

]
and F(x)=P(εi, j ≤ x),

assume that there exists a non-negative and bounded function g such that∫ v

u
m(x)dx =

∫ v

u
g(x)dF(x).

We put σ2 = ‖g‖∞.

The introduction of this rather technical condition is due to the technical
analysis of our estimator which is based on Theorem 2 in Appendix A. The-
orem 2 has first been proved by Dalalyan and Tsybakov (2007) using Stein’s
formula with a Gaussian noise. However, Dalalyan and Tsybakov (2008)
have shown that C1 is actually sufficient to prove Theorem 2. For the sake
of understanding, note that C1 is fulfilled when the noise is Gaussian (εi, j ∼
N(0, s2) and ‖g‖∞ = s2) or uniform (εi, j ∼U[−b,b] and ‖g‖∞ = b2/2).
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2.2 Prior
We remind the idea of the factorization:

M︸︷︷︸
m1×m2

= U︸︷︷︸
m1×K

V>︸︷︷︸
K×m2

.

We actually define a prior π(U ,V ) for a fixed K . However, Section 5 sug-
gests that our quasi-Bayesian estimator is adaptive, in the sense that if K
is chosen much greater than the actual rank of M, the prior will put very
little mass on many columns of U and V , automatically shrinking them to
0. This seems to advocate for setting a large K prior to the analysis, say
K = m1 ∧ m2. Yet this choice could be ruinous from a computational per-
spective (see the discussion Section 4). Anyhow, the following theoretical
analysis only requires1≤ K ≤ m1 ∧m2.

With respect to the Lebesgue measure on R+, let us fix a density h and a
density f such that

S f :=
∫ ∞

0
x2 f (x)dx <+∞.

For any α, x > 0, let

gα(x) := 1
α

f
( x
α

)
.

We define the prior on U and V by

Ui,`,Vi,` indep. ∼ gγ`(·)

where
γ` indep. ∼ h(·).

With the notation γ= (γ1, . . . ,γK ), let us define the prior π by

π(U ,V ,γ)=
K∏
`=1

(
m1∏
i=1

gγ`(Ui,`)

)(
m2∏
j=1

gγ`(Vj,`)

)
h(γ`)

and
π(U ,V )=

∫
RK+
π(U ,V ,γ)dγ.

The idea behind this prior is that under h, many γ` should be small and lead
to non-significant columns U·,` and V·,`. In order to do so, we must assume
that a non-negligible proportion of the mass of h is located around 0. This is
the meaning of the following assumption.
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C2. There exist constants 0<α< 1 and β≥ 0 such that for any 0< ε≤ σ2p
2S f K2 ,

∫ ε

0
h(x)dx ≥αεβ.

Finally, the following assumption on f is required to prove our main result.

C3. There exist a nonincreasing density f̃ w.r.t. Lebesgue measure on R+ and
a constant C f > 0 such that for any x > 0

f (x)≥C f f̃ (x).

C3 is crucial to understand the behavior of Bayesian NMF: the heavier the
tails of f̃ (x), the better the performance of BNMF. However, efficient algo-
rithms for ultra high-dimensional data usually require tractable forms for
the prior that might not be compatible with this constraint.

We end this subsection with examples of functions f and h to keep in mind.

1. Exponential prior f (x)= exp(−x) with f̃ = f , C f = 1 and S f = 2.

2. Truncated Gaussian prior f (x)∝ exp(2ax− x2) with a ∈R.

3. More generally, any prior from the exponential family.

4. Heavy-tailed prior f (x)∝ 1
(1+x)ζ with ζ> 1.

A trade-off is at work here between statistical and computational properties.
The heavy-tailed prior will lead to very nice theoretical results. Contrary to
the exponential and truncated Gaussian prior which lead to estimators that
are much easier to approximate through optimization algorithms.

For h, the inverse gamma prior h(x) = ba

Γ(a)
1

xa+1 exp
(− b

x
)

is classical in the
literature (see for example Salakhutdinov and Mnih, 2008; Alquier et al.,
2014). However, other choices are possible, such as a gamma prior with
appropriately tuned parameters. Note that h is less crucial than f from an
algorithmic perspective. This point will be further discussed in Section 4.

2.3 Quasi-posterior and estimator
We define the quasi-likelihood as

L̂(U ,V )= exp
[−λ‖Y −UV>‖2

F
]

for some fixed parameter λ> 0. Note that under the assumption that εi, j ∼
N(0,1/2λ), this would actually be the (true) likelihood up to a multiplicative
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constant. As we pointed out, the use of quasi-likelihood to define quasi-
posteriors is becoming rather popular in Bayesian statistics and machine
learning literatures. We thus define the quasi-posterior

ρ̂λ(U ,V ,γ)= 1
Z

L̂(U ,V )π(U ,V ,γ)

= 1
Z

exp
[−λ‖Y −UV>‖2

F
]
π(U ,V ,γ),

where
Z :=

∫
exp

[−λ‖Y −UV>‖2
F
]
π(U ,V ,γ)d(U ,V ,γ)

is a normalization constant. We are now ready to define our quasi-Bayesian
estimator.

Definition 1. The estimator is defined as

M̂λ =
∫

UV T ρ̂λ(U ,V ,γ)d(U ,V ,γ).

In the sequel, we will study the theoretical (Section 3) and algorithmic (Sec-
tion 4) properties of this estimator.

3 A sharp oracle inequality
Most likely, the rank of M is unknown in practice. So, as recommended
above, we usually choose K much larger than the expected order for the
rank, with the hope that many columns of U and V will be shrinked to 0.
The following set of matrices is introduced to formalize this idea.

Definition 2. For any r ∈ {1, . . . ,K}, let Mr be the set of pairs of matrices
(U0,V 0) with nonnegative entries such that

U0 =

 U0
11 . . . U0

1r 0 . . . 0
... . . . ...

... . . . ...
U0

m11 . . . U0
m1r 0 . . . 0


and

V 0 =

 V 0
11 . . . V 0

1r 0 . . . 0
... . . . ...

... . . . ...
V 0

m21 . . . V 0
m2r 0 . . . 0

 .

We also define Mr(L) as the set of matrices (U0,V 0) ∈Mr such that, for any
(i, j,`), U0

i,`,V
0
j,` ≤ L.
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We are now in a position to state our main theorem. Its main message is
that M̂λ is as close to M as would be an estimator designed with the actual
knowledge of its rank, up to a small remainder. Note that the formula for the
remainder is actually cumbersome, simplified versions are discussed below
for the sake of clarity.

Theorem 1. Fix λ= 1
4σ2 and assume that σ2 ≤ 2K

3
2 . Under assumptions C1,

C2 and C3,

E
(‖M̂λ−M‖2

F
)≤ inf

1≤r≤K
inf

(U0,V 0)∈Mr

‖U0V 0>−M‖2
F

+8σ2(m1 ∨m2)r log


√

2(m1 ∨m2)
r

(
‖U0‖F +‖V 0‖F +p

Kr
)2

σ2C f


+4σ2 ∑

1≤i≤m1
1≤`≤r

log

(
1

f̃ (U0
i`+1)

)
+4σ2 ∑

1≤ j≤m2
1≤`≤r

log

(
1

f̃ (V 0
j`+1)

)

+4σ2βK log

2S f
p

m1m2

(
‖U0‖F +‖V 0‖F +p

Kr
)2

rσ2


+8σ2r+4σ2K log

(
1
α

)
+4σ2 log(4)

 .

We remind the reader that the proof is given in Appendix A. It is based
on a PAC-Bayesian theorem of Dalalyan and Tsybakov (2008). In order to
explicit this result, we provide a weaker version, where we only compare M̂λ

to the best factorization in Mr(L).

Corollary 1. Fix λ = 1
4σ2 and assume that σ2 ≤ 2K

3
2 . Under assumptions

C1, C2 and C3,

E
(‖M̂λ−M‖2

F
)≤ inf

1≤r≤K
inf
L>0

inf
(U0,V 0)∈Mr(L)

{
‖U0V 0>−M‖2

F

+8σ2(m1 ∨m2)r log

(
(2L+1)2K

√
2(m1 ∨m2)3

f̃ (L+1)σ2C f
p

r

)

+4σ2βK log

(
2(2L+1)2S f

p
m1m2(m1 ∨m2)
σ2

)

+8σ2r+4σ2K log
(

1
α

)
+4σ2 log(4)

}
.
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First, note that when L is fixed, up to log terms, the order of the magnitude
of the error bound is

σ2(m1 ∨m2)r,

which is roughly the variance multiplied by the number of parameters to
be estimated in any (U0,V 0) ∈ Mr(L). If we know that M can actually be
written M =U0V T

0 for (U0,V 0) ∈Mr(L) with a small L, this rate is very nice.
Alternatively, whenever L is large, the log parts in

8σ2(m1 ∨m2)r log
[

(2L+1)2

f̃ (L+1)

]
might become significant. In the case of the truncated Gaussian prior f (x)∝
exp(2ax− x2), the previous quantity is

8σ2(m1 ∨m2)rL2

which is terrible if L is large. On the contrary, with the heavy-tailed prior
f (x)∝ (1+ x)−ζ (as in Dalalyan and Tsybakov, 2008), the leading term is

8σ2(m1 ∨m2)r(ζ+2)log(L)

which is way more satisfactory. Although this comes at the price of more
demanding computations, as highlighted in the next section.

4 Gibbs sampler and optimization algorithms
This section is devoted to two implementations of our quasi-Bayesian esti-
mator, both with their advantages. We remind the quasi-posterior formula

ρ̂λ(U ,V ,γ)= 1
Z

L̂(U ,V )π(U ,V ,γ)

= 1
Z

exp
(−λ‖Y −UV>‖2

F
) K∏
`=1

[
h(γ`)

m1∏
i=1

gγ`(Ui`)
m2∏
j=1

gγ`(Vj`)

]
.

We first derive in Section 4.1 a general form for the conditional posteri-
ors ρ̂λ(Ui,·|U−i,·,V ,γ,Y ), ρ̂λ(Vj,·|U ,V− j,·,γ,Y ) and ρ̂λ(γ`|U ,V ,γ−`,Y ) that are
needed to implement the Gibbs sampler. These conditional posteriors are
explicitly given on two examples in Section 4.2 and Section 4.3. Secondly, we
propose an alternative implementation in Section 4.4 using a block coordi-
nate descent approach.
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4.1 General form of the conditional posteriors
As a function of Ui,·,

L̂(U ,V )π(U ,V ,γ)∝ exp
(−λ‖Y −UV>‖2

F
) K∏
`=1

gγ`(Ui,`)

∝ exp
(−λ‖Yi,·−Ui,·V>‖2) K∏

`=1
gγ`(Ui,`).

Let Ûi =Yi,·V (V TV )−1 and ΣU = (V TV )−1. This yields

ρ̂λ(Ui,·|U−i,·,V ,γ,Y )= ρ̂λ(Ui,·|V ,γ,Y )

∝ exp
(
−λ(Ûi −Ui,·)(ΣU )−1(Ûi −Ui,·)T

) K∏
`=1

gγ`(Ui,`).

In the same way, we define V̂j = Y T
·, jU(UTU)−1 and ΣV = (UTU)−1 and we

have

ρ̂λ(Vj,·|V− j,·,U ,γ,Y )= ρ̂λ(Vj,·|U ,γ,Y )

∝ exp
(
−λ(V̂j −Vj,·)(ΣV )−1(V̂j −Vj,·)T

) K∏
`=1

gγ`(Vj,`)

Finally,

ρ̂λ(γ`|U ,V ,γ−`,Y )= ρ̂λ(γ`|U ,V ,Y )

∝ h(γ`)
m1∏
i=1

gγ`(Ui`)
m2∏
j=1

gγ`(Vj`).

The Gibbs sampler (described in its general form in Bishop, 2006, for exam-
ple), is given by Algorithm 1.

Algorithm 1 Gibbs sampler.

Input Y , λ.

Initialization U (0), V (0), γ(0).

For k = 1, . . . , N:

For i = 1, . . . ,m1: draw U (k)
i,· ∼ ρ̂λ(Ui,·|V (k−1),γ(k−1),Y ).

For j = 1, . . . ,m2: draw V (k)
j,· ∼ ρ̂λ(Vj,·|U (k),γ(k−1),Y ).

For `= 1, . . . ,K : draw γ(k)
`

∼ ρ̂λ(γ`|U (k),V (k),Y ).
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In all generality, sampling from ρ̂λ(Ui,·|V ,γ,Y ) might require considerable
effort. For example, for the heavy-tailed prior f (x)= 1

(1+x)ζ ,

ρ̂λ(Ui,·|V ,γ,Y )∝ exp
(
−λ(Ûi −Ui,·)(ΣU )−1(Ûi −Ui,·)T

) 1∏K
`=1(1+Ui,`)ζ

,

which is not a standard distribution. In such cases, a Metropolis-within-
Gibbs approach is often the best choice (as advocated in Guedj and Alquier,
2013; Guedj and Robbiano, 2015) and exhibits nice properties, sadly at the
cost of quite substantial computational power. In the ultra high-dimensional
context of NMF, this choice appeared unrealistic to us and we promote in
Section 4.2 and Section 4.3 the idea that choosing specific priors yields known
distributions as quasi-posteriors.

4.2 Gibbs Sampler with an exponential prior f

Here f (x)= exp(−x) and gα(x)= 1
α

exp
(− x

α

)
. So

ρ̂λ(Ui,·|V ,γ,Y )

∝ exp

(
−λ(Ûi −Ui,·)(ΣU )−1(Ûi −Ui,·)T −

K∑
`=1

Ui,`

γ`

)
= exp

(
−λ(Ûi −Ui,·)(ΣU )−1(Ûi −Ui,·)T −Uiγ

−1
)

= exp

(
−λ

[(
Ûi − 1

2λ
ΣUγ

−1
)
−Ui,·

]
(ΣU )−1

[(
Ûi − 1

2λ
ΣUγ

−1
)
−Ui,·

]T
)

,

where we use the abusive notation γ−1 = (1/γ1, . . . ,1/γK ). So ρ̂λ(Ui,·|V ,γ,Y )
amounts to a truncated Gaussian distribution

N

(
Ûi − 1

2λ
ΣUγ

−1,
2
λ
ΣU

)
1RK+

restricted to vectors with non-negative entries. Sampling from it can be done
using the R package tmvtnorm from Wilhelm (2015) (as in Mai and Alquier,
2015). Computation of ρ̂λ(Vj,·|U ,γ,Y ) is similar.

Note that

ρ̂λ(γ`|U ,V ,γ−`,Y )∝ h(γ`)
m1∏
i=1

gγ`(Ui`)
m2∏
j=1

gγ`(Vj`)

= h(γ`)γ
−(m1+m2)
`

exp

(
−

∑m1
i=1Ui,`+∑m2

j=1 Vj,`

γ`

)
,
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providing an incentive to consider the inverse gamma prior IΓ(a,b), i.e.,
h(x)= ba

Γ(a) x−a+1 exp(−b/x). This leads to the conditional quasi-posterior

IΓ

(
a+m1 +m2,b+

m1∑
i=1

Ui,`+
m2∑
j=1

Vj,`

)
,

which is a classical choice in the Bayesian literature (see Lim and Teh, 2007;
Salakhutdinov and Mnih, 2008; Lawrence and Urtasun, 2009; Zhou et al.,
2010; Alquier et al., 2014). However, as pointed out in Alquier et al. (2014),
another conjugate choice is the gamma prior Γ(a,b) for a = m1 + m2 −1/2.
Actually, when h(x)= ba

Γ(a) xa−1 exp(−bx),

ρ̂λ(γ`|U ,V ,γ−`,Y )∝ γ
−(m1+m2)+a−1
`

exp

(
−

∑m1
i=1Ui,`+∑m2

j=1 Vj,`

γ`
−bγ`

)
.

Thus, choosing the prior Γ(m1 + m2 − 1/2,b) yields the conditional quasi-
posterior

IG


√∑m1

i=1Ui,`+∑m2
j=1 Vj,`

b
,2

(
m1∑
i=1

Ui,`+
m2∑
j=1

Vj,`

) ,

where IG(µ,ν) denotes the inverse Gaussian distribution, whose density is
proportional to x−3/2 exp

(
−ν

2

(
x
µ2 + 1

x

))
. Alquier et al. (2014) contains numer-

ical experiments to assess that this prior is less sensitive than the inverse
gamma prior to a misspecification of K .

4.3 Gibbs sampler with a truncated Gaussian prior f

Here, f (x)∝ exp(2ax− x2). So

ρ̂λ(Ui,·|V ,γ,Y )

∝ exp

(
−λ(Ûi −Ui,·)(ΣU )−1(Ûi −Ui,·)T +2a

K∑
`=1

Ui,`

γ`
−

K∑
`=1

U2
i,`

γ2
`

)
= exp

(
−λ(Ûi −Ui,·)(ΣU )−1(Ûi −Ui,·)T +2aUi,·γ−1 −Ui,·Diag(γ)−2UT

i,·
)
,

which is the density of the truncated Gaussian distribution

N

((
1
λ
ΣU +Diag(γ)2

)(
aγ−1 +λΣ−1

U Û>
i

)
,2

(
1
λ
ΣU +Diag(γ)2

))
1RK+

.

Computation of ρ̂λ(Vj,·|U ,γ,Y ) is similar.
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Next,

ρ̂λ(γ`|U ,V ,Y )

∝ h(γ`)γ
−(m1+m2)
`

exp

(
2a

∑m1
i=1Ui,`+∑m2

j=1 Vj,`

γ`
−

∑m1
i=1U2

i,`+
∑m2

j=1 V 2
j,`

γ2
`

)
.

Clearly, in all generality we cannot hope to recover an inverse gamma nor
an inverse Gaussian distribution. However, when a = 0,

ρ̂λ(γ`|U ,V ,Y )∝ h(γ`)
(
γ2
`

)−m1+m2
2 exp

(
−

∑m1
i=1U2

i,`+
∑m2

j=1 V 2
j,`

γ2
`

)
,

and in that case, considering a more convenient prior IΓ(a,b) for γ2
`

instead
of γ`, we have

γ2
`|U ,V ,Y ∼ IΓ

(
a+ m1 +m2

2
,

m1∑
i=1

U2
i,`+

m2∑
j=1

V 2
j,`

)
.

Alternatively, with the prior γ2
`
∼Γ((m1 +m2 −1)/2,b),

γ2
`|U ,V ,Y ∼ IG


√∑m1

i=1U2
i,`+

∑m2
j=1 V 2

j,`

b
,2

[
m1∑
i=1

U2
i,`+

m2∑
j=1

V 2
j,`

] ,

allowing for efficient sampling of our quasi-Bayesian estimator.

4.4 Optimization through block coordinate descent
In this section, we discuss the implementation of the MAP estimator

(Ũλ, Ṽλ, γ̃λ)= arg max
U ,V ,γ

ρ̂λ(U ,V ,γ)

= arg min
U ,V ,γ

{
λ‖Y −UV>‖2

F − logπ(U ,V ,γ)

−
m1∑
i=1

K∑
`=1

log
(
gγ`(Ui,`)

)− m2∑
j=1

K∑
`=1

log
(
gγ`(Vj,`)

)− K∑
`=1

log
(
h(γ`)

)}
.

Note that the minimization problem

min
U ,V

‖Y −UV>‖2
F

13



is already known as a tough one: while it is individually convex in U and
V , it is not convex as a function of the pair (U ,V ). Such a task is know
as a biconvex problem (see Boyd et al., 2011, section 9.2), for which an it-
erative algorithm may get stuck in a local minimum. However, the block
coordinate descent approach (Bertsekas, 1999) is used in practice with rea-
sonnable results. This algorithm seems to be relatively standard in (non-
Bayesian) NMF and is described in Algorithm 2.

Algorithm 2 Pseudo-algorithm for block coordinate descent.

Input Y , λ.

Initialization U (0), V (0), γ(0).

While not converged, k := k+1:

U (k) := argmin
U

{
λ‖Y −U(V (k−1))>‖2

F −∑m1
i=1

∑K
`=1 log[g

γ(k−1)
`

(Ui,`)]
}

V (k) := argmin
V

{
λ‖Y −U (k)V>‖2

F −∑m2
j=1

∑K
`=1 log[g

γ(k−1)
`

(Vj,`)]
}

γ(k) := argmin
γ

∑K
`=1

{
−∑m1

i=1 log[gγ`(U
(k)
i,` )]−∑m2

j=1 log[gγ`(V
(k)
j,` )]− log[h(γ`)]

}

Several remarks are in order here. In this case, another popular algorithm,
the Alternating Direction Method of Multipliers (ADMM) (reviewed in Boyd
et al., 2011), takes a similar form. When the functions f and h are not
conveniently chosen, this optimization problem can be very cumbersome, if
tractable at all.

If one picks f and h as in Section 4.2 or Section 4.3, the optimization prob-
lems in U and V are quadratic problems with a non-negativity constraint.
Some algorithms are available for this task in the linear regression setting
(Bro and De Jong, 1997, for example). For NMF, we can either replace each
optimization step by a single gradient descent step (as in Lin, 2007) or by a
full gradient descent. In each case, after the gradient step, we have to project
U and V on the set of matrices with non-negative entries. Let P denote this
projection, which replaces any negative entry by 0.

In the sequel, we derive explicit forms of Algorithm 2 when the priors are
chosen as in Section 4.2 and Section 4.3. We optimize with respect to U and
V by projected gradient descent. Since the modes of IΓ(α,β) and of IG(µ,ν)

14



are known to be respectively

β

α+1
and µ

((
1+ 9µ2

4ν2

)1/2

− 3µ
2ν

)
,

we provide an explicit optimization with respect to γ. The algorithm for the
exponential prior is detailed in Algorithm 3, whereas Algorithm 4 is adapted
to the truncated Gaussian prior. This ends this section devoted to practical
implementation of our quasi-Bayesian estimator.

Algorithm 3 Block coordinate descent - exponential prior for U ,V .

Input Y , λ.

Initialization U (0), V (0), γ(0) and a decreasing sequence (α`).

While not converged, k = k+1:

` := 0 and U (k,0) :=U (k−1)

While not converged, `= `+1:

U (k,`) := P
(
U (k,`−1) +α`

(
2λ[Y −U (k,`−1)(V (k−1))>]V (k−1) − (γ(k−1))−1

))
U (k) :=U (k,`)

` := 0 and V (k,0) :=V (k−1)

While not converged, `= `+1:

V (k,`) := P
(
V (k,`−1) +α`

(
2λ[Y>−V (k,`−1)U (k)>]U (k) − (γ(k−1))−1

))
V (k) :=V (k,`)

For `= 1, . . . ,K :

If Inverse gamma prior IΓ(a,b), γ(k)
`

:= b+∑m1
i=1 U (k)

i,`+
∑m2

j=1 V (k)
j,`

a+m1+m2+1

If Gamma prior Γ(m1 + m2 − 1/2,b), γ(k)
`

:=
√∑m1

i=1 U (k)
i,`+

∑m2
j=1 V (k)

j,`
b ×√

1+ 9
16b

(∑m1
i=1 U (k)

i,`+
∑m2

j=1 V (k)
j,`

) − 3

4
√

b
(∑m1

i=1 U (k)
i,`+

∑m2
j=1 V (k)

j,`

)
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Algorithm 4 Block coordinate descent - truncated Gaussian prior for U ,V .

Input Y , λ.

Initialization U (0), V (0), γ(0) and a decreasing sequence (α`).

While not converged, k = k+1:

` := 0 and U (k,0) :=U (k−1)

While not converged, `= `+1:

U (k,`) := P
(
U (k,`−1) +αk

(
2λ[Y −U (k,`−1)(V (k−1))>]V (k)

+2aU (k,`−1)(γ(k))−1 −U (k,`−1)Diag
(
γ(k)

)−2
U (k,`−1)>

))

U (k) :=U (k,`)

` := 0 and V (k,0) :=V (k−1)

While not converged, `= `+1:

V (k,`) := P
(
U (k,`−1) +αk

(
2λ[Y>−V (k,`−1)U (k)>]U (k)

+2aV (k,`−1)(γ(k))−1 −V (k,`−1)Diag
(
γ(k)

)−2
V (k,`−1)>

))

V (k) :=V (k,`)

For `= 1, . . . ,K :

If Inverse gamma prior IΓ(a,b),

γ(k)
`

:=
b+∑m1

i=1

(
U (k)

i,`

)2 +∑m2
j=1

(
V (k)

j,`

)2

a+ m1+m2
2 +1

If Gamma prior Γ(m1+m2−1/2,b), γ(k)
`

:=
√∑m1

i=1

(
U (k)

i,`

)2+∑m2
j=1

(
V (k)

j,`

)2

b ×
√

1+ 9

16b
(∑m1

i=1

(
U (k)

i,`

)2+∑m2
j=1

(
V (k)

j,`

)2
) − 3

4

√
b
(∑m1

i=1

(
U (k)

i,`

)2+∑m2
j=1

(
V (k)

j,`

)2
)
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5 Numerical experiments
NMF has attracted a great deal of interest and the number of available algo-
rithms is massive. Therefore, instead of embarking on lengthy comparisons
with a subjective set of competitors, we focus in this section on the behavior
of Bayesian NMF on synthetic data, especially the influence of the choice of
the prior hyperparameters. To do so, let us consider the Bayesian MAP esti-
mator coupled with the exponential prior E(1) on (U ,V ) and with the gamma
prior Γ(m1 +m1 −1/2,b) on the coefficients γ j.

To assess the impact of the hyperparameter b on the quality of the recon-
struction of the matrix M, let us consider the following exponential grid:
b ∈ {100,101, . . . ,109}. We report in Figure 1 the performance of the recon-
struction of M in terms of the mean square error: MSE = 1

m1m2
‖M − M̂λ‖2

F .
It is also worth mentioning the possibility to infer the rank of M. In the-
ory, note that our estimator will report a full rank estimator M̂λ. However
in practice, we can expect that many γ̂`’s will be close enough to 0 so that
thresholding their values will not affect the performance of the reconstruc-
tion. As highlighted below, this will typically occur for large values of b.

In a first experiment, we simulate Y = M+E=UV T +E with m1 = m2 = 100
and U , V two 100× 2 matrices with entries drawn independently from a
U([0,3]) distribution. We also choose K = 5, which allows a representation of
γ for each experiment. We simulate the entries Ei, j of E independenly from
a N(0,σ2) with σ2 = 0.01. The results are reported in Figure 1 (left column).

Clearly, for any value of b between 1 and 106 the MSE’s are of similar magni-
tude (between 0.0007 and 0.002). While this is satisfactory, our method fails
to identify a rank 2 matrix and delivers a full rank (5) estimate. For larger
b, the MSE tends to increase yet a rank 2 matrix is identified. This remark
is in accordance with the fact that model identification and estimation ob-
jectives are often incompatible in high-dimensional statistics (as pointed out
Yang, 2005, among others). The overall good results are obviously related to
the rather strong prior knowledge K = 5: we repeated the same design with
the more relaxed assumption K = 20 (reported in Figure 1, right column).

From these results, we gather that too small values for b possibly lead to
overfitting. The optimal value in terms of MSE seem around b = 106. About
the estimation of the actual rank, the vector γ is sparse for b = 106 but we
only identify the actual rank when b = 107. The rank identification problem
seems more sensitive to a proper tuning of b than the estimation problem,
i.e., minimization of the MSE.
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Figure 1: Results of the first (left) and second (right) experiments with K = 5
and K = 20, respectively.

b MSE γ̂

1 0.0007617591

10 0.0027504950

102 0.0010887216

103 0.0007118330

104 0.0007736950

105 0.0007109982

106 0.0024563021

107 0.0099288813

108 0.1465389771

109 0.6329240955

b MSE γ̂

1 0.013176016

10 0.010169835

102 0.009516530

103 0.009934154

104 0.006730481

105 0.006475302

106 0.001571762

107 0.007313480

108 0.607692862

109 0.640797126
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6 Application to assets prices
We finally test our method on a real dataset, consisting in the daily prices of
993 financial assets between 2006-01-03 and 2011-12-30. It is available in
the R package pprobedata1.

What can be expected at first sight is that assets related to similar mar-
kets will behave similarly. It might thus be possible to derive some common
trends for these assets. We expect that NMF will extract underlying trends
U·,` and approximate the price of each asset as a mixture of these trends.
We use the MAP estimator with b = 107, K = 3. Figure 2 presents these un-
derlying trends U·,1, U·,2 and U·,3, with a clear separation in three regimes,
where each of the asset is dominant. As an example, we illustrate the (good)
reconstruction of the prices of assets 1 and 4 in Figure 3.

Figure 2: The three trends U·,1, U·,2 and U·,3 obtained on the assets prices
dataset.

Acknowledgements
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on NMF.

1http://www.portfolioprobe.com/R
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Figure 3: Prices of assets 1 (left, black) and 4 (right, black), and reconstruc-
tion of this series as a linear combination of U·,1, U·,2 and U·,3 (red).
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A Proofs
This appendix contains the proof to the main theoretical claim of the paper
(Theorem 1).

A.1 A PAC-Bayesian bound from Dalalyan and Tsybakov
(2008)

The analysis of quasi-Bayesian estimators with PAC bounds started with
Shawe-Taylor and Williamson (1997). McAllester improved on the initial
method and introduced the name “PAC-Bayesian bounds” (McAllester, 1998).
Catoni also improved these results to derive sharp oracle inequalities (Catoni,
2003, 2004, 2007). Dalalyan and Tsybakov (2008) proved a different PAC-
Bayesian bound based on the idea of unbiased risk estimation (see Leung
and Barron, 2006). We first recall its form in the context of matrix factoriza-
tion.

Theorem 2. Under C1, as soon as λ≤ 1
4σ2 ,

E‖M̂λ−M‖2
F ≤ inf

ρ

{∫
‖UV>−M‖2

Fρ(U ,V ,γ)d(U ,V ,γ)+K(ρ,π)
λ

}
,

where the infimum is taken over all probability measures ρ absolutely contin-
uous with respect to π, and K(µ,ν) denotes the Kullback-Leibler divergence
between two measures µ and ν.
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We let the reader check that the proof in Dalalyan and Tsybakov (2008),
stated for vectors, is still valid for matrices.

The end of the proof is organized as follows. First, we define a parametric
family of probability distributions ρ:{

ρr,U0,V 0,c : c > 0,1≤ r ≤ K , (U0,V 0) ∈Mr
}
.

This is done in Section A.2. We simply upper bound the infimum over all ρ
by the infimum over this parametric family. So, we only have to calculate, or
upper-bound ∫

‖UV>−M‖2
Fρr,U0,V 0,c(U ,V ,γ)d(U ,V ,γ)

and
K(ρr,U0,V 0,c,π).

This is done in two lemmas in Section A.3 and Section A.4 respectively. We
finally gather all the pieces together in Section A.5, and optimize with re-
spect to c.

A.2 A parametric family of factorizations
We define, for any r ∈ {1, . . . ,K} and any pair of matrices (U0,V 0) ∈Mr, for
any 0< c ≤p

Kr, the density

ρr,U0,V 0,c(U ,V ,γ)=
1{‖U−U0‖F≤c,‖V−V 0‖F≤c}π(U ,V ,γ)

π
({‖U −U0‖F ≤ c,‖V −V 0‖F ≤ c

}) .

A.3 Upper bound for the integral part
Lemma A.1.∫

‖UV>−M‖2
Fρr,U0,V 0,c(U ,V ,γ)d(U ,V ,γ)

≤ ‖U0V 0>−M‖2
F +4c2

(
‖U0‖F +‖V 0‖F +

p
Kr

)2
.

Proof. Note that (U ,V ) belonging to the support of ρr,U0,V 0,c implies that

‖UV>−U0V 0>‖F = ‖U(V>−V 0>)+ (U −U0)V 0>‖F

≤ ‖U(V>−V 0>)‖F +‖(U −U0)V 0>‖F

≤ ‖U‖F‖V −V 0‖F +‖U −U0‖F‖V 0‖F

≤ (‖U0‖F + c)c+ c‖V 0‖F
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= c
(‖U0‖F +‖V 0‖F + c

)
.

Now, let Π be the orthogonal projection on the set{
M0 : ‖M0 −U0V 0>‖F ≤ c

(‖U0‖F +‖V 0‖F + c
)}

with respect to the Frobenius norm. Note that

‖UV>−M‖2
F ≤ ‖UV>−Π(M)‖2

F +‖Π(M)−M‖2
F

≤ [
2c

(‖U0‖F +‖V 0‖F + c
)]2 +‖U0V 0>−M‖2

F .

Integrate with respect to ρr,U0,V 0,c and use c ≤ K to get the result.

A.4 Upper bound for the Kullback-Leibler divergence
Lemma A.2. Under C2 and C3,

K(ρr,U0,V 0,c,π)≤ 2(m1 ∨m2)r log

(
2
C f

√
2n

m1 ∧m2

)

+ ∑
1≤i≤m1
1≤`≤r

log

(
1

g(U0
i`+1)

)
+ ∑

1≤ j≤m2
1≤`≤r

log

(
1

g(V 0
j`+1)

)

+βK log

(
2S f n

r

√
2K

m1m2

)
+K log

(
1
α

)
+ log(4).

Proof. By definition

K(ρr,U0,V 0,c,π)=
∫
ρr,U0,V 0,c(U ,V ,γ) log

(
ρr,U0,V 0,c(U ,V ,γ)

π(U ,V ,γ)

)
d(U ,V ,γ)

= log

(
1∫

1{‖U−U0‖F≤c,‖V−V 0‖F≤c}π(U ,V ,γ)d(U ,V ,γ)

)
.

Then, note that∫
1{‖U−U0‖F≤c,‖V−V 0‖F≤c}π(U ,V ,γ)d(U ,V ,γ)

=
∫ (∫

1{‖U−U0‖F≤c,‖V−V 0‖F≤c}π(U ,V |γ)d(U ,V )
)
π(γ)dγ

=
∫ (∫

1{‖U−U0‖F≤cπ(U |γ)dU
)
π(γ)dγ︸ ︷︷ ︸

=:I1

∫ (∫
1{‖V−V 0‖F≤cπ(V |γ)dV

)
π(γ)dγ︸ ︷︷ ︸

=:I2

.
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So we have to lower bound I1 and I2. We deal only with I1, as the method to
lower bound I2 is exactly the same. We define the set E ⊂RK as

E =
{
γ ∈RK : γ1, . . . ,γr ∈ (0,1] and γr+1, . . . ,γK ∈

(
0,

c
2S f

p
2Km1

]}
.

Then∫ (∫
1{‖U−U0‖F≤cπ(U |γ)dU

)
π(γ)dγ≥

∫
E

(∫
1{‖U−U0‖F≤cπ(U |γ)dU︸ ︷︷ ︸

=:I3

)
π(γ)dγ

and we first focus on a lower-bound for I3 when γ ∈ E.

I3 =π

 ∑
1≤i≤m1
1≤`≤K

(Ui,`−U0
i,`)

2 ≤ c2

∣∣∣∣∣∣∣γ


=π

 ∑
1≤i≤m1
1≤`≤r

(Ui,`−U0
i,`)

2 + ∑
1≤i≤m1

r+1≤`≤K

U2
i,` ≤ c2

∣∣∣∣∣∣∣γ


≥π

 ∑
1≤i≤m1

r+1≤`≤K

U2
i,` ≤

c2

2

∣∣∣∣∣∣∣γ
π

 ∑
1≤i≤m1
1≤`≤r

(Ui,`−U0
i,`)

2 ≤ c2

2

∣∣∣∣∣∣∣γ


≥π

 ∑
1≤i≤m1

r+1≤`≤K

U2
i,` ≤

c2

2

∣∣∣∣∣∣∣γ


︸ ︷︷ ︸
=:I4

∏
1≤i≤m1
1≤`≤r

π

(
(Ui,`−U0

i,`)
2 ≤ c2

2m1r

∣∣∣∣γ)
.

Now, using Markov’s inequality,

1− I4 =π

 ∑
1≤i≤m1

r+1≤`≤K

U2
i,` ≥

c2

2

∣∣∣∣∣∣∣γ


≤ 2
Eπ

(∑
1≤i≤m1

r+1≤`≤K
U2

i,`

∣∣∣∣γ)
c2

= 2

∑
1≤i≤m1

r+1≤`≤K
γ2

j S
2
f

c2

≤ 1
2

,
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and as on E, for `≥ r+1, γ j ≤ c/(2S f
p

2Km1). So

I4 ≥ 1
2

.

Next, we remark that

π

((
Ui,`−U0

i,`

)2 ≤ c2

2m1r

∣∣∣∣γ)
≥

∫ U0
i,`+ cp

2m1r

U0
i,`

1
γ j

f
(

u
γ j

)
du

≥
∫ U0

i,`+ cp
2m1r

U0
i,`

C f

γ j
f̃
(

u
γ j

)
du.

Elementary calculus shows that, as f̃ is nonnegative and nonincreasing,
γ j 7→ f̃

(
u/γ j

)
/γ j is nonincreasing. As such, when γ ∈ E and j ≤ r, γ j ≤ 1,

π

((
Ui,`−U0

i,`

)2 ≤ c2

2m1r

∣∣∣∣γ)
≥ cC fp

2m1r
f̃
(
U0

i,`+
cp

2m1r

)
≥ cC fp

2m1r
f̃
(
U0

i,`+1
)

as c ≤ p
Kr ≤ p

m1r. We plug this result and the lower-bound I4 ≥ 1/2 into
the expression of I3 to get

I3 ≥ 1
2

( cC fp
2m1r

)m1r
 ∏

1≤i≤m1
1≤`≤r

f̃
(
U0

i,`+1
) .

So

I1 ≥
∫

E
I3π(γ)dγ

= 1
2

( cC fp
2m1r

)m1r
 ∏

1≤i≤m1
1≤`≤r

f̃
(
U0

i,`+1
)∫

E
π(γ)dγ

= 1
2

( cC fp
2m1r

)m1r
 ∏

1≤i≤m1
1≤`≤r

f̃
(
U0

i,`+1
)(∫ 1

0
h(x)dx

)r (∫ c
2S f

p
2Km1

0
h(x)dx

)K−r

≥ 1
2

( cC fp
2m1r

)m1r
 ∏

1≤i≤m1
1≤`≤r

f̃
(
U0

i,`+1
)αK

(
c

2S f
p

2Km1

)β(K−r)
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≥ 1
2

( cC fp
2m1r

)m1r
 ∏

1≤i≤m1
1≤`≤r

f̃
(
U0

i,`+1
)αK

(
c

2S f
p

2Km1

)βK

,

using C2. Proceeding exactly in the same way,

I2 ≥ 1
2

( cC fp
2m2r

)m2r
 ∏

1≤ j≤m2
1≤`≤r

f̃
(
V 0

j,`+1
)αK

(
c

2S f
p

2Km2

)βK

.

We combine these inequalities, and we use trivia between m1, m2, m1 ∨m2
and m1 +m2 to obtain

K(ρr,U0,V 0,c,π)≤ 2(m1 ∨m2)r log

(
2
√

2(m1 ∨m2)r
cC f

)

+ ∑
1≤i≤m1
1≤`≤r

log

(
1

f̃ (U0
i`+1)

)
+ ∑

1≤ j≤m2
1≤`≤r

log

(
1

f̃ (V 0
j`+1)

)

+βK log

(
2S f

p
2Km1m2

c

)
+K log

(
1
α

)
+ log(4).

This ends the proof of the lemma.

A.5 Conclusion
We now plug Lemma A.1 and Lemma A.2 into Theorem 2. We obtain, under
C1, C2 and C3,

E
(‖M̂λ−M‖2

F
)≤ inf

1≤r≤K
inf

(U0,V 0)∈Mr
inf

0<c≤pKr

{
‖U0V 0>−M‖2

F

+ 2(m1 ∨m2)r
λ

log

(
2
√

2(m1 ∨m2)r
cC f

)

+ 1
λ

∑
1≤i≤m1
1≤`≤r

log

(
1

f̃ (U0
i`+1)

)
+ 1
λ

∑
1≤ j≤m2
1≤`≤r

log

(
1

f̃ (V 0
j`+1)

)

+ βK
λ

log

(
2S f

p
2Km1m2

c

)
+ K
λ

log
(

1
α

)
+ 1
λ

log(4)

+4c
(
‖U0‖F +‖V 0‖F +

p
Kr

)2
}

.
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Remind that we fixed λ = 1
4σ2 . We finally (approximately) optimize with

respect to c ∈
(
0,
p

Kr
]
: this would lead to

c = (m1 ∨m2)r

2λ(‖U0‖F +‖V 0‖F +p
Kr)2

= 2σ2(m1 ∨m2)r

(‖U0‖F +‖V 0‖F +p
Kr)2

≤ 2σ2(m1 ∨m2)
K

≤
p

Kr

as soon as σ2 ≤ 2K
3
2

(m1∨m2) . As this might be restrictive, we choose a much
smaller c that will only have impact on the logarithmic terms in the oracle
inequality:

c = 2σ2r

(‖U0‖F +‖V 0‖F +p
Kr)2

with the condition that σ2 ≤ 2K
3
2 . The inequality becomes

E
(‖M̂λ−M‖2

F
)≤ inf

1≤r≤K
inf

(U0,V 0)∈Mr

{
‖U0V 0>−M‖2

F

+8σ2(m1 ∨m2)r log


√

2(m1 ∨m2)
r

(
‖U0‖F +‖V 0‖F +p

Kr
)2

σ2C f


+4σ2 ∑

1≤i≤m1
1≤`≤r

log

(
1

f̃ (U0
i`+1)

)
+4σ2 ∑

1≤ j≤m2
1≤`≤r

log

(
1

f̃ (V 0
j`+1)

)

+4σ2βK log

2S f
p

m1m2

(
‖U0‖F +‖V 0‖F +p

Kr
)2

rσ2


+8σ2r+4σ2K log

(
1
α

)
+4σ2 log(4)

}
,

which ends the proof.
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