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Identities for partial Bell polynomials de-
rived from identities for weighted integer com-
positions

Steffen Eger

Abstract. We discuss closed-form formulas for the (n, k)-th partial Bell
polynomials derived in Cvijović [2]. We show that partial Bell polynomi-
als are special cases of weighted integer compositions, and demonstrate
how the identities for partial Bell polynomials easily follow from more
general identities for weighted integer compositions. We also provide
short and elegant probabilistic proofs of the latter, in terms of sums
of discrete integer-valued random variables. Finally, we outline further
identities for the partial Bell polynomials.
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1. Introduction

In a recent note, Cvijović [2] has derived three new identities — which we
list in Equations (5), (6), and (7) below — for the (n, k)-th partial Bell
polynomials in the variables x1, x2, . . . , xn−k+1, which are defined as1

Bn,k(x1, x2, . . . , xn−k+1) =

∑ n!

ℓ1! · · · ℓn−k+1!

(x1

1!

)ℓ1

· · ·

(

xn−k+1

(n− k + 1)!

)ℓn−k+1

,
(1)

The final publication is available at Springer via
http://dx.doi.org/10.1007/s00010-015-0338-2
1Another way to define the partial Bell polynomials is by the formal power series expansion

1
k!

(

∑

m≥1
xm

m!
tm

)k
=

∑

n≥k

Bn,k(x1,x2,...,xn−k+1)

n!
tn. This would also immediately lead

to Corollary 1 below if we defined the subsequent concept of weighted integer compositions

by the formal power series expansion
(

∑

m≥0 f(m)tm
)k

=
∑

n≥0

(

k
n

)

f
tn, with notation

as explicated below.

http://arxiv.org/abs/1601.01347v1
http://dx.doi.org/10.1007/s00010-015-0338-2
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where the summation is over all solutions in nonnegative integers ℓ1, . . . , ℓn−k+1

of ℓ1 + 2ℓ2 + · · · + (n − k + 1)ℓn−k+1 = n and ℓ1 + ℓ2 + · · · + ℓn−k+1 = k.
Such identities may be important for the efficient evaluation of the partial
Bell polynomials, as hinted at in Cvijović [2], who also indicates applications
of the polynomials. Importantly, they generalize the Stirling numbers S(n, k)
of the second kind, since S(n, k) = Bn,k(1, . . . , 1).

The purpose of the present note is to show that these identities are
special cases of identities for weighted integer compositions and to outline
very short proofs for the more general identities, based on sums of discrete
random variables. Our main point is to compile (identical or very similar)
results developed within heterogeneous communities of research, and to com-
bine these results. Finally, in Section 4, we present three additional identities
for the partial Bell polynomials. Throughout, we write Bn,k as a shorthand
for Bn,k(x1, . . . , xn−k+1), unless explicit reference to the indeterminates is
critical.

2. Preliminaries on weighted integer compositions

An integer composition of a nonnegative integer n is a k-tuple (π1, . . . , πk),
for k ≥ 1, of nonnegative integers such that π1 + · · · + πk = n. We call
k the number of parts. Note that order of part matters, and this distin-
guishes integer compositions from integer partitions. Now, to generalize, we
may consider f -colored integer compositions, where each possible part size

s ∈ N = {0, 1, 2, . . .} may come in f(s) different colors, whereby f : N → N.
For example, the integer n = 4 has nine distinct f -colored integer composi-
tions, for f(0) = 2, f(1) = f(2) = 1, f(3) = f(4) = f(5) = · · · = 0, with
k = 3 parts, namely,

(2, 2, 0), (2, 2, 0∗), (2, 1, 1), (1, 2, 1), (2, 0, 2), (2, 0∗, 2), (1, 1, 2), (0, 2, 2), (0∗, 2, 2),

where we use a star superscript to distinguish the two different colors of part
size 0. For weighted integer compositions we let, more generally, f(s) be an
arbitrary real number (or even a value in a commutative ring), the weight
of part size s. Colored integer compositions have been discussed in [6, 9, 10],
and weighted integer compositions have been under review in Eger [4], but
have been investigated as early as Hoggatt and Lind’s [7] work.

Let
(

k

n

)

f
denote the number of f -weighted integer compositions of n

with k parts, when the range of f is N, and let
(

k

n

)

f
denote the total weight

of all f -weighted integer compositions of n with k parts, when the range of
f is the set of reals R. We then have the following theorem.
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Theorem 1. Let k, n ≥ 0 be integers, and let f : N → R be arbitrary. Then
the following identities hold.

(

k

n

)

f

=
∑

f(π1) · · · f(πk), (2)

(

k

n

)

f

=
∑

(

k

ℓ0, ℓ1, . . . , ℓn

)

f(0)ℓ0 · · · f(n)ℓn , (3)

where the sum in (2) is over all solutions in nonnegative integers π1, . . . , πk

of π1 + · · ·+ πk = n, and the sum in (3) is over all solutions in nonnegative
integers ℓ0, . . . , ℓn of ℓ0 + · · ·+ ℓn = k and 0ℓ0 +1ℓ1 + · · ·+ nℓn = n. Finally,
(

k

ℓ0,ℓ1,...,ℓn

)

= k!
ℓ0!ℓ1!···ℓn!

denote the multinomial coefficients.

The proof of Theorem 1 is simple. Identity (2) is a direct application of

the definition of
(

k

n

)

f
and (3) follows, combinatorially, from (2) by rewriting

the summation over integer compositions into a summation over integer par-
titions and then adjusting each term in the sum appropriately (in particular,
the multinomial coefficients account for distributing the parts in partitions).

Alternatively, when
(

k

n

)

f
is defined as coefficient of a certain polynomial,

then (3) can also be arrived at via application of the multinomial theorem
(see [4]) or the formula of Faà di Bruno [8] for the higher order derivatives of
composite functions (see [7]).

Interpreting f(s), for s ∈ N, as indeterminates, Theorem 1 identity (3)
immediately implies that f -weighted integer compositions ‘generalize’ partial
Bell polynomials.

Corollary 1. Let k, n ≥ 0 be integers. Then:

k!

n!
Bn,k(x1, x2, . . . , xn−k+1) =

(

k

n

)

f

, (4)

whereby

f(0) = f(n− k + 2) = f(n− k + 3) = · · · = 0,

f(s) =
xs

s!
, for s ∈ {1, 2, . . . , n− k + 1}.

Corollary 1 has been established in [1] in the more particular setting of
restricted integer compositions, or, classical ‘multinomial/extended binomial
coefficients’, where, in our notation, f(s) = 1 for all s ∈ {1, . . . , q}, for some
positive integer q. This yielded the conclusion that partial Bell polynomials
‘generalize’ restricted integer compositions insofar asBn,k(1!, 2!, . . . , q!, 0, . . .) =
n!
k!

(

k
n

)

f
, where f is the indicator function on {1, . . . , q}.

Representation (2) in Theorem 1 is very useful on its own since it cap-
tures an equivalence between f -weighted integer compositions and distri-
butions of sums of independent and identically distributed (i.i.d.) discrete
random variables as explicated in the following lemma.

Lemma 1. Let k, n ≥ 0 be integers and let f : N → R be arbitrary. Then there
exist i.i.d. nonnegative integer-valued random variables X1, . . . , Xk such that
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(

k

n

)

f
is given as the distribution of the sum of X1, . . . , Xk (times a suitable

normalization factor).

Conversely, the distribution Pf [X1 + · · · + Xk = n] of arbitrary i.i.d.
nonnegative integer-valued random variables X1, . . . , Xk with common dis-
tribution function f is given by

(

k

n

)

f
.

Proof. Consider
(

k
n

)

f
. When f is zero almost everywhere, i.e., f(s) = 0 for

all s > x, for some x ∈ N, then let F̄ denote the sum
∑

s′∈N
f(s′) and let

g(s) = f(s)

F̄
for all s ∈ N. Consider the i.i.d. random variables X1, . . . , Xk

with common distribution function g, i.e., P [Xi = s] = g(s). By definition,
the distribution of the sum X1 + · · ·+Xk is given as

Pg[X1 + · · ·+Xk = n] =
∑

π1+···+πk=n

P [X1 = π1] · · ·P [Xk = πk]

=
∑

π1+···+πk=n

g(π1) · · · g(πk)

=
1

F̄n

∑

π1+···+πk=n

f(π1) · · · f(πk) =
1

F̄n

(

k

n

)

f

.

When f is not zero almost everywhere, then note that

(

k

n

)

f

=

(

k

n

)

f̂

=
¯̂
FnPĝ[Y1 + · · ·+ Yk = n],

whereby f̂(s) = f(s) for s ≤ n and f̂(s) = 0 for s > n, and Y1, . . . , Yk are

i.i.d. random variables with common distribution function ĝ(s) = f̂(s)
¯̂
F

, where
¯̂
F =

∑

s′∈N
f̂(s′).

Conversely, the distribution of the sum of i.i.d. nonnegative integer-
valued random variables X1, . . . , Xk with common distribution function f is
given by, as above,

Pf [X1 + · · ·+Xk = n] =
∑

π1+···+πk=n

P [X1 = π1] · · ·P [Xk = πk]

=
∑

π1+···+πk=n

f(π1) · · · f(πk) =

(

k

n

)

f

,

applying Theorem 1 in the last equality. �

Lemma 1 has appeared in [4] and, in the special case when f is the dis-
crete uniform measure, in [1]. Lemma 1 allows us to prove properties of the

weighted integer compositions
(

k

n

)

f
by referring to properties of the distribu-

tion of the sum of discrete random variables, which is oftentimes convenient,
as we shall see below.
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3. Identities and proofs

The three identities for partial Bell polynomials that Cvijović [2] introduces
are the following:

Bn,k =
1

x1

1

n− k

n−k
∑

α=1

(

n

α

)[

(k + 1)−
n+ 1

α+ 1

]

xα+1Bn−α,k, (5)

Bn,k1+k2
=

k1!k2!

(k1 + k2)!

n
∑

α=0

(

n

α

)

Bα,k1
Bn−α,k2

, (6)

Bn,k+1 =
1

(k + 1)!

n−1
∑

α1=k

· · ·

αk−1−1
∑

αk=1

(

n

α1

)

· · ·

(

αk−1

αk

)

xn−α1
· · ·xαk−1−αk

xαk
.

(7)

As shown in Cvijović [2], (7) easily follows inductively from (6). Therefore,
we concentrate on the identities (5) and (6). Throughout, we let k, n be
nonnegative integers and f be a function f : N → R. As we will see now,
identity (6) may be seen as a special case of the convolution formula for the
sum of discrete random variables.

Lemma 2. Let n, k1 and k2 be nonnegative integers. Then:
(

k1 + k2

n

)

f

=
∑

x+y=n

(

k1

x

)

f

(

k2

y

)

f

.

Proof. By our previous discussion, it suffices to prove the lemma for sums of
i.i.d. integer-valued random variables X1, . . . , Xk1

, Y1, . . . , Yk2
. Now,

Pf [(X1 + · · ·+Xk1
) + (Y1 + · · ·+ Yk2

) = n]

=
∑

x+y=n

Pf [X1 + · · ·+Xk1
= x]Pf [Y1 + · · ·+ Yk2

= y]

by the discrete convolution formula for discrete random variables.
To formally complete the proof,2 we apply Lemma 1 (or, more precisely,

its proof), leading to:
(

k1 + k2

n

)

f

=

(

k1 + k2

n

)

f̂

=
¯̂
FnPĝ[X1 + · · ·+Xk1+k2

= n]

=
¯̂
Fn

∑

x+y=n

Pĝ[X1 + · · ·+Xk1
= x]Pĝ [Y1 + · · ·+ Yk2

= y]

=
∑

x+y=n

¯̂
F xPĝ[X1 + · · ·+Xk1

= x]
¯̂
F yPĝ[Y1 + · · ·+ Yk2

= y]

=
∑

x+y=n

(

k1

x

)

f̂

(

k2

y

)

f̂

=
∑

x+y=n

(

k1

x

)

f

(

k2

y

)

f

.

�

2We omit this straightforward step in all subsequent proofs.
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Proof of identity (6). Using Lemma 2 and Corollary 1, we obtain that

Bn,k1+k2
=

n!

(k1 + k2)!

(

k1 + k2

n

)

f

=
n!

(k1 + k2)!

∑

x+y=n

(

k1

x

)

f

(

k2

y

)

f

=
n!

(k1 + k2)!

∑

x+y=n

k1!

x!
Bx,k1

k2!

y!
By,k2

=
k1!k2!

(k1 + k2)!

∑

x+y=n

n!

x!y!
Bx,k1

By,k2

=
k1!k2!

(k1 + k2)!

∑

x+y=n

(

n

x

)

Bx,k1
By,k2

.

�

The proof of the following identity for weighted integer compositions
which directly entails identity (5) is a straightforward variation of the proof
outlined in DePril [3], who considers sums of integer-valued random variables.

Lemma 3. Let k, n ≥ 0 be integers and let f : N → R be arbitrary with
f(0) = 0 and f(1) 6= 0. Then:

(

k

n

)

f

=
1

f(1)(n− k)

∑

s≥1

(

k + 1−
n+ 1

s+ 1

)

(s+ 1)f(s+ 1)

(

k

n− s

)

f

.

Proof. Let X1, . . . , Xk+1 be i.i.d. nonnegative integer-valued random vari-
ables, with distribution function f . Consider the conditional expectation
E[X1 |X1 + . . . + Xk+1 = n + 1]. Due to identical distribution of the vari-
ables and linearity of E[· | ·], it follows that E[X1 |X1+ . . .+Xk+1 = n+1] =
E[X1+...+Xk+1 |X1+...+Xk+1=n+1]

k+1 = n+1
k+1 . Thus, E[

k+1
n+1X1−1 |X1+. . .+Xk+1 =

n+ 1] = 0, which means that

0 =
n
∑

s=1

(
k + 1

n+ 1
s− 1)

Pf [X1 = s,X1 + · · ·+Xk+1 = n+ 1]

Pf [X1 + . . .+Xk+1 = n+ 1]

=
1

(

k+1
n+1

)

f

n
∑

s=1

(
k + 1

n+ 1
s− 1)P [X1 = s] · Pf [X2 + · · ·+Xk+1 = n+ 1− s]

=
1

(

k+1
n+1

)

f

n
∑

s=1

(
k + 1

n+ 1
s− 1)f(s)

(

k

n+ 1− s

)

f

,

so that rewriting and shifting indices lead to the required expression. �

We omit the proof of identity (5) since it is a simple application of
Lemma 3.
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4. More identities for the partial Bell polynomials

We mention the following three additional identities for partial Bell polyno-
mials,

Bn,k =
1

k

∑

α≥0

(

n

α

)

xαBn−α,k−1, (8)

Bn,k =
∑

α≥1

(

n− 1

α− 1

)

xαBn−α,k−1, (9)

Bn,k(x1, . . . , xn−k+1) =
∑

α≥0

(

n

α

)

xα
1Bn−α,k−α(0, x2, . . . , xn−k+1). (10)

(note that (8) is a special case of (6)) which straightforwardly follow from
the following corresponding identities for weighted integer compositions,

(

k

n

)

f

=
∑

s≥0

f(s)

(

k − 1

n− s

)

f

, (11)

(

k

n

)

f

=
k

n

∑

s≥1

sf(s)

(

k − 1

n− s

)

f

, (12)

(

k

n

)

f

=
∑

i≥0

f(r)i
(

k

i

)(

k − i

n− ri

)

f̃

. (13)

In Equation (13), f̃(r) = 0 and f̃(s) = f(s) for all s 6= r (note that (10) is
a special case of (13) in which r = 1). Proofs of identities (11) to (13) can,
e.g., be found in Fahssi [5] and Eger [4], who also give further identities for
weighted integer compositions.
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