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Abstract—Some Machine-to-Machine (M2M) communication
links particularly those in a industrial automation plant h ave
stringent latency requirements. In this paper, we study the
delay-performance for the M2M uplink from the sensors to a
Programmable Logic Controller (PLC) in a industrial automa tion
scenario. The uplink traffic can be broadly classified as either
Periodic Update (PU) and Event Driven (ED). The PU arrivals
from different sensors are periodic, synchronized by the PLC
and need to be processed by a prespecifiedfirm latency deadline.
On the other hand, the ED arrivals are random, have low-
arrival rate, but may need to be processed quickly depending
upon the criticality of the application. To accommodate these
contrasting Quality-of-Service (QoS) requirements, we model the
utility of PU and ED packets using step function and sigmoidal
functions of latency respectively. Our goal is to maximize the
overall system utility while being proportionally fair to b oth PU
and ED data. To this end, we propose a novelonline QoS-aware
packet scheduler that gives priority to ED data as long as that
results the latency deadline is met for PU data. However as the
size of networks increases, we drop the PU packets that fail to
meet latency deadline which reduces congestion and improves
overall system utility. Using extensive simulations, we compare
the performance of our scheme with various scheduling policies
such as First-Come-First-Serve (FCFS), Earliest-Due-Date (EDD)
and (preemptive) priority. We show that our scheme outperforms
the existing schemes for various simulation scenarios.

Index Terms—M2M, Latency, Quality-of-Service, Scheduling

I. I NTRODUCTION

Automation for industrial monitoring and control processes
has become commonplace these days. It can be modeled
as a star-topology Machine-to-Machine (M2M) network of
various process sensors communicating to a Programmable
Logic Controller (PLC) on the ‘uplink channel’ which then
feeds back the output to a control device (‘downlink channel’)
to ensure the desired process operation. Due to increasing
complexity and scale of modern industrial monitoring and
control systems, there has been a paradigm shift from the use
of point-to-point wired systems to wireless technologies for
both uplink and downlink communication. Wireless technolo-
gies specifically tailored for signaling in industrial monitoring
systems, such as WISA, Zigbee Pro etc. (which are based
on IEEE 802.15.1 and IEEE 802.15.4 standard) are becoming
increasing popular (see [1] and references therein).

Typically, the industrial M2M traffic has very low latency
requirements (of order of few milliseconds). It can be broadly
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categorized as eithernon real-time (no deadline for task
completion) orsoft real-time(decreased utility if deadline not
met) orfirm (zero utility if deadline not met) orhard (system
failure if deadline not met). For instance, the messages from
a instrumented protective system or safeguarding system have
hard real-time Quality-of-Service (QoS) requirements whereas
preventive maintenance applications are typically servedin
non real-time. With increase in network size, the available
computational and (wireless) communication resources gets
shared among a large number of sensors. This makes it
harder to provide real-time QoS due to simultaneous access
attempts from multiple sensors [2] and also wastage of wire-
less spectrum continuously allocated to sensors with very low
transmission duty cycle [3].

Therefore in this paper, we develop anonlinedelay-efficient
packet scheduler for the M2M traffic. To begin, we first use
source M2M traffic model in [4] to classify the sensor data
into Periodic Update (PU) and Event Driven (ED) packets.
The PU arrivals are periodic withfirm1 latency deadline while
the ED arrivals are random without hard service deadlines.

Paper Contributions: We map the contrasting QoS require-
ments for PU and ED packets using step and sigmoidal
utility functions. We define the overall system utility as the
product of (time) averaged PU and ED utilities so as to ensure
proportional fairness between the two classes. Our goal is to
determine the optimal scheduling policy that maximizes the
proposed system utility. However, due to the randomness in
arrival and service times, there exists no delay-optimalonline
algorithm [5].

Therefore, we propose anonline delay-efficient heuristic
scheduler for the uplink traffic at the PLC, that gives priority
to ED data as long as that does not result in a utility loss
for the PU data. This results in a higher utility for the ED
data. However, at high server utilization, as the PU task start
failing their task completion deadlines, we propose to drop
such PU packets as their completion does not result in utility.
This helps us to mitigate overall congestion and thus allowsus
to meet the deadlines of remaining PU tasks and also serve the

1We assumefirm QoS for PU instead ofhard QoS because typically
the periodic data is a slowly varying function of time and will not change
drastically from one period to another. So if we don’t meet the completion
deadline for a PU task, the PLC can use an estimate for the PU based on
the recent history, albeit with some degradation in utility. The estimate will
typically be better if we store more historical PU data but this increase the
memory size and computational complexity.
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ED data with higher utility. Using extensive simulations, we
show that this results in an overall increase in system utility as
compared to other popular scheduling policies such as First-
Come-First-Serve (FCFS), Earliest Due Date (EDD), priority
scheduling etc. Lastly, the proposed scheduler is agnosticto
the wireless technology being used for the M2M uplink and is
also independent of the hardware-software architecture used in
practical real-time embedded systems. Also it can easily adapt
to accommodate time-varying arrival and service rates for the
PU and ED packets.

Paper Outline: The rest of the paper is organized as follows.
Section II details the related work. Section III introduces
the system model and defines the utility functions for PU
and ED data. Then in Section IV, we formulate the utility
maximization problem and in Section V describe the proposed
scheduling scheme at PLC. Section VI presents simulation
results. Finally Section VII draws some conclusions.

II. RELATED WORK

Over the last decade, numerous hardware and software
technologies including embedded real-time systems, Ethernet,
Low-power Wi-Fi, Zigbee have made their way into industrial
automation platforms so as to increase their flexibility and
efficiency. However, this has resulted in increased complexity
both at the network and component level, due to sharing
of physical resources for various applications. This makes
it harder to guarantee QoS for (hard) real-time applications.
It was shown by Buttazzo in [6] that merely increasing the
computational resources is not too useful unless appropriate
scheduling strategies are put in place. Consequently, a number
of prior works have looked into integrating the design of real-
time scheduling schemes in middle-ware (such as CORBA)
based architectures. Tommaso et. al. in [7] presented a real-
time Service Oriented Architecture (SOA) for industrial au-
tomation. However, all of these works are mostly tangential
to our line of work in the sense that our proposed scheduler
is agnostic of the hardware-middleware-software architecture
and maps the real-time QoS requirements of M2M traffic into
utility functions that we aim to maximize.

Another line of work focuses on QoS-aware packet sched-
uler for M2M traffic in Long Term Evolution (LTE) network
(see [8] and references therein). Most of these works use some
variants of Access Grant Time Interval scheme for allocating
fixed or dynamic access grants over periodic time intervals
to M2M devices. Nusrat et. al. in [9] designed a packet
scheduler for M2M in LTE so as to maximize the percentage of
uplink packets that satisfy their individual budget limits. Ray
and Kwang in [10] proposed a distributed congestion control
algorithm which allocates rates to M2M flows in proportion
of their demands. Unlike our work, all of these works design
packet scheduler specific to a wireless standard such as LTE
and are thus heavily influenced by the Medium Access Control
(MAC) architecture of LTE. Unlike our work, they also don’t
explicitly segregate data arrivals into different QoS classes.

Lastly, a number of scheduling algorithms have been pro-
posed specifically for real-time embedded systems (see [11]
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Fig. 1. System Model.

and references therein) that are agnostic to the application
scenario, wireless technology used or hardware-software ar-
chitecture. These schemes assume hybrid task sets comprising
of hard periodic requests andsoft real-timeaperiodic requests.
They are broadly classified into Fixed-priority and Dynamic
priority assignments. The goal of all these schemes is to guar-
antee completion of service (before deadline) for all periodic
request and simultaneously aim to reduce the average response
times of aperiodic requests. Fixed priority schemes schedule
periodic tasks using Rate-Monotonic algorithm but differ in
service for aperiodic tasks. Dynamic scheduling algorithms
schedule periodic tasks using EDD scheme and allow better
processor utilization and enhance aperiodic responsiveness as
compared to the fixed priority schemes. The drawbacks of
these schemes is that they assume that the random service
times for each tasks are knownapriori. Hence these schemes
are not trulyonline in their present form and would require
considerable modifications.

III. SYSTEM MODEL

Fig 1 shows the system model illustrating the queuing pro-
cess in the uplink channel (i.e., from sensors to the PLC) in an
industrial automation setting. Each of theN sensors transmits
two types of packets to the PLC: frequent periodic updates
(PU) for some process related measurement or sporadic event-
driven (ED) packets triggered when the sensor measurement
for a physical quantity crosses its threshold. The PU arrivals
from the ith sensor is modeled as a deterministic periodic
process with periodT i

pu while the ED arrivals is modeled as a
Poisson process with rateλi

ed. Therefore the queuing process
at the PLC has net arrival rateλpu and λed for PU and ED
packets respectively, where

λpu =

N
∑

i=1

1/T i
pu andλed =

N
∑

i=1

λi
ed. (1)

Let spu and sed denote the size for PU and ED packets.
The service time for PU and ED packets is assumed to be



exponential with rateµpu andµed respectively given by

µpu = µ/spu andµed = µ/sed, (2)

whereµ is the service rate at PLC per unit packet size. In
general, the total time spent by a packet in the system,T , can
be written as sum of following components,

T = Ttrans+ Tprop+ Tcong+ Tqueue+ Tser, (3)

which denote the following component delays:
• Ttrans: Transmission delay at the sensor.
• Tprop: Propagation delay from the sensor to PLC.
• Tcong: Congestion delay due to shared wireless channel

in large-scale sensor network.
• Tqueue: Queuing delay at the PLC.
• Tser: Processing time for a packet at the PLC.

In this work, we ignore all the terms except the queuing
delay at PLCTqueueand the service timeTser. This is because
the packet size is usually small enough to ignoreTtrans and
the sensors and PLC are usually close enough on the shop
floor to permit the usage of low power wireless signaling and
thus ignoreTprop. Also, we assume that the available wireless
spectrum is large enough to allocate a dedicated transmission
channel to each sensor; so there is no congestion delayTcong.

At the PLC, the PU and ED packets form two separate
queues due to different attributes such as packet size and
latency requirements. However, for simplicity for a given PU
or ED class, we don’t distinguish between packets arriving
from different sensors. Now the queuing delay for each class
depends upon the scheduling policy adopted at the PLC. The
scheduling policy at PLC should be chosen as to maximally
satisfy the latency constraints of PU and ED packets.

IV. PROBLEM FORMULATION

We first map the latency requirements onto the utility
functions for both PU and ED classes as shown in Fig. IV-B
and IV-B.

A. Utility Functions

1) PU utility: As stated previously, the PU packets need
to be processed within a prespecified (usually by PLC) time
interval at the end of which there is no utility in serving the
packet. So, we define PU utility as,

Upu(l) =

{

1 if l < ld

0 if l ≥ ld,
(4)

whereld is the latency deadline at which utility drops to 0.
2) ED utility: Unlike, the PU packets, ED packets do not

have a hard deadline, rather their utility is a strictly decreasing
function of latency. However the utility does not decrease
much until some nominal delay which depends on criticality
of application. Also at large latency values, the utility becomes
close to 0 and does not change appreciably with further
increase in latency. Therefore, we define the ED utility as a
sigmoidal function, as in [12], [13], given by,

Ued(l) = 1− c

(

1

1 + e−a(l−b)
− d

)

, (5)
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Fig. 2. Utility function for PU packet.
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Fig. 3. Utility function for ED packet.

where,c = 1+eab

eab and d = 1
1+eab . We note thatUed(0) = 1

andUed(∞) = 0. The parametera is the utility roll-off factor
whose value depends on the criticality of the application. The
inflection point of (5) occurs atl = b and depends on the
average service time (at PLC) for ED packet.

B. System utility function

For a given scheduling policyP, we use utility proportional
fairness in our system utility (similar to the system utility
introduced in [14], [15]) which is given by,

V (P) = Upu
βpu(P) ∗Ued

βed(P), (6)

where Upu(P) and Ued(P) are the utility of PU and ED
packets in the steady state given as,

Upu(P) = lim
Ts→∞

Mpu(Ts)
∑

i=1

Upu(li(P))

Mpu(Ts)
, (7)

Ued(P) = lim
Ts→∞

Med(Ts)
∑

i=1

Ued(li(P))

Med(Ts)
, (8)

whereMpu(Ts) andMed(Ts) are the number of PU and ED
packets served in timeTs andli is the latency of theith packet.
The parametersβpu and βed denote the relative importance
of average PU and ED utility. A higher value ofβ implies
higher importance of the utility of that class towards the overall
system utility.



C. Optimal scheduler

We now describe the utility maximization problem that
needs to be solved to determine the optimal scheduling policy
at PLC. It is given by,

max
P

V (P) = Upu
βpu(P) ∗Ued

βed(P). (9)

If the service times of PU and ED were deterministic or known
apriori, then the optimal scheme is to schedule PU jobs so that
they are completed exactly at the deadlineld. However, since
the arrival time of ED packet, the service times for PU and
ED packets are random, it is not possible to determine an
onlineoptimal scheduler [5]. Therefore, we propose anonline
heuristic scheduler that aims to maximize the utility function
and is described in the next section.

V. PROPOSEDSCHEDULER

The utility of PU remains at 1 until the deadline at which it
becomes 0. Therefore, it would be best (from the perspective
of ED latency) to delay the service of PU as much as possible
but ensuring that we serve it before deadline. However, the
randomness in PU and ED service times makes it hard to
determine the optimal start of service for each PU packet in
real-time. To overcome this problem, our proposed scheduler
gives priority to ED packets as long as the current latency
of PU packet is less than predetermined thresholdlt, (0 <
lt < ld). If the latency of PU packet exceedslt and PLC is
processing an ED packet, then it gets preempted and the PU
packet gets service. This ensures that we reduce latency of
ED packets while ensuring that most of the PU packets meet
their latency deadline. As we will show later, there exists an
optimal value oflt that maximizes the system utility for given
set of system parameters. Using simulations, the optimallt can
be stored in a Look-Up-Table (LUT) prior to the deployment
of proposed scheduler. Thus the proposed scheme can easily
adapt to changing packet arrival rate, packet size, number of
sensor nodes etc. by looking up and using the optimallt for
each case.

Another novel feature of our scheduler is that we drop
PU packets from service or queue that exceed their latency
deadline as there is no resultant utility from servicing such
packets. However, dropping them from service will reduce
congestion and thus reduce latency for PU and ED packets
in queue. The proposed scheduler is described in detail in
Algorithm 1.

VI. SIMULATION RESULTS

In this section, we use Monte-Carlo simulations to evaluate
the system utility performance of our scheduler against various
standard scheduling policies such as FCFS, EDD, Preemptive
priority scheduling. The simulation timeTs is set to a large
value (40 s) to ensure a steady-state queuing behavior.N is
set to 50 sensors. For simplicity, we set the PU arrival period
from each of theN sensors,T i

pu = 50 ms. The ED arrival rate,
λi

ed is same for all sensors and set to0.0068/ms. PLC service
rate isµ = 100 bits/ms. The relative importance of PU and ED
is set equal, i.e.βpu = βed = 1, unless mentioned otherwise.
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Fig. 4. Selection of optimal PU latency thresholdlt.

The size of PU and ED packets is set tospu = 100 bits and
sed = 200 bits respectively and does not change over time
or different sensors. The latency deadline for PU,ld is set to
10 ms for all sensors. For ED utility function, we seta = 1/ms
andb = 20 ms unless mentioned otherwise.

A. Impact of latency threshold and ED utility parameter,b

Fig. 4 illustrates the impact of varying the PU latency
threshold lt in proposed scheduler (without PU drop) for
different values of parameterb. We note that for a givenb,
there exists an optimal value oflt that maximizes the system
utility. However, at higher values ofb, the system utility
becomes less sensitive tolt value around the maxima. This is
because the ED utility does not vary appreciably with latency
when b is high; and PU utility does not vary much at low
values oflt.

B. Impact of ED utility parameter,a

Fig. 5 illustrates the impact of varying the ED utility
parametera on the system utility for different scheduling
policies. Asa is increased, ED utility function more brick-
walled with the step at latency ofb. We observe that at very
low value of a, system utility is very high for the proposed
schemes. This is because ED utility remains constant with
increase in latency. Asa is increased, system utility decreases,
attains a minima, increases and then settles down. This is
because at higha, the ED utility becomes a brick-wall function
and any further increase ina does not affect system utility.

C. Impact of number of sensor nodes

Fig. 6 shows the impact of increasing number of sensors
on the system utility for different scheduling policies. For
proposed scheduler, we run Algorithm 1 over0 < lt < ld
and determine the optimallt that results in maximum utility
V . Clearly, the proposed scheduler (irrespective of dropping
PU packets) always results in a higher system utility compared
to all other schemes. However the performance improvement
is starkly better asN is increased. This is because at large
N , the latencies of PU and ED becomes more interdependent
and order of service for queued jobs becomes quite important.
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Also at largeN , the proposed scheme with PU drop results
in higher dropped packets and thus relieves congestion and
results in a significantly higher utility as compared to other
schemes.

D. Impact of ED arrival rate

Fig. 7 shows the impact of increasing the frequency of ED
arrivals for a given network. Again for similar reason as stated
earlier, we note that the proposed scheduler results in higher
utility compared to other schemes.

VII. C ONCLUSIONS

In this paper, we presented a delay-efficient packet sched-
uler for uplink M2M traffic. To this end, we classified the
uplink traffic as PU or ED packets and mapped their latency
requirements onto utility functions. We then proposed a novel
packet scheduler to maximize the system utility. We defined
the system utility as the weighted product of average PU
and ED utility so as to ensure proportional fairness. Using
extensive simulations, we did a comparative analysis of the
proposed scheme with standard scheduling policies such as
FCFS, EDD, Preemptive priority etc. We note that as the
network size increases or ED arrival rate increases, there is
a stark difference between the utility of proposed scheme and
the rest.
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Algorithm 1 ProposedOnline Packet Scheduler
Inputs
ld and lt are latency deadline and threshold for PU utility such that0 < lt < ld
Upu(.) andUed(.) are utility functions for PU and ED packets
βpu andβed are parameters for system utility in (6)
T a

pu andT a
ed are arrays for arrival times of PU and ED packets

T s
pu andT s

ed are arrays for service times of PU and ED packets
Outputs
V is optimal policy
Local
T1, T2, T3 store current time, service completion time and next arrival time
x, z is type of next packet to be served and the current packet in server. Set them to1 for PU and2 for ED packet
p1, p2 are pointers to the next PU and ED packet to be served
T d

pu andT d
ed are arrays for completion times of PU and ED packets

Dpu andDed are arrays for latency of PU and ED packets
Upu andUed are average utilities for PU and ED packets
r1, r2 are sizes of arraysT a

pu andT a
ed. Setǫ to infinitesimally small value.

Initialization
p1 = 1, p2 = 1, T1 = 0, T2 = 0
Begin Algorithm:

while p1 ≤ r1 or p2 ≤ r2 do
if T a

pu(p1) <= T a
ed(p2) then ⊲ Determine whether next arrival is PU or ED

T3 = T a
pu(p1), x = 1 ⊲ Set next arrival time and packet type to PU

else
T3 = T a

ed(p2), x = 2 ⊲ Set next arrival time and packet type to ED
end if
if T1 ≤ T3 then

T1 = T3 ⊲ Advance current time to next PU or ED arrival
else if z = 2 andT2 > T a

pu(p1) + lt then ⊲ Preempt active ED job if PU latency exceedslt
p2 = p2 − 1, z = 1
T s

ed(p2) = T2 − (T a
pu(p1) + lt) ⊲ Residual service time for preempted ED job

T1 = T a
pu(p1) + lt ⊲ Retreat current timer to preemption instant

else ifT1 > max(T a
pu(p1), T

a
ed(p2)) then ⊲ Check if both PU and ED jobs present in queue

if T1 > T a
pu(p1) + lt then ⊲ Service PU job first if its latency exceedslt

x = 1
else

x = 2
end if

end if
if x = 1 then ⊲ Update the timers and pointers for next PU or ED packet

z = 1, T2 = T1 + T s
pu(p1), T

d
pu(p1) = T2, p1 = p1 + 1

else
z = 2, T2 = T1 + T s

ed(p2), T
d
ed(p2) = T2, p2 = p2 + 1

end if
if z = 1 andT2 > T s

pu(p1 − 1) + ld then ⊲ Drop the PU packet with latency exceeding the deadline
T d

pu(p1 − 1) = T a
pu(p1 − 1) + ld + ǫ, T1 = max(T1, T

a
pu(p1 − 1) + ld)

else
T1 = T2 ⊲ Advance the timer to service completion time

end if
end while
Dpu = T d

pu − T a
pu, Ded = T d

ed− T a
ed ⊲ Calculate latency for PU and ED packets

Upu = mean(Upu(Lpu)), Ued = mean(Ued(Led)), V = U
βpu
pu ∗Uβed

ed ⊲ Determine PU, ED and system utility
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