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ABSTRACT

Detecting polarized light from self-luminous exoplanets has the potential to provide

key information about rotation, surface gravity, cloud grain size, and cloud coverage.

While field brown dwarfs with detected polarized emission are common, no exoplanet

or substellar companion has yet been detected in polarized light. With the advent of

high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection

may now be possible with careful treatment of instrumental polarization. In this paper,

we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5

companion HD 19467 B. We detect no polarization signal from the target, and place

an upper limit on the degree of linear polarization of pCL99.73% ≤ 2.4%. We discuss our

results in the context of T dwarf cloud models and photometric variability.
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1. Introduction

Recent imaging spectroscopy of directly imaged planets such as β Pic b, HR 8799 bcd, and 51

Eri b (Chilcote et al 2015; Ingraham et al 2014; Macintosh et al 2015) has demonstrated that

this technique will soon become routine. At the same time, these early studies have underscored

the challenges of fitting atmospheric models based on field brown dwarf spectra to exoplanets

with comparatively low masses and surface gravities (Barman et al 2011; Marley et al 2012).

For instance, the HR 8799 planets’ red colors are consistent only with models that include dusty,

patchy clouds and non-equilibrium chemistry, but these scenarios require radii that are inconsistent

with the predictions of evolutionary models (Marois et al 2008b; Bowler et al 2010; Ingraham

et al 2014). The spectra of β Pic b gathered to date also require a cloudy atmosphere, but even

the best fitting models contain large (5% − 10%) systematic offsets from the data (Chilcote et al

2015). These and other studies indicate that clouds are common in planetary atmospheres, but

current atmospheric models require a more detailed treatment of cloud physics (e.g. dust grain size

distributions, grain chemistry, and large scale opacity holes, or “patchy” cloud regions).

Polarimetry is well-suited to the problem of analyzing planetary atmospheres. As early as 1929,

Bernard Lyot published reflected light polarimetry of Venus as a means of probing the planet’s

cloud composition (Lyot 1929). In the modern era of exoplanet astronomy, at least 10 years of

theoretical work have been devoted to the polarization of reflected starlight by a close-in directly

imaged exoplanet (Schmid et al 2006; Stam 2008; Buenzli & Schmid 2009). In this paper, we

address a separate regime of exoplanet polarimetry: scattering by grains in the atmospheres of

cloudy, self-luminous exoplanets, which induces polarization of thermally emitted radiation in the

near infrared (Sengupta & Marley 2009; Marley & Sengupta 2011; de Kok et al 2011). While

Rayleigh scattering in the atmospheres of cloud-free exoplanets can polarize visible wavelength

radiation, we concentrate on the case of ∼micron sized dust grains that polarize infrared radiation,

where young, self-luminous exoplanets emit the bulk of their radiation.

A perfectly spherical, uniformly cloudy planet, however, would have zero disk-integrated polar-

ization. In order to produce a non-zero polarization signature when the planet is viewed as a point

source, the clouds must be nonuniformly distributed (e.g. patchy or banded) and/or the body must

be oblate (Basri 2000; Sengupta & Krishan 2001). Both of these characteristics have been invoked

to explain the observed polarization of brown dwarfs in the field. Time-varying polarimetric signals

indicate evolving or rotating nonuniform cloud distributions, while comparisons of fast and slow

brown dwarf rotators show that oblate bodies are more likely to produce observable polarimetric

signals than spherical bodies (Ménard et al 2002; Zapatero Osorio et al 2005; Goldman et al 2009;

Tata et al 2009; Zapatero Osorio et al 2011; Miles-Páez et al 2013). For example, Miles-Páez et

al (2013) found that 40± 15% of rapidly rotating (v sin i ≥ 30 km s−1) M7-T2 dwarfs are linearly

polarized in the Z− and J−bands, with linear degrees of polarization of 0.4%− 0.8%. The fastest

rotators (v sin i > 60 km s−1) were more frequently polarized, and had larger detected polarizations

compared to moderate rotators (v sin i = 30 − 60 km s−1). Furthermore, polarimetry in different

broad wavelength bands has provided a diagnostic of grain sizes (Zapatero Osorio et al 2005).
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These field observations set the stage for exoplanet and brown dwarf companion polarimetry.

Because models and field dwarf observations agree that the cloud-induced degree of linear polar-

ization is generally p ≤ 1%, the observational challenge is to reach the companion-to-star contrast

ratio and absolute polarimetric accuracy needed to detect such small signals. SPHERE (Beuzit et al

2008) and GPI (Macintosh et al 2008, 2014) are the first spectro-polarimeters capable of achieving

contrasts < 10−5 at separations < 1” and an absolute accuracy in the degree of linear polarization

of p < 0.1% in the near infrared (Wiktorowicz et al 2014). These instruments are poised to make

the first detections of polarized light from substellar companions, providing a powerful new tool for

atmospheric characterization.

In order to assess GPI’s accuracy in linear polarization for point sources, we observed the

benchmark T dwarf HD 19467 B for 28 minutes of integration time on February 1st 2015. HD

19467 B is unique among substellar companions in that it is the only T dwarf with a solar-analog

primary to be detected both as a long term trend in RV measurements and by direct imaging

(Crepp et al 2012). Recently, Crepp et al (2015) determined a spectral type of T5.5 ± 1 and an

effective temperature of Teff = 978+20
−43 K (see Table 1 below) using the Project 1640 integral field

spectrograph at Palomar Observatory (Hinkley et al 2011). While mid T dwarfs are generally

thought to be cloudless, HD 19467 B was the only brown dwarf companion or exoplanet meeting

GPI’s observability requirements (I < 9 parent star and planet-star separation < 2.0”) at the time

of the pathfinder experiment.

We describe our observational methods and Stokes parameter extraction in Section 2. In Sec-

tion 3 we measure the degree of linear polarization at the location of the companion and empirically

estimate GPI’s polarimetric point source sensitivity. In Section 4, we place our results in the context

of field T dwarf observations and discuss our upcoming GPI campaign for exoplanet polarimetry.

2. Observations and Data Reduction

We briefly summarize GPI’s polarimetric mode here; for details, see Macintosh et al (2014),

Wiktorowicz et al (2014), and Perrin et al (2015). In polarimetry mode, a Wollaston prism

replaces the integral field spectrograph’s dispersing prism, and an achromatic half waveplate is

inserted between the coronagraph’s focal plane and Lyot mask. In an observing sequence, the

waveplate is rotated after each exposure in steps of 22.5◦. GPI operates in angular differential

imaging (ADI) mode, allowing the sky to rotate with respect to the telescope pupil. The Stokes

datacube [x, y, (I,Q,U,V)] describing the astronomical polarization is extracted from the raw data

by inverting the Mueller matrix whose elements represent the polarization induced by the instru-

ment and sky rotation. A detailed description of the Stokes cube extraction can be found in Perrin

et al (2015).

The observing sequence consisted of twenty-eight 60s exposures in the H-band, where each

sequence of four exposures cycled through the waveplate angles 0.0◦, 22.5◦, 45.0◦, and 67.5◦. The
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Table 1: HD 19467 system properties, after Crepp et al (2014, 2015)

HD 19467 A Properties

J 5.801± 0.020

H 5.447± 0.036

Ks 5.401± 0.026

Mass [M�] 0.95± 0.02

Radius [R�] 1.15± 0.03

Luminosity [L�] 1.34± 0.08

Teff [K] 5680± 40

SpT G3V

d [pc] 30.86± 0.60

Age, multiple techniques [Gyr] 4.6 - 10

[Fe/H] −0.15± 0.04

HD 19467 B Properties

J 17.61± 0.11

H 17.90± 0.11

Ks 17.97± 0.09

Mass [MJup] ≥ 51.9+3.6
−4.3

Teff [K] 978+20
−43

SpT T5.5± 1

Separation [AU, as] 51.1± 1.0, 1.65”

References. Crepp et al (2014, 2015).

exposures were taken from Modified Julian Day 57054.0536728 to 57054.0773418 and the airmass

ranged from 1.21 to 1.32. The total field rotation was 4◦. The observations were taken under

Gemini program number GS-2014B-Q-503.

In this study, the Stokes datacube was constructed from the raw data using a modified version

of the publicly available GPI pipeline v1.2.1 (Maire et al 2010; Perrin et al 2014). Modifications,

which will be released in a future version of the pipeline, included improved flat fielding and instru-

mental polarization subtraction. The latter was achieved by measuring the fractional polarization

inside the coronagraphic mask, which was assumed to contain only diffracted starlight affected by

instrumental polarization, on each polarization difference cube. The instrumental polarization was

then subtracted from the image as a whole, by multiplying the measured fractional polarization

by the total intensity at each spatial location. This method was introduced by Millar-Blanchaer

et al (2015), who found similar instrumental polarization levels as those measured using the same

dataset by Wiktorowicz et al (2014). The method used in Wiktorowicz et al (2014) to estimate the

instrumental polarization measures the fractional polarization in each frame using aperture pho-

tometry on the occulted PSF, and fits an instrumental polarization model that leverages the field

rotation within their dataset to distinguish between an astrophysical source and the instrumental
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polarization. The method used here and in Millar-Blanchaer et al (2015) has the advantage of

operating on each polarization datacube individually and therefore, this method doesnt rely on sky

rotation. While promising for point source polarimetry data, techniques such as LOCI or PCA that

take greater advantage of the sky rotation to reduce instrumental polarization are beyond the scope

of this paper. Section 3 briefly describes how our results could be improved by these techniques.

Spurious pixels in the Stokes cube were replaced with values obtained by interpolation over

pixels with counts greater than three standard deviations from the mean, and the detectors gain of

3.04e-/ADU was applied to convert the raw counts to electrons (this gain is reported in the FITS

headers of all GPI data cubes). The final reduced Stokes I, Q, and U images are shown in Figure

1. The four bright areas in the corners of the Stokes I frame (Figure 1a) are satellite spots used for

photometric and astrometric calibration in GPI’s imaging spectroscopy mode.

HD 19467 B is readily visible on the righthand side of the Stokes I frame, but is not apparent

in the Stokes Q or U frames. In the next section, we will calculate the companion’s signal to noise

ratio in each Stokes frame, and comment on the degree of linear polarization at the companion’s

location.

3. Polarimetric Analysis

A linearly polarized companion would produce signal in the Stokes Q and/or U frames at the

same location as the companion’s signal in the Stokes I frame. In order to determine whether we

detect polarized radiation from HD 19467 B, we must therefore calculate the signal to noise ratio

(SNR) in an aperture at the companion’s location in each of the Stokes frames.

In order to choose the optimal aperture size, we first estimate the companion’s full width at

half maximum (FWHM) in the Stokes I frame by fitting the sum of a 2D Gaussian distribution

and a plane to an 11× 11 pixel (≈ 3× 3 FWHM) window around the companion’s PSF. The plane

component was included to account for the shape of the parent star’s halo at the companion’s

location. The FWHM is found to be 3.44 pixels, or 0.049”, which is consistent with the diffraction

limit of λ/D=0.041” in the J band.

The optimal aperture size for photometry will maximize the companion’s signal to noise ratio

in the Stokes I frame. The “signal” is the difference of the sum of the counts inside the companion’s

aperture and the contribution from the parent star’s residual halo at the companion’s separation.

This halo contribution is found by constructing a ring of apertures around the parent star at the

same separation as the companion. These comparison apertures, shown in Figure 1, do not form

a complete ring because the parent star was offset from the detector’s center to allow for more

sky rotation of the companion. We also deleted those apertures that fall within a FWHM of the

bright astrometric spots. Despite these removals, the effect of small sample statistics is negligible

here (Mawet et al 2014). For each aperture size, the total number of apertures is modified to

prevent them from overlapping. We then sum the flux in each of these comparison apertures. A
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(c) Stokes U

Fig. 1.— The reduced Stokes images with the ring

of comparison apertures superimposed (the white

arrow indicates the companion in Stokes I). The

companion’s SNR (Equation 1) is 7.4 in Stokes I,

but SNR< 1.0 in Stokes Q and U. Hence, no po-

larized radiation is detected from the companion.

histogram of the Stokes I aperture sums is shown in Figure 2a. The histogram is asymmetric due to

the competing effects of the modified Rician statistics governing speckle noise and the whitening of

those statistics after ADI reduction. We take the parent star’s halo contribution to the flux inside

the companion’s aperture to be the mean of the comparison apertures sums, µi, and the noise to be

the standard deviation of the comparison aperture sums, σI . The signal to noise ratio is therefore

SNR =
Ic − µI
σI

(1)

where the c subscript denotes the sum of the counts inside the companion’s aperture (Ic =

26127.4e−). The signal to noise reached a maximum of SNRI = 7.4 for an aperture diameter of

1×FWHM. The “aper” aperture photometry tool provided by the IDL Astronomy User’s Library

was used to compute all aperture sums.
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To calculate the SNR in the Stokes Q and U frames, we use the same comparison aperture size

and locations as in the Stokes I frames. The histograms of the aperture sums in the Stokes Q and

U frames are shown in Figure 2b,c. We take the parent star’s halo contribution to the flux inside

the companion’s aperture in the Q and U frames to be the means of the aperture sums, µQ and

µU , and the noise terms to be the standard deviations σQ and σU of the aperture sums. Following

Equation 1, we find that Qc = −99.0 and Uc = 41.7, while SNRQ = 0.90 and SNRU = 0.79. We

therefore conclude that we do not detect any polarized radiation from HD 19467 B.
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(c) Stokes U aperture sum histogram

Fig. 2.— Histograms of the summed counts in

the Stokes comparison apertures. The aperture

size is equal to the full width at half maximum

of the companion (3.44 pixels, or 0.049”). The

Stokes I histogram (a) has an excess of higher

values due to speckle noise. Because HD 19467

A is an unpolarized star, there is little flux at the

companion’s separation in the Q and U frames.

The large spread in Q and U values is due in part

to the small number of apertures used (66).

Our goal now is to place an upper limit on the companion’s linear polarization fraction, p. In

general, p is defined as

p =

√
Q2 + U2

I
. (2)
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Our strategy will be to compute the probability density function (PDF) of p, and take the represen-

tative upper limits on p to be the upper bounds of the 68.27%, 99.73%, and 99.9999% confidence

intervals.

We take the PDFs of Q and U to be Gaussian distributions with means and standard deviations

matching those of the Q and U aperture sums via maximum likelihood estimation. We compute

the PDF of
√
Q2 + U2 using the formalism of Aalo et al (2007), which considers the most general

case of the PDF of R =
√
X2
c +X2

s where Xc and Xs are correlated real Gaussian random variables

with means µc, µs and standard deviations σc, σs. Aalo et al (2007) first rotate (Xc, Xs) through

the angle φ, chosen such that the new coordinates (Y1, Y2) are uncorrelated:

Y1 = Xc cosφ+Xs sinφ (3a)

Y2 =−Xc sinφ+Xs cosφ (3b)

φ =
1

2
tan−1

(
2ρσcσs
σ2
c − σ2

s

)
(3c)

where ρ is the correlation coefficient between Xc and Xs. The full derivation of the PDF of R is

beyond the scope of this paper, but we quote the result here and refer to Aalo et al (2007) for a

more detailed treatment. The final PDF is given by

fR(r) =
r

2σ1σ2
exp

[
−1

2

(
r2

2σ1
2

+
r2

2σ2
2

+
µ1

2

σ1
2

+
µ2

2

σ2
2

)]
∞∑
n=0

εnIn

(
r2

4

(
1
σ22
− 1

σ12

))
[(

µ1r
σ12

)2
+
(
µ2r
σ22

)2
]n

I2n

√(µ1r

σ1
2

)2

+

(
µ2r

σ2
2

)2


n∑
k=0

δkC
n
k

[(
µ1r

σ1
2

)2

−
(
µ2r

σ2
2

)2
]n−k (

2
(
µ1µ2r

2
)

σ1
2σ2

2

)k
(4)

where µ1, µ2 and σ1, σ2 are the mean and standard deviation of Y1 and Y2, εn=0 = 1 and εn6=0 = 2,

δkodd = 0 and δkeven = 2(−1)k/2, Cnk is the binomial coefficient, and In is the n-th order modified

Bessel function of the first kind. We find that Equation 4 gives consistent results to within machine

precision after five terms.

We find that the PDF of
√
Q2 + U2 is negligibly affected by the assumption that U and Q

are uncorrelated. The PDF is fit by a Hoyt distribution, which is equivalent to Equation 4 for the

special case of µQ = µU = 0.

To find the PDF of p =

√
Q2+U2

I , we first assume that
√
Q2 + U2 and I are uncorrelated.

The PDF of I represents the distribution of companion intensity values, and is therefore taken to

be the counts in the companion’s aperture, Ic, minus the distribution of counts in the comparison

apertures. The comparison apertures’ Stokes I distribution is influenced by both the modified
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Rician distribution governing speckle statistics and the whitening effects of angular differential

imaging. Hence, we take pI(i) to be the skewed Gaussian distribution fit to the histogram of Ic
- aperture I sums shown in Figure 2a. Because the width, σI , of Figure 2a is > 10× larger than√
Ic, the contribution of the companion’s poisson noise to pI(i) is neglected. For R =

√
Q2 + U2,

the CDF of p = R/I is the probability that R/I is less than a given value of p, or

Fp(p) =P (R/I ≤ p) (5a)

Fp(p) =

∫ +∞

i=0

∫ ip

r=−∞
fRI(r, i)drdi+

∫ 0

i=−∞

∫ ∞
r=ip

fRI(r, i)drdi (5b)

Differentiating with respect to p gives the final PDF of the linear polarization fraction:

fp(p) =

∫ ∞
−∞
|I|fR(Ip)fI(i)di. (6)

The calculated values of fp(p) and several fitted distributions are shown Figure 3. We find that

fp(p) is best fit by a Hoyt distribution. Table 2 lists the upper limits to the linear polarization

fraction corresponding to three representative confidence intervals calculated using the fitted Hoyt

distribution. We emphasize that our analysis described in this section is distinct from that of disk

polarimetry, which benefits from the assumption that light scattered by a disk is polarized in the

direction perpendicular to the direction towards the central star. To our knowledge, this work

presents the first analysis of point source polarimetric precision using a high contrast, integral field

polarimeter.

We now return to the question of how our limiting polarization fraction would be affected by

greater sky rotation and algorithms such as PCA (Soummer et al 2012) and LOCI (Lafreniére

et al 2007) that help attenuate quasi-static speckles caused by instrumental effects. The shape

of the polarization fraction’s PDF is governed by the PDFs of the Stokes I, Q, and U histograms

shown in Figure 2. The width of the Stokes I PDF is larger than expected based on photon

noise alone – the standard deviation of the aperture values is 1479.6e−, while the square root

of the mean is 104.7e−. This extra width is primarily due to speckle noise, which increases the

distribution’s standard deviation and skewness (Marois et al 2008a). Because speckles are mostly

unpolarized, however, their flux is attenuated in the Stokes Q and U frames. Visual inspection of

the polarized channels in Figure 1 confirm that speckles, and hence speckle noise, are not present

at the companion’s separation. Indeed, Perrin et al (2015) demonstrate that in GPI’s polarimetric

mode, the polarized intensity,
√
Q2 + U2, at HD19467 B’s separation of 1.65” is dominated by

photon noise (see also Oppenheimer et al (2008) and Hinkley et al (2009)). Hence, greater

sky rotation and PSF subtraction techniques would reduce the contribution of speckle noise to

the PDF of Stokes I, but would not significantly affect the PDFs of Stokes Q and U. To assess the

contribution of non-photon noise to our p upper limits, we replace the PDF of Stokes I values shown

in Figure 2a with a poisson distribution of µ = µI . The resulting p upper limits are 0.9%, 1.8%, and

2.7%, for the confidence intervals of 68.27%, 99.73%, and 99.9999%, respectively. Speckle reduction

techniques would therefore provide some improvement to our limiting polarization fraction, but our

assessment is dominated by the noise in the polarized channels.
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Fig. 3.— The probability density function of p =

√
Q2+U2

I , via Equation 6. The four fits are to

skewed Gaussian, Rayleigh, Rice, and Hoyt distributions. All but the skewed Gaussian are special

cases of Equation 4 for different values of the means and standard deviations of Q and U . The best

fit is the Hoyt distribution.

Table 2: Degree of linear polarization upper limits

Confidence Interval p upper limit

68.27% 1.2%

99.73% 2.4%

99.9999% 3.8%

4. Discussion

Recent observations of photometric variability outside the L/T transition hint at the presence

of cloud variability that might lead to a non-zero polarization signatures in a T5.5 dwarfs such as

HD 19467 B: Radigan et al (2014) detected J-band 1.6% peak-to-peak variability in a red T6.5

dwarf, and 0.6%−0.9% variability in three additional T dwarfs later than T3.5 without remarkably

red colors. Photometric monitoring at 3−5µm with Spitzer revealed that 19−62% of T0-T8 dwarfs

vary with peak-to-peak amplitudes > 0.4%, with T0-T-3.5 objects in the L/T transition showing

no higher incidence of variability than later type T dwarfs (Metchev et al 2015). The source of this

variability may be due to variations in cloud coverage and thicknesses, or “patchy” clouds. While it

has been recently suggested that temperature variations driven by atmospheric changes below the

cloud layer may also contribute to photometric variability (e.g. Robinson & Marley (2014)), Apai

et al (2013) and Radigan et al (2012) have shown that temperature fluctuations alone cannot

reproduce the observed amplitudes of variability.

The results of these photometric surveys suggest that even outside the L/T transition, T dwarfs

commonly have time-varying cloud and spot weather patterns. These variations may produce
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polarized intensity: de Kok et al (2011) show that a fixed hotspot on the surface of an otherwise

uniformly cloudy dwarf produces a higher amplitude of polarimetric variability as a function of

time than flux variability. The difficulty of detecting a linear degree of polarization of less than

1.0%, however, has prevented observers from testing this theoretical link between photometric and

polarimetric variability. For example, SIMP J013656.57+093347.3 is a T2.5 dwarf with periodic

large amplitude (50 mmag) variability, which is explained by invoking cool dusty cloud patches

against a warmer clear background (Artigau et al 2006, 2009). However, Zapatero Osorio et al

(2011) find no polarization, and place an upper limit of p < 0.9% on the J-band degree of linear

polarization.

In fact, only two T-dwarfs have published near-infrared polarimetric observations: the afore-

mentioned SIMP J013656.57+093347.3 T2.5 dwarf observed by Zapatero Osorio et al (2011), and

2MASS J12545393-0122474, a T2 dwarf observed by Miles-Páez et al (2013) with a linear degree

of polarization of p = 0.00% ± 0.34%. Our observations of HD 19467 B constitute the third po-

larimetric observation of a T dwarf, and the third null result. We also note that our upper limit

of pCL99.73% ≤ 2.4% is within a factor of a few of the previously mentioned T-dwarf upper limits,

demonstrating that high contrast, integral field polarimeters are approaching the performance of

direct polarimetric imaging modes.

While these null results could be due to unfavorable viewing angles or insufficient detection

limits, it is also possible that these T-dwarfs are simply cloudless, and hence would not polarize

infrared radiation. Multiple scattering polarization models for cloudless T dwarfs indicate negligible

polarization signals at wavelengths longer then 0.6µm at a range of inclinations and rotational

velocities (Sengupta & Marley 2009). These results are consistent with non-detections of near

infrared T dwarf polarization.

Clearly, more targets must be observed at higher polarimetric precisions in order to draw

meaningful conclusions about the cloud properties of brown dwarfs and exoplanets. Our upper

limit of pCL99.73% ≤ 2.4% is within a factor of a few of the predicted p ≤ 1.0% signature of a cloudy,

oblate body (Marley & Sengupta 2011), suggesting that GPI is capable of detecting polarized

radiation from substellar companions given sufficient integration times to reduce photon noise in

the polarized channels. To this end, our group is actively pursuing a GPI program to observe several

exoplanet and brown dwarf companions at the predicted p ≤ 1.0% level. Observing multiple targets

will reduce the risk of non-detections resulting from unfavorable viewing angles, and may shed light

on the diversity of low-mass polarimetric properties.

5. Conclusion

We observed the T5.5±1 dwarf HD 19467 B in the H band for 28 minutes on February 1st

2015 using the Gemini Planet Imager’s polarimetry mode. We detect no polarization signal from

the target, and place an upper limit on the degree of linear polarization of pCL99.73% ≤ 2.4%.
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Because this limit is larger than the predicted p ≤ 1.0% signature of a cloudy, oblate body, we

cannot constrain the atmospheric properties of HD 19467 B from this measurement. Our method

for analyzing point source polarimetry data, however, will be applied to our upcoming GPI survey

for which we expect to reach p ≤ 1.0% for multiple exoplanet and brown dwarf companions.

The future of exoplanet polarimetry is promising: because the breakup of clouds usually as-

sociated with the L/T transition occurs at lower temperatures for lower surface gravity objects,

exoplanet polarimetry signals will likely benefit from the surface asymmetries introduced by patchy

clouds. Indeed, Radigan et al (2014) show that HR8799 c falls near the highest amplitude photo-

metric variables in NIR color magnitude diagrams, a region populated by L/T transition objects.

With the advent of modern high contrast spectro-polarimeters such as GPI and SPHERE, we

are entering a new era of complementary photometric and polarimetric observations of exoplanets

and brown dwarf companions. Future exoplanet polarimetric detections have the power to inform

cloud particle size distributions at different pressures and corroborate the interpretations of L and T

photometric survey results. Brown dwarf and exoplanet atmosphere models are currently limited

by our understanding of cloud physics and its effects on observables; polarimetry is an as-yet

unexploited tool to fill in these gaps.

This material is based upon work supported by the National Science Foundation Graduate

Research Fellowship under Grant No. DGE-1144469. This work was performed in part under

contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan

Fellowship Program executed by the NASA Exoplanet Science Institute, and under the auspices

of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract

DE-AC52-07NA27344
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Lafreniére D., Marois C., Doyon R., Nadeau D., Artigau É., 2007, ApJ, 660, 770

Lyot, B. 1929, Ann. Oserv. Paris (Meudon), 8, 161 pp.

Macintosh, B. A., Graham, J. R., Palmer, D., W., et al. 2008, Proc. SPIE, 7015, 18

Macintosh, B. A., Graham, J. R., Ingraham, P., et al. 2014, PNAS, 111, 35

Macintosh, B., Graham, J. R., Barman, T., et al. 2015, Science, DOI: 10.1126/science.aac5891

Maire, J., Perrin, M. D., Doyon, R., et al. 2010, Proc. SPIE, 7735, 773531

Marley, M. S., & Sengupta, S. 2011, MNRAS, 417, 2874

Marley, M. S., Saumon, D., Cushing, M., et al. 2012, ApJ, 754, 135
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