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ABSTRACT 

 

A new family of block-sparse proportionate affine projection 

algorithms (BS-PAPA) is proposed to improve the 

performance for block-sparse systems. This is motivated by 

the recent block-sparse proportionate normalized least mean 

square (BS-PNLMS) algorithm. It is demonstrated that the 

affine projection algorithm (APA), proportionate APA 

(PAPA), BS-PNLMS and PNLMS are all special cases of 

the proposed BS-PAPA algorithm. Meanwhile, an efficient 

implementation of the proposed BS-PAPA and block-sparse 

memory PAPA (BS-MPAPA) are also presented to reduce 

computational complexity. Simulation results demonstrate 

that the proposed BS-PAPA and BS-MPAPA algorithms 

outperform the APA, PAPA and MPAPA algorithms for 

block-sparse system identification in terms of both faster 

convergence speed and better tracking ability. 
*
 

 

Index Terms —Proportionate affine projection 

algorithm, block-sparse system identification, adaptive filter 

 

I.  INTRODUCTION 

 

The impulse responses of many applications, such as 

network echo cancellation (NEC), are sparse, which means a 

small percentage of the impulse response components have a 

significant magnitude while the rest are zero or small. 

Therefore, instead of the normalized least mean square 

(NLMS) [1] and the affine projection algorithm (APA) [2], 

the family of proportionate algorithms exploits this 

sparseness to improve their performance, including 

proportionate NLMS (PNLMS) [3], and proportionate APA 

(PAPA) [4]. The memory improved PAPA (MIPAPA) 

algorithm was proposed to not only speed up the 

convergence rate but also reduce the computational 

complexity by taking into account the memory of the 

proportionate coefficients [5].  

It has been shown that the PNLMS algorithm and PAPA 

can both be deduced from a basis pursuit perspective [6]-[7]. 

A more general framework was further proposed to derive 
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the PNLMS adaptive algorithms for sparse system 

identification, which employed convex optimization [8]. 

Recently, the block-sparse PNLMS (BS-PNLMS) algorithm 

was proposed to improve the performance of PNLMS for 

identifying block-sparse systems [9]. Motivated by BS-

PNLMS, we propose a family of block-sparse PAPA 

algorithms for block-sparse system identification in this 

paper. The PNLMS, BS-PNLMS, APA and PAPA 

algorithms are all special cases of this proposed BS-PAPA 

algorithm. Meanwhile, in order to reduce the computational 

complexity, taking advantage of the block-sparse property in 

the proposed BS-PAPA algorithm, an efficient 

implementation of BS-PAPA is studied, and the block-

sparse memory PAPA (BS-MPAPA) algorithm is also 

introduced.   

 

II.  REVIEW OF PAPA 

 

In the typical echo cancellation problem, the input 

signal  nx  is filtered through the unknown coefficients 

 nh  to get the observed output signal  d n . 

        ,Td n n n v n x h  (1) 

where  

       [ , 1 , , 1 ]Tn x n x n x n L   x , 

 v n  is the measurement noise, and L  is the length of 

impulse response. We define the estimated error as  

       ˆ 1 ,Te n d n n n  x h  
 

(2) 

where  ˆ nh  is the adaptive filter’s coefficients. Grouping 

the M most recent input vectors  nx  together gives the 

input signal matrix: 

       [ 1 , , 1 ]n n n n M   X x x x,   

Therefore, the estimated error vector is  

       ˆ 1 ,Tn n n n  e d X h  (3) 

in which 



       [ 1 1 ]n d n d n d n M   d ,  

       [ 1 1 ]n e n e n e n M   e ,  

and M is the projection order. The PAPA algorithm updates 

the filter coefficients as follows [4]: 
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in which   is the step-size,   is the regularization, 
MI  is 

M M  identity matrix and 

       1 21 1 , 1 , , 1 ,Ln diag g n g n g n      G  (5) 
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  1
ˆ ˆ ˆmax max , , , ,l L lq h h h  , (7) 

q  prevents the filter coefficients  ˆ 1lh n  from stalling 

when   1
ˆ 0 Lh 0  at initialization, and   prevents the 

coefficients from stalling when they are much smaller than 

the largest coefficient.  

In many applications, including network echo 

cancellation (NEC) and satellite-linked communication echo 

cancellation, the impulse response is block sparse, that is, it 

consists of several dispersive active regions. However, 

PAPA does not take into account the block-sparse 

characteristic, and motivated by the block-sparse PNLMS 

(BS-PNLMS) algorithm [9], we propose a family of new 

block-sparse PAPA algorithms to further improve their 

performance for identifying the block-sparse impulse system 

in next section. 

 

III.  PROPOSED BS-PAPA 

 

The block-sparse scheme for PAPA will be firstly 

derived based on the optimization of l2,1 norm, then in order 

to reduce the computational complexity, an efficient 

implementation of the proposed BS-PAPA is presented by 

taking advantage of the block structure. Finally, block-

sparse memory PAPA (BS-MPAPA) is also proposed by 

considering the memory of the coefficients to further reduce 

computational complexity. 

 

A. The Proposed BS-PAPA 

 

The proportionate APA algorithm can be deduced from 

a basis pursuit perspective as below [7] 

 

     
1

               

subject to       ,T

n

n n n

h

d X h

min
 

(8) 

where  nh  is the correction component defined as [6]-[7] 

             
1

1 1Tn n n n n n n


    h G X X G X d . (9) 

Motivated by BS-PNLMS, the proposed block-sparse 

scheme for PAPA is derived by replacing the l1 norm 

optimization target in the basis pursuit perspective with the 

following l2,1 norm defined as 
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where            1 1 1 2
2

, [ , , ]T T

iPi P i Pi i i i
h ,h h

   
 h h h h , P  

is a predefined group partition size parameter and N L P  

is the number of groups. Therefore,  

 

     

2,1
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n

n n n

h

d X h
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(11) 

Similarly, the proposed BS-PAPA could be derived 

using the method of Lagrange multipliers, see [6]-[7] for 

more details. The update equation for the proposed BS-

PAPA is then, 

   

            
1

ˆ ˆ 1

1 1 ,T

M

n n

n n n n n n 


 

   

h h

G X X G X I e

 
(12) 

and 
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(13) 

in which P1  is a P-length row vector of all ones. Equation 

(12) is the same as traditional PAPA in (4), except for the 

block-sparse definition of  1nG  in (13). Similar to (5)-

(7) in PAPA to prevent the stalling issues, the proposed BS-

PAPA replaces (5)-(7) with  
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       1
2 2 2

ˆ ˆ ˆmax max , , , , .i N i
q  h h h  

(16) 

It should be noted that the proposed BS-PAPA includes 

PNLMS, BS-PNLMS, APA and PAPA. The BS-PNLMS 

algorithm is a special case of BS-PAPA with projection 

order 1M  . In the case of P  is equal to 1, the BS-PAPA 

algorithm degenerates to PAPA. Meanwhile, when P  is 

chosen as L , the proposed BS-PAPA turns into APA.  

 

B. Efficient implementation of proposed BS-PAPA 

 

By taking advantage of the new block-sparse 

characteristic in the proposed BS-PAPA algorithm, we can 

reduce the computational complexity of the proposed BS-

PAPA, especially for higher projection order. Equation (12) 

can be rewritten as 

     1n n n P G X , (17) 

   

        
1

ˆ ˆ 1

.T

M

n n

n n n n 


 

 

h h

P X P I e

 
(18) 

Considering the blocks of  1nG  in (14), (17) can be 

rewritten as (19) below, where 

        [ 1 1 ]T

P n x n x n x n P   x  (20) 

The direct implementation of (17) will need ML  

multiplications, which is the case of classical PAPA. 

However, considering the block-sparse characteristic in (14), 

the computational complexity of (19) can be further reduced. 

The ith submatrix of  nP  is defined as  i nP  in (21) at the 

bottom of the page. Considering the shift property of  P nx  

in (20), we only need to calculate the vector  i np  in (22) 

at the bottom of the page which requires 1P M   

multiplications then use a sliding window to construct 

 i nP . Therefore, the number of multiplications of (19) in 

the proposed BS-PAPA will become  1P M N  .  

It should be noted that, the proposed efficient 

implementation will not damage the performance of the BS-

PAPA algorithm. Meanwhile, the advantage of proposed 

efficient implementation becomes more apparent when the 

projection order and block size increase.  

 

C. Memory BS-PAPA 

 

In order to further reduce the computational complexity 

of (19), we could consider the memory of proportionate 

coefficients as in [5], and approximate the matrix  nP  by 

 nP'  in (23) at the bottom of the page. Due to time-shift 

property of (23), it could be implemented as 

       11 , 1n n n n    P' g x P'  (24) 

where the operation  denotes the Hadamard product and 

the matrix  1 1n P'  contains the first 1M   columns of 

 1nP' . The calculation of  nP'  only needs L  

multiplications and the proposed BS-MPAPA updates the 

coefficients as below: 

   

        
1

ˆ ˆ 1

.T

M

n n

n n n n 


 

 

h h

P' X P' I e

 
(25) 

It should be noted that the efficient implementation 

proposed in Section III.B could not be applied to the 

memory BS-PAPA, however, the computational complexity 

of memory BS-PAPA will be lower than BS-PAPA due to 

the time-shift property when considering the memory.
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IV. SIMULATION RESULTS 

 

The performance of the proposed BS-PAPA and BS-

MPAPA are evaluated via simulations. Throughout our 

simulation, the length of the unknown system is 1024L  , 

and the adaptive filter is the same length. Two block-sparse 

impulse systems in Figure 1 are used: the first impulse 

response in Figure 1(a) is with a single cluster of nonzero 

coefficients at [257, 288], which has 32 taps; the two 

clusters in the second impulse response in Figure 1(b) locate 

at [257, 288] (32 taps) and [769, 800] (32 taps) separately. 

In order to compare the tracking ability for different 

algorithms, an echo path change was incurred at 30000-

sample by switching from the first impulse response in 

Figure 1(a) to the second impulse response in Figure 1(b).  

The algorithms were tested using colored noise which 

was generated by filtering white Gaussian noise (WGN) 

through a first order system with a pole at 0.8. Independent 

WGN is added to the system background with a signal-to-

noise ratio, SNR = 30dB. The projection order was 8M  , 

and the step-sizes were 0.01  . The regularization 

parameters   were set to 0.01, and we used 0.01  , and 

0.01q  . The convergence state of adaptive filter is 

evaluated with the normalized misalignment which is 

defined as 
2 2

10 22

ˆ10log ( )h h h . 

The performance of the proposed BS-PAPA was tested 

for different group sizes P  chosen as 1 (i.e. PAPA), 4, 16, 

32, 64, 1024 (i.e. APA) separately in Figure 2. The impact 

of different group sizes on BS-MPAPA is similar. As 

discussed in BS-PNLMS [9], the group size should be 

chosen properly (around 32 here) in order to fully take 

advantage of the block-sparse characteristic. 

In the second simulation, we compare the performance 

of BS-PAPA and BS-MPAPA algorithms together with 

APA, PAPA and MPAPA. For both the BS-PAPA and BS-

MPAPA algorithms, the group size was 32P  . The 

convergence curves for colored input are shown in Figure 3. 

As can be seen, both proposed BS-PAPA and BS-MPAPA 

outperform PAPA and MPAPA in terms of convergence 

speed and tracking ability. Meanwhile, BS-MPAPA will be 

more favorable considering its lower computational 

complexity.  

 

V.  CONCLUSION 

 

We have proposed two proportionate affine projection 

algorithms for block-sparse system identification, called 

block-sparse PAPA (BS-PAPA) and block-sparse memory 

PAPA (BS-MPAPA). Simulation results demonstrate that 

the new proportionate BS-PAPA and BS-MPAPA 

algorithms outperform traditional PAPA, MPAPA for block-

sparse system identification. 
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Figure 1 Block-sparse impulse systems (a) one-cluster 

block-sparse system, (b) two-cluster block-sparse system. 
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Figure 2 Comparison of BS-PAPA with different group 

sizes for colored input with SNR=30dB. 
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Figure 3 Comparison of APA, PAPA, MPAPA, BS-PAPA 

and BS-MPAPA algorithms for colored noise with 

SNR=30dB. 
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