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Abstract For an ideal Bose-gas within a multi-slab periodic structure, we
discuss the effect of the spatial distribution of the gas on its Bose-Einstein
condensation critical temperature Tc, as well as on the origin of its dimen-
sional crossover observed in the specific heat. The multi-slabs structure is
generated by applying a Kronig-Penney potential to the gas in the perpen-
dicular direction to the slabs of width b and separated by a distance a, and al-
lowing the particles to move freely in the other two directions. We found that
Tc decreases continuously as the potential barrier height increases, becoming
inversely proportional to the square root of the barrier height when it is large
enough. This behavior is universal as it is independent of the width and spac-
ing of the barriers. The specific heat at constant volume shows a crossover
from 3D to 2D when the height of the potential or the barrier width increase,
in addition to the well known peak related to the Bose-Einstein condensation.
These features are due to the trapping of the bosons by the potential bar-
riers, and can be characterized by the energy difference between the energy
bands below the potential height.

Keywords Bose gas · multi-slabs · critical temperature

1 Introduction

Quantum fluids within periodic structures have been subject of study from
some decades ago. Important examples of this kind of systems are electron
gas in layered cuprate superconductors [1], cold atomic gases in periodic
structures constructed from laser beams known as optical lattices [2], the
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well known liquid helium four or three in any dimension [3], electons or holes
in semiconductor superlattices [4] or Cooper pairs in tube bundle supercon-
ductors [5]. The physical properties of a constrained quantum gas come from
the effects of the external potentials and the interactions between particles.
Here we are giving a detailed description of the effects of the constraints
on the Bose gas properties before to address a more complete description
including interactions. Let us consider a 3D ideal Bose gas (IBG) within a
lattice composed by multiple slabs. The bosons are free to move in the x an
y directions. The lattice is modeled through a Kronig-Penney potential in
the z direction, with potential barriers of width b separated a distance a, so
the potential period, or the lattice period, is a+ b. We solve the Schrödinger
equation by separation of variables. The energy of the particles with mass m
is ε = εx + εy + εz, where εx = ~2k2x/2m, εy = ~2k2y/2m, being ~ kx and ~ ky
the momentum of free bosons in the x and y directions respectively, while
εz is found by solving the Schrödinger equation in the z coordinate with the
Kronig-Penney potential

U(z) = V0

∞∑
n=−∞

Θ[z − (n− 1)(a+ b)− a]Θ[n(a+ b)− z], (1)

where Θ(z) is the Heaviside step function and V0 is the height of the potential
barriers. The allowed energies for a particle in the z-direction are given by
[6]

V0 − 2εz

2
√
εz(V0 − εz)

sinh(κb) sin(αa) + cosh(κb) cos(αa) = cos[kz(a+ b)], (2)

where ~κ =
√

2m(V0 − εz) and ~α =
√

2mεz.
The energy spectrum consist of a series of allowed energy bands separated

by forbidden regions, where the positive side of the j-th band extends from
kz(a+ b) = (j−1)π to jπ with j = 1, 2, 3,... . The Fig. 1 in Ref. [8] shows the
energy spectrum, and the allowed energy bands, in terms of the dimensionless
parameters u0 = (2m(a+ b)2/~2)V0, ε̄z = (2m(a+ b)2/~2)εz and r = b/a,
for r = 1. Pi squared times our energy unit ~2/2m(a + b)2 is equivalent
to the recoil energy of an 1D optical lattice formed by the interference of
two counter-propagating light beams of wavelength equal to 2(a + b). The
parameter u0 represents the lattice height (or depth) in our energy unit, and
the quotient r indicates how wide are the barriers with respect to the lattice
period. It also indicates if a lattice is square (r = 1) or rectangular (r 6= 1).

2 Universal behavior of the critical temperature

We obtain the thermodynamic properties of the Bose gas from the Grand
Potential Ω = U − TS − µN . In order to find the Bose-Einstein critical
temperature Tc we use the number equation, N = N0 + Ne, where N0 is
the number of bosons occupying the ground state, and Ne is the number of
bosons distributed over excited states. At T = Tc, µ(Tc) = µ0 = ε0 is the
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energy of the ground state of the system, and all the bosons are distributed
over the excited states, N ≈ Ne. The number equation becomes

N = − mV

(2π)2~2
1

βc

∫ ∞
−∞

dkz ln(1− e−βc(εz−µ0)), (3)

with βc = 1/kBTc. From the last Eq. (3) we obtain the critical temperature
Tc in an implicit way, which is numerically calculated. Our system size is
infinite, and it has an infinite number of bosons, but the average particle
density ηb = N/V is a constant. An infinite IBG with the same average
density but with no external potential has a critical temperature given by

T0 = (2π~2/mkB) [ηb/ζ(3/2)]
2/3

, where ζ(3/2) ' 2.612 is the Riemann Zeta
function of argument 3/2. It turns out that T0 is a good reference parameter
for temperatures as well as the thermal wavelength λ0 = h/

√
2πmkBT0 is a

good reference parameter for lengths, in particular for the critical tempera-
ture Tc and the potential spatial period a+ b, respectively.

We previously found [8] that, when u0 ≡ (2m(a+b)2/~2)V0 � 1 the criti-
cal temperature is inversely proportional to the square root of this parameter.
However, in order to observe separately the effects of the spatial period vari-
ation as well as the increasing of the potential height on the critical tempera-
ture, in this Section we find it convenient to replace u0 by ũ0 ≡ (2mλ20/~2)V0
which is period independent and it depends exclusively on changes of the po-
tential magnitude V0. The behavior of the critical temperature as a function
of ũ0 (instead of u0) is shown in Fig. 1, for r = 1, i.e., the width of the barri-
ers is equal to the separation between them. In the same figure each curve of
Tc/T0 corresponds to a particular value of the period of the potential. We can
see that Tc is a monotonically decreasing function of ũ0: when the magnitude
of the potential barriers is small Tc is approximately T0, then it falls as ũ0
increases, and for sufficiently high potential barriers the critical temperature

is proportional to ũ
−1/2
0 . In addition, for (a+ b)/λ0 < 1 we clearly see that
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Fig. 1: (Color
online) Tc/T0 as
a function of ũ0.
The solid, thin
line indicates
the behavior
given by (6).
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Tc is very close to T0, even for very high potential barriers. This behavior
is due to the fact that, when the potential period becomes very small with
respect to λ0, the energy spectrum of the bosons approaches more and more
to that of a free particle, so Tc tends to T0. It seems as if the thin potential
wells are unable to capture bosons and all of them have energies above V0
behaving as a free IBG.

In the other hand, we found that when [(a + b)/λ0] r
√
ũ0/(1 + r) � 1,

the energy bands whose energies are less than ũ0 are very narrow, and they
resemble the energy levels of a particle in a box of width a. In this case we
can approximate the energies of the first band through a Taylor series up to
second order derivatives of εz(kz) around kz = 0,

εz ≈ ε0 +
1

2
k2z D

2
kzεz |kz=0 . (4)

The linear term on kz is zero because εz(0) = ε0 is a minimum of the energy.
Using this approximation, and taking the condition that (a+ b)/λ0 � 1, the
behavior of Tc/T0 is given by the relation

rũ
1/2
0

(1 + r)ζ(3/2)

Tc
T0

+
1

1 + r

(
Tc
T0

)3/2

− 1 = 0, (5)

which is potential period independent, therefore Tc/T0 depends only on ũ0
and r. When r

√
ũ0/(1 + r) � 1 the second term of (5) becomes negligible,

and we obtain the concrete dependence of the critical temperature shown in
Fig. 1 as a solid thin line,

Tc
T0

=
1 + r

r
ζ(3/2)ũ

−1/2
0 . (6)

Fig. 2: (Color
online) Tc/T0 as
a function of the
potential period.
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The numerical results plotted in Fig. 1 supports that Eq. (6) is an excellent
limit relation when ũ0 is very large in comparison with [(a+ b)/λ0]−2, even
when (a+ b)/λ0 is smaller than unity. The behavior of Tc as a function of the
potential period can be seen in Fig. 2, where we note that Tc approximates
to T0 when the potential period is small, then it falls as the period increases,
and finally it goes to a certain value that is ũ0 and r dependent, but becomes
(a+ b)/λ0 independent. This constant value is given by solving (5).

It is interesting to see how the critical temperature does not necessarily
approaches to T0 again as the potential period keeps increasing, unlike the
case of a Dirac comb potential [7]. Even when the empty space between
barriers becomes larger (as well as the barriers width), the distribution of
the bosons over the bands is very different to that of the free Bose gas. The
dependence on ũ0 and r that appears on the first term of (5) comes from the
distribution of the bosons over the first energy band. The dependence on r
in the second term of (5) comes from the boson distribution over the rest of
the bands. Only in the case when r = 0 the critical temperature is T0. This
is expected because r = 0 means no barriers, i.e., b = 0, or a → ∞ while
b remains constant. In both cases it is clear why we recover the behavior of
the free Bose gas.

3 Dimensional crossover and energy spectrum

We have calculated the specific heat at constant volume for several combi-
nations of the parameters (see Fig. 4 of Ref. [8]). The specific heat has a
peak due to the Bose-Einstein condensation of the confined IBG at a critical
temperature Tc ≤ T0. Above Tc the specific heat has a complex structure,
and for some combinations of the parameters of the system it shows a di-
mensional crossover within an interval of temperatures where it falls to a
minimum approximately equal to unity; in this interval the system behaves
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Fig. 3: (Color
online) CV /NkB
contours as a
function of the
potential pe-
riod and the
temperature.
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as a 2D gas, trapped by the potential in one direction but remaining free in
the other two. The minimum, which is a consequence of the trapping effects
imposed by the potential barriers could become a plateau when the potential
magnitude is increased. In addition to the minimum, the specific heat has
two maxima. The maximum at the lower temperature marks the crossover
from the 3D behavior of the gas to a 2D behavior. The maximum at higher
temperature represents the return of the system to its three-dimensional be-
havior or it may be seen as the superior limit of the temperature interval
where the crossover occurs.

In order to give a explanation about the meaning and position of the
specific heat maxima in terms of the energy spectrum characteristics, we
realized a contour plot of CV /NkB as a function of (a+ b)/λ0 and T/T0, for
a system with u0 = 100 and r = 1 (see Fig. 3) where the maximum positions
are highlighted with bright yellow.

When we associate the temperature of the maxima Tmax with a yet un-
known energy chunk ∆εz characteristic of the energy spectrum such that
∆εz = kBTmax, we found that both lower and higher maxima temperatures
follow the relation

Tmax
T0

=
1

4π
∆ε̄z

(
a+ b

λ0

)−2
, (7)

where ∆ε̄z, the energy chunk given in recoil energy unit divided by π2, has
a different value depending on whether we are describing the maximum at
lower or higher temperature.

The maximum that occurs at the higher temperature is reproduced using
an energy ∆ε̄z given by the difference between the bottom edge of the first
energy band and the bottom edge of the second energy band. In the Fig. 3
this is shown with white circles. The maximum at the lower temperature
occurs when ∆ε̄z is approximately equal to 1/4 of the width of the first
energy band. In the Fig. 3 this relation is shown with white diamonds.

Fig. 4: (Color
online) CV /NkB
contours as a
function of the
potential pe-
riod and the
temperature.
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As a more general result, it is found that as the magnitude of u0 increases
the energy chunk needed to reproduce the Tmax of the maximum at higher
temperatures, eventually corresponds to the energy difference between the
bottom edges of the first and the third, fourth or subsequent bands of the
confined Bose gas energy spectrum. An example of this behavior is show in
Fig. 4 for the system with u0 = 500 and r = 1, where the energy chunk ∆ε̄z
associated to the maximum at the higher temperature corresponds to the
difference between the bottom edges of the third and first band. However,
the dependence of the energy chunk on u0 and r is not trivial to find, and
currently we have no analytical expression to determine it. It is noticeable
that, to reproduce the maximum at lower temperature with expression (7) we
always use ∆ε̄z approximately to 1/4 of the width of the first energy band of
the spectrum, i.e., in this case ∆ε̄z value is potential strength independent.

4 Conclusions

In summary, we analyzed the behavior of the BEC critical temperature of an
IBG confined by an infinite stack of slabs as well as the effects of the external
periodic potential on the dimensional crossover, the specific heat maximum
positions and their relation with the distribution of allowed and forbidden
bands in the energy spectrum. We found that the critical temperature Tc
decreases continuously as the potential barrier height increases, and it be-

comes proportional to ũ
−1/2
0 when ũ0 is much larger than [(a+ b)/λ0]−2. It is

found that this behavior is universal as it does not depends on the potential
period, the barrier width nor the barrier separation. In addition, we found
that as the period increases the Tc becomes a constant value given by Eq. (5)
which is spatial period independent. On the other hand, the specific heat at
constant volume shows a dimensional crossover within a certain interval of
temperatures where it behaves like a 2D gas due to the trapping by the po-
tential barriers. The region where the dimensional crossover occurs as well as
the specific heat maximum positions depend directly on the forbidden and
allowed bands distribution in the energy spectrum. We were able to find a
relation between the maximum positions and characteristic energies of the
energy spectrum. Although the specific heat maximum position, at higher
temperature, is reproduced using the Eq. (7) with ∆ε̄z the energy difference
between the bottom edges of the second and first bands, or, depending on the
potential strength, the difference between the bottom edges of the third and
first, the bottom edges of the fourth and first and so on, we highlight that
the specific heat maximum position at the lower temperature is reproduced
using the Eq. (7) with ∆ε̄z being potential strength independent and equal
to 1/4 of the width of the first band.
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Phys. Rev. A 82, 033632 (2010); P. Salas et al., (2015), “Specific heat of under-
doped cuprates as a function of doping”, submitted for publication to JLTP.
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